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Introduction

Introduction

Remember that we want to solve a functional equation of the form:

H (d) = 0

for an unknown decision rule d .

Perturbation solves the problem by specifying:

dn (x , θ) =
n

∑
i=0

θi (x � x0)i

We use implicit-function theorems to �nd coe¢ cients θi�s.

Inherently local approximation. However, often good global properties.
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Introduction

Motivation

Many complicated mathematical problems have:

1 either a particular case

2 or a related problem.

that is easy to solve.

Often, we can use the solution of the simpler problem as a building
block of the general solution.

Very successful in physics.

Sometimes perturbation is known as asymptotic methods.
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Introduction

The World Simplest Perturbation

What is
p
26?

Without your Iphone calculator, it is a boring arithmetic calculation.

But note that:
p
26 =

q
25 (1+ 0.04) = 5 �

p
1.04 � 5 � 1.02 = 5.1

Exact solution is 5.099.

We have solved a much simpler problem (
p
25) and added a small

coe¢ cient to it.

More in general

p
y =

q
x2 (1+ ε) = x

p
1+ ε

where x is an integer and ε the perturbation parameter.
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Introduction

Applications to Economics

Judd and Guu (1993) showed how to apply it to economic problems.

Recently, perturbation methods have been gaining much popularity.

In particular, second- and third-order approximations are easy to
compute and notably improve accuracy.

A �rst-order perturbation theory and linearization deliver the same
output.

Hence, we can use much of what we already know about linearization.
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Introduction

Regular versus Singular Perturbations

Regular perturbation: a small change in the problem induces a small
change in the solution.

Singular perturbation: a small change in the problem induces a large
change in the solution.

Example: excess demand function.

Most problems in economics involve regular perturbations.

Sometimes, however, we can have singularities. Example: introducing
a new asset in an incomplete markets model.
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Introduction
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A Baby Example

A Baby Example: A Basic RBC

Model:

maxE0

∞

∑
t=0

βt log ct

s.t. ct + kt+1 = eztkα
t + (1� δ) kt , 8 t > 0

zt = ρzt�1 + σεt , εt � N (0, 1)

Equilibrium conditions:

1
ct
= βEt

1
ct+1

�
1+ αezt+1kα�1

t+1 � δ
�

ct + kt+1 = eztkα
t + (1� δ) kt

zt = ρzt�1 + σεt
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A Baby Example

Computing a Solution

The previous problem does not have a known �paper and pencil�
solution except when (unrealistically) δ = 1.

Then, income and substitution e¤ect from a technology shock cancel
each other (labor constant and consumption is a �xed fraction of
income).

Equilibrium conditions with δ = 1:

1
ct
= βEt

αezt+1kα�1
t+1

ct+1
ct + kt+1 = eztkα

t

zt = ρzt�1 + σεt

By �guess and verify�:

ct = (1� αβ) eztkα
t

kt+1 = αβeztkα
t
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A Baby Example

Another Way to Solve the Problem

Now let us suppose that you missed the lecture when �guess and
verify�was explained.

You need to compute the RBC.

What you are searching for? A decision rule for consumption:

ct = c (kt , zt )

and another one for capital:

kt+1 = k (kt , zt )

Note that our d is just the stack of c (kt , zt ) and k (kt , zt ).
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A Baby Example

Equilibrium Conditions

We substitute in the equilibrium conditions the budget constraint and
the law of motion for technology.

And we write the decision rules explicitly as function of the states.

Then:

1
c (kt , zt )

= βEt
αeρzt+σεt+1k (kt , zt )

α�1

c (k (kt , zt ) , ρzt + σεt+1)

c (kt , zt ) + k (kt , zt ) = eztkα
t

System of functional equations.
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A Baby Example

Main Idea

Transform the problem rewriting it in terms of a small perturbation
parameter.

Solve the new problem for a particular choice of the perturbation
parameter.

This step is usually ambiguous since there are di¤erent ways to do so.

Use the previous solution to approximate the solution of original the
problem.
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A Baby Example

A Perturbation Approach

Hence, we want to transform the problem.

Which perturbation parameter? Standard deviation σ.

Why σ? Discrete versus continuous time.

Set σ = 0)deterministic model, zt = 0 and ezt = 1.

We know how to solve the deterministic steady state.
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A Baby Example

A Parametrized Decision Rule

We search for decision rule:

ct = c (kt , zt ; σ)

and
kt+1 = k (kt , zt ; σ)

Note new parameter σ.

We are building a local approximation around σ = 0.
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A Baby Example

Taylor�s Theorem

Equilibrium conditions:

Et

 
1

c (kt , zt ; σ)
� β

αeρzt+σεt+1k (kt , zt ; σ)
α�1

c (k (kt , zt ; σ) , ρzt + σεt+1; σ)

!
= 0

c (kt , zt ; σ) + k (kt , zt ; σ)� eztkα
t = 0

We will take derivatives with respect to kt , zt , and σ.

Apply Taylor�s theorem to build solution around deterministic steady
state. How?
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A Baby Example

Asymptotic Expansion I

ct = c (kt , zt ; σ)jk ,0,0 = c (k, 0; 0)
+ck (k, 0; 0) (kt � k) + cz (k, 0; 0) zt + cσ (k, 0; 0) σ

+
1
2
ckk (k, 0; 0) (kt � k)2 +

1
2
ckz (k, 0; 0) (kt � k) zt

+
1
2
ckσ (k, 0; 0) (kt � k) σ+

1
2
czk (k, 0; 0) zt (kt � k)

+
1
2
czz (k, 0; 0) z2t +

1
2
czσ (k, 0; 0) ztσ

+
1
2
cσk (k, 0; 0) σ (kt � k) +

1
2
cσz (k, 0; 0) σzt

+
1
2
cσ2 (k, 0; 0) σ2 + ...
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A Baby Example

Asymptotic Expansion II

kt+1 = k (kt , zt ; σ)jk ,0,0 = k (k, 0; 0)
+kk (k, 0; 0) (kt � k) + kz (k, 0; 0) zt + kσ (k, 0; 0) σ

