Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?

Sydney C. Ludvigson, Sai Ma, Serena Ng

New York University, New York University and Columbia University

Motivation

- Uncertainty rises sharply in recessions.
- But is uncertainty an exogenous source of business cycles or an endogenous response to them?
- And does the type of uncertainty matter?
- No theoretical consensus on these questions.
- Econometric challenges: "effects"of uncertainty shocks based on recursive schemes in VARs.

Motivation

- Uncertainty rises sharply in recessions.
- But is uncertainty an exogenous source of business cycles or an endogenous response to them?
- And does the type of uncertainty matter?
- No theoretical consensus on these questions.
- Econometric challenges: "effects" of uncertainty shocks based on recursive schemes in VARs.
- Ordering of uncertainty variables in VAR differs study to study.

Motivation

- Uncertainty rises sharply in recessions.
- But is uncertainty an exogenous source of business cycles or an endogenous response to them?
- And does the type of uncertainty matter?
- No theoretical consensus on these questions.
- Econometric challenges: "effects" of uncertainty shocks based on recursive schemes in VARs.
- Ordering of uncertainty variables in VAR differs study to study.
- Any presumed ordering hard to defend on theoretical grounds.

Motivation

- Uncertainty rises sharply in recessions.
- But is uncertainty an exogenous source of business cycles or an endogenous response to them?
- And does the type of uncertainty matter?
- No theoretical consensus on these questions.
- Econometric challenges: "effects" of uncertainty shocks based on recursive schemes in VARs.
- Ordering of uncertainty variables in VAR differs study to study.
- Any presumed ordering hard to defend on theoretical grounds.
- Recursive structures rule out contemporaneous feedback.

Econometric Strategy

- Address questions using small-scale structural VAR.

Econometric Strategy

- Address questions using small-scale structural VAR.
(1) Distinguish macro from financial uncertainty.
- Baseline VAR: index macro uncertainty, $\mathbf{U}_{\mathbf{M t}}$, measure real activity, $\mathbf{Y}_{\mathbf{t}}$, index financial uncertainty \mathbf{U}_{Ft}.

Econometric Strategy

- Address questions using small-scale structural VAR.
(1) Distinguish macro from financial uncertainty.
- Baseline VAR: index macro uncertainty, $\mathbf{U}_{\mathbf{M t}}$, measure real activity, $\mathbf{Y}_{\mathbf{t}}$, index financial uncertainty U_{Ft}.
(2) Identification relies on external instruments rather than ordering or timing assumptions.

Econometric Strategy

- Address questions using small-scale structural VAR.
(1) Distinguish macro from financial uncertainty.
- Baseline VAR: index macro uncertainty, $\mathbf{U}_{\mathbf{M t}}$, measure real activity, \mathbf{Y}_{t}, index financial uncertainty U_{Ft}.
(2) Identification relies on external instruments rather than ordering or timing assumptions.
- $Z_{1 t}$ correlated with $U_{M t}$ and $U_{F t}$, uncorrelated with Y_{t} (shocks).
- $Z_{2 t}$ correlated with $U_{F t}$, uncorrelated with $U_{M t}$ and Y_{t} (shocks).

Econometric Strategy

- Address questions using small-scale structural VAR.
(1) Distinguish macro from financial uncertainty.
- Baseline VAR: index macro uncertainty, $\mathbf{U}_{\mathbf{M t}}$, measure real activity, \mathbf{Y}_{t}, index financial uncertainty U_{Ft}.
(2) Identification relies on external instruments rather than ordering or timing assumptions.
- $Z_{1 t}$ correlated with $U_{M t}$ and $U_{F t}$, uncorrelated with Y_{t} (shocks).
- $Z_{2 t}$ correlated with $U_{F t}$, uncorrelated with $U_{M t}$ and Y_{t} (shocks).
- Such instruments have no empirical counterparts. Propose a novel approach: iterative projection IV (IPIV).
- Construct $Z_{1 t}$ and $Z_{2 t}$ from observables using projections.

Econometric Framework

- Let \mathbf{X}_{t} be a $K \times 1$ vector.
- Consider p-th order structural vector autoregressive (SVAR)

$$
\begin{align*}
& \mathbf{X}_{t}=\mathbf{k}+\mathbb{A}_{1} \mathbf{X}_{t-1}+\mathbb{A}_{2} \mathbf{X}_{t-2}+\cdots+\mathbb{A}_{p} \mathbf{X}_{t-p}+\mathbf{H} \mathbf{\Sigma} \mathbf{e}_{t} . \tag{1}\\
& \mathbf{e}_{t} \sim\left(0, \mathbf{I}_{\mathbf{K}}\right), \quad \boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{11} & 0 & \cdot & 0 \\
0 & \sigma_{22} & 0 & 0 \\
0 & \cdot & \cdot & 0 \\
0 & 0 & \cdot & \sigma_{K K}
\end{array}\right) .
\end{align*}
$$

The structural shocks \mathbf{e}_{t} are serially and mutually uncorrelated.

- Unit effect normalization \& restrict admissible parameter space:

$$
\operatorname{diag}(\mathbf{H})=1 \quad \sigma_{j j} \geq 0 \quad \forall j
$$

Econometric Framework

- The reduced form representation of \mathbf{X}_{t} is a p-th order VAR with $M A(\infty)$ representation

$$
\begin{aligned}
\mathbf{X}_{t} & =\boldsymbol{\mu}+\boldsymbol{\Psi}(L) \boldsymbol{\eta}_{t} \\
\boldsymbol{\eta}_{t} & \sim(0, \boldsymbol{\Omega}), \quad \boldsymbol{\Omega}=\boldsymbol{E}\left(\boldsymbol{\eta}_{t} \boldsymbol{\eta}_{t}^{\prime}\right) .
\end{aligned}
$$

- The structural shocks \mathbf{e}_{t} are related to the reduced form innovations by an invertible $K \times K$ matrix \mathbf{H} :

$$
\eta_{t}=\mathbf{H} \Sigma \mathbf{e}_{t} \equiv \mathbf{B} \mathbf{e}_{t}
$$

- Here $K=3$ and $\mathbf{X}_{t}=\left(U_{M t}, Y_{t}, U_{F t}\right)^{\prime}, \mathbf{e}_{t}=\left(e_{M t}, e_{Y t}, e_{F t}\right)^{\prime}$
- Want to identify $\mathbf{e}_{t}=\mathbf{B}^{-1} \boldsymbol{\eta}_{t}$, nine unknown elements in $\mathbf{B} \rightarrow$
- Need nine restrictions for identification.

Identification

- Covariance structure $\boldsymbol{\eta}_{t}$ provides $K(K+1) / 2=6$ restrictions:

$$
\operatorname{vech}(\boldsymbol{\Omega})=\operatorname{vech}\left(\mathbf{B B}^{\prime}\right)
$$

- Need 3 more for identification
- Suppose we have measures of $Y_{t}, U_{M t}, U_{F t}$, and two generic instruments, $Z_{t}=\left(Z_{1 t}, Z_{2 t}\right)^{\prime}$.

Assumption A: Let $Z_{1 t}$ and $Z_{2 t}$ be two IVs such that
(A.i) $\quad \mathbb{E}\left[Z_{1 t} e_{M t}\right]=\phi_{1 M}, \quad \mathbb{E}\left[Z_{1 t} e_{Y t}\right]=0, \quad \mathbb{E}\left[Z_{1 t} e_{F t}\right]=\phi_{1 F}$
(A.ii) $\quad \mathbb{E}\left[Z_{2 t} e_{M t}\right]=0, \quad \mathbb{E}\left[Z_{2 t} e_{Y t}\right]=0, \quad \mathbb{E}\left[Z_{2 t} e_{F t}\right]=\phi_{2 F}$

- Instrument Exogeneity: $\mathbb{E}\left[Z_{1 t} e_{Y t}\right]=\mathbb{E}\left[Z_{2 t} e_{Y t}\right]=\mathbb{E}\left[Z_{2 t} e_{M t}\right]=0$
- Instrument Relevance: $\phi_{1 M}, \phi_{1 F}, \phi_{2 F} \neq 0$

Identification

- Let $\mathbf{m}_{1 t}\left(\boldsymbol{\eta}_{t}, Z_{t}\right)=\left(\operatorname{vech}\left(\boldsymbol{\eta}_{t} \boldsymbol{\eta}_{t}^{\prime}\right), \operatorname{vec}\left(Z_{t} \otimes \boldsymbol{\eta}_{t}\right)\right)^{\prime}$ and $\boldsymbol{\beta}_{1}=\operatorname{vec}(\boldsymbol{B})$.
- At the true value of $\boldsymbol{\beta}_{1}$, denoted $\boldsymbol{\beta}_{1}^{0}$, the model satisfies

$$
0=\mathbb{E}\left[\mathbf{g}_{1}\left(\mathbf{m}_{1 t}\left(\boldsymbol{\eta}_{t}, Z_{t}\right) ; \boldsymbol{\beta}_{1}^{0}\right)\right]
$$

- Nonlinear system with nine equations in nine unknowns.

Identification

Proposition
Under Assumption A with $\phi_{1 M} \neq 0, \phi_{1 F} \neq 0, \phi_{2 F} \neq 0, \operatorname{diag}(\mathbf{H})=1$, and $\sigma_{j j}>0 \forall j, \boldsymbol{\beta}_{1}$ is identified.

In words, identification is achieved by
(1) Use movements in $U_{M t}$ and $U_{F t}$ correlated with $Z_{1 t}$ to identify $U_{M t}$ and $U_{F t}$ shocks, disentangle them from real activity shocks
(2) Use movements in $U_{F t}$ correlated with $Z_{2 t}$ to identify $U_{F t}$ shocks and disentangle them from $U_{M t}$ shocks
(3) Use movements in Y_{t} uncorrelated with both $\mathrm{Z}_{1 t}, \mathrm{Z}_{2 t}$ to identify Y shocks, disentangle them from $U_{M t}$ and $U_{F t}$ shocks

Construction of Instruments

- How to obtain valid instruments Z ? Exploit external variables.

