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Abstract

Using a unique dataset containing over 2 million sales transactions for the Los Angeles and
San Diego Basins, we investigate the pathways through which wildfires affect real estate prices,
including the loss of visual amenities and proximity to burn scars. We further explore how two
information signals affect homeowners’ wildfire risk beliefs. First, we test whether homeowners,
in a high risk zone, update their risk beliefs in response to a wildfire event. Second, we take
advantage of an exogenous update in the risk zone to test how risk zone assignment affects risk
beliefs. Throughout the paper, our main identification strategy takes advantage of a rich repeat
sales dataset to control for house and neighborhood time-invariant unobservables. Findings
reveal a 4.2% to 5.0% decrease in the price of properties with a burn scar view within 2km. We
do not find evidence that wildfires or a change in the risk zone assignment significantly affect
the value of high-risk properties. These findings suggest such signals may not convey novel
information to homeowners.

JEL codes: Q51, Q54, Q58, R31
Keywords: hedonic pricing model, repeat sales, natural disasters, wildfires, viewshed, risk

beliefs

1 Introduction

Climate change is arguably the largest market failure our world has seen (Stern, 2008). Impacts

from climate change can come through multiple channels, such as more temperature extremes,

weather fluctuations, and natural disasters. These changes in turn can affect trade and economic

growth (Burke et al., 2015; Costinot et al., 2016; Hsiang et al., 2017), health (Deschênes and

Moretti, 2009; Deschênes and Greenstone, 2011), agricultural output (Schlenker et al., 2006; Burke

and Emerick, 2016; Fisher et al., 2012), and adaptation to extreme weather events (Hsiang and

Narita, 2012). In particular, natural disasters have been growing, both in frequency and severity.

The number of billion-dollar disasters is on an upward trend, with cumulative costs exceeding $300
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billion in 2017 in the United States—a new annual record (NOAA, 2018). For example, large

wildfires have increased by around 500% over the last 30-40 years and climate change is likely the

primary driver.1 The economic costs for natural disasters are predicted to increase rapidly as new

development expands in risk-prone areas. These areas are sought after, in part due to high amenity

values, e.g., beach-front communities or wilderness areas, and in part to development pressure

and infringement on the wildland or floodplains adjacent to urban centers. Yet, recent research

suggests that the economic costs of natural disasters have been previously understated (Deryugina,

2017). Understanding these economic costs is critical for society to make appropriate investments

to mitigate and reduce exposure to natural disaster damages. In addition, policymakers’ ability

to convey accurate risk information to local communities is essential to minimize development in

risky areas beyond the socially optimal level. Two important policy questions emerge. First, what

are the total costs of natural disasters, including property damages and amenity losses such as

neighborhood quality, vistas, and wilderness access. Second, do residents update their risk beliefs

in response to natural disasters or assignment to high risk zones?

To answer these questions, our paper focuses on wildfires in southern California, a region with

frequent high-severity wildland-urban fires.2 We assemble a uniquely large dataset of real estate

transactions that contains over 2 million observations and spans seven southern California counties

over 16 years. Every property is geo-coded and linked to a detailed wildfire history, neighbor-

hood characteristics, and environmental amenities. A viewshed analysis is conducted in ArcGIS to

precisely identify which properties’ viewshed intersects with the burn scars perimeters. Two identifi-

cation issues are present when estimating the effects of wildfires on property prices: 1) disentangling

the various pathways through which wildfires affect property prices (burned vistas, proximity to

burn scars, updated risk beliefs), and 2) constructing valid counterfactuals since properties that

experience a wildfire may be systematically different from those that do not. Using a series of

quasi-experimental methods, we estimate and disentangle the multi-faceted effects that wildfires

have on real estate prices: burned vistas, proximity to burn scar, and risk beliefs updating. We take

advantage of the large number of repeat sales in our dataset to control for house and neighborhood

time-invariant unobservables. Focusing on within-property variation is important because model

dependency and correlated unobservables may confound identification as properties impacted by a

wildfire likely differ from properties not impacted. Using stringent samples restrictions to identify

various treatment effects (burned vistas, proximity to burn scars, updated risk beliefs), we compare

treated properties to similar control properties to minimize concerns about different unobservable

trends. We explore the effects of two information signals on homeowners’ risk beliefs. First, we test

1Resources Radio Podcast broadcast on December 4th, 2018 with Dr. Wibbenmeyer from Resources for the
Future.

2 In 2017, the Tubbs Fire destroyed over 5,000 structures, while the Thomas Fire set the record for the largest fire
in California’s history. Besides, fire suppression expenditures for the year 2017-2018 have reached over $770 million
(California Department of Forestry and Fire Protection, 2018b).
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whether being located in the high fire risk zone affects how homeowners update their risk beliefs

after a wildfire. Second, we take advantage of an exogenous change in the risk zone to compare

the value of properties newly assigned to the risk zone relative to their neighbors that did not

experience a change in risk status.

We find that a burn scar view located within 2km lowers home values by 4.2% to 5.0% during

the first year post-fire, while a burn scar view located between 3km and 4km reduces home values by

1.9% to 3.2%. The effects of burn scar views on home values are attenuated beyond one year, which

may be explained by the fast regeneration of the shrub vegetation in southern California and/or

homeowners’ myopic behavior. Furthermore, once controlling for burn scar view, we find that

proximity to a burn scar does not significantly affect property prices. We do not find evidence that,

absent direct disamenity effect, wildfires significantly affect the value of riskier properties. It may

be because homeowners are inattentive or myopic, or because of the potential offsetting effects of a

wildfire on the changes in homeowners’ subjective fire probability and expected losses. Somewhat

surprisingly, we do not find evidence that a change in the risk zone assignment affects property

prices, suggesting that the risk zoning fails to convey accurate risk information to homeowners.

Overall, our results are consistent across a series of empirical specifications and robustness checks.

Our findings are relevant to policymakers to implement socially optimal public policies that

balance the cost of government intervention with the avoided damages from intervention. The

annual cost of US federal wildfire suppression and prevention programs is now exceeding $3 billion—

and is predicted to keep rising (Hoover et al., 2015). Recent years have witnessed some of the worst

wildland-urban fires in California’s history. For example, the 2018 Camp Fire is now the most

destructive fire on record with over 15,000 lost structures (and estimated insured losses of $7.5 to

$10 billion (RMS)). While the cost of government intervention is relatively easy to monitor, the

net effect of wildfires on society is more difficult to assess. Each wildfire affects the provisioning of

local amenities for an entire region with a great number of properties impacted and considerable

welfare implications. Improving our knowledge of the costs of wildfires on society is a pressing

issue as both the wildland-urban interface has been developing rapidly (Radeloff et al., 2018)3 and

wildland-urban fires are predicted to continue to increase in frequency and severity with climate

change (Westerling et al., 2006; Schoennagel et al., 2017).

Our findings have important policy implications on risk signalling and risk perceptions. Risk

beliefs affect demand for housing in high risk areas, private mitigation actions, and preferences

for public policies, which can mitigate natural disasters and reduce disaster management costs.

Natural disasters are ideal for understanding the updating of risk beliefs because they are likely

3According to the International Association of Wildland Fire (2013), there are approximately 46 million homes
in the United States on the wildland-urban interface, defined as properties adjacent to fire-prone public land. These
homes correspond to an estimated $9.2 trillion in property value at risk (using the 2017 Zillow Home Value Index for
the median American home of $200,000). Of the approximatively 13.6 million homes in California, 3.6 million are
located in the wildland-urban interface (Martinuzzi et al., 2015).
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exogenous shocks to property owners. Choosing a risky location, as in Bakkensen and Barrage

(2017) and Baylis and Boomhower (2018), could be evidence that these homeowners ignore risk

signals and take on too much risk. The social cost of miscalculating these risks could be extremely

high in some regions, for example, if adaptation involves mass resettlement of population (Bogardi

and Warner, 2009).

Recent studies model the hedonic price function formation accounting for the updating of natural

disaster risk beliefs. Bakkensen and Barrage (2017) show that coastal homeowners select into risky

locations for the coastal amenities, but also have lower risk beliefs. Gibson et al. (2018) model risk

beliefs updating in response to both flood risk and insurance price signals. They find that updated

floodplain maps have a considerable effect on housing prices after Superstorm Sandy. Baylis and

Boomhower (2018) show how government fire suppression programs subsidize development in high

fire risk areas, leading to moral hazard. A number of hedonic valuation studies investigates the effect

of natural disasters on risk beliefs. One of the fundamental problems is to disentangle changes in

homeowners’ risk beliefs from natural disaster damages, which requires being able to identify which

homes experience disaster damages (e.g., Hallstrom and Smith (2005); Bin and Landry (2013);

McCoy and Zhao (2018)).4

A large body of literature examines the impact of wildfires on property prices (mostly) in low-

population density and forested areas, such as Colorado and Montana. Using a data cross-section,

Stetler et al. (2010) find that properties in northwest Montana within 5km of a burn scar sell for

14% less than those 20km away, but the effect becomes insignificant once focusing on properties

for which the burn scar is not visible.5 This finding suggests that the loss of visual amenity may

be an important component of the total effect and that homeowners may only update their risk

beliefs when burn scars are visible. The study most similar to ours is McCoy and Walsh (2018).

Using a difference-in-differences approach, they investigate how wildfires affect risk salience in the

Colorado Front Range. They find that proximity to a burn scar reduces home values by 11.6% in

the first three years following a wildfire, while a burn scar view results in a 6.6% price drop in the

first three years. Studies in forested regions find evidence that home prices decrease temporarily

after a nearby wildfire or public disclosure campaign of risk ratings (Loomis, 2004; Donovan et al.,

2007; McCoy and Walsh, 2018). For example, McCoy and Walsh (2018) find that location in a

high-risk area leads to a 12.3% loss in home value in the first year after a fire.

This paper makes three contributions to the literature. It is the first large-scale study in a

heavily urban geographical area: the Los Angeles and San Diego basins. This metropolitan area is

4For example, Hallstrom and Smith (2005) use a clever quasi-experimental design by examining the effect of
Hurricane Andrew on changes in risk beliefs in a near-miss county in Florida—thus absent any storm damage.

5Our paper also relates to the literature on viewsheds. Mountain views have been shown to provide considerable
environmental amenities that can be capitalized in property values (Benson et al., 1998; Paterson and Boyle, 2002;
Cavailhès et al., 2009; Wasson et al., 2013). Considering the lasting visible evidence of damage and destruction that
wildfires leave in their wake, it may not be surprising that views of burn scars are a critical part of the disamenities
related to wildfires.

4



a particularly relevant case study because of the high number of homes at risk and relative high

value of these homes. Wildfires in the region are highly frequent and destructive (with an upward

trend) due to a dry Mediterranean climate and landscape dominated by shrubs that can ablaze

and regenerate every few years (Miller and Safford, 2012). Second, we assemble a unique dataset

of all the repeat sales properties affected by wildfires in the Los Angeles and San Diego Basins

between 2000 and 2015. Such data position us well to investigate how two types of risk information

signals affect homeowners’ subjective wildfire probabilities and expected losses. Complementing

this dataset with a detailed viewshed analysis, we cleanly estimate homeowners’ willingness to

pay for various amenities related to mitigation of wildfires, specifically through the destruction of

scenic views and proximity to burn scars. Third, our paper contributes to the quasi-experimental

literature on eliciting unbiased households’ values for school quality, environmental amenities or risk

(e.g., Black (1999); Chay and Greenstone (2005); Greenstone and Gallagher (2008); Muehlenbachs

et al. (2015); Haninger et al. (2017)). Our repeat sales framework combined with a difference-in-

differences approach restricted to neighboring properties on each side of the risk zone allows us to

control for both time-invariant and time-varying unobservables that biases cross-sectional analysis.