+
1
2
kkk (k, 0; 0) (kt � k)2 +

1
2
kkz (k, 0; 0) (kt � k) zt

+
1
2
kkσ (k, 0; 0) (kt � k) σ+

1
2
kzk (k, 0; 0) zt (kt � k)

+
1
2
kzz (k, 0; 0) z2t +

1
2
kzσ (k, 0; 0) ztσ

+
1
2
kσk (k, 0; 0) σ (kt � k) +

1
2
kσz (k, 0; 0) σzt

+
1
2
kσ2 (k, 0; 0) σ2 + ...
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A Baby Example

Comment on Notation

From now on, to save on notation, I will write

F (kt , zt ; σ) = Et

"
1

c (kt ,zt ;σ)
� β

αeρzt+σεt+1 k (kt ,zt ;σ)
α�1

c (k (kt ,zt ;σ),ρzt+σεt+1;σ)

c (kt , zt ; σ) + k (kt , zt ; σ)� eztkα
t

#
=

�
0
0

�

Note that:

F (kt , zt ; σ) = H (ct , ct+1, kt , kt+1, zt ; σ)
= H (c (kt , zt ; σ) , c (k (kt , zt ; σ) , zt+1; σ) , kt , k (kt , zt ; σ) , zt ; σ)

I will use Hi to represent the partial derivative of H with respect to
the i component and drop the evaluation at the steady state of the
functions when we do not need it.
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A Baby Example

Zeroth-Order Approximation

First, we evaluate σ = 0:

F (kt , 0; 0) = 0

Steady state:
1
c
= β

αkα�1

c
or

1 = αβkα�1

Then:
c = c (k, 0; 0) = (αβ)

α
1�α � (αβ)

1
1�α

k = k (k, 0; 0) = (αβ)
1
1�α
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A Baby Example

First-Order Approximation

We take derivatives of F (kt , zt ; σ) around k, 0, and 0.

With respect to kt :
Fk (k, 0; 0) = 0

With respect to zt :
Fz (k, 0; 0) = 0

With respect to σ:
Fσ (k, 0; 0) = 0
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A Baby Example

Solving the System I

Remember that:

F (kt , zt ; σ)

= H (c (kt , zt ; σ) , c (k (kt , zt ; σ) , zt+1; σ) , kt , k (kt , zt ; σ) , zt ; σ) = 0

Because F (kt , zt ; σ) must be equal to zero for any possible values of
kt , zt , and σ, the derivatives of any order of F must also be zero.

Then:

Fk (k, 0; 0) = H1ck +H2ckkk +H3 +H4kk = 0

Fz (k, 0; 0) = H1cz +H2 (ckkz + ckρ) +H4kz +H5 = 0

Fσ (k, 0; 0) = H1cσ +H2 (ckkσ + cσ) +H4kσ +H6 = 0
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A Baby Example

Solving the System II

A quadratic system:

Fk (k, 0; 0) = H1ck +H2ckkk +H3 +H4kk = 0

Fz (k, 0; 0) = H1cz +H2 (ckkz + ckρ) +H4kz +H5 = 0

of 4 equations on 4 unknowns: ck , cz , kk , and kz .

Procedures to solve quadratic systems:

1 Blanchard and Kahn (1980).

2 Uhlig (1999).

3 Sims (2000).

4 Klein (2000).

All of them equivalent.

Why quadratic? Stable and unstable manifold.
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A Baby Example

Solving the System III

Also, note that:

Fσ (k, 0; 0) = H1cσ +H2 (ckkσ + cσ) +H4kσ +H6 = 0

is a linear, and homogeneous system in cσ and kσ.

Hence:
cσ = kσ = 0

This means the system is certainty equivalent.

Interpretation)no precautionary behavior.
Di¤erence between risk-aversion and precautionary behavior. Leland
(1968), Kimball (1990).

Risk-aversion depends on the second derivative (concave utility).

Precautionary behavior depends on the third derivative (convex
marginal utility).
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A Baby Example

Comparison with LQ and Linearization

After Kydland and Prescott (1982) a popular method to solve
economic models has been to �nd a LQ approximation of the
objective function of the agents.

Close relative: linearization of equilibrium conditions.

When properly implemented linearization, LQ, and �rst-order
perturbation are equivalent.

Advantages of perturbation:

1 Theorems.

2 Higher-order terms.
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A Baby Example

Some Further Comments

Note how we have used a version of the implicit-function theorem.

Important tool in economics.

Also, we are using the Taylor theorem to approximate the policy
function.

Alternatives?
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A Baby Example

Second-Order Approximation

We take second-order derivatives of F (kt , zt ; σ) around k, 0, and 0:

Fkk (k, 0; 0) = 0

Fkz (k, 0; 0) = 0

Fkσ (k, 0; 0) = 0

Fzz (k, 0; 0) = 0

Fzσ (k, 0; 0) = 0

Fσσ (k, 0; 0) = 0

Remember Young�s theorem!

We substitute the coe¢ cients that we already know.

A linear system of 12 equations on 12 unknowns. Why linear?

Cross-terms kσ and zσ are zero.

Conjecture on all the terms with odd powers of σ.
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A Baby Example

Correction for Risk

We have a term in σ2.

Captures precautionary behavior.

We do not have certainty equivalence any more!

Important advantage of second-order approximation.

Changes ergodic distribution of states.
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A Baby Example

Higher-Order Terms

We can continue the iteration for as long as we want.

Great advantage of procedure: it is recursive!

Often, a few iterations will be enough.

