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Abstract

A simple theoretical model of market microstructure invariants is developed to
generate hypotheses concerning how market depth, bid-ask spread, and order size vary
across stocks. The model is tested using a dataset of portfolio transitions containing
over 400,000 orders in individual stocks executed during the period 2001-2005. In
a framework like Kyle (1985), our proposed model of “invariant trading structure”
assumes that the expected number and size of trades per “trading game” are invariant
across stocks and across time, in contrast to alternative models which assume that the
length of the “trading day” is invariant (e.g., equal to precisely one calendar day for all
stocks). The proposed model predicts that for every one percent increase in the product
of dollar trading volume with return volatility, the price impact of trading one percent
of average daily volume increases by one-third of one percent. Using implementation
shortfall to estimate price impact in a non-linear regression, the parameter predicted to
be one-third is estimated to be 0.33 with t-statistics of 13.37. The model makes similar
predictions about effective spreads and sizes of trades. These predictions also find
statistical support from regressions based on portfolio transition data. The proposed
model implies simple formulas for price impact and effective spread as functions of
observable dollar trading volume and volatility.

∗We are grateful to Georgios Skoulakis, Mark Loewenstein, and Vish Viswanathan for helpful comments.
Obizhaeva is also grateful to Ross McLellan, Simon Myrgren, Sebastien Page, and especially to Mark Kritz-
man for their help. Kyle is primarily responsible for the theoretical model in this paper. Obizhaeva is
responsible for the empirical implementation. Both authors contributed equally to this paper.
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1 Introduction

When portfolio managers trade stocks, they can be modeled as playing trading games. Since
portfolio managers trade many different stocks, we can think of them as playing many
different trading games simultaneously, a different game for each stock. A trading game in
which an informed trader, liquidity traders (or noise traders), and market makers trade one
common stock is described in Kyle (1985).

The purpose of this paper is to investigate, both theoretically and empirically, what
features of these trading games remain invariant as games themselves vary across stocks
with different levels of trading activity. Different assumptions about market microstructure
invariants lead to different predictions about how market depth, bid-ask spreads, and trade
size vary across stocks. These predictions are tested using a proprietary database of portfolio
transitions provided by a leading vendor of portfolio transitions services. In a portfolio
transition, an incumbent portfolio manager is replaced by a newly hired one. The transition
manager replaces the incumbent’s legacy portfolio with a new portfolio by selling a portfolio
held by the incumbent manager and buying a portfolio chosen by the new manager. A skilled
transition manager tries to minimize the transactions costs, both price impact and bid-ask
spread, associated with the transactions necessary for effecting the portfolio transition. Thus,
a transition manager can be modeled as a liquidity trader who participates in trading games
in many different stocks simultaneously over time.

Our proposed theory is based on the idea that key features of market microstructure
remain invariant when the trading games are compared across stocks and across time. The
theoretical models pay special attention to the frequency and size of liquidity trades, which
we call “bets.” In our proposed theory of “invariant trading structure,” it is assumed that the
number of bets per trading game and the amount of risk transferred per bet remain invariant.
This assumption is consistent with the intuition that stocks differ only in the speed with
which their trading games are played but the structure of trading games themselves is the
same for each stock. We can define a measure of daily “trading activity,” which we denote as
W , as the product of dollar trading volume per calendar day and daily standard deviation of
the stock’s returns. According to this measure, active stocks are stocks with high volatility
and high dollar trading volume per calendar day, while inactive stocks are stocks with low
volatility and low dollar trading volume per calendar day. Our assumption implies that the
trading games for active stocks and inactive stocks are the same, but the trading games for
active stocks are played at a faster pace than those for inactive stocks. This leads to the
intuition that the length of a “trading day” differs from the length of a calendar day, with
the trading day for active stocks perhaps corresponding to a few minutes while the trading
day for inactive stocks perhaps corresponding to a few months. The length of the trading
day is related to the market efficiency. The shorter is the trading day, the more efficient is
the market.

