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Introduction

Introduction
o Remember that we want to solve a functional equation of the form:
H(d)=0
for an unknown decision rule d.

o Perturbation solves the problem by specifying:
n .
d" (x,0) = Z ;i (x —xp)'
i=0

o We use implicit-function theorems to find coefficients 6;'s.

o Inherently local approximation. However, often good global properties.
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Introduction

Motivation

o Many complicated mathematical problems have:

@ either a particular case

@ or a related problem.

that is easy to solve.

o Often, we can use the solution of the simpler problem as a building
block of the general solution.

o Very successful in physics.

o Sometimes perturbation is known as asymptotic methods.

Jesis Fernandez-Villaverde (PENN) Perturbation Methods July 10, 2011 3/91



Introduction

The World Simplest Perturbation

o What is /267

©

Without your Iphone calculator, it is a boring arithmetic calculation.

But note that:

V26 =4,/25(1+0.04) =5%xVv1.04~5%x1.02=5.1

Exact solution is 5.099.

©

©

We have solved a much simpler problem (1/25) and added a small
coefficient to it.

©

©

More in general

Vy=1/x*(1+¢) =xV1+e

where x is an integer and ¢ the perturbation parameter.
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Introduction

Applications to Economics

o Judd and Guu (1993) showed how to apply it to economic problems.

Recently, perturbation methods have been gaining much popularity.

(+]

(+]

In particular, second- and third-order approximations are easy to
compute and notably improve accuracy.

©

A first-order perturbation theory and linearization deliver the same
output.

o Hence, we can use much of what we already know about linearization.
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Introduction

Regular versus Singular Perturbations

©

Regular perturbation: a small change in the problem induces a small
change in the solution.

©

Singular perturbation: a small change in the problem induces a /large
change in the solution.

o Example: excess demand function.

o Most problems in economics involve regular perturbations.

o Sometimes, however, we can have singularities. Example: introducing
a new asset in an incomplete markets model.
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A Baby Example

A Baby Example: A Basic RBC

Model:

max Eg Z B log c;
t=0

s.t. ¢ + kt+]_ = eztk? + (1 —(S) kt, Vt>0
Zy — pzt_l —l—O’St, Er ~ N(O, 1)

Equilibrium conditions:

1

— = BE;

Ct Ct+1
¢ + kt+1 = eszf‘ + (1 — 5) kt

Zy = pzt—1 + 0¢€;

(14 ae® 1kl —0)
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A Baby Example

Computing a Solution

o The previous problem does not have a known “paper and pencil”
solution except when (unrealistically) § = 1.

o Then, income and substitution effect from a technology shock cancel
each other (labor constant and consumption is a fixed fraction of
income).

o Equilibrium conditions with § = 1:

1 lerH,l ktX*l

- Ig}gtifﬂ
Ct Ct+1

¢t + key1 = €7k}
Zy = PZ—1 + 08
o By “guess and verify":
¢ = (1 —ap)e*ky
key1 = afetky
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A Baby Example

Another Way to Solve the Problem

o Now let us suppose that you missed the lecture when “guess and
verify” was explained.

o You need to compute the RBC.

o What you are searching for? A decision rule for consumption:

¢t = ¢ (ke zt)
and another one for capital:
kiv1 = k (ke, zt)
Note that our d is just the stack of ¢ (k¢, z¢) and k (ke z;).
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A Baby Example

Equilibrium Conditions

o We substitute in the equilibrium conditions the budget constraint and
the law of motion for technology.

o And we write the decision rules explicitly as function of the states.

o Then:

1 _ ﬁ DCepzt+Ust+1k (ktv Zt>a_1
C(kt,zt) tc(k (kt,zt),pzt—i—O'SH_l)
c (ke zt) + k (ke, z¢) = e”tk{

o System of functional equations.
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A Baby Example

Main ldea

©

Transform the problem rewriting it in terms of a small perturbation
parameter.

©

Solve the new problem for a particular choice of the perturbation
parameter.

©

This step is usually ambiguous since there are different ways to do so.

(]

Use the previous solution to approximate the solution of original the
problem.
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A Baby Example

A Perturbation Approach

o Hence, we want to transform the problem.

o Which perturbation parameter? Standard deviation ¢.

©

Why o? Discrete versus continuous time.

o Set ¢ = 0 =-deterministic model, z; = 0 and e* = 1.

o We know how to solve the deterministic steady state.
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A Baby Example

A Parametrized Decision Rule

o We search for decision rule:
¢t = ¢ (ke, zt;0)

and
key1 = k (kt,Zt;U)

o Note new parameter 0.

o We are building a local approximation around ¢ = 0.
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A Baby Example

Taylor's Theorem

o Equilibrium conditions:

R R T Sl W
¢ (ke,zt;0) c(k (ke ze;0), 0zt + 0€r41;0)

C(kt,zt;(T) + k(kt,Zt;(T) - eztkltx =0

o We will take derivatives with respect to k¢, z;, and 0.

o Apply Taylor's theorem to build solution around deterministic steady
state. How?
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A Baby Example