The remainder of the paper is structured as follows. The next section describes the data

sources and viewshed analysis. Section 3 motivates the identification strategy. Section 4 discusses

the results. Section 5 presents the conceptual model of risk beliefs updating. The final section

concludes.

2 Data

To capture all the properties likely affected by wildfires, we selected zip codes located within a

30km bandwidth of the national forests surrounding the Los Angeles and San Diego basins. Those

zip codes span across seven counties: Santa Barbara, Los Angeles, Orange, Ventura, Riverside, San

Bernardino, and San Diego. Transaction records for all properties located within those zip codes sold

between January 2000 and December 2015 were purchased from CoreLogic. We start with a dataset

of 2,187,007 unique properties. Single family residence sales (excluding mobile homes) and arms-

length transactions of owner-occupied properties account for 1,215,523 observations. Properties

with missing sale price as well as those sold more than once within the same year or sold in the

same year as built are also dropped to eliminate potential house flippers and made-to-order homes

(1,070,639 remaining observations). We deflate all prices using the Consumer Price Index from the

U.S. Bureau of Labor Statistics. We then further drop observations with sale prices in the bottom

and top 1%, and properties with the top 1% of bedrooms, bathrooms, and square footage. Of the

remaining 1,022,072 properties, 439,796 are repeat sales in our 16-year time period. To construct

our repeat sales dataset, we keep properties that sold more than once between 2000 and 2015 (in

practice, exactly twice since CoreLogic only contains information up to the prior sale). To eliminate
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potential outliers and reduce the likelihood that a property experienced significant renovation in-

between sales, we drop properties whose price change across transactions is in the top and bottom

percentiles and whose transactions took place more than 10 years apart.

The California Fire Resource and Assessment Program (FRAP; frap.fire.ca.gov) provide spatial

data on wildfires, the Fire Hazard Severity Zones, and the wildland-urban interface (WUI). The

California Department of Forestry and Fire Protection (CAL FIRE) produces maps of significant fire

hazard, called Fire Hazard Severity Zones (FHSZ), which we will refer to generically as “risk zones”

hereinafter. These maps are generated using an ember diffusion model developed at the University of

California, Berkeley, that takes into account the physical attributes of the area, including vegetation

type, topography, local climate and wind directions. The maps focus on hazards and do not account

for private risk mitigating actions on a given property, e.g., fuel reduction and defensible space. As

a result, homeowners do not have the ability to influence their assignment to the risk zone.6 By

law, sellers have to disclose the property’s risk zone status to the buyer at the time of sale. While

early maps were in place since 2000, new maps (expanding the risk zone) were implemented in

2008.

The wildfire data contain information on perimeters, area burned, and start and containment

dates. We discard fires smaller than 50 acres because they are likely not large enough to affect local

amenities or risk beliefs. Thus, our analysis includes 251 fires between 1998 and 2015. Burn scars

range between 51 to 270,686 acres (with median and mean sizes of 695 and 5,634 acres, respectively;

Table 1).7 Our analysis includes some of the largest wildfires in California’s history. For example,

the 2003 Cedar Fire (271k acres, i.e., the largest fire in our dataset; San Diego County) is the

second largest in California’s history after the 2017 Thomas Fire, followed by the 2007 Witch Fire

(162k acres; San Diego County), and the 2009 Station Fire (161k acres; Los Angeles County). It

is noteworthy that the Cedar and Witch fires partially overlapped (by over 40,000 acres) despite

being only 4 years apart. It illustrates the short fire interval existing in southern California, which

contrasts with that of most forested areas in the rest of the western United States.

National forests spatial layers come from the National Datasets maintained by the US Forest

Service (data.fs.usda.gov). State and local parks layers come from the California Protected Areas

Data Portal (calands.org/data). Spatial data on primary roads come from the US Data Catalog

(catalog.data.gov). The 2010 census tract boundaries and census characteristics come from the

American Community Survey and include median household income, race, and ethnicity—which

we use in Appendix E to examine changes in neighborhood composition.

All properties are geo-coded to obtain exact latitude and longitude coordinates and link them

to aforementioned spatial data. In ArcGIS, we calculate slope and elevation as well as distances

6Risk zones are managed by the state (State Responsibility Area) or municipalities (Local Responsibility Area).
7McCoy and Walsh (2018) use a 500-acre minimum fire size threshold, while Stetler et al. (2010) use a 10-acre

threshold.
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Table 1 Wildfire characteristics in our sample
Number Mean fire Min fire Max fire Total area

Year of fires size (acres) size (acres) size (acres) burned (acres)
1998 15 3,727 95 28,136 55,908
1999 11 2,016 107 7,846 22,174
2000 10 1,468 52 11,734 14,679
2001 10 2,325 182 10,438 23,246
2002 19 5,212 65 38,119 99,022
2003 22 33,146 51 270,686 729,204
2004 15 3,305 53 16,447 49,577
2005 11 3,493 65 23,396 38,428
2006 14 6,142 64 40,177 85,990
2007 31 15,192 87 162,070 470,952
2008 13 5,699 65 30,305 74,084
2009 19 10,550 55 160,833 200,459
2010 13 1,264 64 12,582 16,432
2011 8 152 51 411 1,214
2012 9 674 54 2,637 6,063
2013 13 3,904 59 24,060 50,758
2014 11 2,678 78 15,186 29,456
2015 7 459 56 1,287 3,211
1998-2015 251 5,634 51 270,686 1,970,857

to burn scars, nearest national forest, nearest state or local park, and nearest primary road.8 To

focus our analysis on the effect of a single wildfire event on sales one or two years post-fire, we drop

properties that experience a second fire in the five years prior to the sale.9

2.1 Visual amenity and proximity effects

Because the human eye would have trouble distinguishing burned from unburned shrubs from more

than a few kilometers away, we restrict the analysis to repeat sales properties for which one of the

sales occurred within 4km of a burn scar.10 Due to the fast regeneration of shrubs, we further

focus our analysis on the first and second years post-fire. Summary statistics for the repeat sales

properties that sold once within 4km and during the first two years post-fire (with and without a

burn scar view) are shown in Table 2 and the properties are depicted in Figure 1.11

8Properties located on national forest land are excluded from the analysis due to concerns of belonging to different
markets. We further discard properties that lie on a wildfire perimeter or within a 50m buffer outside the perimeter
to ensure we exclude properties most exposed to structural damage by the fire. Note that (at least until recently)
wildfires in California were not associated with large numbers of homes destroyed. For example, between 2000 and
2015, 16,761 structures (including both residential and commercial) were lost in the state of California (California
Department of Forestry and Fire Protection, 2018a).

9Because there is a lag between the time the sale is recorded and the time the price of the property is negotiated
and agreed upon by the buyer and seller, we consider a sale as post-fire when it is recorded more than 60 days post-fire
(Mueller and Loomis, 2014). Results are robust to using a 90-day lag.

10McCoy and Walsh (2018) find that a 5km threshold is appropriate in their Colorado setting with forests and
burned trees visible from farther away than shrubs.

11Table A1 shows that repeat sales properties on average sell for slightly less than properties in the full sample.
However, they do not appear to differ from the non-repeat sales properties based on other property, neighborhood, or
wildfire characteristics (e.g., distance and view of burn scar). This alleviates concerns that properties selling multiple

7



Table 2 Summary characteristics of the repeat sales properties that sold during the first two years post-fire
for different distance bins from the burn scar

0-2km distance bin 2-4km distance bin
No view Burn scar view No view Burn scar view

Means (sd) Means (sd) Means (sd) Means (sd)
Sale price (k$2015) 504.88 (278.67) 515.54 (278.96) 457.71 (263.23) 433.70 (228.00)
Age 26.20 (20.61) 27.79 (21.81) 25.08 (20.28) 29.32 (23.19)
Living area (k sqft) 2.17 (0.86) 2.01 (0.77) 2.15 (0.80) 1.95 (0.72)
# bedrooms 3.55 (0.84) 3.45 (0.79) 3.55 (0.81) 3.42 (0.80)
# bathrooms 2.70 (0.86) 2.59 (0.81) 2.67 (0.78) 2.47 (0.77)
Swimming pool (0/1) 0.25 (0.43) 0.19 (0.39) 0.21 (0.41) 0.18 (0.38)
Dist. green space (km) 0.54 (0.50) 0.47 (0.44) 0.60 (0.60) 0.56 (0.51)
Elevation (m) 258.79 (167.40) 274.60 (174.72) 288.60 (160.83) 307.59 (186.96)
Slope 5.88 (5.79) 3.51 (3.90) 4.05 (4.59) 2.36 (3.11)
FHSZ (0/1) 0.23 (0.42) 0.17 (0.37) 0.16 (0.37) 0.05 (0.21)
WUI (0/1) 0.81 (0.39) 0.80 (0.40) 0.72 (0.45) 0.51 (0.50)
Dist. main road (km) 1.76 (1.17) 1.38 (1.19) 1.50 (1.28) 1.27 (1.06)
Dist. burn scar (km) 1.36 (0.46) 1.12 (0.56) 3.28 (0.54) 2.97 (0.55)
Days since fire 421.31 (199.00) 424.96 (205.77) 444.52 (203.55) 436.93 (208.58)
Median hh. income (k$) 85.59 (28.84) 84.36 (25.30) 83.43 (25.69) 76.30 (24.20)
% white 72.66 (14.39) 68.45 (13.56) 69.09 (15.40) 68.14 (13.69)
% hispanic 31.30 (18.47) 32.68 (22.27) 31.65 (17.78) 36.81 (21.12)
Years between sales 4.86 (2.16) 4.86 (2.13) 4.82 (2.21) 4.79 (2.17)
# of unique properties 1087 4199 6117 6261
# of census tracts 184 442 705 702
# of fires 80 107 157 129

Properties with a view of the burn scar are on average slightly older, smaller, at higher eleva-

tion, in less wealthy and more ethnically diverse neighborhoods, and closer to the burn scar than

properties without a burn scar view. The closer to the burn scar perimeter, the likelier it is that

a property has a burn scar view, as is illustrated by the larger number of treated properties (with

view) relative to the controls (without view) in the 0-2km bin than in the 3-4km bin.