The invariance of trading structure across stocks, despite the difference in their measures
of trading activity, is a reasonable assumption. For example, compare a liquidity trade in an
active stock with a liquidity trade in an inactive stock of equal returns volatility. The size of
a bet is the amount of risk transferred by the trade, taking account of the trading horizon,
which is assumed to be proportional to the length of the trading day. In particular, our
measure of bet size is a product of the stock price, the number of shares traded, the daily
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percentage standard deviation of the stock’s return, and the square root of the length of the
trading day. The active stock has higher dollar trading volume per calendar day than the
inactive stock. The trading day for the active stock is, however, shorter. A large position held
for a short period of time can have the same risk as a smaller position held for a longer period
of time. Both transactions can represent the same amount of risk transfer. In the context of
our model, the expected amount of risk transfer per liquidity trade can be invariant across
the two markets since the smaller liquidity trades in the inactive stock create positions held
for a longer period of time, due to the longer trading day. Also, compare the number of bets
in an active stock with the number of liquidity trades in an inactive stock. The number of
bets per trading game is equal to the number of bets per calendar day multiplied by the
length of the trading day. For the active stock, many bets of large dollar size take place over
one calendar day. For the inactive stock, a smaller number of smaller dollar-size trades take
place over one calendar day. In the context of our model, the number of bets per trading
game can be invariant across the two markets since the trading day for the active stock is
shorter than for the inactive stock.

Our theoretical model leads to two different types of predictions which can be tested
using portfolio transition data.

One set of predictions concerns how the magnitude of price impact and bid-ask spreads
varies as a function of trading activity in different stocks. Our theoretical model predicts
that a one percent increase in trading activity W leads to an increase of one-third of one
percent in the price impact and to a decrease of one-third of one percent in the spread
costs incurred in executing a liquidity trade equal to one per cent of average daily volume,
where transactions costs are measured in basis points per dollar traded (holding returns
volatility constant). The prediction for price impact is derived from the formula for λ in
Kyle (1985). We also present below an argument that the bid-ask spread, assumed to be
zero in Kyle(1985), is inversely proportional to the price impact. This would be the case,
for example, if market makers were not perfect competitors, as in Kyle (1983).

Another set of predictions concerns how the expected size of liquidity trades varies with
trading activity. Our theoretical model predicts that a one percent increase in trading
activity W leads to an increase of one-third of one per cent in the expected size of liquidity
trades, or, equivalently, to a decrease of two-thirds of one per cent in the expected size of
liquidity trades as a fraction of daily trading activity (holding returns volatility constant).

What is the intuition for the “one-third” fraction appearing in our predictions? Our
model predicts that if trading volume increases by one-percent, then one-third of this increase
results from increased bet size and two-thirds of this increase results from increased bet
frequency. Now suppose the length of the trading day simultaneously decreases by two-
thirds of one percent. Then the number of bets per trading day is constant. Although the
bets are larger by one-third of a percent, they are held for a length of time two-thirds of one
percent shorter. Taking into account the time for which it is held, this makes the riskiness
of the bets also constant, since the riskiness of a bet is proportional to its size and to the
square root of the time for which it is held. A better way to develop this same intuition is
to ask what happens when the length of the trading day is shortened. For the number of
bets per trading game to remain constant, the rate at which bets are made must increase
proportionately. For the bets to be equally risky, the size of the bets needs to increase only
half as fast as the trading day is shortened because riskiness is proportional to the standard
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deviation of price changes, not to variance. This two-to-one ratio between bet frequency and
bet size leads to the fraction one-third appearing in the predictions.

The predictions of our proposed model are compared with the predictions of two alter-
native models based on different assumptions concerning market microstructure invariants.
Both models are “naive” in the sense that they assume that a “trading day” is equivalent to
one calendar day for all stocks.

The first alternative model assumes that as trading activity increases, the number of liq-
uidity trades, or bets, per day remains invariant at some constant level, while the expected
trade size per liquidity trade varies proportionally with trading activity. Concerning price
impact and spreads, this model of “invariant bet frequency” predicts that as trading activity
increases, the cost of executing a trade of one percent of average daily volume remains con-
stant in basis points per dollar traded (holding returns volatility constant). Concerning the
expected size of liquidity trades, this model assumes that average trade size is proportional
to trading activity, and thus average trade size as a proportion of average daily volume is
constant.

The second alternative model assumes that as trading activity increases, the average
dollar size of liquidity trades remains invariant at some constant level, while the number of
liquidity trades per calendar day increases proportionately. Concerning price impact and
spreads, this model of “invariant bet size” predicts that a one percent increase in trading
activity leads to an increase of one-half of one percent in the price impact and to a decrease
of one-half of one percent in the spread costs incurred in executing a liquidity trade equal
to one per cent of average daily volume, measured in basis points per dollar traded (holding
returns volatility constant). Concerning the expected size of liquidity trades, this model
assumes that average trade size (adjusted for volatility) remains constant as trading activity
changes, and thus average trade size as a proportion of average daily volume falls at the
same rate as trading activity rises.

