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Sparse Dynamic Programming

• Agent builds a “sparse” simplified model of the world

• pays attention only to the most important variables

• pays zero attention to less important variables

• This Paper: Application to Dynamic Programming and Macro
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This Discussion

• General Sparsity Framework: Static Example

• Dynamic Two-Period Application

• Infinite Horizon, Dynamic Programming Problem

• My Comments
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Sparsity General Framework:

Simple Static Example
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Single Agent Static Maximization Problem

max
a
v (a, x)

• suppose a is a single action

• x = (x1, x2, . . . , xn) is a vector of state variables

xi ∼ N (0, σ2i )

• but perhaps the set of xi is really, really, really big!
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Alternative: Sparsity (Gabaix 2014 QJE)

• agent instead chooses a sparse representation of xi
x si = mi xi

with attention vector

m = (m1,m2, . . . ,mn) where mi ∈ [0, 1]

• if mi < 1 then agent pays only partial attention to xi
• if mi = 0 then agent pays no attention to xi

• agent maximizes new, sparse objective

v (a, x)→ v (a,m1x1, . . . ,mnxn)
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Step 1: Choose attention vector

• minimize utility loss due to inattentiveness

min
mi

1
2

Λi (1−mi )2 + κmi

• Λi denotes expected utility loss

(and here I assume xi are uncorrelated)

• κ constant cost of attention
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Utility Loss evaluated at Default Model

• How do you calculate Λi?

Λi ≡ −vaa
(

∂a
∂xi

)2
σ2i

• derivatives evaluated around a “Default Model”

vaa =
∂2v
∂a2

∣∣∣∣
a=ad

and
∂a
∂xi

∣∣∣∣
a=ad

• Default Model: can choose, but for most applications, mdi = 0
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Optimal Attention Choice

min
mi

1
2

Λi (1−mi )2 + κmi

• FOC
κ = Λi (1−mi )

• solve for m to obtain optimal attention coeffi cient

m∗i = max
{
1− κ

Λi
, 0
}
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Optimal Attention is Sparse

m∗i =


0 if κ > |vaa |

(
∂a
∂xi

)2
σ2i

1− κ

|vaa |
(

∂a
∂xi

)2
σ2i

otherwise

“Eliminate attention if the marginal cost of attention is too high relative
to the marginal benefit”
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Step 2: Solve problem with sparse representation

max
a
v (a,m∗1x1, . . . ,m∗nxn)
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Sparsity in a Two-Period Model
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Single Agent Consumption-Savings Problem

max
c0,c1

u (c0) +Eβu (c1)

subject to

c0 + a1 ≤ y0
c1 ≤ (1+ r ) a1 + y1

where

r = r̄ + εr εr ∼ N (0, σ2r )
y1 = ȳ1 + εy εy ∼ N (0, σ2y )
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Sparse Model

v (a1,mr εr ,my εy ) = u (y0 − a1) + βu ((1+ r ) a1 + y1)

where

r = r̄ +mr εr

y1 = ȳ1 +my εy
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Default Model

• default model:
mr = 0, my = 0

so that agent completely ignores the stochastic components

r = r̄ and y1 = ȳ1

• optimality condition: Euler Equation

u′ (c0) = β (1+ r̄ ) u′ (c1)

• one line solution

u′ (y0 − a1) = β (1+ r̄ ) u′ ((1+ r̄ ) a1 + ȳ1)
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Default Model Solution
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Rational Agent

• Euler equation
u′ (c0) = βE (1+ r ) u′ (c1)

• one line solution

u′ (y0 − a1) = βE
[
(1+ r ) u′ ((1+ r ) a1 + y1)

]
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Rational Agent Solution
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Sparse Agent. Step 1: Optimal Attention

• calculate Λi expected utility loss

Λi = −vaa
(

∂a
∂xi

)2
σ2i

with derivatives evaluated around the Default Model

• obtain optimal attention coeffi cient

m∗i = max
{
1− κ

Λi
, 0
}
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Optimal Attention as a function of Variance
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Optimal Attention as a function of Cost
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Sparse Agent. Step 2: Consumption-Savings Choice.