Asymptotic Expansion |

cc = c(ke,zt;0)|, 00 =c(k 0;0)
+ck (k,0;0) (ke — k) + ¢, (k,0;0) z: + ¢+ (k,0;0)
+%ckk (k,0;0) (ke — k)* + %ckz (k,0;0) (ke — k) z
360 (K,0:0) (ke — K)o+ 5 (k,0;0) z¢ (ke — K)
—l—%czz (k,0;0) zt2 + %czg (k,0;0) z;0

+%c0k (K, 0:0) & (ke — k) + %c[,z (k,0:0) 0z

1
+5 (k,0;0)c? + ...
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A Baby Example

Asymptotic Expansion ||

ki1 = k(ke,ze;0)] 00 = k(k,0;0)
+ki (k,0;0) (ke — k) + k; (k,0;0) z: + ks (k,0;0)

+%kkk (k,0;0) (ke — k)* + %kkz (k,0;0) (ke — k) z
5o (K, 0:0) (ke — k) 7+ 2 ke (K, 00) 22 (ke — K)
—l—%kzz (k,0;0) 23 + %kw (k,0;0) z;o

+%kgk (k,0:0) & (ke — k) +%kgz (K, 0:0) 02

1
+5 ko (K, 0;0) o4
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A Baby Example

Comment on Notation

o From now on, to save on notation, | will write

1 _
F (kt' Zr; 0') =T, c(ke,zt;0) c(k(ke,zt;0),02e+0¢€t41;0)

,B weP?tToet41 k(kt,zt;(r)"‘*1
C(kt,zt;O')—i—k(kt,zt;(T)—esz‘tx B |:

o Note that:

F (ke ze;0) = H (ct, Ceq1, ke key1, 26 0)
=H (c(ke,ze;0), ¢ (k(ke,ze;0) , ze41;0) ke k (ke z;0) 245 0)

o | will use 'H; to represent the partial derivative of H with respect to
the i component and drop the evaluation at the steady state of the
functions when we do not need it.
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A Baby Example

Zeroth-Order Approximation

o First, we evaluate o = 0:

F (k:,0;0) =0
o Steady state:
1 ﬁzxk"‘*l
c c
or
1= apk*?
o Then:

e = c(k,0,0) = (xp) ™% — (a) ™
k =k (k,0;0) = (aB)T+
Jesis Fernandez-Villaverde (PENN)
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A Baby Example

First-Order Approximation

o We take derivatives of F (k¢, z:; o) around k, 0, and 0.

o With respect to k;:

Fi (k,0;0) =0
o With respect to z;:

F,(k,0;0) =0
o With respect to o

Fs (k,0;0) =0
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A Baby Example

Solving the System |

o Remember that:
F(kt,Zt;U)
= H (c(ke,zt;0),c(k(ke,zt:0), ze41:0) ke, k (ke 26,0) , z;0) =0

o Because F (k¢, z:; o) must be equal to zero for any possible values of
kt, zt, and o, the derivatives of any order of F must also be zero.

o Then:
Fy (k,O;O) = Hick + Hociki +Hz + Hake =0
F; (k,0;0) = Hic, + Ha (ckk; + ckp) + Hak, + Hs = 0
Fo (k,O;O) = Hico + H2 (Ckk(7+ Ca) + Haks +He =0
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A Baby Example

Solving the System I

o A quadratic system:

Fi (k,0;0) = Hick + Hackke + Hz + Haky =0
F, (k,O;O) =Hic, + H» (Ckkz + Ckp) + Hak, +Hs =0

of 4 equations on 4 unknowns: ¢, ¢,, kg, and k.
o Procedures to solve quadratic systems:

@ Blanchard and Kahn (1980).
@ Uhlig (1999).
@ Sims (2000).
@ Kilein (2000).

o All of them equivalent.

o Why quadratic? Stable and unstable manifold.
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A Baby Example

Solving the System IlI

o Also, note that:
Fy (k,0;0) = Hicy + Ha (ckks + ¢r) + Haks +He =0
is a linear, and homogeneous system in ¢, and k.
o Hence:
=k, =0
o This means the system is certainty equivalent.
o Interpretation=-no precautionary behavior.

o Difference between risk-aversion and precautionary behavior. Leland
(1968), Kimball (1990).

o Risk-aversion depends on the second derivative (concave utility).

o Precautionary behavior depends on the third derivative (convex
marginal utility).
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A Baby Example

Comparison with LQ and Linearization

o After Kydland and Prescott (1982) a popular method to solve
economic models has been to find a LQ approximation of the
objective function of the agents.

o Close relative: linearization of equilibrium conditions.

o When properly implemented linearization, LQ, and first-order
perturbation are equivalent.

o Advantages of perturbation:

@ Theorems.

@ Higher-order terms.
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A Baby Example

Some Further Comments

o Note how we have used a version of the implicit-function theorem.

(]

Important tool in economics.

©

Also, we are using the Taylor theorem to approximate the policy
function.

Alternatives?

©
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A Baby Example

Second-Order Approximation

o We take second-order derivatives of F (kt,zt;(f) around k, 0, and O:

1
q
A~ N/~ /N~
: : : =
e < e
o
— — — — — —
1l
o O O O O

o Remember Young's theorem!