Following the methodology employed in much of the literature on visual (dis)amenities, e.g.,

wildfire (Stetler et al., 2010; McCoy and Walsh, 2018), wind turbines (Gibbons, 2015), or shale gas

development (Muehlenbachs et al., 2015), we use ArcGIS’s Viewshed tool with a Digital Elevation

Model (DEM) of the terrain from the USGS National Elevation Dataset (with a 10m spatial res-

olution) to predict how far a 5-foot tall person can see from the property in a 4km radius. We

then intersect each property’s 4km-radius viewshed with burn scar footprints from the prior two

years. Because the Digital Elevation Model only takes into account the bare earth, considerable

measurement error may be associated with our burn scar view variable. To resolve part of this im-

precision, we collected Light Detection and Ranging (LiDAR) data to construct a Digital Surface

Model (DSM) that captures structures on the earth such as buildings and trees. One limitation of

this approach is that LiDAR data are only available for three counties—San Diego, San Bernardino,

times in our time period experience a different wildfire history from the non-repeat sales properties.
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Figure 1 Wildfire perimeters between 1998 and 2015 and repeat sales properties sold within 4km of burn
scar and during the first two years post-fire.

and Riverside counties.12

Figure 2 demonstrates the distribution of properties that are treated with a view of burn scars

compared to the properties without a view for four fires in our sample (top and middle panels use

the standard DEM, while the bottom panels rely on the LiDAR DSM). As expected, as properties

are closer to the burn scar it becomes more likely that properties also have a view of the burn

scar. Homes with a view of the burn scar tend to be clustered together, which highlights the

need to control for spatial variables that are correlated with the burn scar that are time invariant,

such as distance to amenities. The repeat sales approach we employ controls for time invariant

unobservables that would likely contribute to confounding identification of the effects of proximity

to and view of burn scars.

2.2 Risk perception effect

To isolate the effect of the two risk information signals, we need properties that do not experience

the disamenity effect from wildfires. Thus, we select for this analysis properties at least 5km away

from a burn scar (in the spirit of Hallstrom and Smith (2005) and McCoy and Walsh (2018)). The

motivation for this 5km threshold is to create some buffer beyond the 4km amenity effect we find

evidence for.

12We are not aware of other valuation studies using finer-resolution, LiDAR data to explore the effect of measure-
ment error in the visual amenity variable.
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Figure 2 Properties with or without burn scar view sold within 4km and two years post-fire for: a) the
2009 Station Fire in Los Angeles County, b) the 2005 Topanga Fire in Ventura County, c) the 2008 Freeway
Complex Fire in Orange County, and d) the 2003 Grand Prix Fire in Los Angeles County. LiDAR data are
used to construct the viewshed for: e) the 2008 Freeway Complex Fire and f) the Grand Prix Fire.
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Figure 3 Properties always off the risk zone and properties newly assigned to the risk zone in 2008.
Examples in a) Ventura County and b) San Diego County.

To test whether location on the high fire risk zone affects how homeowners update their risk

beliefs after a wildfire, we restrict the analysis to repeat sales properties near the risk zone for which

one sale took place during the first two years post-fire but at least 5km from the burn scar.13 To

investigate the effect of the change in the risk zone (absent any wildfire), we focus on repeat sales

properties near the risk zone (either inside or outside) that sold before and after the 2008 rezoning.

Figure 3 shows the distribution of two subsamples of properties newly assigned to the risk zone

and neighboring properties never on the risk zone. (The effect of the 2008 rezoning for our entire

study area is depicted in Figure A1.) Summary statistics for the property samples used for these

two risk information signals are shown in Appendix A (Tables A2 and A3). On average, properties

on the risk zone are slightly more expensive, newer, larger, at higher elevation, on steeper slopes,

more likely on the wildland-urban interface, in wealthier and less ethnically diverse neighborhoods

relative to properties outside the risk zone.

3 Empirical strategy

We use the hedonic pricing method to value the effect of wildfires on the changes in housing at-

tributes (Rosen, 1974). The change in attributes that results from a wildfire affects the comparative

prices of houses with these attributes and can measure the disutility of having a view of a burn

scar or living in a high-risk area. First, we estimate the average treatment effect of wildfire dis-

amenities, isolating the burn scar view effect from the proximity effect. Specifically, we estimate

the effect of having a burn scar view on the sales prices of treated properties (average treatment

13To study this first information signal, we omit properties that changed risk zone status in 2008.
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effect on the treated; ATT), holding constant other effects that vary with the proximity to the burn

scar. Second, we investigate the ATT of burn scar proximity, while controlling for burn scar view.

Last, we investigate the ATT effect of two types of information signals on changes in risk beliefs,

absent disamenity effect: an exogenous updating of the risk zone map and the differential effect of

a wildfire event on properties across the risk zone.

ATT is subject to biases if the properties that received treatment are systematically different

from those that did not. For example, homes located near burn scars may be older and smaller

than the average home farther away, or may be located in neighborhoods that experience different

amenity levels, e.g., access to the wilderness. Failure to control for an unobservable that is correlated

with both the treatment and home price will lead to biased estimates. The fundamental issue is

that we do not observe the counterfactual for treated observations, e.g., the price of a property if

that same property did not have a burn scar view. Our main empirical strategy takes advantage of

our repeat sales properties to control for time-invariant property and neighborhood unobservables

that may be correlated with both the treatment and home prices. Next, the empirical strategy lays

out our approach to recover unbiased ATT of burn scar view, proximity, and risk beliefs updating.

3.1 Effect of burn scar view

To identify the effect of burn scar views on property values, one must control for proximity effects

such as lost access to recreation sites, and changes in risk latency that may confound the burn scar

view estimate. By construction, comparing treated properties to control properties that are located

in the same distance bin from the burn scar will pin down most of the proximity effects.14 Running

separate models for different distance bins from the burn scar allows us to capture the heterogeneous

effect of the visual disamenity over space. The thinner the bin, the more heterogeneity we allow,

but the fewer the number of observations and the potentially less precise our estimates. (We test

multiple bin widths and show results for the 2km-bin width in Section 4 and relegate results for

the 1km-bin width to Appendix B.)

Using the repeat sales model we estimate equation (1) where careful selection of our sample

of property sales determines βj , the estimated ATT effect of burn scar view across the first and

second years post-fire j = {1, 2}.

ln pit =
∑
j

(βjV iewjit + γjV iewjit × Largejit) + λi + µit + εit. (1)

In this equation the dependent variable is the natural log of property i’s sale price at time t. λi are

property specific fixed effects, µit are temporal and spatial fixed effects and/or trends. To investigate

14Despite not having insurance data, it is likely that insurance premium updating in the aftermath of a wildfire is
largely determined by the proximity to the fire along with other property and neighborhood characteristics that are
controlled for in our repeat sales approach.
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potential treatment heterogeneity in the burn scar view intensity, we consider the effect of large

burn scar views (above 10 acres) on property values, i.e., γj . The hypothesis is that properties with

large burn scar views may be impacted more severely than properties from which the visible burn

scar is small.

Importantly, by using properties without a view of the burn scar as controls we can estimate

the effect of burn scar view within the same distance bin. Conditional on the trends for prices for

homes with and without a burn scar view being identical, our estimate provides an unconfounded

estimate of the effect of view on the price of a property, holding the proximity effect constant.15 In

addition, the within-property variation from the repeat sales approach allows us to hold the physical

risk constant. Because the repeat sales approach relies on time variation, it is critical to control

for the potential heterogeneity in temporal shocks across the region. For example, macro-level

housing shocks could drive price changes and confound the effect of wildfires.16 Thus, we rely on

time varying fixed effects to control for unobservables at the local and macro level, including either

year-by-quarter fixed effects combined with quadratic county trends or county-by-year-by-quarter

fixed effects, which are more flexible (but also soak up more of the variation).17

3.2 Effect of burn scar proximity

We focus our analysis on repeat sales properties for which one of the sales is affected by a wildfire

and define the treatment group as properties located within K-km of the burn scar, while the control

group consists of properties located between the K-km threshold and 4km. Our empirical model

(2) allows for heterogeneity of the proximity effect K across the first and second years post-fire

j = {1, 2}, while controlling for properties that have a burn scar view V iewjit.

ln pit =
∑
j

(βjKjit + γjV iewjit + δjKjit × V iewjit) + λi + µit + εit. (2)

The parameters βj reflect the ATT effect of proximity over time. We control for property and

neighborhood time-invariant unobservables λi, and local and macro shocks µit through year-by-

quarter fixed effects and quadratic county trends, or county-by-year and quarter fixed effects.

Section 4 shows results for K ranging from 1km to 3km. As a robustness check, Appendix C

depicts results running separate regressions for properties that have a burn scar view and those

that do not. This selection of properties provides another way to estimate the effect of proximity

to wildfire burn scars, holding constant burn scar view.

15In practice, we discard a small number of properties that experience fires across the two sales so that it is
straightforward to assign the property to a single distance bin within 0 and 4km.

16We are not concerned about housing booms because housing supply is inelastic in the region due to the presence
of steep-sloped terrain (Green et al., 2005; Saiz, 2010). Saiz (2010) reports MSA-level elasticities for Los Angeles-Long
Beach, Riverside-San Bernardino, and San Diego are 0.63, 0.67, and 0.94, respectively.

17Due to the large number of census tracts, we cannot afford to control for temporal shocks that vary at the census
tract level by year.
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3.3 Effect of information signals on risk beliefs

To investigate how homeowners update their risk beliefs, we consider two types of information

signals. First, we look at how a wildfire event may differently impact properties located in a high

fire risk area relative to neighboring properties sharing similar local amenities but just outside the

risk zone.18 We restrict the analysis to the repeat sales properties for which one of the sales took

place within two years post-fire but at least 5km from a burn scar (in practice between 5km and

15km; results are similar for 5km to 12km). We argue that the disamenities associated with burn

scars (including view and proximity) would be greatly diminished at such distances but that the

impact of risk information signal would still be relevant due to the spatial and temporal distributions

of wildfires in southern California. We differentiate the effect of risk latency by using the risk zone

as defined by the California Fire Hazard Severity Zones. This zoning is likely a good measure of

risk latency since the designations are publicly known, disclosed at the time of sale, and based on

objective hazard measures uncorrelated with homeowners’ risk mitigating actions.

Our quasi-experimental design combines a repeat sales approach with a difference-in-differences

framework. In regression (3), the repeat sales approach has the benefits of controlling for time-

invariant unobservables at the property and neighborhood levels, through λi, while the difference-

in-differences framework deals with time-variant unobservables within a close proximity of the risk

zone boundary, conditional on the parallel trend assumption between the treated (RiskZoneit = 1)

and control groups (RiskZoneit = 0) holding in the pre-fire period (PostF ireit = 0). The estimated

ATT effect of wildfires on risk beliefs updating is β.

ln pit = βRiskZoneit + γPostF ireit + δRiskZoneit × PostF ireit + λi + µit + εit. (3)

µit controls for year-by-quarter fixed effects and linear county trends or county fixed effects. To

alleviate concerns of unobservable trends that may vary across space, we focus the analysis on

homes within 1 or 2km on each side of the risk zone boundary so that we compare properties just

inside the risk zone with those just outside.19

Our second type of information signal analysis explores the effectiveness of risk zoning policies on

homeowners’ risk beliefs updating β. We take advantage of a 2008 exogenous update in the risk zone

to compare the value of properties newly assigned to the risk zone relative to their neighbors that

did not experience a change in risk status. We focus the analysis on the repeat sales properties that

change risk zone assignment across the two sales ∆RiskZoneit = 1, i.e., that become assigned to

the risk zone in the most recent sale.20 Our quasi-experimental design again consists of a combined

18Our quasi-experimental design is in spirit akin to a regression discontinuity design on the risk zone boundary.
19Reducing the distance threshold minimizes concerns about varying trends, with the tradeoff of reducing the

number of observations and precision of our estimate.
20We drop properties that ever experienced a fire within the 5 years prior to a sale, so as to isolate the effect of

the 2008 rezoning in the absence of fire events.
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repeat sales and difference-in-differences approaches. We show evidence of the common trends in

pre-rezoning prices in Appendix D. Regression (4) shows the property fixed effects λi, treatment

group ∆RiskZoneit, post treatment PostRezoningit, and spatial and temporal fixed effects and/or

trends µit.

ln pit = β∆RiskZoneit +γPostRezoningit + δ∆RiskZoneit×PostRezoningit +λi +µit + εit. (4)

Thanks to the relatively larger number of observations impacted by the rezoning (relative to

the fire event signal), we are able to narrow our analysis to homes within 250m, 500m, or 750m on

each side of the risk zone boundary to reduce concerns of unobservable trends varying over space.