These alternative models also have simple intuition. In the model of Kyle (1985) market
impact λ is proportional to the ratio of price volatility σV and the standard deviation of the
inventories of noise traders σU , i.e., λ = σV /σU . To generate predictions about how market
impact varies cross-sectionally as volume changes, it seems necessary to map σU into volume.
One approach is to think of volume as proportional to the standard deviation σU . This is
the approach taken by our first alternative model. Another approach is to think of volume
as proportional to the variance σ2

U . This is the approach taken by our second alternative
model. In some sense, either of these two alternative choices is arbitrary. In our proposed
model, the choice is made naturally by assuming that the trading game remains the same;
it is only the speed with which the game is played that varies across stocks.

Using portfolio transition data, the predictions of three models are tested to examine
which of them better describes the data. We exploit the share price data measuring imple-
mentation shortfall to test the predictions concerning trading costs, and we exploit the and
the share volume data to test the predictions concerning the size of liquidity traders’ bets.

Implementation shortfall is used to estimate price impact and bid-ask spread from the
portfolio transition data. Perold (1988) defines implementation shortfall as the difference
between a “paper trading” benchmark and actual trading results. For our purposes, the
paper trading benchmark for a given transition is defined to be the price which would have
been obtained if all shares were executed at the market closing price the day before any
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trades implementing a given transition began to take place. This benchmark is compared
against the actual prices at which the transition trades are later executed. The difference,
measured in basis points per dollars worth of shares traded, measures implementation short-
fall. Implementation shortfall includes the effect of both price impact and bid-ask spread,
as well as random changes in the stock price between the benchmark date and the time
when the trades are executed. The identifying assumption made is that the returns on the
stock would otherwise have had a mean return of zero, which implies that the mean of the
implementation shortfall is a measure of transactions costs.

There are two major problems associated with using implementation shortfall to estimate
transactions costs. The database of portfolio transition data used in this paper avoids both
of these problems.

The first problem is statistical power. Suppose, for example, that a trade of one percent
of average daily volume has a transactions cost of 20 basis points, but the stock has a price
volatility of 200 basis points per day. If we think of the 20 basis points as a random variable
which could be positive or negative depending on whether the underlying transition order
is a buy or a sell, then the transition order adds about 1% to the variance of the stock’s
return. This implies that a properly specified regression to estimate transactions costs using
implementation shortfall is going to have an R2 of about 0.01, i.e., statistical power is going
to be low. Clearly, larger trades with higher transactions costs reduce this problem and make
the transactions cost easier to estimate.

The portfolio transition database addresses the problem of low statistical power in two
ways. First, the data involves more than 400,000 individual orders executed over the period
2001-2005, so the large number of degrees of freedom increases the statistical power of our
estimates. Second, some of the orders are large enough to induce relatively significant market
impact; this increases statistical power as well. As a result, the statistical tests are powerful
enough to distinguish the proposed model from the two alternatives.

To deal with a potential heteroscedasticity problem, the implementation shortfall variable
on the right-hand-side of the regression is scaled by the standard deviation of returns. The
errors are potentially correlated due to the fact that many stocks are traded on the same
days, and stock returns are correlated with one another. Observations ar pooled at weekly
levels for 17 industries. This pooling reduces degrees of freedom, but generates more accurate
standard errors.

The second problem with using implementation shortfall to measure transactions costs
is that using price and quantity data on executed orders to estimate transactions costs will
lead to biased estimates of transactions costs if high cost orders have been canceled before
execution and thus not observed in the data. For example, consider a trader who intends
to buy 100,000 shares of stock. At the time the order is placed, the price (benchmark) is
$40 per share. The trader purchases 80,000 shares at an average price of $40.20. The price
then runs away to $45 per share, at which point the trader cancels the remaining 20,000
shares on the order. In typical situations, a database of trades may contain the 80,000
shares executed at an average price of $40.20 but not contain any indication that 20,000
shares were not executed at a price which would have been about $45 per share. In this
situation, the implementation shortfall would have been calculated as 50 basis points for
80,000 shares. A 50 basis point number is a biased estimate of transactions costs, because
it fails to take account of the 1250 basis point cost that would have been incurred on the
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20,000 share portion of the order that was canceled. A less biased estimate of transactions
costs would attribute at least a 1250 basis point cost to the canceled portion, resulting in
an average implementation shortfall of at least 290 basis points instead of 50 basis points.
This example illustrates that the selection bias associated with canceled orders can be very
large. It makes estimated transactions costs too low when orders are canceled that otherwise
would have been executed at unfavorable prices.