©

We substitute the coefficients that we already know.

(]

A linear system of 12 equations on 12 unknowns. Why linear?

o Cross-terms ko and zo are zero.

©

Conjecture on all the terms with odd powers of ¢.
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A Baby Example

Correction for Risk

o We have a term in 2.

©

Captures precautionary behavior.

o We do not have certainty equivalence any more!

©

Important advantage of second-order approximation.

o Changes ergodic distribution of states.
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A Baby Example

Higher-Order Terms

o We can continue the iteration for as long as we want.

(+]

Great advantage of procedure: it is recursive!

©

Often, a few iterations will be enough.

©

The level of accuracy depends on the goal of the exercise:

@ Welfare analysis: Kim and Kim (2001).

@ Empirical strategies: Fernandez-Villaverde, Rubio-Ramirez, and Santos
(2006).
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A Numerical Example

A Numerical Example

Parameter | B « 1Y o
Value 0.99 | 0.33 | 0.95 | 0.01

o Steady State: ¢ =0.388069 k = 0.1883
o First-order terms:

¢« (k,0;0) = 0.680101 Ky (k,0;0) =0.33
¢, (k,0;0) = 0.388069 k, (k,0;0) = 0.1883

o Second-order terms:

cuk (k,0;0) = —2.41990 Ky (k,0;0) = —1.1742
cz (k,0;0) = 0.680099 ki, (k,0;0) = 0.33

¢z (k,0;0) = 0 388064  ky; (k,0;0) = 0.1883
Co2 (k,0,0) =~ kaz (k 0'0) ~

o ¢y (k,0;0) = ks (k,0;0) = ko (k,0;0) = kio (k,0;0) =
Cao (k. 0;0) = kzo (k,0;0) = 0.
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A Numerical Example

Comparison

c: = 0.6733e% k033
¢ ~ 0.388069 + 0.680101 (k; — k) -+ 0.388069z;

_ 2-412990 (ke — k)2 +0.680099 (k; — k) z¢ + 70'38506423
and:
kii1 = 0.3267e7 k0-33
keiy ~ 0.1883 + 0.33 (k; — k) +0.1883z
_ 1-12742 (ke — k)? +0.33 (ke — k) z; + 0'1;38323
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A Numerical Example

Zero-Order Approximation

0421

D4

018

SE:]

02 0.22

First-Order Approximation

0.24

D4

038

036

014

D.16

1
018

1
02 022

Second-Order Approximation

024

0421

D4

038
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A Numerical Example

A Computer
o In practice you do all this approximations with a computer:

@ First-, second-, and third-order: Matlab and Dynare.

@ Higher-order: Mathematica, Dynare++, Fortran code by Jinn and
Judd.

o Burden: analytical derivatives.
o Why are numerical derivatives a bad idea?

o Alternatives: automatic differentiation?
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A Numerical Example

Local Properties of the Solution

Perturbation is a local method.
It approximates the solution around the deterministic steady state of
the problem.

©

©

It is valid within a radius of convergence.

©

What is the radius of convergence of a power series around x? An
r € RY such that Vx', |x" — z| < r, the power series of x’ will
converge.

©

A Remarkable Result from Complex Analysis

The radius of convergence is always equal to the distance from the center
to the nearest point where the policy function has a (non-removable)
singularity. If no such point exists then the radius of convergence is infinite.

o Singularity here refers to poles, fractional powers, and other branch
powers or discontinuities of the functional or its derivatives.
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A Numerical Example

Remarks

©

Intuition of the theorem: holomorphic functions are analytic.

©

Distance is in the complex plane.

©

Often, we can check numerically that perturbations have good non
local behavior.

©

However: problem with boundaries.
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A Numerical Example

Non Local Accuracy Test

o Proposed by Judd (1992) and Judd and Guu (1997).

o Given the Euler equation:

B Ry R
T (koz) T (Wke,ze), ze1)

we can define:

) ) Zev1 foi (ke a—1
EE (ki z)=1— ¢ (kt,zt)]Et<“e (ke, 2:) >

c’ (ki(kfv Z¢), Ze41)

o Units of reporting.

o Interpretation.
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A Numerical Example

Figure 5.4.1 : Euler Equation Errors atz=0,t=2/o=0.007

Log10|Euler Equation Error|

Capital
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The General Case

The General Case

o Most of previous argument can be easily generalized.

o The set of equilibrium conditions of many DSGE models can be
written as (note recursive notation)

E:H(y,y' x,x') =0,
where y; is a n, x 1 vector of controls and x; is a n, x 1 vector of
states.

o Define n = n, +n,.

o Then 'H maps R x R™ x R™ x R™ into R".

Jesis Fernandez-Villaverde (PENN) Perturbation Methods July 10, 2011 37 /91



The General Case

Partitioning the State Vector

©

The state vector x; can be partitioned as x = [x1; x2]".

o x1is a (nx — ne) x 1 vector of endogenous state variables.

o xp is a ne X 1 vector of exogenous state variables.

©

Why do we want to partition the state vector?
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The General Case

Exogenous Stochastic Process

xy = Axp + 017, €
o Process with 3 parts:

@ The deterministic component Axy:

@ Ais a ne X ne matrix, with all eigenvalues with modulus less than one.