The level of accuracy depends on the goal of the exercise:

1 Welfare analysis: Kim and Kim (2001).

2 Empirical strategies: Fernández-Villaverde, Rubio-Ramírez, and Santos
(2006).
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A Numerical Example

A Numerical Example

Parameter β α ρ σ

Value 0.99 0.33 0.95 0.01

Steady State: c = 0.388069 k = 0.1883
First-order terms:

ck (k, 0; 0) = 0.680101 kk (k, 0; 0) = 0.33
cz (k, 0; 0) = 0.388069 kz (k, 0; 0) = 0.1883

Second-order terms:

ckk (k, 0; 0) = �2.41990 kkk (k, 0; 0) = �1.1742
ckz (k, 0; 0) = 0.680099 kkz (k, 0; 0) = 0.33
czz (k, 0; 0) = 0.388064 kzz (k, 0; 0) = 0.1883
cσ2 (k, 0; 0) ' 0 kσ2 (k, 0; 0) ' 0

cσ (k, 0; 0) = kσ (k, 0; 0) = ckσ (k, 0; 0) = kkσ (k, 0; 0) =
czσ (k, 0; 0) = kzσ (k, 0; 0) = 0.
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A Numerical Example

Comparison

ct = 0.6733eztk0.33t

ct ' 0.388069+ 0.680101 (kt � k) + 0.388069zt

�2.41990
2

(kt � k)2 + 0.680099 (kt � k) zt +
0.388064

2
z2t

and:

kt+1 = 0.3267eztk0.33t

kt+1 ' 0.1883+ 0.33 (kt � k) + 0.1883zt

�1.1742
2

(kt � k)2 + 0.33 (kt � k) zt +
0.1883
2

z2t

Jesús Fernández-Villaverde (PENN) Perturbation Methods July 10, 2011 30 / 91



A Numerical Example
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A Numerical Example

A Computer

In practice you do all this approximations with a computer:

1 First-, second-, and third-order: Matlab and Dynare.

2 Higher-order: Mathematica, Dynare++, Fortran code by Jinn and
Judd.

Burden: analytical derivatives.

Why are numerical derivatives a bad idea?

Alternatives: automatic di¤erentiation?
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A Numerical Example

Local Properties of the Solution

Perturbation is a local method.
It approximates the solution around the deterministic steady state of
the problem.
It is valid within a radius of convergence.
What is the radius of convergence of a power series around x? An
r 2 R∞

+ such that 8x 0, jx 0 � z j < r , the power series of x 0 will
converge.

A Remarkable Result from Complex Analysis

The radius of convergence is always equal to the distance from the center
to the nearest point where the policy function has a (non-removable)
singularity. If no such point exists then the radius of convergence is in�nite.

Singularity here refers to poles, fractional powers, and other branch
powers or discontinuities of the functional or its derivatives.
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A Numerical Example

Remarks

Intuition of the theorem: holomorphic functions are analytic.

Distance is in the complex plane.

Often, we can check numerically that perturbations have good non
local behavior.

However: problem with boundaries.
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A Numerical Example

Non Local Accuracy Test

Proposed by Judd (1992) and Judd and Guu (1997).

Given the Euler equation:

1
c i (kt , zt )

= Et

�
αezt+1k i (kt , zt )α�1

c i (k i (kt , zt ), zt+1)

�
we can de�ne:

EE i (kt , zt ) � 1� c i (kt , zt )Et

�
αezt+1k i (kt , zt )α�1

c i (k i (kt , zt ), zt+1)

�

Units of reporting.

Interpretation.
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A Numerical Example
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The General Case

The General Case

Most of previous argument can be easily generalized.

The set of equilibrium conditions of many DSGE models can be
written as (note recursive notation)

EtH(y , y 0, x , x 0) = 0,

where yt is a ny � 1 vector of controls and xt is a nx � 1 vector of
states.

De�ne n = nx + ny .

Then H maps Rny � Rny � Rnx � Rnx into Rn.
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The General Case

Partitioning the State Vector

The state vector xt can be partitioned as x = [x1; x2]t .

x1 is a (nx � nε)� 1 vector of endogenous state variables.

x2 is a nε � 1 vector of exogenous state variables.

Why do we want to partition the state vector?
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The General Case

Exogenous Stochastic Process

x 02 = Λx2 + σηεε0

Process with 3 parts:
1 The deterministic component Λx2:

1 Λ is a nε � nε matrix, with all eigenvalues with modulus less than one.
2 More general: x 02 = Γ(x2) + σηεε0, where Γ is a non-linear function
satisfying that all eigenvalues of its �rst derivative evaluated at the
non-stochastic steady state lie within the unit circle.

2 The scaled innovation ηεε0 where:
1 ηε is a known nε � nε matrix.
2 ε is a nε � 1 i.i.d innovation with bounded support, zero mean, and
variance/covariance matrix I .

3 The perturbation parameter σ.

We can accommodate very general structures of x2 through changes
in the de�nition of the state space: i.e. stochastic volatility.
Note we do not impose Gaussianity.
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The General Case

The Perturbation Parameter

The scalar σ � 0 is the perturbation parameter.

If we set σ = 0 we have a deterministic model.

Important: there is only ONE perturbation parameter. The matrix ηε

takes account of relative sizes of di¤erent shocks.

Why bounded support? Samuelson (1970) and Jin and Judd (2002).
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The General Case

Solution of the Model

The solution to the model is of the form:

y = g(x ; σ)

x 0 = h(x ; σ) + σηε0

where g maps Rnx � R+ into Rny and h maps Rnx � R+ into Rnx .

The matrix η is of order nx � nε and is given by:

η =

�
∅
ηε

�

Jesús Fernández-Villaverde (PENN) Perturbation Methods July 10, 2011 41 / 91



The General Case

Perturbation

We wish to �nd a perturbation approximation of the functions g and
h around the non-stochastic steady state, xt = x̄ and σ = 0.

We de�ne the non-stochastic steady state as vectors (x̄ , ȳ) such that:

H(ȳ , ȳ , x̄ , x̄) = 0.

Note that ȳ = g(x̄ ; 0) and x̄ = h(x̄ ; 0). This is because, if σ = 0,
then EtH = H.
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The General Case

Plugging-in the Proposed Solution

Substituting the proposed solution, we de�ne:

F (x ; σ) � EtH(g(x ; σ), g(h(x ; σ) + ησε0, σ), x , h(x ; σ) + ησε0) = 0

Since F (x ; σ) = 0 for any values of x and σ, the derivatives of any
order of F must also be equal to zero.