Construction of Instruments

- How to obtain valid instruments Z ? Exploit external variables.
- Maintained hypothesis: Both U_{M}, U_{F} shocks reflected in stock returns $\mathbf{S}_{t}=\left(S_{1 t}, S_{2 t}\right)^{\prime}$. But \mathbf{S}_{t} partly endogenous, corr with Y_{t}.
- Assume \mathbf{S}_{t} driven by $\mathbf{e}_{t}=\left(e_{Y t}, e_{M t} \text { and } e_{F t}\right)^{\prime}$ and idiosyncratic shocks collected into $\mathbf{e}_{S t}$ orthogonal to \mathbf{e}_{t}.
- Shocks $\mathbf{e}_{S t}$ presumed not to affect \mathbf{X}_{t}. Represent $\mathbf{S}_{j t}, j=1,2$ as

$$
\begin{equation*}
\delta_{S}(L) S_{j t}=\delta_{j 0}+\delta_{j Y} Y_{t}+\delta_{j M} U_{M t}+\delta_{j F} U_{F t}+\delta_{j X}(L)^{\prime} \mathbf{X}_{t-1}+e_{S j t} \tag{2}
\end{equation*}
$$

- Equation (2) motivates two orthogonal decompositions:

$$
\begin{aligned}
d_{1 S}(L) S_{1 t} & =d_{10}+d_{1 Y} e_{Y t}+Z_{1 t} \\
d_{2 S}(L) S_{2 t} & =d_{20}+d_{2 Y} e_{Y t}+d_{2 M} e_{M t}+Z_{2 t}
\end{aligned}
$$

Construction of Instruments

- How to obtain valid instruments Z ? Exploit external variables.
- Maintained hypothesis: Both U_{M}, U_{F} shocks reflected in stock returns $\mathbf{S}_{t}=\left(S_{1 t}, S_{2 t}\right)^{\prime}$. But \mathbf{S}_{t} partly endogenous, corr with Y_{t}.
- Assume \mathbf{S}_{t} driven by $\mathbf{e}_{t}=\left(e_{Y t}, e_{M t} \text { and } e_{F t}\right)^{\prime}$ and idiosyncratic shocks collected into $\mathbf{e}_{S t}$ orthogonal to \mathbf{e}_{t}.
- Shocks $\mathbf{e}_{S t}$ presumed not to affect \mathbf{X}_{t}. Represent $\mathbf{S}_{j t}, j=1,2$ as

$$
\begin{equation*}
\delta_{S}(L) S_{j t}=\delta_{j 0}+\delta_{j Y} Y_{t}+\delta_{j M} U_{M t}+\delta_{j F} U_{F t}+\delta_{j X}(L)^{\prime} \mathbf{X}_{t-1}+e_{S j t} \tag{2}
\end{equation*}
$$

- Equation (2) motivates two orthogonal decompositions:

$$
\begin{aligned}
d_{1 S}(L) S_{1 t} & =d_{10}+d_{1 Y} e_{Y t}+Z_{1 t} \\
d_{2 S}(L) S_{2 t} & =d_{20}+d_{2 Y} e_{Y t}+d_{2 M} e_{M t}+Z_{2 t}
\end{aligned}
$$

- Problem: projections are infeasible b/c $e_{Y t}, e_{M t}$ are unobserved.
- Solution: generate $Z_{1 t}$ and Z_{2} using iterative approach to jointly solve for e_{t} and Z_{t} that satisfy restrictions for instrument exogeneity \& relevance.

Iterative Projection IV (IPIV)

$$
\begin{align*}
& d_{1 S}(L) S_{1 t}=d_{10}+d_{1 Y} e_{Y t}+Z_{1 t} \tag{*}\\
& d_{2 S}(L) S_{2 t}=d_{20}+d_{2 Y} e_{Y t}+d_{2 M} e_{M t}+Z_{2 t} \tag{**}
\end{align*}
$$

Let $T \times 1 \mathbf{e}_{\mathbf{M}}{ }^{(0) k}, \mathbf{e}_{\mathbf{Y}}{ }^{(0) k}$ be the $k^{\text {th }}$ initial guess in a compact set \mathcal{K}. Initialize $j=0$.
i Replace $\mathbf{e}_{\mathbf{M}}$ and $\mathbf{e}_{\mathbf{Y}}$ in $(*)$ and $(* *)$ by $\mathbf{e}_{\mathbf{M}}{ }^{(j) k}$ and $\mathbf{e}_{\mathbf{Y}}{ }^{(j) k}$. Obtain $\mathbf{Z}_{1}^{(j) k}$ and $\mathbf{Z}_{2}^{(j) k}$.
ii Use $\mathbf{Z}_{1}^{(j) k}, \mathbf{Z}_{2}^{(j) k}$ to solve $0=\mathbb{E}\left[\mathbf{g}_{1}\left(\mathbf{m}_{1 t}\left(\boldsymbol{\eta}_{t}, Z_{t}\right) ; \boldsymbol{\beta}_{1}^{0}\right)\right]$ for $\boldsymbol{\beta}_{1}$. Form $\mathbf{B}^{(j) k}$ from $\boldsymbol{\beta}_{1}^{(j) k}$.
iii Update shocks $\mathbf{e}^{(j+1) k}=\left(\mathbf{e}_{\mathbf{M}}{ }^{(j+1) k}, \mathbf{e}_{\mathbf{Y}}{ }^{(j+1) k}, \mathbf{e}_{\mathbf{F}}{ }^{(j+1) k}\right)=\left(\mathbf{B}^{(j) k}\right)^{-1} \hat{\boldsymbol{\eta}}$.
iv If $\left\|\mathbf{e}_{\mathbf{M}}{ }^{(j+1) k}-\mathbf{e}_{\mathbf{M}}{ }^{(j) k}\right\| \leq$ tol and $\left\|\mathbf{e}_{\mathbf{Y}}{ }^{(j+1) k}-\mathbf{e}_{\mathbf{Y}}{ }^{(j) k}\right\|<$ tol, stop and let $\mathbf{e}^{k}=\mathbf{e}^{(j) k}, \boldsymbol{\beta}_{1}^{k}=\boldsymbol{\beta}_{1}^{(j) k}$. Else, set $j=j+1$ and return to (i).
v -a Economic constraints: large shock episodes
v-b Econometric constraints: Store $\hat{c}_{1}=\operatorname{corr}\left(Z_{1 t}\left(\beta_{1}^{k}\right), e_{M t}^{k}\right), \hat{c}_{2}=\operatorname{corr}\left(Z_{1 t}\left(\beta_{1}^{k}\right), e_{F t}^{k}\right)$, $\hat{c}_{3}=\operatorname{corr}\left(Z_{2 t}\left(\boldsymbol{\beta}_{1}^{k}\right), e_{F t}^{k}\right), C\left(\boldsymbol{\beta}_{1}^{k}\right)=\frac{1}{3}\left(\left|\hat{c}_{1}\right|+\left|\hat{c}_{2}\right|+\left|\hat{c}_{3}\right|\right)$. Keep $\boldsymbol{\beta}_{1}^{k}$ that satisfy (a) $C\left(\boldsymbol{\beta}_{1}^{k}\right) \geq \bar{C}$, (b), each $\left|\hat{c}_{i}\right| \geq \bar{c}$, and (c) $\operatorname{det}\left(B^{(j) k}\right) \geq \underline{b}$.

Iterative Projection IV (IPIV)

(1) Instrument exogeneity: holds by construction.
(2) If estimation unconstrained: diverse multiplicity of solutions, esp. if starting values are poor \Rightarrow add restrictions to narrow set:
(3) Additional restrictions for instrument relevance:

- Minimum thresholds for individual and collective instrument strength and $\operatorname{det}(\mathbf{B})>0$ (step (v-b)).
(9) Further winnow solutions using prior economic reasoning: Study estimated shocks in detail check that signs and magnitudes are sensible:
- 1987 crash \& 2007-09 fin. crisis identified as big positive $U_{F t}$ shocks
- Great Recession not identified with big positive Y shock.
(3) Left: handful of credible solutions (≈ 6) all very close and tell same economic story. Results shown for one solution (base case).

Measuring Uncertainty: Jurado, Ludvigson, Ng (JLN)

- Methodology: DI forecasting plus stochastic volatility model hundreds economic time-series
- One month-ahead uncertainty indexes:
- Macro uncertainty $U_{M t}$ aggregates uncertainty estimates of 134 macro indicators
- Real activity, price, financial
- Financial uncertainty $U_{F t}$ aggregates uncertainty estimates of 147 financial indicators
- Stock, bond returns and risk factors
- Real activity uncertainty $U_{R t}$ aggregates uncertainty estimates of 73 real activity variables

Measuring Stock Market Returns and Real Activity

- Set $S_{2 t}=r_{S \& P t}$ to generate $Z_{2 t}$
- Set $S_{1 t}=r_{p t} \equiv \alpha_{p} r_{C R S P t}+\left(1-\alpha_{p}\right) r_{s m a l l t}$ to generate $Z_{1 t}$
- Real activity $Y_{t}=$
(1) \log of industrial production $i p_{t}$
(2) \log of total non-farm employment $e m p_{t}$
(3) Real activity factor: $Q_{1 t}$ (cumulative sum of first common factor estimated from large macro dataset).
- Estimation: all parameters by GMM.
- Data: monthly.

Results

Time Series of Uncertainty Measures

- Both exhibit large spikes in deep recessions.

Aggregate Financial Uncertainty U_{F}

Note: U_{M}, U_{F} are expressed in standardized units. Correlations with the 12 -month moving average of IP growth are reported. The black dots represent months when uncertainty is 1.65 standard deviations above its unconditional mean. The shaded areas correspond to the NBER recession dates. The sample spans the period 1960:07 to 2015:04.

Time Series of Uncertainty Measures

- $U_{F t}$ less countercyclical than $U_{M t} ; \operatorname{corr}\left(U_{M t}, U_{F t}\right)=0.58$.

Aggregate Macro Uncertainty U_{M}

Aggregate Financial Uncertainty U_{F}

Note: U_{M}, U_{F} are expressed in standardized units. Correlations with the 12-month moving average of IP growth are reported. The black dots represent months when uncertainty is 1.65 standard deviations above its unconditional mean. The shaded areas correspond to the NBER recession dates. The sample spans the period 1960:07 to 2015:04.

IRF for $\operatorname{SVAR}\left(U_{M}, Y, U_{F}\right)^{\prime}$

Note: Bootstrapped 90 percent error bands appear as vertical lines. Responses to positive one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Ludvigson, Ma, Ng
Uncertainty and Business Cycles

IRF for SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$

- Positive U_{F} shocks \Rightarrow sharp, persistent decline in real activity

Note: Bootstrapped 90 percent error bands appear as vertical lines. Responses to positive one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Ludvigson, Ma, Ng
Uncertainty and Business Cycles

IRF for SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$

- Little evidence that Y shocks affect U_{F}

Note: Bootstrapped 90 percent error bands appear as vertical lines. Responses to positive one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

IRF for SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$

- Macro uncertainty falls sharply in response to positive Y shocks

Note: Bootstrapped 90 percent error bands appear as vertical lines. Responses to positive one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Ludvigson, Ma, Ng
Uncertainty and Business Cycles

IRF for SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$

- No evidence that positive U_{M} shocks lead to declines in real activity; indeed the opposite.

Note: Bootstrapped 90 percent error bands appear as vertical lines. Responses to positive one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Ludvigson, Ma, Ng
Uncertainty and Business Cycles

IRF for SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$

- Higher macro uncertainty in recessions entirely an endogenous response to lower economic activity.

