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Introduction

• How should the introduction of new products and the 

disappearance of (possibly) obsolete products be treated in the 

context of forming a consumer price index? 

• Hicks (1940) suggested a general approach to this measurement 

problem in the context of the economic approach to index 

number theory and that was to apply normal index number 

theory but estimate hypothetical prices that would induce 

utility maximizing purchasers of a related group of products to 

demand 0 units of unavailable products.

• With these virtual (or reservation or imputed) prices in hand, 

one can just apply normal index number theory using the 

augmented price data and the observed quantity data.

• The practical problem facing statistical agencies is: how exactly 

are these reservation or virtual prices to be estimated?
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Introduction (cont)

• There are two approaches to solving this estimation problem 

that have been suggested in the literature on this topic:

• (1) Feenstra’s (1994) Approach. This approach assumes that 

purchasers of a group of (related) products have CES 

preferences. His approach is quite clever and requires only 

observed data on the prices and quantities purchased for two 

consecutive periods plus an estimate of the elasticity of 

substitution  between all pairs of products. The practical 

problem boils down to: how exactly should we estimate this 

elasticity of substitution? In the early part of this paper, we look 

at alternative methods for estimating . 

• (2) Hausman’s (1996) Econometric Approach which involved 

estimating the AIDS expenditure function and calculating 

reservation prices. Hausman (2003) also suggested a simple 

consumer surplus approach which we look at in section 12. We 

will also explain the problem with his first approach. 3



Introduction (cont)

• There are two major problems with Feenstra’s CES approach:

(1) the CES functional form is not flexible and

(2) the Feenstra reservation prices for missing products are

equal to +. This seems to be a rather high reservation

price; typically, it does not take an infinite price to deter

potential purchasers from buying a product. Thus there is

a good possibility that the Feenstra  methodology

exaggerates the benefits of increasing product variety.

• We implemented Feenstra’s methodology using a data set on 
frozen juice sales in a Chicago grocery store. This data set is 
available on line.

• We will also implement an alternative methodology and 
compare the results with the Feenstra results.

• The new alternative methodology makes use of a new 
semiflexible functional form that is exact for the Fisher index.
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The Data

• We will use the data from Store Number 5 in the Dominick’s

Finer Foods Chain of 100 stores in the Greater Chicago area on

19 varieties of frozen orange juice for 3 years in the period

1989-1994 in order to test out the CES models explained in the

previous two sections; see the University of Chicago (2013) for

the micro data.

• The micro data are weekly quantities sold of each product and

the corresponding unit value price.

• The weekly price and quantity data need to be aggregated into

monthly data. Since months contain varying amounts of days,

we are immediately confronted with the problem of converting

the weekly data into monthly data. We decided to side step the

problems associated with this conversion by aggregating the

weekly data into pseudo-months that consist of 4 consecutive

weeks. We ended up with data for 39 “months”.
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The Data (cont)

• There were no sales of Products 2 and 4 for “months” 1-8 and 

there were no sales of Product 12 in “month” 10 and in 

“months” 20-22. 

• Thus there is a new and disappearing product problem for 20 

observations (out of 741 total observations on all 19 products 

and all 39 “months”  in this data set. 

• Later in the paper, we impute Hicksian reservation prices for

these missing products. 

• The corresponding imputed quantity for a missing observation 

is set equal to 0.

• In the following slides, we plot the prices and (normalized) 

quantities in our data set so that one can see the tremendous 

variability in the data (even when it has been aggregated into 

“months”).
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Quantity Data
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More Quantity Data

There is tremendous variation in the monthly quantities sold.
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Price Data

Note: Imputed Reservation Prices are used for Products 2 and 4 

for “months” 1-8 below.
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More Price Data

Prices vary much less than the quantity variation.
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Quick Summary of the Paper (1)

• In order to implement the Feenstra methodology, we need an 
estimate of the elasticity of substitution 

• We can estimate  by estimating the CES cost function using 
expenditure shares as dependent variables and prices as 
independent variables; we can use a systems approach or stack 
the equations into one big equation (advantage of the latter is 
that we do not have to estimate 18x18/2 variance-covariance 
parameters). Either way, we get  = 3.8 and a big gain from the 
introduction of new products using Feenstra’s methodology.

• We can estimate  by estimating the CES utility function using 
expenditure shares as dependent variables and quantities as 
independent variables; i.e., see equations (33) on the previous 
slide. The resulting estimate for  = 6.8 (average R2 was equal to 
0.9439) and the gain from the introduction of new products 
using Feenstra’s methodology is now equal to .67% (1.64%). 

• Which specification should we use? Using quantities as 
independent variables leads to much higher fits. Why is this?
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Quick Summary of the Paper (2)

• Which CES specification should we use? 

• A special case of the CES unit cost function occurs when r = 1. 
The resulting CES preferences are then Leontief no substitution 
preferences. If we fit the CES unit cost function model with r = 1 
and then fit the CES unit cost function with a general r, we find 
that the fit of the estimating equations does not improve all that 
much (and the fits are not good; average R2 was only 0.3767). 