Formally:

Fx kσj (x ; σ) = 0 8x , σ, j , k,

where Fx kσj (x , σ) denotes the derivative of F with respect to x taken
k times and with respect to σ taken j times.
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The General Case

First-Order Approximation

We look for approximations to g and h around (x , σ) = (x̄ , 0):

g(x ; σ) = g(x̄ ; 0) + gx (x̄ ; 0)(x � x̄) + gσ(x̄ ; 0)σ

h(x ; σ) = h(x̄ ; 0) + hx (x̄ ; 0)(x � x̄) + hσ(x̄ ; 0)σ

As explained earlier,
g(x̄ ; 0) = ȳ

and
h(x̄ ; 0) = x̄ .

The four unknown coe¢ cients of the �rst-order approximation to g
and h are found by using:

Fx (x̄ ; 0) = 0

and
Fσ(x̄ ; 0) = 0

Before doing so, I need to introduce the tensor notation.
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The General Case

Tensors

General trick from physics.

An nth-rank tensor in a m-dimensional space is an operator that has n
indices and mn components and obeys certain transformation rules.

[Hy ]iα is the (i , α) element of the derivative of H with respect to y :

1 The derivative of H with respect to y is an n� ny matrix.
2 Thus, [Hy ]iα is the element of this matrix located at the intersection of
the i-th row and α-th column.

3 Thus, [Hy ]iα[gx ]αβ[hx ]
β
j = ∑

ny
α=1 ∑nxβ=1

∂Hi
∂y α

∂g α

∂x β
∂hβ

∂x j .

[Hy 0y 0 ]
i
αγ:

1 Hy 0y 0 is a three dimensional array with n rows, ny columns, and ny
pages.

2 Then [Hy 0y 0 ]iαγ denotes the element of Hy 0y 0 located at the
intersection of row i , column α and page γ.

Jesús Fernández-Villaverde (PENN) Perturbation Methods July 10, 2011 45 / 91



The General Case

Solving the System I

gx and hx can be found as the solution to the system:

[Fx (x̄ ; 0)]ij = [Hy 0 ]
i
α[gx ]

α
β[hx ]

β
j + [Hy ]

i
α[gx ]

α
j + [Hx 0 ]

i
β[hx ]

β
j + [Hx ]

i
j = 0;

i = 1, . . . , n; j , β = 1, . . . , nx ; α = 1, . . . , ny

Note that the derivatives of H evaluated at (y , y 0, x , x 0) = (ȳ , ȳ , x̄ , x̄)
are known.

Then, we have a system of n� nx quadratic equations in the n� nx
unknowns given by the elements of gx and hx .

We can solve with a standard quadratic matrix equation solver.
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The General Case

Solving the System II

gσ and hσ are identi�ed as the solution to the following n equations:

[Fσ(x̄ ; 0)]i =

Etf[Hy 0 ]
i
α[gx ]

α
β[hσ]

β + [Hy 0 ]
i
α[gx ]

α
β[η]

β
φ[ε

0]φ + [Hy 0 ]
i
α[gσ]

α

+[Hy ]
i
α[gσ]

α + [Hx 0 ]
i
β[hσ]

β + [Hx 0 ]
i
β[η]

β
φ[ε

0]φg
i = 1, . . . , n; α = 1, . . . , ny ; β = 1, . . . , nx ; φ = 1, . . . , nε.

Then:

[Fσ(x̄ ; 0)]i = [Hy 0 ]
i
α[gx ]

α
β[hσ]

β + [Hy 0 ]
i
α[gσ]

α + [Hy ]
i
α[gσ]

α + [fx 0 ]
i
β[hσ]

β = 0;

i = 1, . . . , n; α = 1, . . . , ny ; β = 1, . . . , nx ; φ = 1, . . . , nε.

Certainty equivalence: this equation is linear and homogeneous in gσ

and hσ. Thus, if a unique solution exists, it must satisfy:

hσ 6= 0

gσ = 0
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The General Case

Second-Order Approximation I

The second-order approximations to g around (x ; σ) = (x̄ ; 0) is

[g(x ; σ)]i = [g(x̄ ; 0)]i + [gx (x̄ ; 0)]ia[(x � x̄)]a + [gσ(x̄ ; 0)]i [σ]

+
1
2
[gxx (x̄ ; 0)]iab [(x � x̄)]a[(x � x̄)]b

+
1
2
[gxσ(x̄ ; 0)]ia[(x � x̄)]a[σ]

+
1
2
[gσx (x̄ ; 0)]ia[(x � x̄)]a[σ]

+
1
2
[gσσ(x̄ ; 0)]i [σ][σ]

where i = 1, . . . , ny , a, b = 1, . . . , nx , and j = 1, . . . , nx .
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The General Case

Second-Order Approximation II

The second-order approximations to h around (x ; σ) = (x̄ ; 0) is

[h(x ; σ)]j = [h(x̄ ; 0)]j + [hx (x̄ ; 0)]ja[(x � x̄)]a + [hσ(x̄ ; 0)]j [σ]

+
1
2
[hxx (x̄ ; 0)]

j
ab [(x � x̄)]a[(x � x̄)]b

+
1
2
[hxσ(x̄ ; 0)]ja[(x � x̄)]a[σ]

+
1
2
[hσx (x̄ ; 0)]ja[(x � x̄)]a[σ]

+
1
2
[hσσ(x̄ ; 0)]j [σ][σ],

where i = 1, . . . , ny , a, b = 1, . . . , nx , and j = 1, . . . , nx .
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The General Case

Second-Order Approximation III

The unknowns of these expansions are [gxx ]iab , [gxσ]ia, [gσx ]ia, [gσσ]i ,
[hxx ]

j
ab , [hxσ]

j
a, [hσx ]

j
a, [hσσ]j .

These coe¢ cients can be identi�ed by taking the derivative of F (x ; σ)
with respect to x and σ twice and evaluating them at (x ; σ) = (x̄ ; 0).