Figure 3 shows the distribution of properties in Ventura and San Diego Counties as an example of

the sample of data used to identify the effects of new risk zone assignment.

4 Results

This section presents and discusses the disamenity effects and risk beliefs updating results. First,

we estimate the burn scar view effect holding constant the proximity effect. Second, we identify

the effect of burn scar proximity controlling for the burn scar view. Last, we estimate the effect of

two information signals on risk beliefs updating for properties on each side of the risk zone (in the

absence of disamenity effects).

4.1 Effect of burn scar view

Table 3 suggests that having a view of a burn scar decreases prices from 4.2% to 5.0% for properties

within 2km of a burn scar in the first year post-fire. The effect is in general attenuated the farther a

property is from the burn perimeter, with home values reduced by 1.9% to 3.2% between 3 and 4km.

The subscripts 1 and 2 on coefficients in Table 3 refer to the year post-fire for which a coefficient is

reported (e.g., View1 indicates the coefficient for a property with a burn scar view sold in the first

year post-fire). We do not find evidence of heterogeneity based on the size of the burned viewshed

(γj). Properties selling during the second year post-fire show no or weak burn scar view effects.

In Table 3, under the specification with year-by-quarter fixed effects and county-level quadratic

trends, having a burn scar view causes a decrease in property prices of 4.2% in the first 0-2km bin

and 1.9% in the 3-4km bin in the first year post-fire. The second year post-fire is only statistically

significant for properties in the 3-4km bin. When allowing for the more flexible county-by-year-by-

quarter fixed effects, the effect of the burn scar view is slightly higher in the 0-2km bin (-5.0%) and

remains more persistent in the 3-4km bin (-3.2%) in the first year post-fire. A smaller effect further

persists in the second year post-fire in the 3-4km bin (-2.6%). The attenuation in our estimate

beyond one year is likely due to the fast regrowth of shrub vegetation and/or homeowners’ myopia
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that another fire may ablaze in the area in the coming years. To put our estimates in perspective,

a 5% decrease in home prices due to having a view of a burn scar corresponds to a loss of value of

$28,300 for the average home in our sample (worth $566,000).

Table 3 Burn scar view estimates for the 0-2 and 3-4km bins

0-2km bin 3-4km bin
(1) (2) (3) (4)

View1 -0.0419*** -0.0504*** -0.0194** -0.0323***
(0.0145) (0.0131) (0.0085) (0.0079)

View2 -0.0203 -0.0216 -0.0167** -0.0259***
(0.0145) (0.0132) (0.0075) (0.0069)

View1×Large1 0.0066 0.0070 -0.0084 -0.0083
(0.0184) (0.0174) (0.0141) (0.0140)

View2×Large2 0.0023 -0.0090 0.0098 0.0043
(0.0177) (0.0162) (0.0138) (0.0124)

Quadratic county trends Yes Yes
Year×Quarter Yes Yes
County×Year×Quarter Yes Yes
N 10573 10573 24770 24770
R2

adj 0.843 0.862 0.868 0.880

Note: Each specification includes Property fixed effects. Robust standard errors clustered at the census-tract level in
parentheses. * p<0.1, ** p<0.05, *** p<0.01

In Appendix B, we further refine the widths of the distance bins to increase the accuracy with

which we control for proximity to elicit the effect of burn scar view. Results in Table B1 are

qualitatively similar.

Overall, our estimates of the negative effect of burn scar view are consistent with those found

in McCoy and Walsh (2018) and Stetler et al. (2010) (-6.6% and -2.6%, respectively), despite two

distinctions (likely working in opposite directions): these studies consider views of forested areas

and look at properties typically farther away (beyond 2km). Another distinction is our work finds

that burn scar view effects are robust for the first year and likely attenuate after that year. In the

hedonic literature it is common to assume a permanent change in an amenity level, e.g., air quality,

such that estimates can be interpreted as the discounted flow of net benefits associated with the

amenity change over the lifetime of the housing investment. In our setting, we examine a temporary

change in an amenity, which is less common to interpret. We posit that home buyers may discount

the risk signal or visual disamenities that come with a burn scar view over their expected time span

of the effect. As the vegetation recovers, amenity values may be expected to rebound partially or

completely after a number of years.

One potential concern with our estimates is that they could include a housing market supply

side effect. If wildfires destroy a large enough number of homes, thus reducing market supply and

increasing housing prices, our results likely underestimate the actual demand effect. Alternatively, if

wildfires lead to more households leaving the neighborhood and, thus, more homes on the market,

it may dampen home prices and bias upward our marginal willingness-to-pay for disamenities.
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However, it would seem likely that any supply side effect last for longer than one year. In addition,

we do not find consistent evidence of changes in neighborhood composition (Appendix E). Therefore,

we suspect that we are identifying the demand effects in this analysis and not a response to supply

shocks to the housing market.

Robustness checks

The results are robust to an array of specifications and sample definitions, including omitting sales

during the first quarter post-fire and changing the definition of the burn scar view above a minimum

size threshold, e.g., 0.1 or 0.5 acre (Appendix B).

Although the repeat sales approach is ideal for ensuring covariates balance between the treated

observations (with view) and the controls (without view), one concern discussed in Kuminoff and

Pope (2014) is the instability of the hedonic price function. One strategy to deal with the prob-

lem of temporal shifts in the hedonic price function is to use cross-sectional variation in prices

through regression or matching methods for identification. We construct a cross-sectional dataset

with treated properties (with view) and controls (without view). For our matching estimator to

be unbiased, we critically rely on the ability to construct good matches and balance covariates

between the control and treatment populations. One issue with the matching estimator presented

in Appendix B.1.2 is that there are few controls (without view) relative to the number of treated

observations (with view) in the bins close to the burn scar (the closer a home is to the burn scar, the

more likely it is to have a view). The small pool of controls poses a problem as balance improves for

some covariates but worsens for others. Overall, with our data the balance between covariates after

matching hardly appears satisfactory (Table B3). Poor balance on observables raises concerns for

poor balance on unobservables and omitted variable bias. We present the matching results, along

with results from an entropy balancing approach that mitigates the balancing issues arising with

matching, in Appendices B.1.2 and B.1.3.

Our estimates of a burn scar view may also be attenuated since the Digital Elevation Model

assumes that views are not blocked by physical structures on the earth, such as buildings and trees.

To identify how much this is an issue we run a separate Digital Surface Model viewshed analysis

for three counties using LiDAR satellite data accounting for all physical structures on the ground;

thereby assigning properties with less error to the treatment or control groups (Figure 2; bottom

panels). The tradeoff is that LiDAR data are not available for all our study counties and therefore

we face a reduction in the sample size and reduced power for an increase in accuracy of assignment

to treatment. Results in Table 4 suggest a similar burn scar view effect in the first year post-fire,

ranging from -2.6% to -3.3%. These results are not statistically different than the results in Table

3 at the 10% level and suggest that our main findings are robust to the definition of burn scar view

by LiDAR.
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Table 4 Burn scar view estimates for the 0-2 and 3-4km bins using LiDAR data

0-2km bin 3-4km bin
(1) (2) (3) (4)

View1 -0.0263* -0.0325** -0.0267** -0.0269**
(0.0152) (0.0139) (0.0123) (0.0117)

View2 -0.0043 0.0100 -0.0222** -0.0181*
(0.0169) (0.0146) (0.0108) (0.0109)

View1×Large1 -0.0062 0.0018 -0.0106 -0.0097
(0.0206) (0.0163) (0.0196) (0.0189)

View2×Large2 -0.0039 -0.0117 -0.0103 -0.0063
(0.0172) (0.0145) (0.0188) (0.0180)

Quadratic county trends Yes Yes
Year×Quarter Yes Yes
County×Year×Quarter Yes Yes
N 5658 5658 9248 9248
R2

adj 0.882 0.896 0.873 0.884

Note: Each specification includes Property fixed effects. Robust clustered standard errors at the census-tract level in
parentheses. * p<0.1, ** p<0.05, *** p<0.01

4.2 Effect of proximity to burn scar

In Table 5 we present the repeat sales estimates for properties within K-km to the burn scar

relative to those further away. We also interact the proximity measure with the binary indicator

for a view of the burn scar. We find insignificance of proximity to a burn scar when controlling for

view of a burn scar. The subscripts 1 and 2 on coefficients in Table 5 refer to the year post-fire

for which a coefficient is reported (e.g., K1 indicates the coefficient for properties within K-km of

the burn scar sold in the first year post-fire). Table 5 (all columns) shows no effect of proximity

with estimates that are both statistically and economically insignificant. Though the results show

a robust price decrease of 2.4% to 3.8% for properties with a burn scar view and within 3km that

sold during the first year after a fire. These results also attenuate some in the second year post-fire

with price decreases of 1.2% to 3.0%. These results qualitatively support our previous viewshed

results. Proximity to a burn scar is robustly not significant and the disamenity of being close to

the burn scar is attributable to having a view of it. Our estimates of disamenity associated with

proximity effects differ from those found in Mueller and Loomis (2014) and Loomis (2004). This

may at least be partially due to the fact that we identify the effect of proximity controlling for the

burn scar view effect.