The data on portfolio transitions does not suffer from this problem of selection bias
resulting from canceled orders. In a portfolio transition, both the legacy portfolio to be
sold and the new portfolio to be bought are identified precisely before the transition trading
starts. Furthermore, there are no order cancelations, since the transition manager’s job is
to sell the entire legacy portfolio and replace it with the entire new portfolio. Assuming
the transition manager executes each portfolio fully, the problem of selection bias due to
canceling orders goes away, as emphasized in Obizhaeva (2009).

Our theoretical model as well as two alternative models imply that market impact and
bid-ask spread can be estimated from a non-linear regression in which the left-hand side is
implementation shortfall measured in basis points per dollar traded, but scaled as a fraction
of daily standard deviation. There are two right-hand-side variables, one for price impact
and one for bid-ask spread.

The right hand side variable for price impact is order size as a fraction of daily volume.
The regression is non-linear because the coefficient for price impact is predicted to be propor-
tional to a power of daily trading activity W , defined as the product of dollar trading volume
per calendar day and daily standard deviation of returns. Thus, the non-linear coefficient for
the price impact associated with trade size can be written 1

2
λ̄Wα0 . We define an arbitrary

“benchmark stock” as a stock with a price of $40 per share, trading volume of one million
shares per day, and returns standard deviation of 2% per day. Price impact is scaled so
that λ̄ measures in basis points the price impact of trading one percent of the average daily
volume in the benchmark stock. The coefficient for price impact in the non-linear formula
is multiplied by one-half because λ measures marginal price impact, but implementation
shortfall captures average price impact, which is one-half marginal price impact.

The right-hand side variable for bid-ask spread is of the form 1
2
kW−α1 scaled so that k

measures the bid-ask spread for the benchmark stock, measured in basis points. The bid-
ask spread is multiplied by one-half because one-way trade incurs a spread cost of half the
bid-ask spread.

The expected trading costs for an order of X shares, denoted C(X), can thus be written

C(X) =
1

2
λ̄

(
W

(0.02)(40)(106)

)α0 σr

0.02

X

(0.01)V
+

1

2
k̄

(
W

(0.02)(40)(106)

)α1 σr

0.02
,

where W is the product of stock price P , daily trading volume V , and daily returns volatility
σr. In this cost formula, our proposed model of invariant trading structure predicts that
α0 = 1/3 and α1 = −1/3. Our two alternative models make different predictions. The
model of invariant bet size predicts α0 = α1 = 0, while the model of invariant bet frequency
predicts α = 1/2 and α1 = −1/2.

The predictions of all three models are tested using portfolio transitions database. The
model of invariant trading structure predicts transactions costs from price impact and spread
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better than the other two alternatives. The empirical prediction that a one percent increase
in trading activity increases the price impact (in units of daily standard deviation) by one-
third of one percent is almost exactly the point estimate from non-linear regressions based
on implementation shortfall. This provides strong support for the model.

If the exponent parameters are set to the values implied by the model of trading game
invariance, α0 = 1/3 and α1 = −1/3, then the estimated value of half price impact is
λ̄/2 = 2.89, and the estimated formula for the half-spread is k̄/2 = 7.91. The formula
for trading costs above is scaled so that a trade of one percent of average daily volume in
the benchmark stock incurs is estimated to incur a price impact cost of 2.89 basis points
and a bid-ask spread cost of 7.91 basis points. Plugging these estimates into the equation
for C(X) above, we obtain a simple formula for expected trading costs as a function of
observable dollar trading volume, volatility, and price.

Our theoretical model as well as two alternative models imply that expected trade size
should vary with daily trading activity W in a certain way. The predictions concerning trade
size Q̄ can be captured by the formula

Q̄

V
= q̄ × [ W

(0.02)(40)(106)

]a0 .

The model of invariant trading structure predicts that a one percent increase in trading
activity leads to a decrease of 2/3 of one percent in trade size as a fraction of daily volume.
In the context of the above regression, this implies a0 = −2/3. The model of invariant bet
frequency implies a0 = 0 and the model of invariant bet size implies a0 = −1/2.

The predictions of all three models are tested using portfolio transitions database. We
make the identifying assumption that the size of portfolio transition trades is proportional
to the size of liquidity trades in the theoretical model. Estimates of the above regression for
trade size provide strong support for the model of trading game invariance. The coefficient
estimate of −0.63 is remarkably close to the predicted value of −2/3.