Note: Bootstrapped 90 percent error bands appear as vertical lines. Responses to positive one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Ludvigson, Ma, Ng
Uncertainty and Business Cycles

IRF for SVAR $\left(U_{R}, Y, U_{F}\right)^{\prime}$

Note: Bootstrapped 90 percent error bands appear as vertical lines. Responses to one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Overidentifying Exclusion Restrictions

- S_{t} assumed external to VAR. This is tantamount to imposing an exclusion restriction on larger VAR that includes S_{t}.
- Let $\mathbf{X}_{t}=\left(U_{M t}, Y_{t}, U_{F t}\right)^{\prime}$ and S_{t} stock returns. $\operatorname{VAR}(1)$ with S_{t} :

$$
\underbrace{\left(\begin{array}{cc}
\mathbf{A}_{X X, 0} & \mathbf{A}_{X S, 0} \\
3 \times 3 & 3 \times 2 \\
\mathbf{A}_{S X, 0} & A_{S S, 0} \\
2 \times 3 & 2 \times 2
\end{array}\right)}_{\mathbf{A}_{0} \equiv \mathbf{H}^{-1}}\binom{\mathbf{x}_{t}}{S_{t}}=\left(\begin{array}{cc}
\mathbf{A}_{X X, 1} & \mathbf{A}_{X S, 1} \\
\mathbf{A}_{S X, 1} & A_{S S, 1}
\end{array}\right)\binom{\mathbf{X}_{t-1}}{S_{t-1}}+\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{X} & 0 \\
0 & \Sigma_{S}
\end{array}\right)\binom{\mathbf{e}_{X t}}{\mathbf{e}_{S t}}
$$

- Maintained assumption baseline case: $\mathbf{A}_{X S, 0}=\mathbf{A}_{X S, 1}=\mathbf{0}$.
- Paper: in 4 variable VAR, still need $\mathbf{A}_{X S, 0}=\mathbf{0}$ for identification. But don't need $\mathbf{A}_{X S, 1}=0$.
- Evaluate validity of OID restrictions by comparing IRF for 3 variable \mathbf{X}_{t} with 4 variable $\left(\mathbf{X}_{t}^{\prime}, S_{t}\right)^{\prime}$ where $\mathbf{A}_{X S, 1}$ left unconstrained.

Evaluating OID Restrictions: Compare IRFs

- IRFs from 3 variable \mathbf{X}_{t} v.s. 4 variable $\left(\mathbf{X}_{t}^{\prime}, S_{t}\right)^{\prime}$ with free $\mathbf{A}_{X S, j} \forall j \geq 1$.

Note: S_{t} is the CRSP value weighted average returns. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Evaluating OID Restrictions: Compare IRFs

- Data appear consistent with assumption stock returns can be excluded.

$i p$ Shock

Note: S_{t} is the CRSP value weighted average returns. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Test of Recursive Restrictions

- Our SVAR model nests any recursive structure.
- Chi-square test H_{0} : recursive structure is supported by the data.
- Strongly reject lower triangular structure for any possible ordering.
- Inspection of $\hat{\mathbf{A}}_{0}$ reveals non-zero contemporaneous correlations $\rho\left(U_{M}, Y\right), \rho\left(U_{F}, Y\right)$, inconsistent with any recursive ordering.

$$
\hat{\mathbf{A}}_{0}=\left(\begin{array}{rrr}
\mathbf{0 . 5 1 3 0} & \mathbf{0 . 7 8 1 5} & -\mathbf{0 . 0 1 0 6} \\
{[0.0205]} & {[0.0324]} & {[0.0034]} \\
-\mathbf{0 . 3 2 5 1} & \mathbf{0 . 4 4 4 1} & \mathbf{0 . 0 5 9 0} \\
{[0.0135]} & {[0.0184]} & {[0.0024]} \\
-0.0046 & -\mathbf{1 . 0 9 6 9} & \mathbf{0 . 9 3 9 4} \\
{[0.1625]} & {[0.2666]} & {[0.0258]}
\end{array}\right)
$$

Conclusion. Uncertainty Rises in Recessions. Why?

- Is uncertainty a cause or effect of business cycle fluctuations? And does the type of uncertainty matter? Empirical question.

Conclusion. Uncertainty Rises in Recessions. Why?

- Is uncertainty a cause or effect of business cycle fluctuations? And does the type of uncertainty matter? Empirical question.
- Establish structural, dynamic, causal effects using novel approach: Iterative Projection IV (IPIV)
- Combines information in external variables with projections to construct valid instruments to identify structural shocks.

Conclusion. Uncertainty Rises in Recessions. Why?

- Is uncertainty a cause or effect of business cycle fluctuations? And does the type of uncertainty matter? Empirical question.
- Establish structural, dynamic, causal effects using novel approach: Iterative Projection IV (IPIV)
- Combines information in external variables with projections to construct valid instruments to identify structural shocks.
- Distinguish macro from financial uncertainty in SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$.

Conclusion. Uncertainty Rises in Recessions. Why?

- Is uncertainty a cause or effect of business cycle fluctuations? And does the type of uncertainty matter? Empirical question.
- Establish structural, dynamic, causal effects using novel approach: Iterative Projection IV (IPIV)
- Combines information in external variables with projections to construct valid instruments to identify structural shocks.
- Distinguish macro from financial uncertainty in SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$.
- Maintained theoretical hypothesis: variables e.g., stock returns, while endogenous, contain components satisfy population exogeneity restrictions and can serve as valid instruments.

Conclusion. Uncertainty Rises in Recessions. Why?

- Is uncertainty a cause or effect of business cycle fluctuations? And does the type of uncertainty matter? Empirical question.
- Establish structural, dynamic, causal effects using novel approach: Iterative Projection IV (IPIV)
- Combines information in external variables with projections to construct valid instruments to identify structural shocks.
- Distinguish macro from financial uncertainty in SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$.
- Maintained theoretical hypothesis: variables e.g., stock returns, while endogenous, contain components satisfy population exogeneity restrictions and can serve as valid instruments.
- Our IPIV is a way to isolate those components.

Conclusion. Uncertainty Rises in Recessions. Why?

- Is uncertainty a cause or effect of business cycle fluctuations? And does the type of uncertainty matter? Empirical question.
- Establish structural, dynamic, causal effects using novel approach: Iterative Projection IV (IPIV)
- Combines information in external variables with projections to construct valid instruments to identify structural shocks.
- Distinguish macro from financial uncertainty in SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$.
- Maintained theoretical hypothesis: variables e.g., stock returns, while endogenous, contain components satisfy population exogeneity restrictions and can serve as valid instruments.
- We find: sharply higher real economic uncertainty in recessions an endogenous response...

Conclusion. Uncertainty Rises in Recessions. Why?

- Is uncertainty a cause or effect of business cycle fluctuations? And does the type of uncertainty matter? Empirical question.
- Establish structural, dynamic, causal effects using novel approach: Iterative Projection IV (IPIV)
- Combines information in external variables with projections to construct valid instruments to identify structural shocks.
- Distinguish macro from financial uncertainty in SVAR $\left(U_{M}, Y, U_{F}\right)^{\prime}$.
- Maintained theoretical hypothesis: variables e.g., stock returns, while endogenous, contain components satisfy population exogeneity restrictions and can serve as valid instruments.
- We find: sharply higher real economic uncertainty in recessions an endogenous response...
- ...Uncertainty in financial markets a likely source of business cycles.

Appendix

Real Activity Uncertainty U_{R}

- Sub-index of U_{M} corresponding to real activity variables.

Note: U_{R} is expressed in standardized units. Correlations with the 12-month moving average of IP growth are reported. The shaded areas correspond to the NBER recession dates. The monthly data span the period 1960:07 to 2015:04.

Real Activity Uncertainty U_{R}

- Special relevance to uncertainty literature, where uncertainty shocks have origins in economic ${\underset{T}{R}}^{\text {fand }}$

Note: U_{R} is expressed in standardized units. Correlations with the 12-month moving average of IP growth are reported. The shaded areas correspond to the NBER recession dates. The monthly data span the period 1960:07 to 2015:04.

e shock Time series $\left(U_{M}, i p_{,}, U_{F}\right)^{\prime}$

Note: Time series of e shock from SVAR system $\left(U_{M}, i p, U_{F}\right)$. The horizontal line corresponds to 2 standard deviations above/below the unconditional mean of each series. The shocks $e=B^{-1} \eta_{t}$ are reported, where η_{t} is the residual from $\operatorname{VAR}(6)$ of ($U_{M}, i p, U_{F}$) and $B=A^{-1} \Sigma$. The shaded areas correspond to the NBER recession dates. The sample spans the period 1960:07 to 2015:04.

e solution fails economics constraint

Note: Time series of e shock from SVAR system $\left(U_{M}, i p, U_{F}\right)$. The horizontal line corresponds to 2 standard deviations above/below the unconditional mean of each series. The shocks $e=B^{-1} \eta_{t}$ are reported, where η_{t} is the residual from $\operatorname{VAR}(6)$ of $\left(U_{M}, i p, U_{F}\right)$ and $B=A^{-1} \Sigma$. The shaded areas correspond to the NBER recession dates. The sample spans the period 1960:07 to 2015:04.

IRF that fails economics constraint

Note: Bootstrapped 90 percent error bands appear as vertical lines. Responses to one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Variance Decomposition $\left(U_{M}, Y, U_{F}\right)^{\prime}$

	$\operatorname{SVAR}\left(U_{M}, i p, U_{F}\right)^{\prime}$			SVAR $\left(U_{M, ~ e m p, ~} U_{F}\right)^{\prime}$			$\operatorname{SVAR}\left(U_{M}, Q_{1}, U_{F}\right)^{\prime}$		
	Fraction variation in U_{M}			Fraction variation in U_{M}			Fraction variation in U_{M}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.371	0.527	0.102	0.531	0.376	0.093	0.390	0.497	0.113
12	0.419	0.409	0.172	0.601	0.249	0.150	0.434	0.371	0.195
∞	0.420	0.368	0.212	0.619	0.220	0.161	0.478	0.322	0.200
$s_{\text {max }}$	0.511	0.528	0.215	0.664	0.384	0.161	0.572	0.498	0.203
	[0.25, 0.79]	[0.22, 0.71]	[0.05, 0.57]	[0.34, 0.87]	[0.15, 0.59]	[0.06, 0.46]	[0.30, 0.79]	[0.21, 0.70]	[0.06, 0.53]
	Fraction variation in ip			Fraction variation in emp			Fraction variation in Q_{1}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.401	0.556	0.043	0.352	0.402	0.246	0.456	0.508	0.036
12	0.121	0.659	0.220	0.075	0.406	0.519	0.169	0.563	0.269
∞	0.082	0.691	0.227	0.124	0.424	0.453	0.063	0.621	0.317
$s_{\text {max }}$	0.415	0.696	0.272	0.373	0.424	0.587	0.468	0.621	0.358
	[0.19, 0.61]	[0.34, 0.94]	[0.04, 0.73]	[0.21, 0.63]	[0.16, 0.85]	[0.16, 0.92]	[0.24, 0.62]	[0.33, 0.95]	[0.07, 0.81]
	Fraction variation in U_{F}			Fraction variation in U_{F}			Fraction variation in U_{F}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.029	0.023	0.948	0.140	0.119	0.743	0.019	0.022	0.959
12	0.080	0.041	0.878	0.243	0.133	0.624	0.082	0.039	0.879
∞	0.121	0.131	0.748	0.332	0.138	0.530	0.156	0.098	0.746
$s_{\text {max }}$	0.128	0.131	0.950	0.339	0.152	0.744	0.163	0.098	0.961
	[0.03, 0.47]	[0.05, 0.52]	[0.53, 0.99]	[0.08, 0.64]	[0.03, 0.58]	[0.33, 0.95]	[0.03, 0.53]	[0.03, 0.48]	[0.60, 0.99]

Note: Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the column heading. The row denoted " $s=s_{\text {max }}$ "reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples. The data are monthly and span the period 1960:07 to 2015:04.