@ More general: x} =T'(xp) + o7.€', where T is a non-linear function
satisfying that all eigenvalues of its first derivative evaluated at the
non-stochastic steady state lie within the unit circle.

@ The scaled innovation 7€’ where:

@ 7, is a known ne X ne matrix.

@ €isa ne x1iid innovation with bounded support, zero mean, and
variance/covariance matrix /.

@ The perturbation parameter .
o We can accommodate very general structures of x» through changes
in the definition of the state space: i.e. stochastic volatility.
o Note we do not impose Gaussianity.
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The General Case

The Perturbation Parameter

o The scalar o > 0 is the perturbation parameter.

o If we set 0 = 0 we have a deterministic model.

o Important: there is only ONE perturbation parameter. The matrix 7,
takes account of relative sizes of different shocks.

o Why bounded support? Samuelson (1970) and Jin and Judd (2002).
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The General Case

Solution of the Model

o The solution to the model is of the form:

y=g(xo)

/

x' = h(x;0) + one

where g maps R™ x R™ into R" and h maps R™ x R™ into R"~.
o The matrix 7 is of order ny X n. and is given by:

=L
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The General Case

Perturbation

o We wish to find a perturbation approximation of the functions g and
h around the non-stochastic steady state, x; = X and ¢ = 0.

o We define the non-stochastic steady state as vectors (X, y) such that:

H(y, y,x,%) =0.

o Note that y = g(x;0) and x = h(x;0). This is because, if ¢ = 0,
then E,/H = 'H.
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The General Case

Plugging-in the Proposed Solution

o Substituting the proposed solution, we define:
F(x;0) = E/H(g(x;0),g(h(x;0) +noe’, o), x, h(x;0) +noe’) =0

o Since F(x; (7) = 0 for any values of x and ¢, the derivatives of any
order of F must also be equal to zero.

o Formally:

F

ki (X;0) =0 Vx,0,j,k,
where F i (x, o) denotes the derivative of F with respect to x taken
k times and with respect to ¢ taken j times.
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The General Case

First-Order Approximation

o We look for approximations to g and h around (x,0) = (X, 0)
gxio) = g(X0)+&x(x0)(x = %) + g (X 0)c
h(x;o) = h(x;0)+ he(%;0)(x — X) + hy(x;0)0
o As explained earlier,
g(x0)=y
and
h(x;0) = x

o The four unknown coefficients of the first-order approximation to g
and h are found by using:

Fyx(x;0) =0
and
Fs(x;0) =0
o Before doing so, | need to introduce the tensor notation.
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The General Case

Tensors

o General trick from physics.

o An n'"-rank tensor in a m-dimensional space is an operator that has n
indices and m” components and obeys certain transformation rules.

o [H,]i is the (i, a) element of the derivative of H with respect to y:

@ The derivative of H with respect to y is an n X n, matrix.

@ Thus, [H, ]! is the element of this matrix located at the intersection of
the i-th row and a-th column.

: i o« B
@ Thus, [H,]iladslhedf = Loy g, 926285 900

i

Qo [Hy/y/]wy_
@ H,, is a three dimensional array with n rows, n, columns, and ny

pages.

@ Then [Hy/y/](’;(,y denotes the element of H,/, located at the
intersection of row i, column & and page 7.
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The General Case

Solving the System |

o g, and hy can be found as the solution to the system:

[F(x:0)] = [Hyliledshd? + [Hylilegd? + [Holblhdf + M) =

i = 1,....n jB=1....n; a=1...,n

o Note that the derivatives of H evaluated at (y,y’, x,x") = (y,y
are known.

X
I
N—

o Then, we have a system of n X n, quadratic equations in the n X ny
unknowns given by the elements of g, and h,.

o We can solve with a standard quadratic matrix equation solver.
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The General Case

Solving the System I

o gy and h, are identified as the solution to the following n equations:
[Fe(%:0))" =
Ee{[Hyliledblholf + 1, Lilaglnlple)? + [y lifer]"
+ My Jileol + (M lplhol? + R Tslnlp 1)

i=1,...,n, a=1,...,n; B=1,...,n; ¢=1...,n.

o Certainty equivalence: this equation is linear and homogeneous in g
and h,. Thus, if a unique solution exists, it must satisfy:

hy # 0
g = 0
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The General Case

Second-Order Approximation |

The second-order approximations to g around (x; ) = (x;0) is
%:0)]" + (% 0)]3[(x = 0)]a + g (% 0)]'[0]
[0 (% 0) 5 [(x = X)Ll (x = X)]

[g(x:0)] = g

=N =

where i =1, ..., n,ab=1..., ng,and j=1,..., Ny.
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The General Case

Second-Order Approximation Il

The second-order approximations to h around (x; o) = (%;0) is

hxio)f = B OV + (% O)K[(x — Xl + [he(x:0)F e
5 e (53 0) g [Ox = %)Ll (x = )
ORCTACERNT
+ 3 o5 OB [(x = X)o]
+5 oo (x: 0V o] ],

where i=1,...,n, ab=1....n,andj=1,...,n,
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The General Case