By the arguments provided earlier, these derivatives must be zero.
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The General Case

Solving the System I

We use Fxx (x̄ ; 0) to identify gxx (x̄ ; 0) and hxx (x̄ ; 0):

[Fxx (x̄ ; 0)]ijk =�
[Hy 0y 0 ]

i
αγ[gx ]

γ
δ [hx ]

δ
k + [Hy 0y ]

i
αγ[gx ]

γ
k + [Hy 0x 0 ]

i
αδ[hx ]

δ
k + [Hy 0x ]

i
αk

�
[gx ]αβ[hx ]

β
j

+[Hy 0 ]
i
α[gxx ]

α
βδ[hx ]

δ
k [hx ]

β
j + [Hy 0 ]

i
α[gx ]

α
β[hxx ]

β
jk

+
�
[Hyy 0 ]

i
αγ[gx ]

γ
δ [hx ]

δ
k + [Hyy ]

i
αγ[gx ]

γ
k + [Hyx 0 ]

i
αδ[hx ]

δ
k + [Hyx ]

i
αk

�
[gx ]αj

+[Hy ]
i
α[gxx ]

α
jk

+
�
[Hx 0y 0 ]

i
βγ[gx ]

γ
δ [hx ]

δ
k + [Hx 0y ]

i
βγ[gx ]

γ
k + [Hx 0x 0 ]

i
βδ[hx ]

δ
k + [Hx 0x ]

i
βk

�
[hx ]

β
j

+[Hx 0 ]
i
β[hxx ]

β
jk

+[Hxy 0 ]
i
jγ[gx ]

γ
δ [hx ]

δ
k + [Hxy ]

i
jγ[gx ]

γ
k + [Hxx 0 ]

i
jδ[hx ]

δ
k + [Hxx ]

i
jk = 0;

i = 1, . . . n, j , k, β, δ = 1, . . . nx ; α,γ = 1, . . . ny .
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The General Case

Solving the System II

We know the derivatives of H.

We also know the �rst derivatives of g and h evaluated at
(y , y 0, x , x 0) = (ȳ , ȳ , x̄ , x̄).

Hence, the above expression represents a system of n� nx � nx linear
equations in then n� nx � nx unknowns elements of gxx and hxx .
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The General Case

Solving the System III

Similarly, gσσ and hσσ can be obtained by solving:

[Fσσ(x̄ ; 0)]i = [Hy 0 ]
i
α[gx ]

α
β[hσσ]

β

+[Hy 0y 0 ]
i
αγ[gx ]

γ
δ [η]

δ
ξ [gx ]

α
β[η]

β
φ[I ]

φ
ξ

+[Hy 0x 0 ]
i
αδ[η]

δ
ξ [gx ]

α
β[η]

β
φ[I ]

φ
ξ

+[Hy 0 ]
i
α[gxx ]

α
βδ[η]

δ
ξ [η]

β
φ[I ]

φ
ξ + [Hy 0 ]

i
α[gσσ]

α

+[Hy ]
i
α[gσσ]

α + [Hx 0 ]
i
β[hσσ]

β

+[Hx 0y 0 ]
i
βγ[gx ]

γ
δ [η]

δ
ξ [η]

β
φ[I ]

φ
ξ

+[Hx 0x 0 ]
i
βδ[η]

δ
ξ [η]

β
φ[I ]

φ
ξ = 0;

i = 1, . . . , n; α,γ = 1, . . . , ny ; β, δ = 1, . . . , nx ; φ, ξ = 1, . . . , nε

a system of n linear equations in the n unknowns given by the elements of
gσσ and hσσ.
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The General Case

Cross Derivatives

The cross derivatives gxσ and hxσ are zero when evaluated at (x̄ , 0).
Why? Write the system Fσx (x̄ ; 0) = 0 taking into account that all
terms containing either gσ or hσ are zero at (x̄ , 0).
Then:

[Fσx (x̄ ; 0)]ij = [Hy 0 ]
i
α[gx ]

α
β[hσx ]

β
j + [Hy 0 ]

i
α[gσx ]

α
γ[hx ]

γ
j +

[Hy ]
i
α[gσx ]

α
j + [Hx 0 ]

i
β[hσx ]

β
j = 0;

i = 1, . . . n; α = 1, . . . , ny ; β,γ, j = 1, . . . , nx .

a system of n� nx equations in the n� nx unknowns given by the
elements of gσx and hσx .
The system is homogeneous in the unknowns.
Thus, if a unique solution exists, it is given by:

gσx = 0

hσx = 0
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The General Case

Structure of the Solution

The perturbation solution of the model satis�es:

gσ(x̄ ; 0) = 0

hσ(x̄ ; 0) = 0

gxσ(x̄ ; 0) = 0

hxσ(x̄ ; 0) = 0

Standard deviation only appears in:

1 A constant term given by 12gσσσ2 for the control vector yt .

2 The �rst nx � nε elements of 12hσσσ2.

Correction for risk.

Quadratic terms in endogenous state vector x1.

Those terms capture non-linear behavior.

Jesús Fernández-Villaverde (PENN) Perturbation Methods July 10, 2011 55 / 91



The General Case

Higher-Order Approximations

We can iterate this procedure as many times as we want.

We can obtain n-th order approximations.

Problems:

1 Existence of higher order derivatives (Santos, 1992).

2 Numerical instabilities.

3 Computational costs.
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Change of Variables

Erik Eady

It is not the process of linearization that limits insight.
It is the nature of the state that we choose to linearize about.
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Change of Variables

Change of Variables

We approximated our solution in levels.

We could have done it in logs.

Why stop there? Why not in powers of the state variables?

Judd (2002) has provided methods for changes of variables.

We apply and extend ideas to the stochastic neoclassical growth
model.
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Change of Variables

A General Transformation

We look at solutions of the form:

cµ � cµ
0 = a

�
kζ � kζ

0

�
+ bz

k 0γ � kγ
0 = c

�
kζ � kζ

0

�
+ dz

Note that:

1 If γ, ζ, and µ are 1, we get the linear representation.

2 As γ, ζ and µ tend to zero, we get the loglinear approximation.
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Change of Variables

Theory

The �rst-order solution can be written as

f (x) ' f (a) + (x � a) f 0 (a)

Expand g(y) = h (f (X (y))) around b = Y (a), where X (y) is the
inverse of Y (x).