Variance Decomposition $\left(U_{M}, Y, U_{F}\right)^{\prime}$

- Variation in U_{F} driven by its own shocks.

	SVAR $\left(U_{M}, i p, U_{F}\right)^{\prime}$			SVAR $\left(U_{M, ~ e m p, ~} U_{F}\right)^{\prime}$			$\operatorname{SVAR}\left(U_{M}, Q_{1}, U_{F}\right)^{\prime}$		
	Fraction variation in U_{M}			Fraction variation in U_{M}			Fraction variation in U_{M}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.371	0.527	0.102	0.531	0.376	0.093	0.390	0.497	0.113
12	0.419	0.409	0.172	0.601	0.249	0.150	0.434	0.371	0.195
∞	0.420	0.368	0.212	0.619	0.220	0.161	0.478	0.322	0.200
$s_{\text {max }}$	0.511	0.528	0.215	0.664	0.384	0.161	0.572	0.498	0.203
	[0.25, 0.79]	[0.22, 0.71]	[0.05, 0.57]	[0.34, 0.87]	[0.15, 0.59]	[0.06, 0.46]	[0.30, 0.79]	[0.21, 0.70]	[0.06, 0.53]
	Fraction variation in ip			Fraction variation in emp			Fraction variation in Q_{1}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.401	0.556	0.043	0.352	0.402	0.246	0.456	0.508	0.036
12	0.121	0.659	0.220	0.075	0.406	0.519	0.169	0.563	0.269
∞	0.082	0.691	0.227	0.124	0.424	0.453	0.063	0.621	0.317
$s_{\text {max }}$	0.415	0.696	0.272	0.373	0.424	0.587	0.468	0.621	0.358
	[0.19, 0.61]	[0.34, 0.94]	[0.04, 0.73]	[0.21, 0.63]	[0.16, 0.85]	[0.16, 0.92]	[0.24, 0.62]	[0.33, 0.95]	[0.07, 0.81]
	Fraction variation in U_{F}			Fraction variation in U_{F}			Fraction variation in U_{F}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.029	0.023	0.948	0.140	0.119	0.743	0.019	0.022	0.959
12	0.080	0.041	0.878	0.243	0.133	0.624	0.082	0.039	0.879
∞	0.121	0.131	0.748	0.332	0.138	0.530	0.156	0.098	0.746
$s_{\text {max }}$	0.128	0.131	0.950	0.339	0.152	0.744	0.163	0.098	0.961
	[0.03, 0.47]	[0.05, 0.52]	[0.53, 0.99]	[0.08, 0.64]	[0.03, 0.58]	[0.33, 0.95]	[0.03,0.53]	[0.03, 0.48]	[0.60,0.99]

Note: Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the column heading. The row denoted " $s=s_{\text {max }}$ "reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples. The data are monthly and span the period 1960:07 to 2015:04.

Variance Decomposition $\left(U_{M}, Y, U_{F}\right)^{\prime}$

- Large fractions of variance in emp driven by U_{F} shocks.

	$\operatorname{SVAR}\left(U_{M}, i p, U_{F}\right)^{\prime}$			SVAR $\left(U_{M,}, \text { emp, } U_{F}\right)^{\prime}$			$\operatorname{SVAR}\left(U_{M}, Q_{1}, U_{F}\right)^{\prime}$		
	Fraction variation in U_{M}			Fraction variation in U_{M}			Fraction variation in U_{M}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.371	0.527	0.102	0.531	0.376	0.093	0.390	0.497	0.113
12	0.419	0.409	0.172	0.601	0.249	0.150	0.434	0.371	0.195
∞	0.420	0.368	0.212	0.619	0.220	0.161	0.478	0.322	0.200
$s_{\text {max }}$	0.511	0.528	0.215	0.664	0.384	0.161	0.572	0.498	0.203
	[0.25, 0.79]	[0.22,0.71]	[0.05, 0.57]	[0.34, 0.87]	[0.15, 0.59]	[0.06, 0.46]	[0.30, 0.79]	[0.21, 0.70]	[0.06, 0.53]
	Fraction variation in ip			Fraction variation in emp			Fraction variation in Q_{1}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.401	0.556	0.043	0.352	0.402	0.246	0.456	0.508	0.036
12	0.121	0.659	0.220	0.075	0.406	0.519	0.169	0.563	0.269
∞	0.082	0.691	0.227	0.124	0.424	0.453	0.063	0.621	0.317
$s_{\text {max }}$	0.415	0.696	0.272	0.373	0.424	0.587	0.468	0.621	0.358
	[0.19, 0.61]	[0.34, 0.94]	[0.04, 0.73]	[0.21, 0.63]	[0.16, 0.85]	[0.16, 0.92]	[0.24, 0.62]	[0.33, 0.95]	[0.07, 0.81]
	Fraction variation in U_{F}			Fraction variation in U_{F}			Fraction variation in U_{F}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.029	0.023	0.948	0.140	0.119	0.743	0.019	0.022	0.959
12	0.080	0.041	0.878	0.243	0.133	0.624	0.082	0.039	0.879
∞	0.121	0.131	0.748	0.332	0.138	0.530	0.156	0.098	0.746
$s_{\text {max }}$	0.128	0.131	0.950	0.339	0.152	0.744	0.163	0.098	0.961
	[0.03, 0.47]	[0.05, 0.52]	[0.53, 0.99]	[0.08, 0.64]	[0.03, 0.58]	[0.33, 0.95]	[0.03, 0.53]	[0.03, 0.48]	[0.60,0.99]

Note: Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the column heading. The row denoted " $s=s_{\text {max }}$ "reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples. The data are monthly and span the period 1960:07 to 2015:04.

Variance Decomposition $\left(U_{M}, Y, U_{F}\right)^{\prime}$

- Sizable amount variation in U_{M} driven by Y shocks.

	$\operatorname{SVAR}\left(U_{M}, i p, U_{F}\right)^{\prime}$			SVAR $\left(U_{M, ~ e m p, ~} U_{F}\right)^{\prime}$			$\operatorname{SVAR}\left(U_{M}, Q_{1}, U_{F}\right)^{\prime}$		
	Fraction variation in U_{M}			Fraction variation in U_{M}			Fraction variation in U_{M}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.371	0.527	0.102	0.531	0.376	0.093	0.390	0.497	0.113
12	0.419	0.409	0.172	0.601	0.249	0.150	0.434	0.371	0.195
∞	0.420	0.368	0.212	0.619	0.220	0.161	0.478	0.322	0.200
$s_{\text {max }}$	0.511	0.528	0.215	0.664	0.384	0.161	0.572	0.498	0.203
	[0.25, 0.79]	[0.22, 0.71]	[0.05, 0.57]	[0.34, 0.87]	[0.15, 0.59]	[0.06, 0.46]	[0.30, 0.79]	[0.21, 0.70]	[0.06, 0.53]
	Fraction variation in ip			Fraction variation in emp			Fraction variation in Q_{1}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.401	0.556	0.043	0.352	0.402	0.246	0.456	0.508	0.036
12	0.121	0.659	0.220	0.075	0.406	0.519	0.169	0.563	0.269
∞	0.082	0.691	0.227	0.124	0.424	0.453	0.063	0.621	0.317
$s_{\text {max }}$	0.415	0.696	0.272	0.373	0.424	0.587	0.468	0.621	0.358
	[0.19, 0.61]	[0.34, 0.94]	[0.04, 0.73]	[0.21, 0.63]	[0.16, 0.85]	[0.16, 0.92]	[0.24, 0.62]	[0.33, 0.95]	[0.07, 0.81]
	Fraction variation in U_{F}			Fraction variation in U_{F}			Fraction variation in U_{F}		
s	U_{M} Shock	ip Shock	U_{F} Shock	U_{M} Shock	emp Shock	U_{F} Shock	U_{M} Shock	Q_{1} Shock	U_{F} Shock
1	0.029	0.023	0.948	0.140	0.119	0.743	0.019	0.022	0.959
12	0.080	0.041	0.878	0.243	0.133	0.624	0.082	0.039	0.879
∞	0.121	0.131	0.748	0.332	0.138	0.530	0.156	0.098	0.746
$s_{\text {max }}$	0.128	0.131	0.950	0.339	0.152	0.744	0.163	0.098	0.961
	[0.03, 0.47]	[0.05, 0.52]	[0.53, 0.99]	[0.08, 0.64]	[0.03, 0.58]	[0.33, 0.95]	[0.03, 0.53]	[0.03, 0.48]	[0.60, 0.99]

Note: Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the column heading. The row denoted " $s=s_{\text {max }}$ "reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples. The data are monthly and span the period 1960:07 to 2015:04.

IRF for SVAR $\left(U_{M}, i p, U_{F}\right)^{\prime}$ using Baa

Note: Z_{1} is created by using Baa and Z_{2} is generated by using CRSP excess returns. The correlation $\rho\left(Z_{1 t}, \hat{e}_{M t}\right)=0.1988$, $\rho\left(Z_{1 t}, \hat{e}_{F t}\right)=0.1219, \rho\left(Z_{2 t}, \hat{e}_{F t}\right)=-0.1617$ and $\rho\left(Z_{1 t}, Z_{2 t}\right)=-0.20$. The sample is from 1960:07 to 2015:04.

IRF for $\operatorname{SVAR}\left(U_{M}, i p, U_{F}\right)^{\prime}$ using noi for Z_{1}

Note: Z_{1} is created by using noi and Z_{2} is generated by using CRSP excess returns. The correlation $\rho\left(Z_{1 t}, \hat{e}_{M t}\right)=0.1799$, $\rho\left(Z_{1 t}, \hat{e}_{F t}\right)=-0.0301, \rho\left(Z_{2 t}, \hat{e}_{F t}\right)=-0.1617$ and $\rho\left(Z_{1 t}, Z_{2 t}\right)=0.1612$. One lag of noi is included. The sample is from $1960: 07$ to 2015:04.

IRF for $\operatorname{SVAR}\left(U_{M}, i p, U_{F}\right)^{\prime}$ using noi for Z_{2}

Note: Z_{1} is generated by using CRSP excess returns and Z_{2} is created by using noi. The correlation $\rho\left(Z_{1 t}, \hat{e}_{M t}\right)=-0.1679$, $\rho\left(Z_{1 t}, \hat{e}_{F t}\right)=-0.0702, \rho\left(Z_{2 t}, \hat{e}_{F t}\right)=-0.1536$ and $\rho\left(Z_{1 t}, Z_{2 t}\right)=0.1503$. One lag of noi is included. The sample is from 1960:07 to 2015:04.