Second-Order Approximation Il

o The unknowns of these expansions are [gw]’;, [gxo)h: [8ox)h: [8oe)
[hlops [hxelas Thoxlb, [hool-

o These coefficients can be identified by taking the derivative of F(x;0)
with respect to x and ¢ twice and evaluating them at (x;0) = (x;0).

o By the arguments provided earlier, these derivatives must be zero.
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Solving the System |
We use Fyy(X;0) to identify g (X;0) and Ay (%;0):
[Fuoe (%:0) ] =
(M Li L2 10+ [y Ji (17 + [y lislbll + [yl ) L5 )]
My Vi lge s i (] + [Hy i g5 [l
([l ]2 TS + M Lo 17 + [ lislidd + (Mol ) [

+ [Hy]a [gxx]?k
- ([(Hooy Ty [6]2ThJS + [y Vi [T + [ lpo ol + [Hoo ) [hilf
+[Ho [l
o i @) [hels + [Hag iy Lg]y + [Hooolis g + [Holix = 0;
i=1,...n, j kBd=1...n; ay=1...n
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The General Case

Solving the System I

o We know the derivatives of H.

o We also know the first derivatives of g and h evaluated at
.y x.x') = (7.7.%%).

o Hence, the above expression represents a system of n X n, X n, linear
equations in then n X ny X ny unknowns elements of g and hyy.
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The General Case

Solving the System IlI

Similarly, g-» and h,s can be obtained by solving:

[FW(;(?O)][ = [Hy’];[gx]g[hm]ﬁ

\<\
\<\

B
3

R
2
=
N>
oy
=R
=
=S ™

—
S

_|_
+[Hao s l12l15 104 =0
i =1 ma,y=1,..., n;Bo=1,..., nep,c=1,..., Ne

a system of n linear equations in the n unknowns given by the elements of
8o and hye.
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The General Case

Cross Derivatives

o The cross derivatives gy, and hy, are zero when evaluated at (%, 0).

o Why? Write the system Fy,(%;0) = 0 taking into account that all
terms containing either g, or h, are zero at (X, 0).
o Then:

[Fox(%:0)]; = [Hy’]gc[gx]g[hUX]jﬁ + [Hy ool [x]] +

i=1,...n; =1,....n; By, j=1...,n
a system of n X ny equations in the n X n, unknowns given by the
elements of gy« and hyy.
o The system is homogeneous in the unknowns.
o Thus, if a unique solution exists, it is given by:

8ox = 0
hsx = 0
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The General Case

Structure of the Solution

o The perturbation solution of the model satisfies:

|
o o o o

o Standard deviation only appears in:

@ A constant term given by %gmcﬂ for the control vector y;.

@ The first ny — ne elements of %hg‘gaz.

Correction for risk.

©

©

Quadratic terms in endogenous state vector x;.

o Those terms capture non-linear behavior.
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The General Case

Higher-Order Approximations

o We can iterate this procedure as many times as we want.
o We can obtain n-th order approximations.
o Problems:

@ Existence of higher order derivatives (Santos, 1992).
@ Numerical instabilities.

@ Computational costs.
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Change of Variables

Erik Eady

It is not the process of linearization that limits insight.
It is the nature of the state that we choose to linearize about.
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Change of Variables

Change of Variables

o We approximated our solution in levels.

©

We could have done it in logs.

(+]

Why stop there? Why not in powers of the state variables?

©

Judd (2002) has provided methods for changes of variables.

(]

We apply and extend ideas to the stochastic neoclassical growth
model.
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Change of Variables

A General Transformation

o We look at solutions of the form:

-y = a<k€—kg>+bz
KY =k = c (kK —K)+dz

o Note that:

@ If 4, 7, and p are 1, we get the linear representation.

@ As v, ¢ and u tend to zero, we get the loglinear approximation.
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Change of Variables

Theory

o The first-order solution can be written as

f(x)~f(a)+ (x—a)f (a)

o Expand g(y) = h(f (X (y))) around b =Y (a), where X (y) is the
inverse of Y (x).

o Then:

g(y)=h(f(X(y)) =g (b)+ & (b) (Y*(x) - b)

where g, = hAf,-AXD’; comes from the application of the chain rule.

o From this expression it is easy to see that if we have computed the
values of f,-A, then it is straightforward to find g.
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Change of Variables

Coefficients Relation

o Remember that the linear solution is:

(k/ - ko) = a (k — ko) + b1z
(/—/0) = (k—k0)+d12
o Then we show that:
az = %kgigal b3 = ’)’kgilbl
=T, 1- =1
=L Ty ta | =l Td
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Change of Variables

Finding the Parameters

o Minimize over a grid the Euler Error.
o Some optimal results

Euler Equation Errors

7 4 i SEE
1 1 1 0.0856279
0.986534 | 0.991673 | 2.47856 | 0.0279944
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Change of Variables

Sensitivity Analysis

o Different parameter values.

