Explaining Consumption Excess Sensitivity with Near-Rationality

Evidence from Large Predetermined Payments

LORENZ KUENG

Northwestern University and NBER

How do HHs respond to large, predictable and salient cash flows?

- important for macro stimulus programs
- ▶ informative for micro consumption models, ranging from
 - basic PIH under certainty (MPC \approx 0)
 - ▶ to hand-to-mouth behavior (MPC = 1)

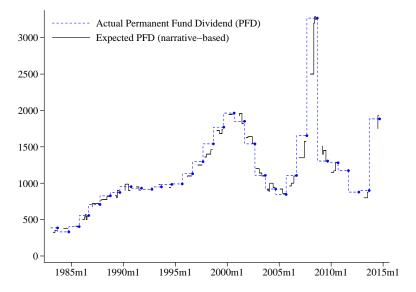
To answer this question I use

- repeated quasi-experiments from Alaska Permanent Fund Dividend (PFD) payments
- ► transaction-level data from large personal finance website
- Consumer Expenditure Survey (CE) for external validity

Preview of Main Results

- ▶ Large average MPC $\sim 30\%$ for nondurables
- Heterogeneous MPCs concentrated among higher-income HHs

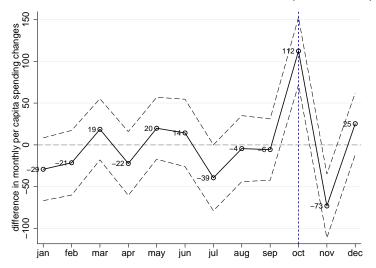
- Derive potential loss from not smoothing consumption
 - predicts MPC heterogeneity well


- ▶ However, actual losses are very small ($\approx 0.1\%$)
 - ⇒ behavior consistent with near-rationality

Alaska Permanent Fund Dividend (PFD) = annual payments from state's broadly-diversified wealth fund

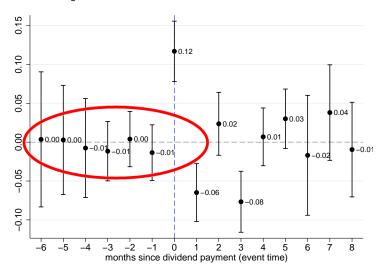
Important characteristics of PFD for excess sensitivity tests:

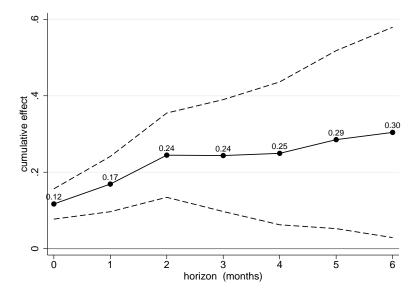
- 1. predetermined, regular, and salient
 - based on June numbers, announced in Sept., paid in October
 - ► highly predictable: 5-year moving average of fund's income
 - well covered by local media during the year
- 2. nominally large and lump-sum
 - ▶ latest dividend: \$2,072 in October 2015 per person!


Salience: Dividend predicted by local newspapers

Household Spending Data

- 1. New transaction data from user accounts at a large **personal finance website** from 2010-2014
 - ▶ 1,400 Alaskan users that receive dividend via direct deposit (treatment group)
 - 2,200 users from state of Washington (control group)


Consumer Expenditure Survey (CE) to check external validity of new data and results **Nonparametric Evidence:** Average nondurable spending changes per person by month in Alaska vs. Washington (**Diff-in-Diff**)

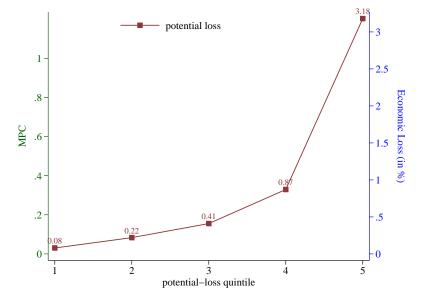

Implies MPC of 12% after one month, 22% after one quarter

Parametric Evidence: No anticipation effects

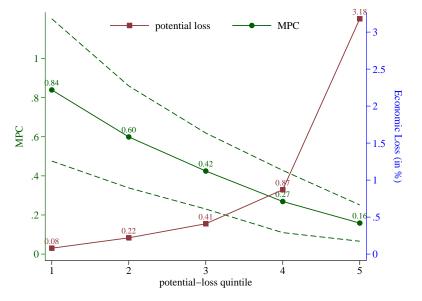
$$\Delta c_{it} = \sum_{s} \beta_{s} \cdot PFD_{i,t-s} + \alpha_{t} + Alaska_{i} + \lambda \cdot FamilySize_{i} + \epsilon_{it}$$

