Fiscal Policy and Debt Management with Incomplete Markets

Anmol Bhandari David Evans Mikhail Golosov Thomas Sargent Minnesota Oregon Princeton NYU

- Is there an "optimal" level of debt?
- How quickly should debt be repaid if away from the optimum?
- How should debt and taxes respond to aggregate shocks?

- Our framework
 - Ramsey planner with distortionary taxation and incomplete markets
- Existing answers: polar cases
 - complete markets: Lucas Stokey (1983)
 - risk-free bond only: Barro (1979), AMSS (2002)
 - \implies in both cases: expected level of debt is constant
- This paper
 - target level of debt minimizes fiscal risk
 - simple formulas to compute that level, speed of reversion to it

Ramsey problem in a simple environment

- Ramsey problem: $\{\tau_t, B_t\}$ that implement the best competitive eqb
- Let $\mathit{I}(\mathit{s},\tau)$ and $\mathit{c}(\mathit{s},\tau)$ be the HH's optimal choices given tax rate τ
- Bellman equation

$$V\left(B_{-}\right) = \max_{\{\tau(s), B(s)\}} \mathbb{E}\left[c(s, \tau(s)) - \frac{1}{1+\gamma}I(s, \tau(s))^{1+\gamma} + \beta V\left(B(s)\right)\right]$$

subject to

$$B(s) + \tau(s)I(s,\tau(s)) = \underbrace{R(s)B_{-} + g(s)}_{E(B_{-},s)} \text{ for all } s$$

• Amount of risk depends on debt level: E(B, s) = R(s)B + g(s)

• Amount of risk depends on debt level: E(B, s) = R(s)B + g(s)

• Drift in debt dynamics and variance minimization

$$\mathbb{E}_t B_{t+1} \approx B_t - \beta^2 \times \text{slope of } var[E(B_t)]$$

Main result

Risk minimizing debt

Let B^* be debt level that minimizes var (R(s)B + g(s))

• Mean of invariant distribution of debt

$$B^* = -\frac{\operatorname{cov}\left(R,g\right)}{\operatorname{var}(R)}$$

• Speed of mean reversion

$$\frac{\mathbb{E}_{t}B_{t+1} - B^{*}}{B_{t} - B^{*}} = \left(\frac{1}{1 + \beta^{2} \operatorname{var}\left(R\right)}\right)$$

- Isoelastic preferences, more general shocks processes
 - endogeneous feedback of tax policy on returns
 - formulas continue to hold with marginal utility-adjusted returns
- $K \ge 1$ securities
 - government chooses portfolio to minimize fiscal risk
 - simple applications to optimal maturity management

Quantitative investigation

• Preferences

$$\ln c - \frac{1}{3}l^3$$

- 1 security with returns $R_t = \frac{p_t}{q_{t-1}}$
- 3 shock process:

TFP:
$$\ln \theta_t = \rho_{\theta} \theta_{t-1} + \sigma_{\theta} \epsilon_{\theta,t}$$

spending: $\ln g_t = \ln \bar{g} + \chi_g \epsilon_{\theta,t} + \sigma_g \epsilon_{g,t}$
payoffs: $\ln \rho_t = \chi_p \epsilon_{\theta,t} + \sigma_p \epsilon_{p,t}$

- Benchmark: p_t to match real returns on outstanding U.S. debt
 - robustness checks: security that matches realized returns on 1-y bill; riskfree security

Ergodic Distribution : Effective Debt, $U_{c,t}B_t$				
	Effective debt:	Using simulation	Using formula	
	Mean	-0.07	-0.06	
	Half life (years)	237	244	
	Std. deviation	0.18	0.2	

- Correlation of returns and output is close to 0:
 - large orthogonal component
 - correlation of effective deficits and effective returns is positive
- Variability of effective returns is low
 - slow convergence to the mean

- A comprehensive theory of optimal debt management with incomplete markets
- Tractable approximations of optimal policies
 - methods can be extended to other environments
- Key insight for the optimal debt management
 - target debt that minimizes risk