Then:

g (y) = h (f (X (y))) = g (b) + gα (b) (Y α (x)� bα)

where gα = hAf Ai X
i
α comes from the application of the chain rule.

From this expression it is easy to see that if we have computed the
values of f Ai , then it is straightforward to �nd gα.
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Change of Variables

Coe¢ cients Relation

Remember that the linear solution is:�
k 0 � k0

�
= a1 (k � k0) + b1z

(l � l0) = c1 (k � k0) + d1z

Then we show that:

a3 =
γ
ζ k

γ�ζ
0 a1 b3 = γkγ�1

0 b1
c3 =

µ
ζ l

µ�1
0 k1�ζ

0 c1 d3 = µlµ�10 d1
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Change of Variables

Finding the Parameters

Minimize over a grid the Euler Error.

Some optimal results

Euler Equation Errors
γ ζ µ SEE
1 1 1 0.0856279
0.986534 0.991673 2.47856 0.0279944
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Change of Variables

Sensitivity Analysis

Di¤erent parameter values.

Most interesting �nding is when we change σ:

Optimal Parameters for di¤erent σ�s
σ γ ζ µ

0.014 0.98140 0.98766 2.47753
0.028 1.04804 1.05265 1.73209
0.056 1.23753 1.22394 0.77869

A �rst-order approximation corrects for changes in variance!
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Change of Variables
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Change of Variables

A Quasi-Optimal Approximation

Sensitivity analysis reveals that for di¤erent parametrizations

γ ' ζ

This suggests the quasi-optimal approximation:

k 0γ � kγ
0 = a3

�
kγ � kγ

0

�
+ b3z

lµ � lµ0 = c3
�
kγ � kγ

0

�
+ d3z

If we de�ne bk = kγ � kγ
0 and bl = lµ � lµ0 we get:bk 0 = a3bk + b3zbl = c3bk + d3z

Linear system:
1 Use for analytical study.
2 Use for estimation with a Kalman Filter.
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Perturbing the Value Function

Perturbing the Value Function

We worked with the equilibrium conditions of the model.

Sometimes we may want to perform a perturbation on the value
function formulation of the problem.

Possible reasons:

1 Gain insight.

2 Di¢ culty in using equilibrium conditions.

3 Evaluate welfare.

4 Initial guess for VFI.

More general point: we can perturb any operator problem that we
�nd useful.
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Perturbing the Value Function

Basic Problem

Imagine that we have:

V (kt , zt ) = max
ct

"
(1� β)

c1�γ
t

1� γ
+ βEtV (kt+1, zt+1)

#
s.t. ct + kt+1 = eztkθ

t + (1� δ) kt
zt = λzt�1 + σεt , εt � N (0, 1)

Write it as:

V (kt , zt ;χ) = max
ct

"
(1� β)

c1�γ
t

1� γ
+ βEtV (kt+1, zt+1;χ)

#
s.t. ct + kt+1 = eztkθ

t + (1� δ) kt
zt = λzt�1 + χσεt , εt � N (0, 1)
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Perturbing the Value Function

Alternative

Another way to write the value function is:

V (kt , zt ;χ) =

max
ct

"
(1� β) c

1�γ
t
1�γ+

βEtV
�
eztkθ

t + (1� δ) kt � ct ,λzt + χσεt+1;χ
� #

This form makes the dependences in the next period states explicit.

The solution of this problem is value function V (kt , zt ;χ) and a
policy function for consumption c (kt , zt ;χ).
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Perturbing the Value Function

Expanding the Value Function

The second-order Taylor approximation of the value function around the
deterministic steady state (kss , 0; 0) is:

V (kt , zt ;χ) '
Vss + V1,ss (kt � kss ) + V2,sszt + V3,ssχ

+
1
2
V11,ss (kt � kss )2 +

1
2
V12,ss (kt � kss ) zt +

1
2
V13,ss (kt � kss ) χ

+
1
2
V21,sszt (kt � kss ) +

1
2
V22,ssz2t +

1
2
V23,ssztχ

+
1
2
V31,ssχ (kt � kss ) +

1
2
V32,ssχzt +

1
2
V33,ssχ2

where

Vss = V (kss , 0; 0)

Vi ,ss = Vi (kss , 0; 0) for i = f1, 2, 3g
Vij ,ss = Vij (kss , 0; 0) for i , j = f1, 2, 3g
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Perturbing the Value Function

Expanding the Value Function

By certainty equivalence, we will show below that:

V3,ss = V13,ss = V23,ss = 0

Taking advantage of the equality of cross-derivatives, and setting
χ = 1, which is just a normalization:

V (kt , zt ; 1) ' Vss + V1,ss (kt � kss ) + V2,sszt
+
1
2
V11,ss (kt � kss )2 +

1
2
V22,ssz2tt

+V12,ss (kt � kss ) z +
1
2
V33,ss

Note that V33,ss 6= 0, a di¤erence from the standard linear-quadratic
approximation to the utility functions.
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Perturbing the Value Function

Expanding the Consumption Function

The policy function for consumption can be expanded as:

ct = c (kt , zt ;χ) ' css + c1,ss (kt � kss ) + c2,sszt + c3,ssχ

where:

c1,ss = c1 (kss , 0; 0)

c2,ss = c2 (kss , 0; 0)

c3,ss = c3 (kss , 0; 0)

Since the �rst derivatives of the consumption function only depend on
the �rst and second derivatives of the value function, we must have
c3,ss = 0 (precautionary consumption depends on the third derivative
of the value function, Kimball, 1990).
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Perturbing the Value Function

Linear Components of the Value Function

To �nd the linear approximation to the value function, we take
derivatives of the value function with respect to controls (ct), states
(kt , zt), and the perturbation parameter χ.

