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Sparse Dynamic Programming

e Agent builds a “sparse” simplified model of the world

e pays attention only to the most important variables

e pays zero attention to less important variables

e This Paper: Application to Dynamic Programming and Macro



Intro

This Discussion

General Sparsity Framework: Static Example

Dynamic Two-Period Application

Infinite Horizon, Dynamic Programming Problem

e My Comments



Sparsity

Sparsity General Framework:

Simple Static Example
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Single Agent Static Maximization Problem

max v (a, x)
a

® suppose a is a single action
o X = (xl, X0, .. ,xn) is a vector of state variables

Xj ~ N(O, 0’,2)

e but perhaps the set of x; is really, really, really big!
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Alternative: Sparsity (Gabaix 2014 QJE)

e agent instead chooses a sparse representation of X;
X,-S = m;X;
with attention vector

m=(my, mp,...,mp) where m; € [0,1]

e if m; < 1 then agent pays only partial attention to x;

e if m; = 0 then agent pays no attention to x;

e agent maximizes new, sparse objective

v(a,x) = v(a,mxi, ..., Mpxn)
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Step 1: Choose attention vector

e minimize utility loss due to inattentiveness
1 2
min EA,-(lfm,-) +xm;

mj

e /\; denotes expected utility loss

(and here | assume Xx; are uncorrelated)

e K constant cost of attention
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Utility Loss evaluated at Default Model

e How do you calculate A;?
92>
A= —Vaa (—aX’) 0',2

e derivatives evaluated around a “Default Model”

9%v

Vag = ﬁ and

a=ad aX/' a=2ad

e Default Model: can choose, but for most applications, m,‘-f =0
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Optimal Attention Choice

.1 2
min EAi (1—mj)"+xm;

e FOC
K:A,' (l—m,-)

e solve for m to obtain optimal attention coefficient

mi = max{l—%,O}
1
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Optimal Attention is Sparse

2
0 if K>\vaa|(%;) o2

1
« .
1— — otherwise
vl () 7

“Eliminate attention if the marginal cost of attention is too high relative
to the marginal benefit"



Intro Sparsity Two Period Model Dynamic Programming Comments Conclusion

Step 2: Solve problem with sparse representation

max v (a, mixi, ..., Myxp)
a



Two Period Model

Sparsity in a Two-Period Model
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Single Agent Consumption-Savings Problem

max u (cp) + EBu(c1)

Co,C1
subject to
c+tar <
a < (I+4+ra+yn
where
r = F+e g ~ N(0,0?)

n o= n+e & ~N(007)
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Sparse Model
v(ar, mrer, myey) = u(yo—ar) +Pu((L+r)ar +y1)
where

r = Tr+meg,

yi = y1+myg

Conclusion



Two Period Model

Default Model

o default model:
m,=0, m,=0

so that agent completely ignores the stochastic components

r=F% and y1=¥p

e optimality condition: Euler Equation

u' (o) =B (1+7)u (1)

e one line solution

u'(yo—a1) =B(A+F)u' (1+7)ar+71)
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Default Model Solution

Default Model: Optimal Consumption/Savings Choice
T T T T T T
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Rational Agent

e Euler equation
v (o) =BE(1+r)u (c1)

e one line solution

u' (yo—a1) =BE [(1+r)u' (1+r)a1+y1)]
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Rational Agent Solution

Rational Agent: Optimal Consumption/Savings Choice
T T T T T T
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Sparse Agent. Step 1: Optimal Attention

e calculate A; expected utility loss
aa 2 2
Aj = —Vaa (a) 7j

with derivatives evaluated around the Default Model

e obtain optimal attention coefficient

mi = max{l— %,0}
1
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Optimal Attention as a function of Variance

Optimal Attention to the Income Shock
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Two Period Model Dynamic Programming Comments

Optimal Attention as a function of Cost

m,

Optimal Attention Coefficients
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== Attention to Interest Rate Shock | 7
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Figure:

Conclusion
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Sparse Agent. Step 2: Consumption-Savings Choice.

e given m; and m},, now solve

* *
maxv (aj, m, &, m,€
By (1 rér y)’)

® thatis,
maxu (yo — a1) + PEu ((1+r) a + y1)
where
r = F+mle
yi = yn+mpe,

e one line solution

u' (yo—a1) = BE [(1+r)u' ((1+r) a1 +y1)]
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Sparse Agent Solution

Sparse Agent: Optimal Consumption/Savings Choice
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Action isn't linear in attention

1
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Two Period Model

Implications

e for intermediate values of attention cost,

e agent pays no attention to interest rate shock

e pays less than full attention to income shock
e optimal action, savings, is attenuated relative to fully rational model
e agent builds less precautionary savings

e affects estimation/measurement of |ES



Dynamic Programming

Infinite-Horizon Model with

Sparse Dynamic Programming
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Infinite Horizon Model

max B i Bu(ct)

fee} =0

subject to
Wepr < (147 +Fer) (we — ) +7 + e

where
- _ Ps r r 2
Fer1 = o et &g, er1 ~ N(0,07)

V41 o9 +ey € ~N(0.0))

Conclusion
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Rational Model

® state space
(Wt, ?t,f/t)

e bellman equation

Vi(w,?,9) = maax{u(a, w,?,9)+ BEV (W" ?/,}7/)}



Dynamic Programming

Sparse Model

® Gabaix proposes the following law of motion for states

werr = (14+7+m?) (we —ct) + 7+ myd

and
i1 = p, (m) P+ morerq, where p, (m) = mpp, + (1—my)p?
Jer1 = py, (m)§e+moyel . where p, (m)=mgyp, + (1—myy)py

where p‘j, pg € [0, 1] are some default persistence parameters

e six attention coefficients

m = (mr, mpr, mor; my, Moy, my)
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Comment 1: Disciplining Sparse Dynamic Programming

e Given static sparsity framework, in dynamic model:

e what is the default model?