Although our model of invariant trading structure is based on the intuition that the
trading day for active stocks is shorter than for inactive stocks, our data does not make
it possible to identify the length of the trading game itself. To identify the length of the
trading day, additional data would be needed, such as data on the half-life of positions taken
by traders. In fact, it is possible that, holding trading volume constant, the length of the
trading day has been changing over time. For example, the increase in algorithmic trading
may be associated with a shorter trading day.

The remainder of this paper describes the theoretical model and empirical test summa-
rized above in more detail.

2 The Model

2.1 Trading Game

We develop an implementation of the continuous-time model of Kyle (1985) for the purpose
of using this model to estimate from portfolio transition data how market impact varies
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cross-sectionally across NYSE and NASDAQ stocks with different levels of expected trading
volume and expected returns volatility.

In the model of Kyle (1985), the informed trader optimally trades against noise traders
and a risk-neutral market maker to exploit his private information. Trading takes place
over an arbitrary period of time called a “trading day.” The model delivers an intuitive
benchmark for the level of equilibrium market depth. For the purpose of using this model
to measure market depth empirically, however, there is no a priori reason to assume that
this “trading day” is literally one calendar day; furthermore, the length of the trading day
may vary cross-sectionally across stocks. Therefore, in our proposed model, we assume that
the trading day is an endogenously determined period of time, denoted H, which might be
a few seconds, a few minutes, a few hours, a few days, a few weeks, a few months, or even
years. We develop an implementation of this model which is based on the intuition that the
trading day H varies cross-sectionally over stocks.

The model of Kyle (1985) has two exogenous parameters: the standard deviation of
fundamental value σV and the standard deviation of noise trading σU . To emphasize the
dependence of these two parameters on a time period h, we shall add a subscript h to the
notation and denote these parameters as σU,h and σV,h respectively. For h = 1, the notation
σU,1 and σV,1 denotes standard deviations per calendar day, while for h = H, the notation
σU,H and σV,H denote standard deviations per trading day.

In terms of σV,H and σU,H , the price impact of trading x shares of stock, denoted by λ×x,
is linear, and is given by

λ = σV,H/σU,H . (1)

Note that λ measures the price impact in dollars per share resulting from trading one share of
stock; thus, λ is measured in units of dollars per share-squared. For the purpose of empirical
tests and transactions cost intuition, it is useful to re-scale λ so that it is measured in basis
points.

The trading activity W : In what follows, we describe how to estimate the cross-sectional
variation of the parameter λ across NASDAQ and NYSE stocks with different levels of daily
trading activity, which we denote as W . We define this measure as the product of the
percentage daily returns volatility σr, the price level P , and the trading volume in shares
per calendar day V . According to this measure, actively traded stocks are stocks with high
volatility and high dollar trading volume per calendar day, while inactively traded stocks are
stocks with low volatility and low dollar trading volume per calendar day.

This measure of trading activity is consistent with the principle of Modigliani-Miller
invariance, i.e. it remains unaffected by stock splits and changes in firm leverage. For
example, after a two-for-one stock split, the stock price P halves but traders will trade
twice as many shares, doubling V . Similarly, if the firm levers up by buying back half its
outstanding shares, then volatility σr will double (assuming no bankruptcy) so traders will
halve the quantities they trade to keep a risk per trade constant, thus halving V . In both
examples, the measure of trading activity W remains the same.

In the model of Kyle (1985), the trading day measures the lifetime of private information.
Our intuition is that active markets are more “efficient” than inactive markets in the sense
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that private information has a shorter lifetime in high volume markets and high volatility
markets. In this sense, market efficiency is measured by H, with lower H representing a
more efficient market. Thus, a higher level of trading activity W tends to reduce H.

The parameter σV,H: The parameter σV,H denotes the standard deviation of private in-
formation observed by the informed trader H periods before it is revealed publicly, measured
in dollars per share. Under the assumption that market makers are risk neutral, the con-
tinuous trading equilibrium has the property that prices follow Brownian motion, with the
standard deviation of price changes over a trading day also equal to σV,H . The martingale
property also implies that the standard deviation of price changes per calendar day, denoted
σV,1, satisfies

σV,H = σV,1H
1/2. (2)

The value of σV,1 can be readily estimated from data on price levels P and percentage daily
returns volatility σr. We have

σV,1 = σrP. (3)

Note that σV,H cannot be identified without identifying the length of the trading day H.
Our intuition is that the length of the trading day H is shorter for actively traded stocks
than for inactively traded stocks. As we shall see below, the length of the trading day H
cannot be statistically identified from portfolio transition data. In other words, while our
formulation of the model is consistent with the intuition that H declines as trading activity
W increases, the parameter H remains un-identified in the econometric implementation in
this paper.