Notation:

1 Vi ,t : derivative of the value function with respect to its i-th argument,
evaluated in (kt , zt ;χ) .

2 Vi ,ss : derivative evaluated in the steady state, (kss , 0; 0).

3 We follow the same notation for higher-order (cross-) derivatives.
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Perturbing the Value Function

Derivatives

Derivative with respect to ct :

(1� β) c�γ
t � βEtV1,t+1 = 0

Derivative with respect to kt :

V1,t = βEtV1,t+1
�

θeztkθ�1
t + 1� δ

�
Derivative with respect to zt :

V2,t = βEt

h
V1,t+1eztkθ

t + V2,t+1λ
i

Derivative with respect to χ:

V3,t = βEt [V2,t+1σεt+1 + V3,t+1]

In the last three derivatives, we apply the envelope theorem to
eliminate the derivatives of consumption with respect to kt , zt , and χ.

Jesús Fernández-Villaverde (PENN) Perturbation Methods July 10, 2011 73 / 91



Perturbing the Value Function

System of Equations I

Now, we have the system:

ct + kt+1 = eztkθ
t + (1� δ) kt

V (kt , zt ;χ) = (1� β)
c1�γ
t

1� γ
+ βEtV (kt+1, zt+1;χ)

(1� β) c�γ
t � βEtV1,t+1 = 0

V1,t = βEtV1,t+1
�

θeztkθ�1
t + 1� δ

�
V2,t = βEt

h
V1,t+1eztkθ

t + V2,t+1λ
i

V3,t = βEt [V2,t+1σεt+1 + V3,t+1]

zt = λzt�1 + χσεt
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Perturbing the Value Function

System of Equations II

If we set χ = 0 and compute the steady state, we get a system of six
equations on six unknowns, css , kss , Vss , V1,ss , V2,ss , and V3,ss :

css + δkss = kθ
ss

Vss = (1� β)
c1�γ
ss

1� γ
+ βVss

(1� β) c�γ
ss � βV1,ss = 0

V1,ss = βV1,ss
�

θkθ�1
ss + 1� δ

�
V2,ss = β

h
V1,sskθ

ss + V2,ssλ
i

V3,ss = βV3,ss

From the last equation: V3,ss = 0.

From the second equation: Vss = c1�γ
ss
1�γ .

From the third equation: V1,ss =
1�β

β c�γ
ss .
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Perturbing the Value Function

System of Equations III

After cancelling redundant terms:

css + δkss = kθ
ss

1 = β
�

θkθ�1
ss + 1� δ

�
V2,ss = β

h
V1,sskθ

ss + V2,ssλ
i

Then:

kss =
�
1
θ

�
1
β
� 1+ δ

�� 1
θ�1

css = kθ
ss � δkss

V2,ss =
1� β

1� βλ
kθ
ssc

�γ
ss

V1,ss > 0 and V2,ss > 0, as predicted by theory.
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Perturbing the Value Function

Quadratic Components of the Value Function

From the previous derivations, we have:

(1� β) c (kt , zt ;χ)
�γ � βEtV1,t+1 = 0

V1,t = βEtV1,t+1
�

θeztkθ�1
t + 1� δ

�
V2,t = βEt

h
V1,t+1eztkθ

t + V2,t+1λ
i

V3,t = βEt [V2,t+1σεt+1 + V3,t+1]

where:

kt+1 = eztkθ
t + (1� δ) kt � c (kt , zt ;χ)

zt = λzt�1 + χσεt , εt � N (0, 1)

We take derivatives of each of the four equations w.t.r. kt , zt , and χ.

We take advantage of the equality of cross derivatives.
The envelope theorem does not hold anymore (we are taking
derivatives of the derivatives of the value function).
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Perturbing the Value Function

First Equation I

We have:
(1� β) c (kt , zt ;χ)

�γ � βEtV1,t+1 = 0

Derivative with respect to kt :

� (1� β) γc (kt , zt ;χ)
�γ�1 c1,t

�βEt

h
V11,t+1

�
ezt θkθ�1

t + 1� δ� c1,t
�i
= 0

In steady state:�
βV11,ss � (1� β) γc�γ�1

ss

�
c1,ss = β

h
V11,ss

�
θkθ�1
ss + 1� δ

�i
or

c1,ss =
V11,ss

βV11,ss � (1� β) γc�γ�1
ss

where we have used that 1 = β
�
θkθ�1
ss + 1� δ

�
.
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Perturbing the Value Function

First Equation II

Derivative with respect to zt :

� (1� β) γc (kt , zt ;χ)
�γ�1 c2,t

�βEt

�
V11,t+1

�
eztkθ

t � c2,t
�
+ V12,t+1λ

�
= 0

In steady state:�
βV11,ss � (1� β) γc�γ�1

ss

�
c2,ss = β

�
V11,sskθ

t + V12,ssλ
�

or

c2,ss =
β

βV11,ss � (1� β) γc�γ�1
ss

�
V11,sskθ

ss + V12,ssλ
�
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Perturbing the Value Function

First Equation III

Derivative with respect to χ:

� (1� β) γc (kt , zt ;χ)
�γ�1 c3,t

�βEt (�V11,t+1c3,t + V12,t+1σεt+1 + V13,t+1) = 0

In steady state:�
βV11,ss � (1� β) γc�γ�1

ss

�
c3,ss = βV13,ss

or

c3,ss =
β�

βV11,ss � (1� β) γc�γ�1
ss

�V13,ss

Jesús Fernández-Villaverde (PENN) Perturbation Methods July 10, 2011 80 / 91



Perturbing the Value Function

Second Equation I

We have:
V1,t = βEtV1,t+1

�
θeztkθ�1

t + 1� δ
�

Derivative with respect to kt :

V11,t = βEt

"
V11,t+1

�
θeztkθ�1

t + 1� δ� c1,t
� �

θeztkθ�1
t + 1� δ

�
+V1,t+1θ (θ � 1) eztkθ�2

t

#

In steady state:

V11,ss =
�
V11,ss

�
1
β
� c1,ss

�
+ βV1,ssθ (θ � 1) kθ�2

ss

�
or

V11,ss =
β

1� 1
β + c1,ss

V1,ssθ (θ � 1) kθ�2
ss
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Perturbing the Value Function

Second Equation II

Derivative with respect to zt :