IRF for SVAR $\left(U_{M}, i p, U_{F}\right)^{\prime}$ using $r^{\text {small }}$ Index for Z_{1}

Note: Z_{1} is created by using $r^{\text {small }}$ index and Z_{2} is generated by using CRSP excess return. The correlation $\rho\left(Z_{1 t}, \hat{e}_{M t}\right)=-0.0667$, $\rho\left(Z_{1 t}, \hat{e}_{F t}\right)=-0.1840, \rho\left(Z_{2 t}, \hat{e}_{F t}\right)=-0.1617$ and $\rho\left(Z_{1 t}, Z_{2 t}\right)=0.7868$. One lag of $r^{\text {small }}$ is included. The sample is from 1960:07 to 2015:04.

Uncertainty and Business Cycles

Recursive Identification with Order $\left(U_{F}, U_{M}, i p\right)^{\prime}$

- Under any ordering, $U_{M t}$ shocks, like $U_{F t}$, appear to decrease Y_{t}.

Note: Bootstrapped 90 percent error bands appear as dashed lines. Responses to one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Recursive Identification with Order $\left(U_{F}, U_{M}, i p\right)^{\prime}$

- Inspection of $\hat{\mathbf{A}}_{0}$ reveals non-zero contemporaneous correlations $\rho\left(U_{M}, Y\right), \rho\left(U_{F}, Y\right)$, inconsistent with any recursive ordering.

$$
\hat{\mathbf{A}}_{0}=\left(\begin{array}{rrr}
1 & \mathbf{1 . 5 2 3 3} & -0.0206 \\
& {[0.2110]} & {[0.0583]} \\
-\mathbf{0 . 7 3 2 1} & 1 & 0.1328 \\
{[0.1563]} & & {[0.0702]} \\
-0.0049 & -\mathbf{1 . 1 6 7 6} & 1 \\
{[0.6933]} & {[0.5902]} &
\end{array}\right)
$$

IRF for SVAR $\left(U_{M}, i p\right)^{\prime}$

Note: Bootstrapped 90 percent error bands appear as dashed lines. Responses to one standard deviation shocks are reported. Response units are reported in percentage points. Z_{1} is generated by using CRSP excess returns. The sample is from 1960:07 to 2015:04.

Variance Decomposition for $\left(U_{R}, Y, U_{F}\right)^{\prime}$

	SVAR $\left(U_{R}, i p, U_{F}\right)^{\prime}$			$\operatorname{SVAR}\left(U_{R}, e m p, U_{F}\right)^{\prime}$			$\operatorname{SVAR}\left(U_{R}, Q_{1}, U_{F}\right)^{\prime}$		
	Fraction variation in U_{R}			Fraction variation in U_{R}			Fraction variation in U_{R}		
s	U_{R} Shock	ip Shock	U_{F} Shock	U_{R} Shock	emp Shock	U_{F} Shock	U_{R} Shock	Q_{1} Shock	U_{F} Shock
$s=1$	0.359	0.513	0.128	0.483	0.405	0.112	0.391	0.482	0.127
$s=12$	0.253	0.463	0.285	0.409	0.292	0.299	0.263	0.440	0.297
$s=\infty$	0.302	0.407	0.291	0.419	0.263	0.318	0.327	0.379	0.294
$s=s_{\text {max }}$	0.302	0.407	0.291	0.519	0.405	0.318	0.437	0.515	0.305
	[0.16,0.72]	[0.18, 0.80]	[0.07,0.63]	[0.23, 0.80]	[0.13, 0.69]	[0.07, 0.62]	[0.19, 0.70]	[0.22,0.75]	[0.06, 0.62]
	Fraction variation in $i p$			Fraction variation in emp			Fraction variation in Q_{1}		
s	U_{R} Shock	ip Shock	U_{F} Shock	U_{R} Shock	emp Shock	U_{F} Shock	U_{R} Shock	Q_{1} Shock	U_{F} Shock
$s=1$	0.391	0.577	0.032	0.378	0.392	0.230	0.439	0.532	0.029
$s=12$	0.295	0.456	0.249	0.220	0.217	0.563	0.362	0.371	0.267
$s=\infty$	0.211	0.326	0.463	0.092	0.064	0.845	0.265	0.233	0.502
$s=s_{\text {max }}$	0.397	0.580	0.463	0.392	0.395	0.845	0.442	0.534	0.502
	[0.10,0.73]	[0.22, 0.89]	[0.08, 0.84$]$	[0.13,0.68]	[0.14, 0.74]	[0.32, 0.96]	[0.19, 0.72]	[0.27, 0.81]	[0.09, 0.87]
	Fraction variation in U_{F}			Fraction variation in U_{F}			Fraction variation in U_{F}		
-	U_{R} Shock	ip Shock	U_{F} Shock	U_{R} Shock	emp Shock	U_{F} Shock	U_{R} Shock	Q_{1} Shock	U_{F} Shock
$s=1$	0.010	0.059	0.941	0.050	0.182	0.768	0.001	0.055	0.944
$s=12$	0.011	0.083	0.906	0.094	0.200	0.707	0.015	0.079	0.906
$s=\infty$	0.117	0.093	0.790	0.214	0.167	0.619	0.150	0.082	0.768
$s=s_{\text {max }}$	0.117	0.093	0.943	0.217	0.216	0.774	0.150	0.082	0.947
	[0.04, 0.35]	[0.03, 0.52]	[0.56, 0.99]	[0.06, 0.49]	[0.04, 0.64]	[0.37, 0.97]	[0.04, 0.39]	[0.02,0.53]	[0.59,0.99]

Note: Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the column heading. The row denoted " $s=s_{m a x}$ "reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples. The data are monthly and span the period 1960:07 to 2015:04.

Recursive $\operatorname{IRF}\left(U_{F}, U_{M}, i p\right)^{\prime}$

- Recursive IRF $\left(U_{F}, U_{M}, i p\right)^{\prime}$

Note: Bootstrapped 90 percent error bands appear as dashed lines. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Time Series of Price Uncertainty

- Time Series of Price Uncertainty.

Positive e_{π} exceeding 2 standard deviations

Positive e_{π}^{x} exceeding 2 standard deviations

Note: The upper panel plots U_{π} and U_{π}^{x} where the latter excludes uncertainties for 5 volatile sub-series defined in the text, expressed in standardized units. The middle and lower panel exhibit shocks that are at least 2 standard deviations above the unconditional mean for U_{π} and U_{π}^{x}. The shaded areas correspond to the NBER recession dates. The data are monthly and span the period 1960:07 to 2015:04.

SVAR IRF $\left(U_{\pi}, e m p, U_{F}\right)^{\prime}$

- SVAR IRF $\left(U_{\pi}, e m p, U_{F}\right)^{\prime}$

Note: Bootstrapped 90 percent error bands appear as dashed lines. Responses to one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

SVAR $\operatorname{IRF}\left(U_{M}(12), e m p, U_{F}(12)\right)^{\prime}$

- SVAR $\operatorname{IRF}\left(U_{M}(12), e m p, U_{F}(12)\right)^{\prime}$

Note: Bootstrapped 90 percent error bands appear as dashed lines. Responses to one standard deviation shocks are reported. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.

Test of Recursive Restrictions, Real Uncertainty

- Test of Recursive Restrictions, Real Uncertainty

Ordering:	$\left(U_{\left.R, i p, U_{F}\right)^{\prime}}\right.$	$\left(U_{R}(12), i p, U_{F}(12)\right)^{\prime}$
$H_{0}: B_{R Y}=B_{R F}=B_{Y F}=0$	$\mathbf{1 3 3 . 6 9}$	$\mathbf{3 0 3 . 2 4}$
	$[71.23]$	$[77.88]$
$H_{0}: B_{Y R}=B_{Y F}=B_{R F}=0$	$\mathbf{2 9 . 1 1}$	$\mathbf{1 6 7 . 5 7}$
	$[35.83]$	$[52.54]$
$H_{0}: B_{R Y}=B_{R F}=B_{F Y}=0$	$\mathbf{1 3 0 . 4 1}$	$\mathbf{3 0 6 . 3 4}$
	$[77.34]$	$[72.79]$
$\chi_{5 \%}^{2}(3)$	7.81	7.81
	$\left(U_{R}, \text { emp, } U_{F}\right)^{\prime}$	$\left(U_{R}(12), \text { emp, } U_{F}(12)\right)^{\prime}$
$H_{0}: B_{R Y}=B_{R F}=B_{Y F}=0$	$\mathbf{1 7 8 . 6 8}$	$\mathbf{3 2 7 . 9 1}$
	$[62.11]$	$[76.35]$
$H_{0}: B_{Y R}=B_{Y F}=B_{R F}=0$	$\mathbf{8 5 . 5 8}$	$\mathbf{2 4 4 . 8 5}$
	$[46.43]$	$[67.50]$
$H_{0}: B_{R Y}=B_{R F}=B_{F Y}=0$	$\mathbf{1 5 4 . 7 6}$	$\mathbf{3 1 0 . 6 6}$
	$[76.22]$	$[78.04]$
$\chi_{5 \%}^{2}(3)$	7.81	7.81

Note: The table reports the Wald test statistic for testing the null hypothesis given in the column. The bold indicates that Wald test rejects the null at 95 percent level according to $\chi^{2}(3)$ distribution. The SVAR system is solved using GMM and delta method is used for computing the standard error. Estimates of \mathbf{B} are based on the SVAR identified with external instruments described in the text. The mean of bootstrap Wald statistics is reported in parenthesis. The sample size spans 1960:07 to 2015:04.

SVAR IRF $\left(U_{M}(1), \text { emp, } U_{F}(1)\right)^{\prime}$ with 1987 Dummies

- SVAR IRF $\left(U_{M}(1) \text {, emp }, U_{F}(1)\right)^{\prime}$ using 1987 Crash Dummies

Note: The red line exhibits the 90 percent robust confidence set defined in the appendix. The sample spans the period 1962:07 to 2015:04.

Pre-2008 SVAR IRF $\left(U_{M}(1), \text { emp, } U_{F}(1)\right)^{\prime}$

- Pre-2008 SVAR IRF $\left(U_{M}(1), e m p, U_{F}(1)\right)^{\prime}$

Note: The red line exhibits the 90 percent robust confidence set defined in the appendix. The sample spans the period 1962:07 to 2015:04.