o Most interesting finding is when we change ¢

Optimal Parameters for different ¢”’'s
4 Y 4 4

0.014 | 0.98140 | 0.98766 | 2.47753
0.028 | 1.04804 | 1.05265 | 1.73209
0.056 | 1.23753 | 1.22394 | 0.77869

o A first-order approximation corrects for changes in variance!
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Change of Variables

Figure 6.2.1 : Euler Equation Errors atz=0,t=2 /o= 0.007

T T T T T
— Linear
as- = Optimal Change

Log10|Euler Equation Error|

Capital
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Change of Variables

A Quasi-Optimal Approximation

o Sensitivity analysis reveals that for different parametrizations

T={
o This suggests the quasi-optimal approximation:

KT —ki = a3 (k7 —k{)+ bsz
=1 = c(k"—kj)+dsz

o If we define k = k7 — kg and /= I# — lg we get:

-~

kK = 33//;+b32
7 = C3//;—|—d32

o Linear system:

@ Use for analytical study.
@ Use for estimation with a Kalman Filter.
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Perturbing the Value Function

Perturbing the Value Function

o We worked with the equilibrium conditions of the model.

o Sometimes we may want to perform a perturbation on the value
function formulation of the problem.

o Possible reasons:
@ Gain insight.
@ Difficulty in using equilibrium conditions.
@ Evaluate welfare.

@ Initial guess for VFI.
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Perturbing the Value Function

Basic Problem

o Imagine that we have:

1—
Ct ¥

(1- ,B) 1—o + BE:V (kt+1,2t+1)]

74 (ktr Zt) = maxXx
Ct

sit.ce + ki1 = e kd 4+ (1—6) ke
Zy — )\Zt_l + O&¢, & ~ N(O, 1)
o Write it as:

kv
(1-5) 1t_ Y + BE:V (kt+1,Zt+1;X)]

V (k, z¢; x) = max
Ct

st. ¢+ keyy = e k? + (1 —0) k
7y = Aze1 + xoer, & ~ N (0,1)
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Perturbing the Value Function

Alternative

o Another way to write the value function is:

Y4 (kt,Zt;X) =
1y
max (1-8) ?—7—'—
& | BE.V (e*kl+ (1—6) ke — ct, Azt + X0€e41; X)

o This form makes the dependences in the next period states explicit.

o The solution of this problem is value function V (kt, zt;x) and a
policy function for consumption ¢ (k¢ zt; x).
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Perturbing the Value Function

Expanding the Value Function

The second-order Taylor approximation of the value function around the
deterministic steady state (kss, 0;0) is:

Vss + Vl,ss (kt -

1
+§ Vll,ss (kt -

2

2
where
VSS
Vi,ss
Vij,ss

Jesis Fernandez-Villaverde (PENN)

1
+= V21,sszt

1
+= V31,ssX

74 (kt, Zt, X) ~
kss) + V2,sszt + V3,55X

1 1
kss)2 + 5\/12,55 (kt - kss) zr + §V13,ss (kt - kss) X
1 1
(kt - kss) + E V22,sszt2 + 5 V23,ssZtX
1 1
(kt - kss) + 5 32,ssXZt + E V33,55X2
V (kss, 0;0)
V; (kss, 0;0) for i = {1,2,3}
Vj (kss, 0;0) for i,j = {1,2,3}
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Perturbing the Value Function

Expanding the Value Function

o By certainty equivalence, we will show below that:

V3,ss - V13,ss = V23,ss =0

o Taking advantage of the equality of cross-derivatives, and setting
x = 1, which is just a normalization:

% (kty Zt, 1) ~ Vi + Vl,ss (kt - kss) + V2,sszt
1 1
+§ Vll,ss (kt - kss)2 + E V22,sszt2t

1
+V12,ss (kt - kss) z+ 5 V33,ss

o Note that V334 # 0, a difference from the standard linear-quadratic
approximation to the utility functions.
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Perturbing the Value Function

Expanding the Consumption Function

o The policy function for consumption can be expanded as:

G ==cC (ktv zt;X) ™ Css + Ci,ss (kt - kss) + 2,552t + 3,55 X
where:

Clss = C (k5510;0)
Qss = @ (k5510;0)
Gss = G (kSSy 0; 0)
o Since the first derivatives of the consumption function only depend on
the first and second derivatives of the value function, we must have

c3.ss = 0 (precautionary consumption depends on the third derivative
of the value function, Kimball, 1990).
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Perturbing the Value Function

Linear Components of the Value Function

o To find the linear approximation to the value function, we take
derivatives of the value function with respect to controls (c;), states
(K¢, z¢), and the perturbation parameter x.

o Notation:

@ Vi, +: derivative of the value function with respect to its i-th argument,
evaluated in (k¢, z¢; x) -

@ V, s derivative evaluated in the steady state, (kss, 0;0).

@ We follow the same notation for higher-order (cross-) derivatives.