V12,t = βEt

24 V11,t+1
�
eztkθ

t � c2,t
� �

θeztkθ�1
t + 1� δ

�
+V12,t+1λ

�
θeztkθ�1

t + 1� δ
�
+ V1,t+1θeztkθ�1

t

35
In steady state:

V12,ss = V11,ss
�
kθ
ss � c2,ss

�
+ V12,ssλ+ βV1,ssθkθ�1

t

or
V12,ss =

1
1� λ

h
V11,ss

�
kθ
ss � c2,ss

�
+ βV1,ssθkθ�1

ss

i
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Perturbing the Value Function

Second Equation III

Derivative with respect to χ:

V13,t = βEt [�V11,t+1c3,t + V12,t+1σεt+1 + V13,t+1]

In steady state,

V13,ss = β [�V11,ssc3,ss + V13,ss ])

V13,ss =
β

β� 1V11,ssc3,ss

but since we know that:

c3,ss =
β�

βV11,ss � (1� β) γc�γ�1
ss

�V13,ss
the two equations can only hold simultaneously if V13,ss = c3,ss = 0.
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Perturbing the Value Function

Third Equation I

We have
V2,t = βEt

h
V1,t+1eztkθ

t + V2,t+1λ
i

Derivative with respect to zt :

V22,t = βEt

�
V11,t+1

�
eztkθ

t � c2,t
�
eztkθ

t + V12,t+1λe
ztkθ

t
+V1,t+1eztkθ

t + V21,t+1λ
�
eztkθ

t � c2,t
�
+ V22,t+1λ

2

�
In steady state:

V22,t = β

�
V11,ss

�
kθ
t � c2,ss

�
kθ
ss + V12,ssλk

θ
ss + V1,ssk

θ
ss

+V21,ssλ
�
kθ
ss � c2,ss

�
+ V22,ssλ

2

�
)

V22,ss =
β

1� βλ2

�
V11,ss

�
kθ
t � c2,ss

�
kθ
ss + 2V12,ssλk

θ
ss

+V1,sskθ
ss � V12,ssλc2,ss

�
where we have used V12,ss = V21,ss .
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Perturbing the Value Function

Third Equation II

Derivative with respect to χ:

V23,t = βEt

�
�V11,t+1eztkθ

t c3,t + V12,t+1e
ztkθ

t σεt+1 + V13,t+1eztkθ
t

�V21,t+1λc3,t + V22,t+1λσεt+1 + V23,t+1λ

�
In steady state:

V23,ss = 0
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Perturbing the Value Function

Fourth Equation

We have
V3,t = βEt [V2,t+1σεt+1 + V3,t+1] .

Derivative with respect to χ:

V33,t = βEt

�
�V21,t+1c3,tσεt+1 + V22,t+1σ2ε2t+1 + V23,t+1σεt+1

�V31,t+1c3,t + V32,t+1σεt+1 + V33,t+1

�
In steady state:

V33,ss =
β

1� β
V22,ss
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Perturbing the Value Function

System I

c1,ss =
V11,ss

βV11,ss � (1� β) γc�γ�1
ss

c2,ss =
β

βV11,ss � (1� β) γc�γ�1
ss

�
V11,sskθ

ss + V12,ssλ
�

V11,ss =
β

1� 1
β + c1,ss

V1,ssθ (θ � 1) kθ�2
ss

V12,ss =
1

1� λ

h
V11,ss

�
kθ
ss � c2,ss

�
+ βV1,ssθkθ�1

ss

i
V22,ss =

β

1� βλ2

�
V11,ss

�
kθ
t � c2,ss

�
kθ
ss + 2V12,ssλk

θ
ss

+V1,sskθ
ss � V12,ssλc2,ss

�
V33,ss =

β

1� β
σ2V22,ss

plus c3,ss = V13,ss = V23,ss = 0.
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Perturbing the Value Function

System II

This is a system of nonlinear equations.

However, it has a recursive structure.

By substituting variables that we already know, we can �nd V11,ss .

Then, using this results and by plugging c2,ss , we have a system of
two equations, on two unknowns, V12,ss and V22,ss .

Once the system is solved, we can �nd c1,ss , c2,ss , and V33,ss directly.
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Perturbing the Value Function

The Welfare Cost of the Business Cycle

An advantage of performing the perturbation on the value function is
that we have evaluation of welfare readily available.

Note that at the deterministic steady state, we have:

V (kss , 0;χ) ' Vss +
1
2
V33,ss

Hence 1
2V33,ss is a measure of the welfare cost of the business cycle.

This quantity is not necessarily negative: it may be positive. For
example, in an RBC with leisure choice (Cho and Cooley, 2000).
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Perturbing the Value Function

Our Example

We know that Vss = c1�γ
ss
1�γ .

We can compute the decrease in consumption τ that will make the
household indi¤erent between consuming (1� τ) css units per period
with certainty or ct units with uncertainty.

Thus:

c1�γ
ss

1� γ
+
1
2
V33,ss =

(css (1� τ))1�γ

1� γ
)�

(1� τ)1�γ � 1
�
c1�γ
ss = (1� γ)

1
2
V33,ss

or

τ = 1�
�
1+

1� γ

c1�γ
ss

1
2
V33,ss

� 1
1�γ
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Perturbing the Value Function

A Numerical Example

We pick standard parameter values by setting

β = 0.99,γ = 2, δ = 0.0294, θ = 0.3, and λ = 0.95.

We get:

V (kt , zt ; 1) ' �0.54000+ 0.00295 (kt � kss ) + 0.11684zt
�0.00007 (kt � kss )2 � 0.00985z2t
�0.97508σ2 � 0.00225 (kt � kss ) zt

c (kt , zt ;χ) ' 1.85193+ 0.04220 (kt � kss ) + 0.74318zt
DYNARE produces the same policy function by linearizing the
equilibrium conditions of the problem.
The welfare cost of the business cycle (in consumption terms) is
8.8475e-005, lower than in Lucas (1987) because of the smoothing
possibilities allowed by capital.
Use as an initial guess for VFI.
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