• given m∗r and m∗y , now solve

max
a1
v
(
a1,m

∗
r εr ,m∗y εy

)

• that is,
max
a1
u (y0 − a1) + βEu ((1+ r ) a1 + y1)

where

r = r̄ +m∗r εr

y1 = ȳ1 +m
∗
y εy

• one line solution

u′ (y0 − a1) = βE
[
(1+ r ) u′ ((1+ r ) a1 + y1)

]
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Sparse Agent Solution
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Action isn’t linear in attention
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Implications

• for intermediate values of attention cost,

• agent pays no attention to interest rate shock

• pays less than full attention to income shock

• optimal action, savings, is attenuated relative to fully rational model

• agent builds less precautionary savings

• affects estimation/measurement of IES
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Infinite-Horizon Model with

Sparse Dynamic Programming
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Infinite Horizon Model

max
{ct}

E
∞

∑
t=0

βtu (ct )

subject to
wt+1 ≤ (1+ r̄ + r̂t+1) (wt − ct ) + ȳ + ŷt+1

where

r̂t+1 = ρr r̂t + εrt+1, εrt+1 ∼ N (0, σ2r )
ŷt+1 = ρy ŷt + εyt+1, εyt+1 ∼ N (0, σ

2
y )
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Rational Model

• state space
(wt , r̂t , ŷt )

• bellman equation

V (w , r̂ , ŷ ) = max
a

{
u (a,w , r̂ , ŷ ) + βEV

(
w ′, r̂ ′, ŷ ′

)}
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Sparse Model

• Gabaix proposes the following law of motion for states

wt+1 = (1+ r̄ +mr r̂ ) (wt − ct ) + ȳ +my ŷt

and

r̂t+1 = ρr (m) r̂t +mσr ε
r
t+1, where ρr (m) = mρr ρr +

(
1−mρr

)
ρdr

ŷt+1 = ρy (m) ŷt +mσy εyt+1, where ρy (m) = mρy ρy +
(
1−mρy

)
ρdy

where ρdr , ρ
d
y ∈ [0, 1] are some default persistence parameters

• six attention coeffi cients

m =
(
mr ,mρr ,mσr ;my ,mρy ,mσy

)
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Comments
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Comment 1: Disciplining Sparse Dynamic Programming

• Given static sparsity framework, in dynamic model:

• what is the default model?

• where can you place m?

• Natural to choose default model = true non-stochastic steady state

ρdr = ρr , r̂t+1 = ρr r̂t +mσr ε
r
t+1

• two attention coeffi cients:

mσr and mσy
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Disciplining Sparse Dynamic Programming

• With proposed formulation,

m =
(
mr ,mρr ,mσr ;my ,mρy ,mσy

)
if ρdr = 0 then

ρr (m) = mρr ρr

• this introduces cognitive discounting of future variables

E [r̂t+τ ] = mτ
ρr ρ

τ
r r̂t+τ < ρτ

r r̂t+j

• departure from “information processing” interpretation

• Even if model is completely deterministic, agents have the wrong
perception of future variables
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Departure from Rational Life-Cycle Model

Figure: Sparsity in Life-Cycle
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Sparse Bellman Equation

• how do you formulate the value function?

• in rational model, invariance of value function

V (w , r̂ , ŷ ) = V (w , r̂ , ŷ , anything else)

• in sparsity model with default=true non-stochastic model,

same invariance of value function, just different measure for shocks
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Sparse Bellman Equation

• how do you formulate the value function?

• in rational model, invariance of value function

V (w , r̂ , ŷ ) = V (w , r̂ , ŷ ,Er̂t+τ,Eŷt+τ, . . .)

• in sparsity model with default=true non-stochastic model,

same invariance of value function, just different measure for shocks
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Sparse Bellman Equation

• in proposed sparsity model, with

m =
(
mr ,mρr ,mσr ;my ,mρy ,mσy

)
suppose instead

V (w , r̂ , ŷ ) = V (w , r̂ , ŷ ,Er̂t+τ,Eŷt+τ, . . .)

where Er̂t+τ,Eŷt+τ are the true future means of these processes

• if agent then chooses m’s, he could to pay attention to these

• what stops agents from paying attention to certain suffi cient statistics?
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Parsimony with Dynamic Programing

1. Either impose more discipline from original Sparsity Theory

2. Or, change original theory in a way that allows for these departures
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Comment 2: When Sparsity gains Traction

• When would Sparsity be the most useful?

• complex network models of interactions between many agents

• large production input-output models

• actions are linear or log-linear
• implies linear suffi cient statistics → sparsity not needed

• but network models of interconnected banks, households

• contracts are not linear (debt contracts)
• set of all individual states cannot be reduced
• sparsity seems almost generically necessary!
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Network of CDS Contracts (Boyarchenko, Costello, La’O,
Shachar)

Figure: Inter-Dealer CDS Network (unweighted), January 2015
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Last Comment: Technicalities with Feynman-Kac Method

Figure: Appendix for More Complex Model (Section 10)
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all of you, previous slide:

m∗this discussion = 0
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Conclusion
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Conclusion

• Perfectly Rational Agents (in the strict sense) seems ridiculous

• Sparsity Framework and Agenda: ambitious, creative, also realistic

• Dynamic programming application

• discipline from General Sparsity Theory

• Most useful in complex network models that are not linear
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