4.3 Effect of information signals on risk beliefs

Overall, we do not find evidence that wildfire events or updates in the risk zone assignment signif-

icantly affect the value of high-risk properties. Table 6 presents the effect of wildfires on property

prices located on the risk zone relative to those located just outside the risk zone, while absent

disamenities related to burn scar proximity and view (since properties are over 5km away from the
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Table 5 Proximity effect estimates within threshold K-km of the burn scar

K = 1 K = 2 K = 3
(1) (2) (3) (4) (5) (6)

K1 -0.001879 -0.0118 -0.0029 -0.0042 0.0110 0.0112
(0.0190) (0.0187) (0.0125) (0.0114) (0.0108) (0.0091)

K2 0.0091 0.0173 0.0142 0.0137 0.0101 0.0110
(0.0247) (0.0246) (0.0129) (0.0118) (0.0098) (0.0088)

View1 -0.0238*** -0.0359*** -0.0235*** -0.0361*** -0.0298*** -0.0382***
(0.0071) (0.0066) (0.0076) (0.0072) (0.0091) (0.0087)

View2 -0.0127* -0.0262*** -0.0171** -0.0302*** -0.0158* -0.0300***
(0.0067) (0.0063) (0.0071) (0.0066) (0.0091) (0.0085)

K1×View1 0.0072 0.0090 0.0059 0.0044 0.0030 -0.0040
(0.0239) (0.0236) (0.0168) (0.0159) (0.0151) (0.0137)

K2×View2 -0.0003 -0.0076 0.0025 0.0028 0.0005 0.0015
(0.0260) (0.0253) (0.0158) (0.0142) (0.0129) (0.0120)

Quadr county trends Yes Yes Yes
Year×Quarter Yes Yes Yes
County×Year, Quarter Yes Yes Yes
N 35343 35343 35343 35343 35343 35343
R2

adj 0.859 0.859 0.860 0.859 0.860 0.859

Note: Each specification includes Property fixed effects. Robust clustered standard errors at the census-tract level in
parentheses. * p<0.1, ** p<0.05, *** p<0.01

fire perimeter).21 In general, we find that the effects of being in a high risk area after a wildfire oc-

curs are statistically insignificant, with the exception of the specification in column (3) (2.7% with

p-value=0.05)—which is difficult to explain unless other factors are changing simultaneously with

the status update. Our results differ substantially from McCoy and Walsh (2018) who show a large

price decrease of 12.3% for high risk properties selling in the first year after a wildfire in Colorado,

based on physical characteristics like terrain and vegetation (the effect is not significant beyond the

first year). The absence of significant decrease in property prices suggests homeowners do not act

upon the information conveyed by the risk zone designation. This finding differs considerably from

studies on changing risk beliefs after hurricane and flood events, which find considerable effects of

risk updating occurring after a major natural disaster event (e.g., Hallstrom and Smith (2005); Gib-

son et al. (2018)). The frequency of natural disasters may impact how risk updating occurs. Flood

events are more rare than wildfire events and a high frequency event may be less likely to move risk

beliefs. It may be that homeowners are already perfectly informed about wildfire risks due to the

high-frequency of fires in the region and, therefore, a new wildfire event does not generate novel

information and risk beliefs updating. The high frequency of disasters may also lull homeowners to

be inattentive to new information. Last, we are cautious about these findings because of the small

sample sizes for this analysis. Relaxing the 2km sample restrictions around the risk zone boundary

21Table 6 includes more observations than featured in Table A2 due to the presence of repeat sales properties
close to the risk zone boundary but that did not experience a wildfire. Those properties help identify the trends
and fixed effects. Still, in Table 6 we employ less restrictive county-level linear trends and separate the county and
year-by-quarter fixed effects because of the small number of observations on the risk zone with-in the 1km sample
restriction.
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does not bring in more treated properties as the risk zone is relatively thin (Figures 3 and A1). It

does allow more control properties but the ratio of treated to control observations is already low

(Table A2), and the concern is that control properties farther away are more likely to be affected

by unobservable trends correlated with the risk status and the price, thus biasing our estimates.

Table 6 Effect of latent risk on risk beliefs’ updating after a wildfire

Sample restrictions around the risk zone
Within 1km Within 2km

(1) (2) (3) (4)
Risk zone×PostFire 0.0166 0.0059 0.0270** 0.0213

(0.0143) (0.0147) (0.0136) (0.0140)
Linear county trends Yes Yes
Year×Quarter Yes Yes
Year×Quarter, County FE Yes Yes
N 23283 23283 35221 35221
R2

adj 0.717 0.714 0.763 0.760

Note: Each specification includes Property fixed effects. Robust clustered standard errors at the census-tract level in
parentheses. * p<0.1, ** p<0.05, *** p<0.01

Table 7 shows that rezoning does not significantly impact properties newly assigned to the risk

zone. Our preferred sample definitions restrict the analysis to properties as close to possible to

the risk zone boundary (250m; columns (1) and (2)) to alleviate concerns of unobservable trends

varying over space across the treated and control properties. The null result of fire risk rezoning

is surprising, but may indicate again that homeowners are not updating risk beliefs with this

information. It is possible that the high frequency of fires in these areas affects risk perception

updating of rezoning as well as wildfire events. In essence, homeowners do not feel that they gain

new information from such a signal when the frequency of events is relatively high. One caveat with

our repeat sales design is that we are focusing on within-property variation for properties that sold

once prior and once past the 2008 rezoning. In practice, properties may be selling multiple years

post 2008. Therefore, it may not be surprising that any immediate effect of the rezoning attenuates

overtime.

4.4 Neighborhood composition

A potential concern with identifying the value of disamenities using temporal variation in prices,

as we do with repeat sales, is the instability of the hedonic price function (Kuminoff and Pope,

2014). For example, if neighborhoods change in response to fire events, our disamenity estimate

would simply capture a capitalization effect rather than the marginal willingness-to-pay, or change in

surplus, associated with a change in environmental quality (Banzhaf, 2015). However, since wildfires

appear to happen randomly over space and time across the wildland-urban interface surrounding

the LA and San Diego basins, we do not expect a single wildfire event to result in large neighborhood

changes. One way in which we may identify more systemically such shifts in the equilibrium of
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Table 7 Effect of new risk zoning on risk beliefs’ updating

Sample restrictions around the risk zone
Within 250m Within 500m Within 750m
(1) (2) (3) (4) (3) (4)

∆RiskZone×PostRezoning -0.0021 -0.0098 0.0169 0.0097 0.0227 0.0135
(0.0313) (0.0365) (0.0234) (0.0226) (0.0193) (0.0183)

Quadratic county trends Yes Yes Yes
Year×Quarter Yes Yes Yes
County×Year×Quarter Yes Yes Yes
N 4120 4120 8144 8144 12350 12350
R2

adj 0.735 0.753 0.770 0.788 0.774 0.789

Note: Each specification includes Property fixed effects. Robust clustered standard errors at the census-tract level in
parentheses. * p<0.1, ** p<0.05, *** p<0.01

the hedonic price function is through inspection of the demographics of the buyers over time in

our study area. Following Bayer et al. (2016) and Haninger et al. (2017), we use data from the

Home Mortgage Disclosure Act (HMDA) to capture the buyers mortgage application information.

The HMDA data provide income, gender, race, and ethnicity of the applicant, as well as the loan

amount and year, lender name, and census tract of the property. In Appendix E, we use these data

to test whether the distributions of income, race, and ethnicity change after a wildfire. Overall, we

do not find evidence that neighborhood composition is affected by burn scar view, proximity, or

changes in risk zone assignment or wildfire events.

5 Model of risk beliefs updating

To shed light on our empirical results, we now present a conceptual model of risk beliefs updating.

This model clarifies how subjective risk beliefs enter into home buyer’s willingness to pay for housing

and provides a interpretation of our null results. Following on Rosen (1974), Kousky (2010), and

more directly on Gibson et al. (2018), we define the hedonic home price as H(Z, p), where Z denotes

a vector of housing and neighborhood attributes, and p is a homeowner’s subjective probability of

a wildfire. We assume p is a function of the fire risk zone F and recent fire events E. Letting

Y represent the homeowner’s income and X the consumption of a numeraire good (with price

normalized to 1), the homeowner’s budget constraint is Y = X + H(Z, p). For simplicity, let us

assume that insurance premiums are exogenous to a single wildfire event E and that all homes

are fully insured against physical fire damages.22 Yet, the loss of non-market amenities (visual or

22Following Proposition 103 passed in 1988, home insurance is heavily regulated in California (California Depart-
ment of Insurance, 2018). Increases in insurance rates have to be approved by the California Department of Insurance.
They cannot be driven by a single wildfire year, but instead must be based on long-term trends that look back at
wildfire damages over the last 20 years (Daniels, 2017). In addition, in the United States fire damages are covered
under regular home insurance. All banks require home insurance as a pre-condition for a mortgage. Virtually all
homes in our dataset have a mortgage with a bank. Homeowners who have may not been able to obtain insurance
in the regular market can purchase basic insurance under the 1968 California Fair Access to Insurance Requirements
(FAIR) Plan.
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proximity) or changes in risk would realistically not be insured. Let us assume that the subjective

expected amenity losses, L, resulting from a wildfire depend on the fire risk zone F and recent fire

events E. The state-dependent consumption levels are given by X1 and X0:

X1 = Y −H(Z, p)− L
X0 = Y −H(Z, p).

(5)

Assuming a twice continuously differentiable, concave von Neumann-Morgenstern utility function

U , the expected utility can be written:

EU = pU(X1,Z) + (1− p)U(X0,Z). (6)

Substituting in (5) gives:

EU = p(F,E)U(Y −H(Z, p(F,E))− L(F,E),Z) + (1− p(F,E))U(Y −H(Z, p(F,E)),Z). (7)

Now, we can examine the marginal effect of our two information signals on housing prices. A

wildfire event generates an information signal E. Maximizing EU with respect to E, we solve for

the marginal effect of a change in wildfire exposure on the hedonic price:

∂H

∂E
=

[U(X1)− U(X0)]
∂p
∂E − p

∂U
∂X1

∂L
∂E

p ∂U
∂X1

+ (1− p) ∂U
∂X0

. (8)

Applying the intermediate value theorem and a Taylor series expansion on (8) yields:23

∂H

∂E
≈ −L[1 + (Xc −Xm)r(Xc)]

∂p

∂E
− p[1 + (Xc −X1)r(Xc)]

∂L

∂E
, (9)

where Xc denotes the point at which the marginal utility of consumption is equal to the expected

value of marginal utility of consumption across fire and non-fire states, while Xm is the average

marginal utility of consumption over the interval [X1, X0]. The Arrow-Pratt absolute risk aversion

is denoted r(X). The effect of a recent fire on homeowners’ risk beliefs is ex ante ambiguous,
∂p
∂E Q 0, e.g., it may be driven by greater saliency or alternatively reduction in fuel in the region.

Similarly, a recent fire may lead homeowners to revise upward or downward their expected losses,

i.e., ∂L
∂E Q 0. As a result of these two effects, a wildfire may decrease, increase, or not affect property

values through risk beliefs. Our empirical results showing the absence of an effect may correspond

to 1) ∂p
∂E = ∂L

∂E = 0, 2) ∂p
∂E < 0 and ∂L

∂E > 0, or 3) ∂p
∂E > 0 and ∂L

∂E < 0. In the first case, homeowners

23Following the derivation in Gibson et al. (2018), there exists a point Xc on [X1, X0] such that ∂U
∂Xc

= p ∂U
∂X1

+

(1 − p) ∂U
∂X0

, and a point Xm on [X1, X0] such that ∂U
∂Xm

= U(X1)−U(X0)
X1−X0

= U(X1)−U(X0)
−L

. Applying a Taylor series

expansion yields ∂U
∂Xm

≈ ∂U
∂Xc

+ (Xm −Xc)
∂2U
∂X2

c
and ∂U

∂X1
≈ ∂U

∂Xc
+ (X1 −Xc)

∂2U
∂X2

c
.
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are already well informed about risk and do not revise their expected amenity losses after a fire. In

the second and third cases, they revise their risk beliefs and their expected losses, with both effects

cancelling each other out.

Conducting a similar analysis to examine the marginal effect of a change in risk zoning F on

housing prices yields:

∂H

∂F
=

[U(X1)− U(X0)]
∂p
∂F − p

∂U
∂X1

∂L
∂F

p ∂U
∂X1

+ (1− p) ∂U
∂X0

, (10)

and the local approximation:

∂H

∂F
≈ −L[1 + (Xc −Xm)r(Xc)]

∂p

∂F
− p[1 + (Xc −X1)r(Xc)]

∂L

∂F
. (11)

Thus, the effect of rezoning can affect housing prices through two channels: 1) the subjective fire

probability ( ∂p
∂F ≥ 0) and 2) the subjective expected amenity loss ( ∂L

∂F ≥ 0), which are both non-

decreasing. In our setting in which the rezoning does not affect property prices it must thus be that

both effects are nil, suggesting that homeowners do not view the rezoning are conveying credible

new information about the fire risk, and do not anticipate greater amenity loss from location on

the risk zone.