e where can you place m?
e Natural to choose default model = true non-stochastic steady state

d ~ ~ r
Pr =Pp  Fep1 =0t + Moreriy

e two attention coefficients:

mg, and  mg,
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Disciplining Sparse Dynamic Programming

With proposed formulation,
m = (m;, my,, mg,; my, myy,, Mgy )
if pf = 0 then
Oy (m) = mP"pr
this introduces cognitive discounting of future variables

E [Pryc] = mpprPeir < prfes;

departure from “information processing” interpretation

Even if model is completely deterministic, agents have the wrong
perception of future variables

Conclusion
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Departure from Rational Life-Cycle Model

Consumption
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Figure: Sparsity in Life-Cycle

Conclusion
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Sparse Bellman Equation

e how do you formulate the value function?

e in rational model, invariance of value function

V(w,?,9) =V (w,? J, anything else)

e in sparsity model with default=true non-stochastic model,

same invariance of value function, just different measure for shocks
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Sparse Bellman Equation

e how do you formulate the value function?

e in rational model, invariance of value function

V(w,?,y) =V (w,? 3 Eftir, Eftir,...)

e in sparsity model with default=true non-stochastic model,

same invariance of value function, just different measure for shocks
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Sparse Bellman Equation

in proposed sparsity model, with
m = (my, Mor, Mar; My, Moy, Mgy )
suppose instead
V(w, %, 9)=V(w? 9 Bt Efrir,...)
where [EP: 1, IEy: ¢ are the true future means of these processes

if agent then chooses m's, he could to pay attention to these

what stops agents from paying attention to certain sufficient statistics?
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Parsimony with Dynamic Programing

1. Either impose more discipline from original Sparsity Theory

2. Or, change original theory in a way that allows for these departures
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Comment 2: When Sparsity gains Traction

When would Sparsity be the most useful?
complex network models of interactions between many agents

large production input-output models
e actions are linear or log-linear

e implies linear sufficient statistics — sparsity not needed

but network models of interconnected banks, households

e contracts are not linear (debt contracts)
e set of all individual states cannot be reduced

e sparsity seems almost generically necessary!
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Network of CDS Contracts (Boyarchenko, Costello, La'O,
Shachar)

Figure: Inter-Dealer CDS Network (unweighted), January 2015
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Last Comment: Technicalities

Proof The proof yields the general methed of caleulation. We shut down uncertainty and
differentiate the rational Bellman equation (§8), first with respect to the new variable = (using the
envelope thearem):

V, (,8) =, + BVLFS + BV FT

which yields the announced expression for V.. Then we take the fotal derivative w.rt. w;

Voo (w.7) = Dosa + 8D VL FZ (w.z,0)] + AFIV], Do + BV, DFT

_ Doy + A0, [ (w,0,0) VI, (o'
= T-PEDw

] +8VLD.Fx

o

Lemma 10.2 Assume the local autonomy condition. (92), F7 = 0, and consider some volue function
V (1, z). Then, the imgact of a change z on the optimal action is (around z = 1)
o= -7, (72)
with ¥ (0, 2) = u, + BVLF, and
Vo=t + BFTVLFZ + 8

Fr. W= un +BFRVL e+ OFVL P+ BVLFz. (1)

evaluated at (a,2)

¢ (1).0). They depend only on the transition functions and the derivatives

of the simpler boseline value function V¢ (u/)

Proof The FOC for o is 1 (a,) = 0 with
Wiax) = ua + BVLF + BVLFS

0 around

The rest follows by the implicit function thearem: terms in Vas drop out because ¥
the default action. O
When the local autonemy condition (32) doeen's hold, 2 term V,, appeare. Then, ihe sifuation
iz more complex, and requires solving for a fied point, in the form of a mairix Ricaii equation.
Feynman-Kac method In some cases, it is useful to do the same vis 3 Faynman-Kac type

of approach ™ Here we view =, as exogenous, ie. assume .y = F=(z,). Calling w the initisl

Tesll it “Feynman Iiac” becmuas {his appronch desls pasticularly wel with sicchastic problems

Dynamic Programming

Comments

with Feynman-Kac Method

condition for wealih, the Lagrangian is:

L :23‘““"‘ 05} —Zlfi"q;‘l—ﬁ,+l"“ (e, ann)) =05 (—wa + )

where g
maxy,,,, L. This implies that L,

() are the Lagrange mulfipliers. At the optimum, the agent solves V {u) =
L., = 0. The envelope theorem gives:

= B [ (100, v 20) + Bl Fo¥e? (e, 2,

20 that, using the fotal derivative notatien (§9).

o1 in short

E

Application. In the consumption problem with SR = 1, lst us deriva again at the impact of a
one-time change of imterest rate #, from Lemma 4.2, Under the default model &, = ¢, and w, = ;.

S0 82 =1, u, =0, VE(w) = ¥/ (a) = (25F) 7, and given Fost = (1 +1,) (1 - &) £ 5.

oo (257) ]
,ul)

s we have 1,30 =

F -1 Dus
=5 wp -
Duw *

0

7

as under the default model ¢, = ¢;. As fime-0 consumption satisfies w,,
8.V, and

—ve

which gives again Lemma 4.2 (1he income part being easy 2 alway).

Figure: Appendix for More Complex Model (Section 10)

Conclusion
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all of you, previous slide:

* JR—
Miphis discussion — 0
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Conclusion

Perfectly Rational Agents (in the strict sense) seems ridiculous
Sparsity Framework and Agenda: ambitious, creative, also realistic

Dynamic programming application

e discipline from General Sparsity Theory

Most useful in complex network models that are not linear
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