Monte Carlo Procedure

1 For each MC replication $i=1, \ldots, I$, draw $T \times 1$ vectors $\mathbf{e}_{F}^{(i)}, \mathbf{e}_{Y}^{(i)}, \mathbf{e}_{M}^{(i)}$ independently from $N(0,1)$.
2 Generate true data for $\left(U_{M}^{(i)}, Y^{(i)}, U_{F}^{(i)}\right)$ from the trivariate VAR

$$
\underbrace{\left(\begin{array}{ccc}
A_{M M}(0) & A_{M Y}(0) & A_{M F}(0) \\
A_{Y M}(0) & A_{Y Y}(0) & A_{Y F}(0) \\
A_{F M}(0) & A_{F Y}(0) & A_{F F}(0)
\end{array}\right)}_{\mathbf{A}_{0}}\left(\begin{array}{c}
U_{M}^{(i)} \\
Y_{t}^{(i)} \\
U_{F t}^{(i)}
\end{array}\right)=\underbrace{\left(\begin{array}{lll}
A_{M M}(1) & A_{M Y}(1) & A_{M F}(1) \\
A_{Y M}(1) & A_{Y Y}(1) & A_{Y F}(1) \\
A_{F M}(1) & A_{F Y}(1) & A_{F F}(1)
\end{array}\right)}_{\mathbf{A}_{1}}\left(\begin{array}{c}
U_{M t-1}^{(i)} \\
Y_{t-1}^{(i)} \\
U_{F t-1}^{(i)}
\end{array}\right)+\left(\begin{array}{c}
e_{M t}^{(i)} \\
e_{Y t}^{(i)} \\
e_{F t}^{(i)}
\end{array}\right)
$$

3 Generate data for $S_{1 t}$ and $S_{2 t}$ by drawing $T \times 1$ vectors $e_{S 1 t}^{(i)}, e_{S 2 t}^{(i)}$ independently from $N(0,1)$ distributions, where

$$
\begin{aligned}
& S_{1 t}^{(i)}=d_{10}+d_{11} S 1_{t-1}^{(i)}+d_{12} e_{M t}^{(i)}+d_{13} e_{Y t}^{(i)}+d_{14} e_{F t}^{(i)}+d_{15} e_{S 1 t}^{(i)}+d_{16} e_{S 2 t}^{(i)} \\
& S_{2 t}^{(i)}=d_{20}+d_{21} S_{2 t-1}^{(i)}+d_{22} e_{M t}^{(i)}+d_{23} e_{Y t}^{(i)}+d_{24} e_{F t}^{(i)}+d_{25} e_{S 1 t}^{(i)}
\end{aligned}
$$

4 Initialize $j=0$ and $\left(\hat{\mathbf{e}}_{Y}^{(i),[0]}, \hat{\mathbf{e}}_{M}^{(i),[0]}\right)^{\prime}=\left(Y^{(i)}, U_{M}^{(i)}\right)^{\prime}$.
4.1 Given $\left(\hat{\mathbf{e}}_{Y}^{(i),[j]}, \hat{\mathbf{e}}_{M}^{(i),[j]}\right)$, calculate the \mathbf{Z} by running the following regressions.

$$
S_{1 t}^{(i)}=\beta_{1}^{\prime} x_{1 t}^{(i),[j]}+Z_{1 t}^{(i),[j]} \text { and } S_{2 t}^{(i)}=\beta_{2}^{\prime} x_{2 t}^{(i),[j]}+Z_{2 t}^{(i),[j]}
$$

where $x_{1 t}^{(i)}=\left(1, S 1_{t-1}^{(i)}, e_{Y}^{(i),[j]}\right)^{\prime}$ and $x_{2 t}^{(i)}=\left(1, S_{2 t-1}^{(i)}, e_{Y}^{(i),[j]}, e_{M}^{(i),[j]}\right)^{\prime}$,
4.2 Use $Z_{1}^{(i),[j]}$ and $Z_{2}^{(i),[j]}$ and estimates vech $\left(\hat{\boldsymbol{\eta}}_{t}^{(i)} \hat{\boldsymbol{\eta}}_{t}^{(i) \prime}\right)$ and $\operatorname{vec}\left(Z_{t}^{(i),[j]} \otimes \hat{\boldsymbol{\eta}}_{t}^{(i)}\right)$ to impose Assumption A of the paper and solve for \mathbf{B}. We obtain $\hat{e}_{Y}^{(i),[j+1]}, \hat{e}_{M}^{(i),[j+1]}, \hat{\boldsymbol{e}}_{F}^{(i),[j+1]}$ from $\hat{\mathbf{e}}^{(i),[j+1]}=\left(\mathbf{B}^{(i),[j]}\right)^{-1} \hat{\boldsymbol{\eta}}_{t}^{(i)}$
4.3 If $\left\|\hat{\mathbf{e}}^{(i),[j+1]}-\hat{\mathbf{e}}^{(i),[j]}\right\|<\epsilon$ (where ϵ is an arbitrarily small number), then set $\hat{\mathbf{e}}^{(i)}=\hat{\mathbf{e}}^{(i),[j]}$ and $\mathbf{Z}^{(i)}=\mathbf{Z}^{(i),[j]}$.

Otherwise, set $j=j+1$ and return to step 4.1.
5 Store $\hat{c}_{1}=\operatorname{corr}\left(\mathbf{Z}_{\mathbf{1 t}}{ }^{(i)}, \hat{\mathbf{e}}_{\mathbf{M t}}^{(i)}\right), \hat{c}_{2}=\operatorname{corr}\left(\mathbf{Z}_{\mathbf{1 t}}{ }^{(i)}, \hat{\mathbf{e}}_{\mathbf{F t}}^{(i)}\right), \hat{c}_{3}=\operatorname{corr}\left(\mathbf{Z}_{\mathbf{2} \mathbf{t}}{ }^{(i)}, \hat{\mathbf{e}}_{\mathbf{F t}}^{(i)}\right), C\left(\beta_{1}\right)=\frac{1}{3}\left(\left|\hat{c}_{1}\right|+\left|\hat{c}_{2}\right|+\left|\hat{c}_{3}\right|\right)$. Keep replication i that satisfies (a) $C\left(\beta_{1}\right) \geq \bar{C}$, (b), each $\hat{c}_{i} \geq \bar{c}$, and (c) $\operatorname{det}\left(B^{(j)}\right) \geq \bar{b}$.

Iterative Monte Carlo

$$
Y_{t}=A_{1} Y_{t-1}+H \Sigma e_{t}, B \equiv H \Sigma
$$

True			Estimated			
B	$=$	$\left(\begin{array}{ccc}0.660 & -0.710 & 0.270 \\ 0.420 & 0.470 & -0.140 \\ 0.490 & 0.500 & 2.600\end{array}\right)_{\times 10^{-2}}$	B	$=$	$\left(\begin{array}{ccc}0.646 & -0.710 & 0.288 \\ 0.424 & 0.470 & -0.117 \\ 0.379 & 0.471 & 2.611\end{array}\right)$	$)_{\times 10^{-2}}$
A_{1}		$\left(\begin{array}{ccc}0.996 & 0.027 & 0.010 \\ -0.023 & 0.983 & -0.002 \\ -0.045 & 0.040 & 0.978\end{array}\right)$	\hat{A}_{1}	$=$	$\left(\begin{array}{ccc}0.996 & 0.029 & 0.010 \\ -0.023 & 0.983 & -0.002 \\ -0.046 & 0.041 & 0.978\end{array}\right)$	
$\operatorname{diag}(\boldsymbol{\Sigma})$	$=$	$[0.660,0.470,2.600]_{\times 10^{-2}}$	$\operatorname{diag}(\hat{\mathbf{\Sigma}})$	$=$	$[0.646,0.470,2.611]_{\times 10^{-2}}$	
RMSE(${ }_{\text {B }}$)		$\left(\begin{array}{lll}0.023 & 0.022 & 0.034 \\ 0.012 & 0.007 & 0.030 \\ 0.138 & 0.094 & 0.023\end{array}\right)_{\times 10^{-2}}$	$\operatorname{RMSE}\left(\hat{A}_{1}\right)$		$\left(\begin{array}{lll}0.001 & 0.001 & 0.001 \\ 0.000 & 0.001 & 0.000 \\ 0.002 & 0.003 & 0.002\end{array}\right)$	
$\operatorname{corr}\left(Z_{1 t}, e_{t}\right)$	$=$	[-0.077, 0.000, -0.118]	$\begin{aligned} & \operatorname{corr}\left(Z_{1 t}(\hat{\beta}), e_{t}\right) \\ & \operatorname{corr}\left(Z_{1 t}(\hat{\beta}), \hat{e}_{t}\right) \end{aligned}$	$=$	$\begin{aligned} & {[-0.073,0.000,-0.119]} \\ & {[-0.073,0.000,-0.124]} \end{aligned}$	
$\operatorname{corr}\left(Z_{2 t}, e_{t}\right)$	$=$	[0.000, 0.000, -0.166]	$\begin{aligned} & \operatorname{corr}\left(Z_{2 t}(\hat{\beta}), e_{t}\right) \\ & \operatorname{corr}\left(Z_{2 t}(\hat{\beta}), \hat{e}_{t}\right) \end{aligned}$	$=$	$\begin{aligned} & {[-0.002,0.002,-0.165]} \\ & {[0.000,0.000,-0.169]} \end{aligned}$	
$\operatorname{corr}\left(e_{t}, \hat{e}_{t}\right)$		[0.995, 0.996, 0.995]				

Reported are the average of estimates over 5000 replications. IPIV initial guess: $\left(\mathbf{e}_{1}^{[i](0)}, \mathbf{e}_{2}^{[i](0)}\right)^{\prime}=\left(\mathbf{X}_{1}^{[i]}, \mathbf{X}_{2}^{[i]}\right)^{\prime}$. The sample size $T=500$.

Returns Uncertainty with and without Jumps

- Returns with and without Jumps

$$
\begin{gathered}
\hline \text { Model without Jump } \\
r_{t}^{N J} \sim N\left(\kappa_{1}, \kappa_{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
\hline \hline \text { Model with Jump } \\
r_{t}^{J}=w_{t}+z_{t} \\
w_{t} \sim N\left(\mu, \sigma^{2}\right) \\
z_{t} \mid j \sim N\left(j \theta, j \delta^{2}\right) \\
j \sim \text { Poission }(\omega) \\
E\left(r_{t}^{J}\right)=\kappa_{1}=\mu+\omega \theta \\
\operatorname{Var}\left(r_{t}^{J}\right)=\kappa_{2}=\sigma^{2}+\omega\left(\theta^{2}+\delta^{2}\right)
\end{gathered}
$$

$\quad E\left(\mathcal{U}_{t}^{r}\right)$
$\sqrt{\operatorname{Var}\left(\mathcal{U}_{t}^{r}\right)}$
Skewness
Kurtosis

$$
\begin{gathered}
0.0335 \\
6.62 \times 10^{-5} \\
1.3831 \\
6.6707
\end{gathered}
$$

$\sqrt{\operatorname{Var}\left(\mathcal{U}_{t}^{r}\right)}$
Skewness Kurtosis
Number > 3 std
Note: The table reports the mean, standard deviation, skewness and kurtosis of the uncertainty measure of returns with and without jumps. The model is specified in each column and both model has the same unconditional mean κ_{1} and variance κ_{2}. We calibrate the mean (μ), volatility (σ), jump intensity (ω), mean jump size (θ) and volatility of jumps (δ) according to the true distribution of the aggregate stock returns as in Table 2 in Backus, Chernov and Martin (2011). Last row reports the number of samples that exceed 3 standard deviation above its mean. The monte carlo sample size is 20,000 .