6 Conclusions

Burned vistas are a critical pathway through which wildfires affect property values. We find that

properties with a view of a burn scar located within 2km experience a 4.2% to 5.0% price drop

relative to similar properties without a view. This effect attenuates with distance to the burn scar

and over time. Our estimates are smaller and statistically weaker in the second year post-fire. In

addition, once controlling for visual disamenity, properties located near a burn scar do not face a

price loss relative to properties farther away, suggesting most of the disamenity value associated

with burn scar perimeters occurs through the burned viewshed channel.

Furthermore, we do not find evidence that the two types of risk information signals we investigate

affect homeowners’ risk beliefs updating. Because wildfires may affect homeowners’ risk beliefs

updating through both changes in their subjective wildfire probability and losses, their net effect is

ex ante ambiguous. Indeed, it is not clear how homeowners may interpret this signal. For example,

they may believe that a recent fire may imply future fires in the region are now less likely (subjective

probabilities are revised downward), but it may also lead them to reassess upward their subjective

losses in case of a fire (due to greater risk salience). In our setting, we find that either both effects

(subjective probabilities and losses) are nil or they move in opposite directions and cancel each

other out. Unfortunately, our quasi-experimental design does not allow us to isolate each of these

effects separately. Overall, our result contrasts with the findings of Hallstrom and Smith (2005)
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and Gibson et al. (2018) (among others) who find that hurricane and flood risk beliefs are updated

with large natural disaster events. We must consider how hurricane/flood and fire risk beliefs may

vary as major flood events are less frequent but often more destructive than fire events, which may

impact how these signals are interpreted.

The second information signal we consider (risk zoning) is of direct relevance to policymakers

since it is a common management tool to inform local residents of underlying natural disaster

risks. The question is whether this tool is effective. Our findings suggest homeowners do not

pay attention or do not find relatively small changes in the risk zoning credible as they neither

update their subjective wildfire probability or expected losses. It is important to point out that

our study examines a relatively marginal change in the risk zone assignment and, thus, we cannot

make inferences about the effect of designating a new risk zone.

Yet, taken together these findings are concerning as the risk zone assignment and wildfire events

are not conveying new information about risks. This may lead to a continuation of over development

and greater demand for housing in high-risk areas without due weight to the increased risks from

future natural disasters. The absence of beliefs updating may indicate a failing of the risk zone

to adequately inform homeowners of increased wildfire risks, or that beliefs are slow to change. It

may also indicate that property owners who choose to live in designated high-risk areas ignore new

information about wildfire risks, consistent with Bakkensen and Barrage (2017). These explanations

are somewhat troublesome for policymakers since efficient natural disaster policies presumably

require homeowners to update their risk beliefs about natural disaster to align the long-term costs

of mitigation and relief with the demand to live in such areas. As climate change effects intensify

and development in risky areas, such as the wildland-urban interface, continues, policymakers must

face the challenge of how to convey increases in natural disaster risk to homeowners. More research

is needed to understand how risk information can be effectively conveyed to property owners.

Last, our estimates come from a uniquely large dataset for the Los Angeles and San Diego basins

in southern California. This is advantageous and important for our quasi-experimental design and

wildfire policy as this region offers a prime empirical application to quantify wildfire disamenities in

a large metropole area subject to frequent wildfires. As the increase in the severity and frequency of

wildfires continues, there is much interest in how to weigh the costs and benefits of prevention and

mitigation strategies in the wildland-urban interface. Our estimates of the disamenities of wildfires,

via reduced marginal willingness-to-pay for key property attributes (including burned vistas) sug-

gest significant costs of wildfires—in addition to that of damaged properties and businesses. Such

estimates are critical to conduct a cost-benefit analysis of government fire protection programs.
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A Additional figure and summary statistics
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Figure A1 California wildfire risk zone, including the 2008 risk zone expansion.

Table A1 Summary characteristics of properties (full sample vs. repeat sales) sold within two years
post-fire. (Statistics for repeat sales properties are shown for the most recent sale.)

0-2km distance bin 2-4km distance bin
All Repeat sales All Repeat sales

Means (sd) Means (sd) Means (sd) Means (sd)
Sale price (k$2015) 565.55 (306.31) 513.35 (278.90) 497.98 (286.22) 445.57 (246.32)
Age 26.91 (21.38) 27.47 (21.58) 29.69 (21.94) 27.22 (21.90)
Living area (k sqft) 2.12 (0.80) 2.04 (0.80) 2.01 (0.76) 2.05 (0.77)
# bedrooms 3.50 (0.80) 3.47 (0.80) 3.43 (0.81) 3.48 (0.81)
# bathrooms 2.65 (0.84) 2.61 (0.82) 2.52 (0.80) 2.57 (0.78)
Swimming pool (0/1) 0.23 (0.42) 0.20 (0.40) 0.22 (0.41) 0.20 (0.40)
Dist. green space (km) 0.51 (0.49) 0.48 (0.45) 0.57 (0.53) 0.58 (0.55)
Elevation (m) 283.90 (186.51) 271.35 (173.35) 293.52 (182.18) 298.21 (174.79)
Slope 4.28 (4.58) 4.00 (4.46) 3.50 (4.14) 3.20 (4.00)
Risk zone (0/1) 0.20 (0.40) 0.18 (0.38) 0.10 (0.30) 0.10 (0.31)
WUI (0/1) 0.83 (0.38) 0.80 (0.40) 0.64 (0.48) 0.62 (0.49)
Dist. main road (km) 1.50 (1.23) 1.46 (1.19) 1.39 (1.17) 1.38 (1.18)
Dist. burn scar (km) 1.17 (0.54) 1.17 (0.55) 3.10 (0.57) 3.12 (0.56)
Burn scar view (0/1) 0.80 (0.40) 0.79 (0.40) 0.53 (0.50) 0.51 (0.50)
Median hh. income (k$) 88.98 (28.00) 84.61 (26.07) 82.58 (27.87) 79.82 (25.20)
% white 72.76 (13.54) 69.32 (13.84) 71.06 (14.60) 68.61 (14.56)
% hispanic 27.39 (19.12) 32.40 (21.55) 30.77 (18.95) 34.26 (19.71)
# of unique properties 19910 5286 40493 12378
# of census tracts 689 492 1299 982
# of fires 194 120 262 164
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Table A2 Summary characteristics of the repeat sales properties that sold during the first two years post-
fire for different distance thresholds from the risk zone boundary (properties are referred to “on” or “off” the
risk zone)

Within 1km Within 2km
On Off On Off

Means (sd) Means (sd) Means (sd) Means (sd)
Sale price (k$2015) 719.51 (313.08) 593.81 (286.61) 731.95 (311.78) 565.27 (291.83)
Age 32.00 (25.20) 41.87 (24.30) 30.94 (24.92) 44.85 (24.34)
Living area (k sqft) 2.19 (0.88) 1.80 (0.74) 2.24 (0.88) 1.70 (0.69)
# bedrooms 3.43 (0.92) 3.25 (0.82) 3.44 (0.93) 3.18 (0.82)
# bathrooms 2.86 (1.00) 2.39 (0.88) 2.86 (0.99) 2.26 (0.86)
Swimming pool (0/1) 0.17 (0.38) 0.16 (0.36) 0.16 (0.37) 0.14 (0.35)
Dist. green space (km) 0.42 (0.54) 0.43 (0.35) 0.49 (0.63) 0.40 (0.31)
Elevation (m) 159.10 (97.88) 135.08 (94.84) 176.90 (116.31) 115.42 (89.79)
Slope 4.53 (4.41) 3.59 (3.84) 4.71 (4.50) 3.09 (3.54)
WUI (0/1) 0.93 (0.25) 0.71 (0.46) 0.94 (0.24) 0.54 (0.50)
Dist. main road (km) 1.72 (1.10) 1.30 (1.04) 1.79 (1.11) 1.20 (1.02)
Dist. burn scar (km) 11.64 (2.58) 11.19 (2.82) 11.27 (2.88) 11.06 (2.88)
Median hh. income (k$) 105.07 (35.98) 79.91 (28.08) 104.30 (35.16) 75.56 (28.19)
% white 78.84 (13.08) 68.73 (21.60) 79.18 (13.11) 66.95 (20.71)
% hispanics 19.99 (18.55) 28.61 (21.59) 19.18 (17.83) 34.14 (24.60)
Years between sales 4.39 (1.84) 4.57 (2.28) 4.63 (2.05) 4.62 (2.32)
# of unique properties 303 1022 337 1889

Table A3 Summary characteristics of the repeat sales properties that sold post updating of the risk zone
map for different distance thresholds from the risk zone boundary (properties are referred to “newly on” or
“always off” the risk zone)

Within 250m Within 750m
Newly on Always off Newly on Always off

Means (sd) Means (sd) Means (sd) Means (sd)
Sale price (k$2015) 747.33 (318.13) 674.76 (292.81) 647.54 (246.38) 657.65 (290.52)
Age 20.26 (13.82) 30.68 (19.89) 17.76 (13.17) 29.91 (20.71)
Living area (k sqft) 2.48 (0.91) 2.08 (0.80) 2.55 (0.83) 2.06 (0.78)
# bedrooms 3.73 (0.78) 3.49 (0.79) 3.70 (0.74) 3.47 (0.79)
# bathrooms 3.05 (0.95) 2.68 (0.85) 3.09 (0.85) 2.66 (0.84)
Swimming pool (0/1) 0.26 (0.44) 0.21 (0.41) 0.24 (0.43) 0.21 (0.40)
Dist. green space (km) 0.39 (0.35) 0.42 (0.39) 0.40 (0.38) 0.43 (0.36)
Elevation (m) 270.65 (106.97) 203.15 (98.41) 251.46 (103.56) 198.38 (92.46)
Slope 6.02 (4.79) 4.47 (3.88) 5.45 (3.98) 4.37 (3.90)
WUI (0/1) 1.00 (0.00) 0.96 (0.19) 1.00 (0.00) 0.91 (0.28)
Dist. main road (km) 2.15 (1.41) 1.59 (1.21) 1.92 (1.34) 1.44 (1.13)
Median hh. income (k$) 107.90 (25.39) 92.69 (29.41) 107.73 (23.39) 90.32 (27.88)
% white 81.62 (9.21) 79.26 (13.85) 80.88 (9.34) 79.15 (13.51)
% hispanic 16.91 (10.95) 20.62 (14.56) 15.95 (9.32) 21.89 (15.23)
Years between sales 6.61 (2.04) 3.38 (1.69) 6.55 (2.16) 3.72 (2.04)
# of unique properties 570 1775 1268 4905
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B Additional burn scar view results

Table B1 Burn scar view estimates for each 1km bin

0-1km bin 1-2km bin 2-3km bin 3-4km bin
(1) (2) (3) (4) (5) (6) (7) (8)

View1 -0.0313 -0.0501** -0.0522*** -0.0634*** -0.0280** -0.0484*** -0.0197** -0.0316***
(0.0245) (0.0216) (0.0159) (0.0159) (0.0131) (0.0137) (0.0097) (0.0095)

View2 -0.0092 -0.0151 -0.0286* -0.0289* -0.0334*** -0.0454*** -0.0105 -0.0265***
(0.0225) (0.0203) (0.0165) (0.0165) (0.0111) (0.0106) (0.0097) (0.0094)

View1×Large1 0.0027 0.0164 0.0125 0.0123 0.0021 0.0056 -0.0443** -0.0349*
(0.0262) (0.0237) (0.0212) (0.0218) (0.0177) (0.0190) (0.0202) (0.0205)

View2×Large2 0.0049 -0.0111 0.0043 -0.0059 0.0142 0.0102 0.00450 0.0091
(0.0268) (0.0206) (0.0194) (0.0195) (0.0170) (0.0156) (0.0176) (0.0184)

Qd cty tr Yes Yes Yes Yes
Year×Qtr Yes Yes Yes Yes
Cty×Yr, Qtr Yes Yes Yes Yes

N 4048 4048 6525 6525 9928 9928 14842 14842
R2

adj 0.857 0.868 0.839 0.843 0.859 0.858 0.875 0.871

Note: Each specification includes Property fixed effects. Robust standard errors clustered at the census-tract level in
parentheses. * p<0.1, ** p<0.05, *** p<0.01

B.1 Robustness checks

B.1.1 Repeat sales

Due to potential concerns about the properties that sold immediately after a fire, we omit properties
that sold during the first quarter after a fire (Table B2).