Parametric Evidence: Cumulative MPC stable after 1 quarter

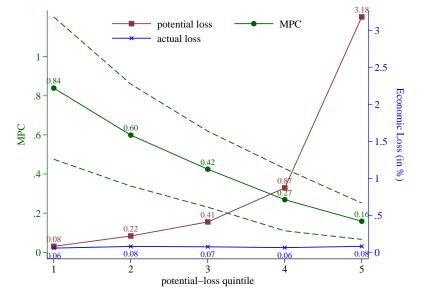
What can explain this large excess sensitivity?

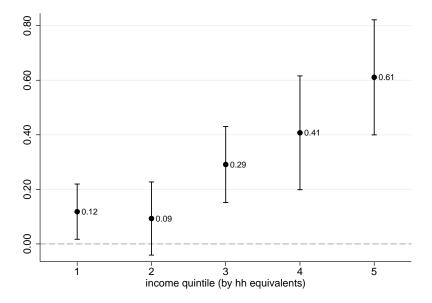

- Liquidity-to-income ratio does predict lower MPC, but most is left unexplained
- Instead, see if near-rationality explains excess sensitivity
- ▶ Derive **potential loss** from fully spending PFD in the 4th quarter (c^{coh}) instead of fully smoothing (c^*)

$$Loss(c^{coh}, c^*) \equiv \frac{\Delta W}{W} \propto \left(\frac{PFD}{c_T}\right)^2$$


► The actual loss depends on endogenous HH behavior (MPC)

$$Loss^{ex-post} = MPC^2 \times Loss(c^{coh}, c^*)$$


Potential-loss statistic quintiles across HHs (average numbers)


Does loss predict MPCs\? ⇒ interact PFD with loss quintiles

Is this near-rational behavior? ⇒ calculate actual losses

What drives this heterogeneity? ⇒ mostly income per capita

External validity implementing same analysis using the CE

I obtain similar results after taking into account

- 1. dividend has to be imputed in the CE
- 2. different sample composition

Table 5: External Validity using the Consumer Expenditure Survey (CE)

		PFW Sample		
Dep. var.: Δc_{it} , quarterly nondurables and services	CE Sample	using the observed PFD	using the imputed PFD	dealing w/ sample composition
	(1)	(2)	(3)	(4)
PFD payments		0.276*** (0.042)		
PFD x family size	0.079** (0.036)		0.184*** (0.031)	-0.044 (0.048)
PFD x family size x income/\$100,000				0.201*** (0.046)
predicted MPC at average CE income	е			0.082*** (0.029)
- Time FE, Alaska FE, other controls	YES	YES	YES	YES
Observations	385,800	50,210	50,210	50,210
R-squared	0.006	0.107	0.107	0.109

Conclusion

Main findings

- 1. Large average excess sensitivity even to large payments
- 2. Potential-loss statistic predicts higher-income HHs MPCs
- 3. Low liquidity-to-income predicts low-income HHs MPCs
- 4. Actual ex-post losses are similar and small ⇒ near-rationality

Policy implications

- Targeting low-income HHs might not be the only way to stimulate the economy
- Modeling near-rational behavior is important next step: Why do high-income HHs spend dividend? (see Gabaix 2015)

How much of the MPC heterogeneity can **liquidity** (CoH-ratio) and **near-rationality** (potential-loss statistic) jointly explain?

Table 3: MPC Heterogeneity and Near-Rationality				
Dep. var.: Δc _{it} , quarterly nondurables and services	(8)			
PFD payments	0.881***			
	(0.125)			
PFD payments x potential-loss quintile	-0.161*** (0.032)			
PFD payments x liquidity quintile	-0.054** (0.023)			
- Time FE - Alaska FE - Potential-loss quintile FE - Cash-on-hand ratio quintile FE - Other controls	YES YES YES YES YES			
Observations R-squared	44,577 0.108			

Quintiles go from 0-4 \Rightarrow from lowest quintiles cell to the highest reduces MPC from 88% to 2%

Various robustness checks in paper

- 1. difference between spending and consumption
 - ⇒ broad-based effect, incl. groceries and restaurants
- 2. consumption commitments and wealthy-hand-to-mouth cons.
- 3. decomposition of identifying variation, such as
 - using only variation within Alaska
 - controlling for family FEs
 - ▶ difference between family size and # of users
- 4. log-changes (elasticity) vs. level differences (MPC)
- 5. squared instead of relative PFD payments