Measuring Uncertainty: Jurado, Ludvigson, Ng (JLN)

- Methodology: DI forecasting plus stochastic volatility model
- Let $y_{j t}^{C} \in Y_{t}^{C}=\left(y_{1 t}^{C}, \ldots, y_{N_{C} t}^{C}\right)^{\prime}$ be a variable in category C. JLN estimate its h-period ahead uncertainty, $\mathcal{U}_{j t}^{C}(h)$, defined

$$
\mathcal{U}_{j t}^{C}(h) \equiv \sqrt{\mathbb{E}\left[\left(y_{j t+h}^{C}-\mathbb{E}\left[y_{j t+h}^{C} \mid I_{t}\right]\right)^{2} \mid I_{t}\right]}
$$

- Aggregate uncertainty in category C :

$$
\mathcal{U}_{C t}(h) \equiv \operatorname{plim}_{N_{C} \rightarrow \infty} \sum_{j=1}^{N_{C}} \frac{1}{N_{C}} \mathcal{U}_{j t}^{C}(h) \equiv \mathbb{E}_{C}\left[\mathcal{U}_{j t}^{C}(h)\right]
$$

- Focus on $h=1$ month-ahead uncertainty in three categories:

Category (C)	Y_{t}^{C}	N_{C}
$(\mathrm{M}):$ Macro	all variables in $\chi^{M}(\mathrm{JLN})$	134
(F): Financial	all variables in $\chi^{F}($ new $)$	147
(R): Real activity	real activity variables in χ^{M} (new)	73

Econometric Model

- For each $y_{j t}, j=1, \ldots, N_{y}$, we specify:

$$
\begin{aligned}
y_{j, t+1} & =\underbrace{E\left[y_{j t+1} \mid I_{t}\right]}_{\text {forecastable }}+\underbrace{v_{j, t+1}^{y}}_{\text {unforecastable }} \\
v_{j, t+1}^{y} & =\underbrace{\sigma_{j, t+1}^{y}}_{\text {stochastic vol }} \varepsilon_{j, t+1}^{y} \\
\log \left[\left(\sigma_{j, t+1}^{y}\right)^{2}\right] & =\alpha_{j}^{y}+\beta_{j}^{y} \log \left(\sigma_{j t}^{y}\right)^{2}+\tau_{j}^{y} \eta_{j, t+1},
\end{aligned}
$$

where $\varepsilon_{j, t+1}$ and $\eta_{j, t+1}$ are iid $N(0,1)$ random variables.

Econometric Model

- For each $y_{j t}, j=1, \ldots, N_{y}$, we specify:

$$
\begin{aligned}
y_{j, t+1} & =\underbrace{E\left[y_{j t+1} \mid I_{t}\right]}_{\text {forecastable }}+\underbrace{v_{j, t+1}^{y}}_{\text {unforecastable }} \\
v_{j, t+1}^{y} & =\underbrace{\sigma_{j, t+1}^{y}}_{\text {stochastic vol }} \varepsilon_{j, t+1}^{y} \\
\log \left[\left(\sigma_{j, t+1}^{y}\right)^{2}\right] & =\alpha_{j}^{y}+\beta_{j}^{y} \log \left(\sigma_{j t}^{y}\right)^{2}+\tau_{j}^{y} \eta_{j, t+1},
\end{aligned}
$$

where $\varepsilon_{j, t+1}$ and $\eta_{j, t+1}$ are iid $N(0,1)$ random variables.

- Estimation:
(1) $\hat{E}\left[y_{j t+1} \mid I_{t}\right]$ using diffusion index forecasts.
(2) $\log \left(\widehat{\sigma}_{j t}^{y}\right)^{2}$ stochastic volatility estimates, improved version of Kim, Shephard, and Chib (1998, RES) algorithm.

Stochastic Volatility Estimates

- From the model, $v_{j, t+1}^{y}=\sigma_{j, t+1}^{y} \varepsilon_{j, t+1}^{y}$. Take logs:

$$
\begin{aligned}
& \log \left[\left(v_{j, t+1}^{y}\right)^{2}\right]=\log \left[\left(\sigma_{j, t+1}^{y}\right)^{2}\right]+\log \left[\left(\varepsilon_{j, t+1}^{y}\right)^{2}\right] \\
& \log \left[\left(\sigma_{j, t+1}^{y}\right)^{2}\right]=\alpha_{j}^{y}+\beta_{j}^{y} \log \left[\left(\sigma_{j t}^{y}\right)^{2}\right]+\left(\tau_{j}^{y}\right) \eta_{j, t+1} .
\end{aligned}
$$

- Has the state-space representation

$$
\begin{aligned}
& z_{j t}=x_{j t}+\epsilon_{j t} \quad \text { observation equation } \\
& x_{j t}=\alpha_{j}+\beta_{j} x_{j t-1}+\tau_{j} \eta_{j t} \quad \text { state equation }
\end{aligned}
$$

- Difficulty: $\epsilon_{j, t} \equiv \log \left(\varepsilon_{j, t}^{y}\right)^{2} \sim \log \chi^{2}(1)$.
- Solution: Kim, Shephard, and Chib (1998, RES) MCMC mixture of normals approximation:

$$
p(\epsilon)=\sum_{k=1}^{K} \pi_{k} \phi\left(\epsilon ; m_{k}, s_{k}^{2}\right) .
$$

- Interweaving: Kastner-Fruhwrith-Schnattner (2013).

Computing Individual Uncertainty $(h=1)$

- Using definition of forecast variance :

$$
\begin{aligned}
\Omega_{j t}^{y}(1) & =E\left[\left(\sigma_{j, t+1}^{y}\right)^{2}\left(\varepsilon_{j, t+1}^{y}\right)^{2} \mid I_{t}\right] \\
& =E\left[\left(\sigma_{j, t+1}^{y}\right)^{2} \mid I_{t}\right] \\
& =\exp \left\{\alpha_{j}^{y}+\beta_{j}^{y} \log \left(\sigma_{j t}^{y}\right)^{2}+\frac{1}{2}\left(\tau_{j}^{y}\right)^{2}\right\} .
\end{aligned}
$$

- The last equality follows from the $\operatorname{AR}(1)$ law of motion for $\log \left(\sigma_{j, t+1}^{y}\right)^{2}$, and the normality of $\eta_{j, t+1}$.
- Given estimates: $\hat{\alpha}_{j}^{y}, \hat{\beta}_{j}^{y},\left(\hat{\tau}_{j}^{y}\right)^{2}$, and $\left\{\widehat{\log }\left(\sigma_{j t}^{y}\right)^{2}\right\}_{t=1}^{T}$, compute $\hat{\Omega}_{j t}^{y}(1)$ using this expression.

Computing Individual Uncertainty ($h \geq 1$)

- Define $q=\max \left(\right.$ lags $_{y}$, lags $_{F}$, lags $\left._{w}, h\right)$
- Let $\mathcal{Z}_{t} \equiv\left(\hat{F}_{t}^{\prime}, W_{t}^{\prime}\right)^{\prime}$ and define $\mathcal{F}_{t} \equiv\left(\mathcal{Z}_{t}, \ldots, \mathcal{Z}_{t-q+1}\right)^{\prime}$ and $Y_{j t} \equiv\left(y_{j t}, \ldots, y_{j, t-q+1}\right)^{\prime}:$

$$
\begin{aligned}
\binom{\mathcal{F}_{t}}{Y_{j t}} & =\left(\begin{array}{cc}
\Phi^{F} & 0 \\
\Lambda_{j}^{\prime} & \Phi_{j}^{Y}
\end{array}\right)\binom{\mathcal{F}_{t-1}}{Y_{j, t-1}}+\binom{V_{t}^{\mathcal{F}}}{V_{j t}^{Y}} \\
\mathcal{Y}_{j t} & =\Phi_{j}^{\mathcal{Y}} \mathcal{Y}_{j, t-1}+V_{j t}^{\mathcal{Y}}
\end{aligned}
$$

Computing Individual Uncertainty $(h \geq 1)$

- Define $q=\max \left(\operatorname{lags}_{y}\right.$, lags $_{F}$, lags $\left._{w}, h\right)$
- Let $\mathcal{Z}_{t} \equiv\left(\hat{F}_{t}^{\prime}, W_{t}^{\prime}\right)^{\prime}$ and define $\mathcal{F}_{t} \equiv\left(\mathcal{Z}_{t}, \ldots, \mathcal{Z}_{t-q+1}\right)^{\prime}$ and $Y_{j t} \equiv\left(y_{j t}, \ldots, y_{j, t-q+1}\right)^{\prime}:$

$$
\begin{aligned}
\binom{\mathcal{F}_{t}}{Y_{j t}} & =\left(\begin{array}{cc}
\Phi^{F} & 0 \\
\Lambda_{j}^{\prime} & \Phi_{j}^{Y}
\end{array}\right)\binom{\mathcal{F}_{t-1}}{Y_{j, t-1}}+\binom{V_{t}^{\mathcal{F}}}{V_{j t}^{Y}} \\
\mathcal{Y}_{j t} & =\Phi_{j}^{\mathcal{Y}} \mathcal{Y}_{j, t-1}+V_{j t}^{\mathcal{Y}} .
\end{aligned}
$$

- Forecast Error Variance $\Omega_{j t}^{\mathcal{Y}}(h) \equiv E_{t}\left[\left(\mathcal{Y}_{j, t+h}-E_{t}\left[\mathcal{Y}_{j, t+h}\right]\right)^{2}\right]$. The following recursion holds (with $\Omega_{j t}^{\mathcal{Y}}(0) \equiv 0$):

$$
\Omega_{j t}^{\mathcal{Y}}(h)=\Phi_{j}^{\mathcal{Y}} \Omega_{j t}^{\mathcal{Y}}(h-1) \Phi_{j}^{\mathcal{Y} \prime}+E_{t}\left[V_{j, t+h}^{\mathcal{Y}} V_{j, t+h}^{\mathcal{Y} \prime}\right],
$$

- Then h-period ahead uncertainty in $y_{j t}$ is

$$
\mathcal{U}_{j t}^{y}(h)=\sqrt{1_{j}^{\prime} \mathcal{U}_{j t}^{\mathcal{Y}}(h) 1_{j}} .
$$

1_{i} a selection vector picks out the element for uncertainty in $y_{i, t}$.