Table B2 Burn scar view estimates for the 0-2 and 3-4km bins, dropping sales during the first quarter
post-fire

0-2km bin 3-4km bin
(1) (2) (3) (4)

View1 -0.0411** -0.0499*** -0.0192** -0.0304***
(0.0159) (0.0143) (0.00905) (0.00849)

View2 -0.0240* -0.0247* -0.0183** -0.0267***
(0.0144) (0.0129) (0.00750) (0.00691)

View1×Large1 0.00211 0.00255 -0.00245 -0.00637
(0.0203) (0.0176) (0.0151) (0.0149)

View2×Large2 0.00331 -0.00847 0.0101 0.00491
(0.0178) (0.0160) (0.0138) (0.0126)

Quadratic county trends Yes Yes
Year×Quarter Yes Yes
County×Year×Quarter Yes Yes
N 9299 9299 22124 22124
R2

adj 0.842 0.862 0.868 0.880

Note: Each specification includes Property fixed effects. Robust standard errors clustered at the census-tract level in
parentheses. * p<0.1, ** p<0.05, *** p<0.01

To complement the repeat sales specification that relies on temporal variation, we turn to two
empirical strategies (matching and entropy balancing) that exploit variation across properties sold
at the same time.
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B.1.2 Nearest Neighbor matching

Matching techniques can reduce model dependence by balancing covariates among control and
treated groups such that assignment to treatment appears random based on observables (Abadie and
Imbens, 2006, 2011). Matching prunes observations from the original dataset so that the remaining
data show better covariates balance. A growing number of studies have used nearest-neighbor
matching (NNM) techniques to infer the average capitalized value of environmental amenities,
including lake community amenities, shale gas development, and brown field remediation, e.g.,
Abbott and Klaiber (2013); Muehlenbachs et al. (2015); Haninger et al. (2017), among others. Yet,
one important pitfall of matching techniques such as NNM is that they may not improve the balance
of all covariates, and may even worsen the balance of potential confounders. As a result, it may
be difficult to determine whether matching has actually reduced model dependence and estimates
bias (Diamond and Sekhon, 2013).

We employ NNM to recover the average capitalized value of burn scar views by comparing
treated properties with a burn scar view to similar control properties without a burn scar view in
the same distance bin to the burn scar. The effect of the burn scar view treatment results from
averaging across the home value differences for matched treated and control pairs. One approach
to evaluate whether NNM unambiguously reduces model dependence for our data is to compare
how the empirical distributions of the covariates compare across the matched control and treated
groups, e.g., as discussed in Abbott and Klaiber (2013). From Table B3, we can see that while NNM
has improved the balance on elevation and slope, covariates balance has worsened for age, number
of bedrooms, and distance to green space (i.e., national forest or local or state park). Furthermore,
distance to the burn scar, which is a key variable that can potentially confound burn scar view
and proximity effects, is hardly satisfactorily balanced between the matched treated and control
groups. In addition, the closer the property is to the burn scar, the likelier it is to have a burn scar
view and, therefore, the higher the proportion of treated properties (with burn scar view) relative
to controls. As a result, the probability of a successful match, i.e., a treated property matched with
(at least) two controls, is lower near the burn scar (only 90% in bin 0-2km). This further raises
concerns about the internal validity of NNM estimates for distance bins close to the burn scars.

Table B3 Covariates balance for the full and matched samples for the 0-2km bin

Full sample Matched sample
Treated Control Treated Control

Mean (sd) Mean (sd) Mean (sd) Mean (sd)
Age 27.64 (21.71) 27.50 (20.57) 27.55 (21.78) 26.66 (20.57)
Living area (k sqft) 2.07 (0.79) 2.18 (0.84) 2.10 (0.80) 2.22 (0.84)
# bedrooms 3.48 (0.79) 3.50 (0.81) 3.49 (0.80) 3.53 (0.82)
# bathrooms 2.62 (0.83) 2.68 (0.88) 2.65 (0.84) 2.71 (0.88)
Swimming pool (0/1) 0.23 (0.42) 0.26 (0.44) 0.23 (0.42) 0.26 (0.44)
Risk zone (0/1) 0.16 (0.37) 0.20 (0.40) 0.20 (0.40) 0.24 (0.43)
WUI (0/1) 0.81 (0.39) 0.86 (0.35) 0.84 (0.37) 0.87 (0.34)
Elevation (m) 291.09 (192.74) 260.76 (171.29) 275.19 (190.33) 273.48 (172.56)
Slope 3.62 (3.77) 6.13 (5.96) 3.88 (4.05) 6.56 (6.18)
Dist. green space (km) 0.51 (0.48) 0.50 (0.44) 0.49 (0.48) 0.55 (0.53)
Dist. road (km) 1.43 (1.22) 1.54 (1.14) 1.51 (1.25) 1.60 (1.23)
Dist. burn scar (km) 1.11 (0.55) 1.36 (0.45) 1.12 (0.55) 1.34 (0.45)
Observations 16020 3890 14442 3826

NNM estimates of burn scar view are presented in Table B4. We find no significant effect of
burn scar view in the 0-2km bin and a positive significant effect in the 3-4km bin. We are concerned
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that these estimates are biased based on the poor balancing of covariates across treated and control
groups and therefore prefer the entropy balancing preprocessing of the data, which we describe
next.

Table B4 Burn scar view nearest-neighbor matching estimates by distance bin to the burn scar

0-2km 3-4km
View -0.017 0.013**

(0.012) (0.006)
N 18268 40318

Note: Matching using two nearest neighbors based on the Euclidean metric with exact matching on county and sale
year. Soft match on age, square footage, #bedrooms and baths, swimming pool, risk zone, and WUI dummies,
elevation, slope, distances to the nearest green space, primary road, and burn scar, and census tract’s median
household income, %white and hispanic. Robust standard errors in parentheses. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.

B.1.3 Entropy balancing

As a result of our concerns with strong model dependence arising from matching estimators, we use
entropy balancing, a new method developed in political science by Hainmueller (2012). Entropy
balancing is a data preprocessing technique that generates a set of weights (one weight for each
observation in the control group) so that the distributions of the relevant covariates in the treated
and weighted control groups are identical for the sample moments specified by the researcher (up
to the third moment). To reduce information loss, entropy balancing solves for the set of weights
that satisfies the balance conditions for the selected covariates while minimizing the departure
from the uniform base weights. It is important to note that observations are neither matched nor
pruned but simply weighted (unlike with NNM or propensity score matching techniques). Any
estimation technique can then be employed using the treated and entropy weighted control groups,
such as fixed effects to control for remaining unobservables. This method in conjunction with
our spatial and time fixed effects regression identification strategy provides a way to estimate the
specific disamenity of burn scar views when matching techniques do not sufficiently resolve covariate
balancing issues. It is of particular importance in the presence of limited sample sizes and is salient
to the state of the literature as matching has been used heavily in the hedonic pricing literature
since it provides distinct advantages over other statistical techniques.

Table B5 illustrates the covariates balance between the treated and entropy weighted control
groups. The assignment to the burn scar view treatment appears as close to possible to random
based on observables.24 Note that we do not lose (prune) any observations either in the treated or
control group.

Our preferred model specification, which uses the entropy weights that balance the set of co-
variates listed in Table B5, builds on equation (1) and is written as:

ln pit =
∑
j

(βjV iewjit + γjV iewjit × Largejit) + Z′
iω + Censusit + µit + εit. (12)

The dependent variable represents property i’s sale price at time t. Our set of structural property-
specific controls, Zi, include: square footage and age, indicator variables for number of bathrooms
and bedrooms; a variable indicating if a property has a swimming pool, geographic characteristics
including distance to the nearest burn scar and nearest green space, elevation, and slope. Censusit

24We find that entropy balancing on the third moment is unnecessary in our data as the control and treated
variables have a good level of balance on the third moment without additional specification.
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Table B5 Covariates balance with entropy balancing on first and second moments for the 0-2km bin

Treated Control Pre-balancing Control Post-balancing
Mean (sd) Mean (sd) Mean (sd)

Age 27.64 21.71 26.59 20.46 27.64 21.71
Living area (k sqft) 2.07 0.79 2.22 0.84 2.07 0.79
# bedrooms 3.48 0.79 3.53 0.81 3.48 0.79
# bathrooms 2.62 0.83 2.71 0.88 2.62 0.83
Swimming pool (0/1) 0.23 0.42 0.26 0.44 0.23 0.42
Risk zone (0/1) 0.16 0.37 0.23 0.42 0.16 0.37
WUI (0/1) 0.81 0.39 0.87 0.34 0.81 0.39
Elevation (m) 291.09 192.74 272.54 172.14 291.10 192.74
Slope 3.62 3.77 6.50 6.17 3.62 3.77
Dist. green space (km) 0.51 0.48 0.55 0.53 0.51 0.48
Dist. road (km) 1.43 1.22 1.61 1.23 1.43 1.22
Dist. burn scar (km) 1.11 0.55 1.35 0.45 1.11 0.55
Observations 16020 3890 3890

denote census tract fixed effects controlling for time-invariant neighborhood unobservables. µit
represent either quadratic county-level trends and year-by-quarter fixed effects or county-by-year-
by-quarter fixed effects.

We find in Table B6 that the effect of view of a burn scar is similar to our main finding. These
results reveal that properties with a view of a burn scar located within 2km of a burn scar experience
a 1.6% to 1.9% price drop in the first year post-fire relative to similar properties without a view.
Properties that are farther away, up to 4km, do not appear to be affected by having a view of a
burn scar. The burn scar view effect attenuates in the second year post-fire with a price drop of
1.0% in the first 2km bin (p-value=0.1). These results comport well with the repeat sales model
results but does not suffer from the concerns about hedonic price equilibrium shifts.