• A special case of the CES utility function occurs when s = 1. The 
resulting CES utility function is then a linear function where all 
elasticities of substitution are equal to + . If we fit the CES 
utility function with s = 1 and then fit the CES utility function 
with a general s, again we find that the fits do not improve all 
that much but the average R2 was 0.9439.

• If the products are highly substitutable, it is better to start with 
a linear utility function and tweak it versus starting with a no 
substitution utility function and tweak it.  

12



Quick Summary of the Paper (3)

• How can we determine whether the Feenstra methodology 

overestimates the gains from product variety?

• By estimating a flexible functional form for the utility function! 

Once we have the estimated utility function in hand (and 

assuming that the function is well behaved when the level of any 

product consumed is equal to 0), then we can simply 

differentiate the utility function at the observed period t 

quantity vector with respect to any zero components of the 

observed quantity vector and get the Hicksian reservation price, 

which can then be used in an index number formula.

• With the estimated utility function in hand, we can also compare 

solutions to utility maximization problems where all products 

are available versus solutions when some products are not 

available and look at the difference in welfare.

• Bottom line: for our data set, the Feenstra methodology greatly 

overestimated the gains from increased product availability.
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Conclusion: The Important Points to Take Away!

• When dealing with scanner data where there are periodic sales 
of products, chain drift is a huge problem.

• Multilateral index number theory can be used to deal with the 
chain drift problem; see the ABS (2016) and Diewert and Fox 
(2017)

• It is not a trivial matter to estimate the elasticity of substitution 
in the CES context. Estimation of the CES unit cost function 
may give very different results from estimation of the CES 
direct utility function.

• The CES methodology developed by Feenstra for measuring the 
gains from increased product availability appears to 
overestimate the gains by a substantial amount. 

• The KBF utility function can be estimated and it can be used to 
calculate “reasonable” reservation prices but it is probably too 
labour intensive (and subject to many econometric 
uncertainties) to be adopted by statistical agencies as a practical 
approach to the estimation of reservation prices. 
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Additional Slides if Time Permits

• What is the flexible functional form that we actually estimated?

• Hausman’s cost function methodology explained (and dismissed 

as impractical).

• The world’s most parsimonious system of estimating equations 

for estimating the elasticity of substitution (section 5 of the 

paper)
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The Konüs-Byushgens-Fisher Utility Function

• The functional form for a purchaser’s utility function f(q) that

we will introduce in this section is the following one:

(66) f(q) = (qTAq)1/2

• where the N by N matrix A  [ank] is symmetric (so that AT = A) 

and thus has N(N+1)/2 unknown ank elements. 

• We also assume that A has one positive eigenvalue with a 

corresponding strictly positive eigenvector and the remaining 

N1 eigenvalues are negative or zero.

• Konüs and Byushgens (1926) showed that the Fisher (1922) 

quantity index QF(p0,p1,q0,q1)  [p0q1p1q1/p0q0p1q0]1/2 is

exactly equal to the aggregate utility ratio f(q1)/f(q0) provided 

that all purchasers maximized the utility function defined by 

(66) in periods 0 and 1 where p0 and p1 are the price vectors 

prevailing during periods 0 and 1 and aggregate purchases in 

periods 0 and 1 are equal to q0 and q1. 
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The Konüs-Byushgens-Fisher Utility Function (cont)

• The following inverse demand share equations can be used as 

the basis for a system of estimating equations for this functional 

form:

(69) sn  pnqn/pq = qn k=1
N ankqj/q

TAq ; n = 1,...,N.

• It turns out to be useful to reparameterize the A matrix in

definition (66). Thus we set A equal to the following expression:

(70) A = bbT+B;

b >> 0N; B = BT; B is negative semidefinite; Bq* = 0N.

• The vector bT  [b1,...,bN] is a row vector of positive constants 

and so bbT is a rank one positive semidefinite N by N matrix.

• If B is a matrix of 0’s, then f(q) = (qTAq)1/2 = bTq, a linear utility 

function. Thus a special case of the KBF functional form is the 

linear utility function which implies all products are perfect 

substitutes.

• We need to impose negative semidefiniteness on B. 17



The Konüs-Byushgens-Fisher Utility Function (cont)

• The matrix B is required to be negative semidefinite. 

• We can follow the procedure used by Wiley, Schmidt and 

Bramble (1973) and Diewert and Wales (1987) and impose 

negative semidefiniteness on B by setting B equal to CCT

where C is a lower triangular matrix.

• Write C as [c1,c2,...,cN] where ck is a column vector for k =

1,...,K. If C is lower triangular, then the first k1 elements of ck

are equal to 0 for k = 2,3,...,N.

• Thus we have the following representation for B:

(71) B = CCT =  n=1
N cncnT

• where we impose the following restrictions on the vectors cn in

order to impose the restrictions Bq* = 0N on B:

(72) cnq* = cnTq* = 0 ; n = 1,....,N.