Sources of Uncertainty

- Forecast error variance is not equal to stochastic volatility in residuals $v_{j t}^{y}$ unless $h=1$.

$$
\begin{aligned}
\Omega_{j t}^{Y}(h)= & \underbrace{\Phi_{j}^{Y} \Omega_{j t}^{Y}(h-1) \Phi_{j}^{Y \prime}}_{\text {autoregressive }}+\underbrace{\Omega_{j t}^{Z}(h-1)}_{\text {Factor }}+\underbrace{E_{t}\left(V_{j t+h}^{Y} V_{j t+h}^{Y \prime}\right)}_{\text {stochastic volatility } Y} \\
& +\underbrace{2 \Phi_{j}^{Y} \Omega_{j t}^{Y Z}(h-1)}_{\text {covariance }}
\end{aligned}
$$

Sources of Uncertainty

- Forecast error variance is not equal to stochastic volatility in residuals $v_{j t}^{y}$ unless $h=1$.

$$
\begin{aligned}
\Omega_{j t}^{Y}(h)= & \underbrace{\Phi_{j}^{Y} \Omega_{j t}^{Y}(h-1) \Phi_{j}^{Y \prime}}_{\text {autoregressive }}+\underbrace{\Omega_{j t}^{Z}(h-1)}_{\text {Factor }}+\underbrace{E_{t}\left(V_{j t+h}^{Y} V_{j t+h}^{Y \prime}\right)}_{\text {stochastic volatility } Y} \\
& +\underbrace{2 \Phi_{j}^{Y} \Omega_{j t}^{Y Z}(h-1)}_{\text {covariance }}
\end{aligned}
$$

- Autoregressive component when $h>1$

Sources of Uncertainty

- Forecast error variance is not equal to stochastic volatility in residuals $v_{j t}^{y}$ unless $h=1$.

$$
\begin{aligned}
\Omega_{j t}^{Y}(h)= & \underbrace{\Phi_{j}^{Y} \Omega_{j t}^{Y}(h-1) \Phi_{j}^{Y \prime}}_{\text {autoregressive }}+\underbrace{\Omega_{j t}^{Z}(h-1)}_{\text {Factor }}+\underbrace{E_{t}\left(V_{j t+h}^{Y} V_{j t+h}^{Y \prime}\right)}_{\text {stochastic volatility } Y} \\
& +\underbrace{2 \Phi_{j}^{Y} \Omega_{j t}^{Y Z}(h-1)}_{\text {covariance }}
\end{aligned}
$$

- Autoregressive component when $h>1$
- Predictor Uncertainty: error in forecasting F_{t} and W_{t} contribute to uncertainty when $h>1$

Sources of Uncertainty

- Forecast error variance is not equal to stochastic volatility in residuals $v_{j t}^{y}$ unless $h=1$.

$$
\begin{aligned}
\Omega_{j t}^{Y}(h)= & \underbrace{\Phi_{j}^{Y} \Omega_{j t}^{Y}(h-1) \Phi_{j}^{Y \prime}}_{\text {autoregressive }}+\underbrace{\Omega_{j t}^{Z}(h-1)}_{\text {Factor }}+\underbrace{E_{t}\left(V_{j t+h}^{Y} V_{j t+h}^{Y \prime}\right)}_{\text {stochastic volatility } Y} \\
& +\underbrace{2 \Phi_{j}^{Y} \Omega_{j t}^{Y Z}(h-1)}_{\text {covariance }}
\end{aligned}
$$

- Autoregressive component when $h>1$
- Predictor Uncertainty: error in forecasting F_{t} and W_{t} contribute to uncertainty when $h>1$
- Covariance component: $\operatorname{cov}\left(y_{t+h}-y_{t+h \mid t}, F_{t+h}-F_{t+h \mid t}\right)$, non-zero when $h>2$.

Variance Decomposition with $U_{M}(12)$ and $U_{F}(12)$

- Variance Decomposition with $U_{M}(12)$ and $U_{F}(12)$

	SVAR $\left(U_{M}(12), i p, U_{F}(12)\right)^{\prime}$			SVAR $\left(U_{M}(12), e m p, U_{F}(12)\right)^{\prime}$			SVAR $\left(U_{M}(12), Q_{1}, U_{F}(12)\right)^{\prime}$		
	Fraction variation in $U_{M}(12)$			Fraction variation in $U_{M}(12)$			Fraction variation in $U_{M}(12)$		
s	$U_{M}(12)$ Shock	ip Shock	$U_{F}(12)$ Shock	$U_{M}(12)$ Shock	emp Shock	$U_{F}(12)$ Shock	$U_{M}(12)$ Shock	Q_{1} Shock	$U_{F}(12)$ Shock
1	0.548	0.432	0.020	0.621	0.360	0.019	0.590	0.381	0.029
12	0.763	0.219	0.018	0.776	0.212	0.012	0.801	0.168	0.031
∞	0.635	0.206	0.159	0.682	0.135	0.183	0.692	0.202	0.106
$s_{\text {max }}$	0.813	0.432	0.165	0.682	0.135	0.183	0.868	0.388	0.107
max	[0.48, 0.94]	[0.17,0.66]	[0.06, 0.51]	[0.37,0.96]	[0.10, 0.62]	[0.09, 0.52]	[0.48,0.95]	[0.17, 0.61]	[0.04, 0.49]
	Fraction variation in ip			Fraction variation in emp			Fraction variation in Q_{1}		
s	$U_{M}(12)$ Shock	ip Shock	$U_{F}(12)$ Shock	$U_{M}(12)$ Shock	emp Shock	$U_{F}(12)$ Shock	$U_{M}(12)$ Shock	Q_{1} Shock	$U_{F}(12)$ Shock
1	0.379	0.591	0.030	0.342	0.355	0.303	0.384	0.602	0.014
12	0.124	0.757	0.119	0.076	0.433	0.491	0.099	0.748	0.154
∞	0.202	0.697	0.101	0.269	0.482	0.250	0.256	0.623	0.121
$s_{\text {max }}$	0.382	0.772	0.145	0.342	0.482	0.519	0.388	0.751	0.210
	$[0.20,0.71]$	[0.42,0.93]	$[0.04,0.59]$	$[0.23,0.76]$	$[0.17,0.86]$	$[0.18,0.88]$	$[0.23,0.75]$	[0.41, 0.96]	$[0.05,0.66]$
	Fraction variation in $U_{F}(12)$			Fraction variation in $U_{F}(12)$			Fraction variation in $U_{F}(12)$		
s	$U_{M}(12)$ Shock	ip Shock	$U_{F}(12)$ Shock	$U_{M}(12)$ Shock	emp Shock	$U_{F}(12)$ Shock	$U_{M}(12)$ Shock	Q_{1} Shock	$U_{F}(12)$ Shock
1	0.091	0.002	0.907	0.273	0.090	0.637	0.059	0.001	0.940
12	0.165	0.017	0.819	0.389	0.108	0.503	0.127	0.016	0.858
∞	0.200	0.162	0.638	0.448	0.165	0.387	0.178	0.151	0.671
$s_{\text {max }}$	0.206	0.162	0.907	0.464	0.165	0.637	0.178	0.151	0.945
	[0.04, 0.71]	[0.05, 0.46]	[0.37,0.99]	[0.09, 0.76]	[0.04, 0.59]	[0.20,0.94]	[0.04, 0.69]	[0.05, 0.48]	[0.40, 0.99]

Note: Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the column heading. The row denoted " $s=s_{\text {max }}$ "reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples. The data are monthly and span the period 1960:07 to 2015:04.

IRF for SVAR $\left(U_{M}, i p, U_{F}\right)^{\prime}$ using $V X O$ in Z_{1}

Note: Bootstrapped 90 percent error bands appear as dashed lines. Responses to one standard deviation shocks are reported. Response units are reported in percentage points. Z_{1} is created by using $V X O$ and Z_{2} is generated by using $r_{p}, \alpha=0.94$. The correlation $\rho\left(Z_{1 t}, \hat{e}_{M t}\right)=0.1650, \rho\left(Z_{1 t}, \hat{e}_{F t}\right)=0.1299$ and $\rho\left(Z_{2 t}, \hat{e}_{F t}\right)=-0.1662$. The sample is from 1962:07 to 2015:04.

IRF for $\operatorname{SVAR}\left(U_{M}, i p, U_{F}\right)^{\prime}$ using $V X O$ in Z_{2}

Note: Bootstrapped 90 percent error bands appear as dashed lines. Responses to one standard deviation shocks are reported. Response units are reported in percentage points. Z_{1} is generated by using $r_{p}, \alpha=0.94$ and Z_{2} is created by using $V X O$. The correlation $\rho\left(Z_{1 t}, \hat{e}_{M t}\right)=-0.1115, \rho\left(Z_{1 t}, \hat{e}_{F t}\right)=-0.1491$ and $\rho\left(Z_{2 t}, \hat{e}_{F t}\right)=0.1969$. The sample is from 1962:07 to 2015:04.

6 Survived Solutions for System $\left(U_{M}, i p, U_{F}\right)^{\prime}$

- 6 Survived Solutions for System $\left(U_{M}, i p, U_{F}\right)^{\prime}$

Panel A: Summary of Results from 6 Solutions

| | Summary Statistics of $\hat{e}=\left(e_{M,}, e_{Y}, e_{F}\right)$ | | | Instrument Relevance | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Case | Skewness | Kurtosis | | \hat{c}_{1} | \hat{c}_{2} | \hat{c}_{3} | C |
| Baseline | $(0.48,-0.42,-1.70)$ | $(5.87,6.05,19.65)$ | | -0.07 | -0.17 | -0.16 | 0.134 |
| Sol \#1 | $(0.33,-0.46,-1.82)$ | $(5.71,6.54,20.68)$ | | -0.07 | -0.17 | -0.16 | 0.135 |
| Sol \#2 | $(0.50,-0.43,-1.77)$ | $(5.88,6.28,20.08)$ | | -0.08 | -0.17 | -0.16 | 0.135 |
| Sol \#3 | $(0.36,-0.46,-1.81)$ | $(5.74,6.49,20.59)$ | | -0.07 | -0.17 | -0.16 | 0.135 |
| Sol \#4 | $(0.32,-0.45,-1.78)$ | $(5.69,6.39,20.41)$ | | -0.07 | -0.17 | -0.16 | 0.134 |
| Sol \#5 | $(0.30,-0.44,-1.74)$ | $(5.66,6.37,19.86)$ | | -0.08 | -0.17 | -0.15 | 0.134 |

Panel B: Correlation Matrix of \hat{e}
$\left[\begin{array}{ccccccc}1 & 0.991 & 0.998 & 0.994 & 0.989 & 0.987 \\ & 1 & 0.985 & 0.999 & 0.999 & 0.999 \\ & & 1 & 0.988 & 0.982 & 0.983 \\ & & & 1 & 0.999 & 0.998 \\ & & & & 1 & 0.998 \\ & & & & & 1\end{array}\right) \quad\left(\begin{array}{cccccccc}1 & 0.985 & 0.995 & 0.988 & 0.987 & 0.987 \\ & 1 & 0.986 & 0.999 & 0.999 & 0.998 \\ & & & 1 & 0.990 & 0.984 & 0.982 \\ & & & & & 1 & 0.999 & 0.998 \\ 1 & 0.993 & 0.994 & 0.995 & 0.998 & 0.996 \\ & 1 & 0.998 & 0.999 & 0.999 & 0.997 \\ & & 1 & 0.999 & 0.997 & 0.999 \\ & & & 1 & 0.999 & 0.998 \\ & & & 1 & 0.998\end{array}\right)$

Note: Panel A reports the skewness and kurtosis of \hat{e} and instrument relevance for 6 survived solutions in system $\left(U_{M}, i p, U_{F}\right)^{\prime}$. Panel B reports the matrix of correlation \hat{e} across 6 solutions. The monthly data span the period 1960:07 to 2015:04.