Table B6 Entropy balancing burn scar view estimates for each 2km bin

0-2km bin 3-4km bin
(1) (2) (3) (4)

View1 -0.0190*** -0.0163*** -0.0029 -0.0037
(0.0060) (0.0063) (0.0050) (0.0053)

View2 -0.0104* -0.0103* -0.0068 -0.0047
(0.0061) (0.0061) (0.0050) (0.0048)

View1×Large1 0.0052 0.0027 -0.0027 -0.0100
(0.0089) (0.0089) (0.0108) (0.0102)

View2×Large2 0.0083 -0.0081 0.0177* -0.0005
(0.0090) (0.0089) (0.0098) (0.0086)

Quadratic county trends Yes Yes
Year×Quarter Yes Yes
County×Year×Quarter Yes Yes
N 19910 19910 40499 40499
R2

adj 0.915 0.917 0.910 0.913

Note: Each specification includes entropy weights and Census tract fixed effects. Covariates are balanced on the
first and second moments using entropy balancing. Covariates include: age, square footage, #bedrooms and baths,
swimming pool, risk zone, and WUI dummies, elevation, slope, distances to the nearest green space, primary road,
and burn scar. Robust clustered standard errors at the census-tract level in parentheses. * p<0.1, ** p<0.05, ***
p<0.01
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C Additional proximity effect results

Table C1 Proximity effect estimates within threshold K-km of the burn scar and without a view

K = 1 K = 2 K = 3
(1) (2) (3) (4) (5) (6)

K1 -0.000266 -0.0122 0.000969 -0.00623 0.0155 0.00645
(0.0198) (0.0199) (0.0120) (0.0104) (0.0101) (0.00841)

K2 0.00389 -0.00291 0.0136 0.0134 0.00948 0.00995
(0.0238) (0.0183) (0.0126) (0.0106) (0.00950) (0.00767)

Quadr county trends Yes Yes Yes
Year×Qtr Yes Yes Yes
County×Year×Qtr Yes Yes Yes
N 14413 14413 14413 14413 14413 14413
R2

adj 0.859 0.877 0.859 0.877 0.859 0.877

Note: Each specification includes Property fixed effects. Robust clustered standard errors at the census-tract level in
parentheses. * p<0.1, ** p<0.05, *** p<0.01

Table C2 Proximity effect estimates within threshold K-km of the burn scar for properties with a view

K = 1 K = 2 K = 3
(1) (2) (3) (4) (5) (6)

K1 -0.00241 -0.00420 -0.00398 -0.00524 -0.00439 -0.0113
(0.0153) (0.0141) (0.0105) (0.00961) (0.00871) (0.00828)

K2 0.0105 0.00756 0.0162 0.0156 0.00588 0.00481
(0.0151) (0.0133) (0.0100) (0.00961) (0.00836) (0.00839)

Quadr county trends Yes Yes Yes
Year×Qtr Yes Yes Yes
County×Year×Qtr Yes Yes Yes
N 14413 14413 14413 14413 14413 14413
R2

adj 0.859 0.877 0.859 0.877 0.859 0.877

Note: Each specification includes Property fixed effects. Robust clustered standard errors at the census-tract level in
parentheses. * p<0.1, ** p<0.05, *** p<0.01

D Effect of the 2008 rezoning on wilfdire risk beliefs

35



(a) (b)

(c) (d)

(e) (f)

Figure D1 Visual evidence supporting the common trends assumption. The left panels show average
yearly home prices, and rights panels average quarterly prices for the repeat sales properties newly assigned
to the risk zone in 2008 (treated group) and those that always remained outside the risk zone (control group).
The top panels include properties within 250m from the risk zone boundary, while the middle and bottom
panels include properties within 500m, and 750m from the boundary, respectively.
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E Composition of buyers in the market

Using data from the Home Mortgage Disclosure Act (HMDA), we test whether the distributions of
income, race, and ethnicity change after a wildfire. We adopt a difference-in-differences framework
for sales within two years pre- and post-fire to identify if treated properties are experiencing shifting
demographics at the neighborhood level relative to control properties.25

For the burn scar view and proximity treatments, we start with the properties that sold within
two years pre- and post-fire within 4km of a burn scar (119,815 observations). We drop observations
with no mortgage year, no loan amount, no lendername, or indications that the lender was a private
lender (108,932 remaining observations). Matching on mortgage year, lender name, loan amount
and type, county, and census tract, leads to 64,230 matches. Keeping properties with unique
matches, we end up with 57,699 properties, or a 53% matching success rate.26 Table E1 shows
that the distributions of income, race, and ethnicity do not significantly change across properties
with or without a view of the burn scar during the first two years after a wildfire. Overall, results
for the proximity to a burn scar, presented in Table E2, show little effect of wildfire proximity
on demographics, with the exception of small decreases in white (-2.5% to -2.6%) and hispanic
(-1.7% to -1.9%) within 2km. Yet, these results are only significant for the within 2km threshold
and not for the within 1km and 3km thresholds, raising questions about their robustness. Taken
together, Tables E1 and E2 provide evidence that our repeat sales model may not be subject to
significant shifts in the equilibrium hedonic price function due to sorting and changes in preferences
as detectable through demographics. Thus, we can have greater confidence in the point estimates
reported in Tables 3 and 5 representing willingness to pay.

Table E1 Composition of buyers in the burn scar view and no-view markets

0-2km bin 3-4km bin
(1) (2) (3) (4)
Panel A: Income

View×PostFire -2.975 -2.576 0.235 0.742
(3.723) (3.629) (1.565) (1.620)

N 19093 19093 38596 38596
R2

adj 0.0306 0.0298 0.0356 0.0381

Panel B: White
View×PostFire 0.0166 0.0155 0.0205* 0.0172

(0.0184) (0.0192) (0.0106) (0.0107)
N 19097 19097 38602 38602
R2

adj 0.00713 0.00973 0.0188 0.0200

Panel C: Hispanic
View×PostFire 0.00548 -0.000777 0.00838 0.00461

(0.0136) (0.0138) (0.00923) (0.00925)
N 19097 19097 38602 38602
R2

adj 0.0342 0.0394 0.0513 0.0534

Quadr county trends Yes Yes
Year×Qtr Yes Yes
County×Year×Qtr Yes Yes

Note: Each specification includes Census tract fixed effects. Robust standard errors clustered at census tract level. *
p<0.1, ** p<0.05, *** p<0.01.

25In all cases, results are qualitatively similar for analyses run separately for the first or second year post-fire.
26Our HMDA-CoreLogic matching success rate compares favorably with those of Bayer et al. (2016) and Haninger

et al. (2017).
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Table E2 Composition of buyers near and away from the burn scar

K = 1 K = 2 K = 3
(1) (2) (3) (4) (5) (6)

Panel A: Income
K×PostFire 1.444 0.961 2.723* 2.278 3.658** 3.325**

(2.421) (2.317) (1.551) (1.555) (1.523) (1.547)
N 57689 57689 57689 57689 57689 57689
R2

adj 0.0363 0.0374 0.0361 0.0372 0.0362 0.0373

Panel B: White
K×PostFire -0.0233* -0.0181 -0.0259*** -0.0250*** -0.0133 -0.0148*

(0.0126) (0.0121) (0.00904) (0.00897) (0.00871) (0.00869)
N 57699 57699 57699 57699 57699 57699
R2

adj 0.0153 0.0169 0.0154 0.0170 0.0153 0.0169

Panel C: Hispanic
K×PostFire -0.0186* -0.0138 -0.0187** -0.0174** 0.00112 0.00168

(0.00995) (0.0100) (0.00740) (0.00752) (0.00733) (0.00732)
N 57699 57699 57699 57699 57699 57699
R2

adj 0.0494 0.0523 0.0494 0.0524 0.0494 0.0524

Quadr county trends Yes Yes Yes
Year×Qtr Yes Yes Yes
County×Year×Qtr Yes Yes Yes

Note: Each specification includes Census tract fixed effects. Robust standard errors clustered at census tract level. *
p<0.1, ** p<0.05, *** p<0.01.

For the effect of wildfire events on risk beliefs, we start with the properties that sold within two
years pre- and post-fire within 5 and 15km of a burn scar and within 2km of the risk zone boundary
(72,892 observations). After cleaning the data, matching as above and dropping duplicates, we end
up with 33,995 properties, or a 52% matching success rate. In Table E3 we find no effect on income
or hispanic but an increase in the number of white buyers after a wildfire in the high risk zone (9%
to 10% within 1km of the risk zone). It is difficult to understand this finding considering that we
do not find evidence of large or positive demographic shifts in close proximity to the wildfires where
it would be more likely that treatment would affect sorting behavior by demographics.

For the effect on the 2008 rezoning on risk beliefs, we start with the properties whose sale
was not affected by wildfires and within 750m of the risk zone boundary. After cleaning the data,
matching as above and dropping duplicates, we obtain a 50.2% matching success rate. Table E4
shows no evidence of changes in neighborhood composition before and after the rezoning. 27

27The results are robust to restricting the analysis to 1, 2, 3, or 4 year(s) around the 2008 rezoning.
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Table E3 Composition of buyers inside and outside the risk zone after a fire

Within 1km Within 2km
(1) (2) (3) (4)
Panel A: Income

Risk zone×PostFire -2.996 -1.537 -0.316 -0.507
(7.000) (7.485) (6.297) (6.707)

N 7691 7691 12358 12358
R2

adj 0.0158 0.0181 0.0149 0.0151

Panel B: White
Risk zone×PostFire 0.0914*** 0.0991*** 0.0503* 0.0599**

(0.0306) (0.0324) (0.0301) (0.0303)
N 7691 7691 12358 12358
R2

adj 0.0130 0.0146 0.0128 0.0146

Panel C: Hispanic
Risk zone×PostFire 0.00382 0.0121 -0.000757 0.0110

(0.0210) (0.0218) (0.0195) (0.0197)
N 7691 7691 12358 12358
R2

adj 0.0441 0.0454 0.0418 0.0486

Quadr county trends Yes Yes
Year×Qtr Yes Yes
County×Year×Qtr Yes Yes

Note: Each specification includes Census tract fixed effects. Robust standard errors clustered at census tract level. *
p<0.1, ** p<0.05, *** p<0.01.

Table E4 Composition of buyers inside and outside the risk zone after the 2008 rezoning

Within 250m Within 500m Within 750m
(1) (2) (3) (4) (5) (6)

Panel A: Income
Risk zone×PostRezoning -26.81 -1.664 -26.80 -17.96 -15.52 -10.90

(37.06) (41.08) (33.91) (29.95) (31.56) (28.31)
N 3919 3919 5865 5865 7309 7309
R2

adj 0.0249 0.0506 0.0264 0.0489 0.0316 0.0425

Panel B: White
Risk zone×PostRezoning 0.0252 0.0501 0.0215 -0.0299 0.0256 -0.00828

(0.0654) (0.0842) (0.0523) (0.0664) (0.0502) (0.0609)
N 3919 3919 5865 5865 7309 7309
R2

adj 0.00346 0.00524 0.00385 0.00230 0.00489 0.00519

Panel C: Hispanic
Risk zone×PostRezoning -0.0547 -0.0284 -0.0194 -0.0592 -0.0165 -0.0463

(0.0696) (0.0627) (0.0514) (0.0481) (0.0540) (0.0492)
N 3919 3919 5865 5865 7309 7309
R2

adj 0.00760 0.0165 0.0113 0.0230 0.0134 0.0210

Quadr county trends Yes Yes Yes
Year×Qtr Yes Yes Yes
County×Year×Qtr Yes Yes Yes

Note: Each specification includes Census tract fixed effects. Robust standard errors clustered at census tract level. *
p<0.1, ** p<0.05, *** p<0.01.
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