Jesis Fernandez-Villaverde (PENN) Perturbation Methods July 10, 2011 72 /91



Perturbing the Value Function

Derivatives

o Derivative with respect to ¢;:
(1-B)c; " —BE: Vi1 =0
o Derivative with respect to k;:
Vi = BE: VA ein (eer P 5)
o Derivative with respect to z:
Vo = BE; [Vl,r+1eztkf + V2,t+17\}
o Derivative with respect to x:

V3t = BE; [Va, 1410841 + V3 e41]

o In the last three derivatives, we apply the envelope theorem to
eliminate the derivatives of consumption with respect to k:, z;, and x.
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Perturbing the Value Function

System of Equations |

Now, we have the system:

Cr + kt+1 = eszf + (1 — (S) kt
1—y
C
V (ke zt;x) = (1= B) 1t_ - + BE:V (ket1, ze415 X)
(1—B)c: " —BE:Vii1 =0

Vie = BE:Vi41 <9eszt6_1 +1-— 5)

Vi = BEe Va1 + Vai1)|

V3t = BE;¢ [Vo,t110€i41 + V3,641
Zy = Azhl +XU£t
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Perturbing the Value Function
System of Equations Il
If we set x = 0 and compute the steady state, we get a system of six
equations on six unknowns, Css, kss, Ves, Viss, Vo ss, and V3 gs:

Css + Okes = k&,

e
Ves = (1-B) = + BVss

1—v
(1—p)cs” =BViss =0
Vi = BVies (9k§;1 r1- 5)
Voss =P [Vl,sskgs + V2,ss)\]
V3.ss = BV3,ss

o From the last equation: V34 = 0.

1—y
CSS

11—~

o From the third equation: Vi ¢ = %c{_f’.

o From the second equation: Vi =
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Perturbing the Value Function

System of Equations IlI

o After cancelling redundant terms:
Cos + Okss = K,
1= (ek_f;l +1- (5)

Vass = B [Visskls + Vool

Tl

Cos = kb — Okss

o Then:

1-8 _
V2,SS — 1 _ ‘BAkSQSCSS’y

0 Viss > 0and Vo e > 0, as predicted by theory.
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Perturbing the Value Function
Quadratic Components of the Value Function

From the previous derivations, we have:
(1- ,8) c (ke, Zt?X)_v —BE:V1,t41 =0
Vl,t = ﬁ‘IEt Vl,t+1 (Qeztkfil +1— 5)

Vo,: = BE; [Vl,t+1eszf + V2,t+1)\:|
Vi = BE; [Vorr10€r41 + V3041

where:
kt+1 = eszf—i—(l—é) kt—C(kt,Zt;X)
Zy = /\Zt_]_ + XOEt, € ~ N(O, 1)
o We take derivatives of each of the four equations w.t.r. k¢, z;, and x.
o We take advantage of the equality of cross derivatives.

o The envelope theorem does not hold anymore (we are taking
derivatives of the derivatives of the value function).
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Perturbing the Value Function

First Equation |

We have:
(1—- ﬁ) c (kt, Zt?X)_v —BE:V1,t41 =0

o Derivative with respect to k;:

—(1=B) v (ke zeix) " ewe
—BE, [Vll,t+1 (erekf—l t1-6- cl,t)] =0

In steady state:

(,Bvll,ss - (1 - ,B> 7Cs_57_1) Clss =P |:V11,55 (9/(_35_1 +1-— 5)]

or
Vll,ss

B BVitss — (1 —B) ’YC;Y_l
where we have used that 1 = B (0k% 1 + 1 —6).

Cl,ss
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Perturbing the Value Function

First Equation I

o Derivative with respect to z;:

—(1=B)rc (ke zix) " e
z 1,0 _
—BE: (Viress (€K — o) + Vizerad) =0

In steady state:

(,Bvll,ss - (1 - 5) ’)’Cs?yil) C,ss = 5 (Vll,sskf + V12,ss/\)

or

€ ss = IB -1 <V11,55k595 + V12,55/\>

,Bvll,ss - (1 - ;B) Y Css
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Perturbing the Value Function

First Equation Il

o Derivative with respect to x:

—(1=B)ve (ke zeix) " s
—BE; (—Vi1,t+163,t + Vio,e410€41 + Vi3 e41) =0

In steady state:

(,B Vll,ss - (1 - ﬁ) ,)/C;'y—l) C3,5s = ,BV13,55

or

C3,ss = ‘B
| (,Bvll,ss —(1=pB)yes"

) V13,ss
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Perturbing the Value Function

Second Equation |

We have:
Vie= BE:Vi41 <9eszt9_1 +1-— 5)

o Derivative with respect to k;:

Vit o1 (Beszf*1 r1-6— cl,t) <9eszf’1 +1- 5) ]

Vll,t - ,BIEt
+Vl,t+10 (9 — 1) eszf_z

In steady state:

1
Vll,ss == |:V11,ss (,B - Cl,ss) + ,Bvl,sse (G - 1) k§52:|

or

Vll,ss = IL Vl,sse (0 - 1) k§572
1— B + C1,s5
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Perturbing the Value Function

Second Equation Il

o Derivative with respect to z:

Vi1e41 (eszf — C2,t) (Qeztkte_l +1-— (5)

V12,t = ,BlEt
+Vigeeih (06K 41— 5) + Vi ey 10e7kd

In steady state:

V12,ss = Vll,ss (ksgs - CZ,SS) + \/12,ss)L + ,B\/l,ssgkfil

or
1

Viz,ss = 1= |:V11,ss (kses - C2,ss> + ,BV1,559k595_1]
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Perturbing the Value Function

Second Equation Il

o Derivative with respect to x:

Vise = BE: [—VA1e+1630 + Vi er10€r41 + Vas,et1]

In steady state,

V13,ss = ,B [_ Vll,ssc3,ss + V13,ss] =

p

V13,ss = ﬁvll,ssci%,ss

but since we know that:

C3,ss = ‘B
| ([3V11,ss —(1-pB)yes"

) V13,55

the two equations can only hold simultaneously if Vi34 = ¢35 = 0.