• We add the cn columns one at a time and stop when the increase

in the log likelihood slows down (or stops). 18



KBF and CES Gains from Changes in Product Availability: 

Table 6: Gains and Losses of Utility that can be Attributed to 

Changes In Product Availability Holding Expenditure Constant

KBF CES

GA2,4
9 1.00127 1.00728   (Anomalous results have been

LA12
10 0.99748 0.99643                eliminated!)

GA12
11 1.00304 1.00433

LA12
20 0.99881 0.99615

GA12
23 1.00078 1.00311

Product 1.00138 1.00728

• Since there is a net gain in product availability over the sample 

period, both estimated utility functions register a net gain.

• But the net gain from the KBF utility function is only about 1/5 

of the gain that accrued to the CES utility function using 

Approach 3. The CES approach consistently overestimates!
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The Hausman Approximate Consumer Surplus Methodology (cont)

• In section 12 of the paper, we work out a second order approximation 

to the gain in consumer surplus due to the new availability of a 

commodity using our section 11 methodology for the case of only two 

products.

• Remarkably, we show that our second order approximation is exactly 

equal to Hausman’s first order approach provided that we place the 

“right” interpretation on Hausman’s elasticity .

• It is not known if this equality extends to the N commodity case.

• In addition to the above approximation approach, Hausman develops 

a rigorous approach to the estimation of the gains from increased 

product variety that is based on the estimation of an expenditure 

function (rather than a utility function as in our KBF approach).

• At the end of section 11 of the paper, we explain what the problem is 

with the rigorous cost function Hausman approach: whenever there is 

a missing product, his approach requires the econometrician to 

estimate the corresponding virtual price as an extra parameter and 

the resulting equations can become very nonlinear and messy. 20



A New Method for Estimating the Elasticity of Substitution

• Our goal is to estimate the elasticity of substitution for a CES

direct utility function f(q) that was discussed in Section5 in the

main text. We now drop products that are not present in all T

periods. So N is now 16. The CES utility function is:

(28) f(q1,...,qN)  [n=1
Nnqn

s]1/s .

• The purchasers’ system of inverse demand equations is

(43) sn
t  pn

tqn
t/i=1

N pi
tqi

t = n(qn
t)s/i=1

N i(qi
t)s;

t = 1,...,T; n = 1,...,N.

• We take natural logarithms of both sides of the equations in

(B2) and add error terms en
t in order to obtain the following

fundamental set of estimating equations:

(44) lnsi
t = lni + slnqi

t + ln[n=1
N nln(qn

t)s] + esi
t .

• The Feenstra double differenced variables are defined in two

stages. First we difference the of the logarithms of the sn
t with

respect to time; i.e., define sn
t as follows: 21



The Feenstra Double Differencing Method for Estimating 

(see section 5)

(45) sn
t  ln(sn

t)  ln(sn
t1) ; n = 1,...,N; t = 2,3,...,T.

• Now pick product N as the numeraire product and difference

the sn
t with respect to product N, giving rise to the following

double differenced log variable, dsn
t:

(46) dsn
t  sn

t  sN
t ; n = 1,...,N1; t = 2,3,...,T

= ln(sn
t)  ln(sn

t1)  ln(sN
t)  ln(sN

t1).

• Define the double differenced log quantity variables in a similar

manner:

(47) dqn
t  qn

t  qN
t ; n = 1,...,N1; t = 2,3,...,T

= ln(qn
t)  ln(qn

t1)  ln(qN
t)  ln(qN

t1).

• Finally, define the double differenced error variables n
t as

follows:

(48) n
t  en

t  en
t1  eN

t + eN
t1 ; n = 1,...,N1; t = 2,3,...,T.
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The Feenstra Double Differencing Method for Estimating 

• The double differenced log shares dsn
t satisfy the following

system of (N  1)(T  1) estimating equations under our

assumptions:

(49) dsn
t = s dqn

t + n
t ; n = 1,...,N1; t = 2,3,...,T

• where the new residuals, si
t, have means 0 and a constant (N1)

by (N1) covariance matrix within a time period but are

uncorrelated across time periods.

• Thus we have a classical system of linear estimating equations

with only one unknown parameter across all equations, namely

the parameter s.

• This is the simplest possible system of estimating equations that

one could imagine!

• (49) is the miracle regression!
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The Feenstra Double Differencing Method for Estimating 

• Using the data listed in Appendix A, we have 15 product 

estimating equations of the form (B8) which we estimated using 

the NL system command in Shazam. Thus our N = 16 and our T 

= 39. 

• The resulting estimate for s was 0.86491 (with a standard error 

of 0.0067) and thus the corresponding estimated  is equal to 

1/(1s) = 7.4025, which is in line with our earlier estimates for 

when we estimated the CES utility function using Models 4 and 

15. The standard error on s was tiny!

• The equation by equation R2 were as follows: 0.9936, 0.9895,

0.9905, 0.9913, 0.9869, 0.9818, 0.9624, 0.9561, 0.9858, 0.9911,

0.9934, 0.994, 0.9906, 0.9921 and 0.9893.

• The average R2 was 0.9859 which is very high for share 

equations or for transformations of share equations.
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