Jesis Fernandez-Villaverde (PENN) Perturbation Methods July 10, 2011 83 /91



Perturbing the Value Function

Third Equation |

We have
Vo = BE; [Vl,t+1eztkte + V2,t+1A}

o Derivative with respect to z:

Viterr (e%k? — co¢) e kf + Vo e 1Atk ]

Voot = BE
22,6 = PE¢ [ F V12K Vor i1 d (62K — co) + Vo e 1142

In steady state:
Vaor = B Vitss (k 6)) ss) kss + V1o ssAkgs + Vl,sskses N
't +V21 Ss)\ (kG C2’SS) —+ \/22'55/\2

_ L |: Vi1,ss (k %) ss) ke + 2V 55)\/(35 :|

V.
22,55 1-— IB/\z + Vl ss kss V12 SSAC2 ss

where we have used Vi5 ¢s = Vo1 os.
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Perturbing the Value Function

Third Equation I

o Derivative with respect to yx:

0 0 0
—Vi1er1€®tkics e + Vio rr1€% ko€ + Va3 e r1etky

Vs = BE
23t = PE; — Vo1 e41ACar + Voo 41 A0E 11 + Voz 1A

In steady state:
V23,ss =0
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Perturbing the Value Function

Fourth Equation

We have
V3t = BE; [Va, 1410841 + V3,e41]

o Derivative with respect to x:

2.2
Vysr — BE —Vo1,t4163,t0€1 11 + Voo r+10°€5 1 + V23,6410€141
b= t
—W31,t4163,c + V32, 14108041 + V33,41

In steady state:

V33,ss = ]fﬁ V22,ss
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Perturbing the Value Function

System |
a _ Vll,ss
, BVitss — (1 — ﬁ) ’}’Cs_sﬁr_1
C.ss = ﬁ -1 (Vll,sskgs + V12,ss/\>
,Bvll,ss - (1 - ,B) YCss
Vll,ss = 1# Vl,SSQ (9 - 1) kgs_z
1-—- B + Ci,ss
V12,ss - 1_ )\ [Vll ss (kfs - C2,ss) + 5V1,559k§571:|
Y B [ Vi1,ss (k %) ss) k s + 2V, ss/\k :|
' 1-— ‘52\2 +Wi sskss V12 ss/\C2 s5
V33,ss - 1530'2 V22,ss

plus 3,55 = V13,ss = V23,ss =0.
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Perturbing the Value Function

System ||

©

This is a system of nonlinear equations.

o However, it has a recursive structure.

©

By substituting variables that we already know, we can find Vi .

©

Then, using this results and by plugging ¢ s, we have a system of
two equations, on two unknowns, Vi2 s and V23 .

o Once the system is solved, we can find ¢j s, C2.s5, and V33 55 directly.
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Perturbing the Value Function

The Welfare Cost of the Business Cycle

o An advantage of performing the perturbation on the value function is
that we have evaluation of welfare readily available.

o Note that at the deterministic steady state, we have:
1
4 (kSSv 0; X) ~ Vi + 5 V33,ss
o Hence %V33,5s is a measure of the welfare cost of the business cycle.

o This quantity is not necessarily negative: it may be positive. For
example, in an RBC with leisure choice (Cho and Cooley, 2000).
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Perturbing the Value Function

Our Example

‘—'5157’y

11—~

o We can compute the decrease in consumption T that will make the
household indifferent between consuming (1 — T) ¢ss units per period

with certainty or ¢; units with uncertainty.

o We know that Vi, =

o Thus:
1—y 1—7y
Css 1\/ _ (CSS (1_T)>
1— + = 33,ss —
y 2 1—v
_ _ 1
((1_7)1 7_1) Csls T o= (1_7)5\/33,55
or
1- 1 =
T=1-— [1—|— — *V33'55
Csls 72
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Perturbing the Value Function

A Numerical Example

o We pick standard parameter values by setting
B =099 v=270=0.029,0=0.3and A = 0.95.
o We get:

V (ki z;1) ~ —0.54000 + 0.00295 (k; — kes) 4 0.11684z
—0.00007 (ks — kgs)* — 0.009852
—0.975080° — 0.00225 (k; — kss) 2t

c (ke ze;x) =~ 1.85103 4+ 0.04220 (k; — kss) 4 0.74318z,

o DYNARE produces the same policy function by linearizing the
equilibrium conditions of the problem.

o The welfare cost of the business cycle (in consumption terms) is
8.8475e-005, lower than in Lucas (1987) because of the smoothing
possibilities allowed by capital.

o Use as an initial guess for VFI.
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