The parameter σU,H: The parameter σU,H denotes the standard deviation of the change
in the inventory of noise traders measured in shares per “trading day,” where noise traders
are assumed to continuously place market orders so that their inventory follows a Brownian
motion process. The martingale property of the inventory of noise traders implies

σU,H = σU,1H
1/2. (4)

The link between the daily standard deviation of noise trading σU,1 and data on trading
volume and portfolio transition trades is not straightforward because theory needs to predict
how both trade frequency and trade size increase cross-sectionally with average daily volume.
Our goal is to make assumptions so that σU,1 becomes identified in such a manner that it
can be estimated from transition data. Even when σU,1 is identified, identification of σU,H

requires identification of H itself. The empirical tests attempt to identify σU,1 from trade
sizes in portfolio transition data and daily volume data, but we do not attempt to identify
σU,H because the parameter H is not identified in our data.

Our intuition is that σU,h is related to trading volume, but the intuition is not straight-
forward because the theory assumes liquidity trading follows Brownian motion but actual
trades are of discrete size. The theoretical Brownian motion process for inventories implies
that trading volume is infinite. For example, if we discretize trading by assuming that noise
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trading occurs at N discrete dates separated by time period ∆t such that N∆t = h, then
expected trading volume over a period of time of length h is

E{
N∑

t=1

|u(tn)− u(tn−1)|} = (2Nh/π)1/2σU,h. (5)

As N becomes large, this measure of trading volume explodes.
For empirical implementation, we believe it is reasonable to approximate the Brownian

motion u(t) with a compound poisson process with trade arrival rate γ1 per calendar day
and distribution of trade sizes the same as some random variable denoted Q̃. Let Q̄ denotes
E{|Q̃|} and let σQ denote the standard deviation of Q̃. We assume

σQ = θQ̄ (6)

for some constant θ. For example, if Q̃ is a normal random variable, then θ =
√

π/2. In
what follows, we allow Q̄ to vary across stocks, but we assume that θ is constant across
stocks. This assumption captures the intuition that while some stocks have large average
trade sizes and some stocks have small average trade sizes, the shape of the distribution of
trade sizes is similar across stocks of different average trade sizes.

Over a trading day of length H, the expected number of trades γH is given by

γH = γ1H. (7)

The quantity σQγ
1/2
1 is the standard deviation of the change in the inventory of liquidity

traders over one calendar day. The change in the inventory of liquidity traders over the
trading day of length H has standard deviation

σU,H = θQ̄γ
1/2
H , (8)

which can equivalently be expressed as

σU,H = θQ̄γ
1/2
1 H1/2. (9)

TAQ Data: The assumption that the inventory of noise traders follows a Brownian motion
process or a compound poisson process implies that changes in the inventory of noise traders
are independently distributed. In actual trading, one independent trading decision often
generates multiple reports of order executions, since trades may be broken down into smaller
pieces for execution and an execution of an order may have several different counter-parties
and prices.

The TAQ database gives a time-stamped record of trades printed for NYSE and NASDAQ
stocks. It is probably not a good idea to estimate γ as the average number of prints in
TAQ data and to estimate Q̄ as the average print size in TAQ data. Suppose that an
independent trade generates on average µ prints. Then the number of trade prints in TAQ
data is γTAQ = µγ per day, and the average trade size is Q̄TAQ = Q̄/µ. If the number
of TAQ prints and the average TAQ print size are used to estimate Q̄γ1/2, the result is
Q̄TAQγ

1/2
TAQ = Q̄γ1/2µ−1/2. This estimate of Q̄γ1/2 is biased by a factor µ−1/2.
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The parameter µ is not observable; moreover, it may vary across stocks. Since µ is
unobservable, using average trade frequency and average trade size from TAQ data does not
make it possible to calibrate the average level of price impact. If µ may vary across stocks in
an unknown manner, it is not possible to use average trade frequency and average trade size
from TAQ data to explain how price impact varies cross-sectionally across stocks. Whether
µ is constant or varies across stocks, as a function of say stock price (based on tick size), is
an interesting issue for further research.

The standard deviation of the change in the inventory of liquidity traders over one cal-
endar day σU,1 could be also estimated from data on daily order imbalances measured as the
difference between buyer initiated and seller initiated trades. Order imbalances are related
to the daily trading volume but depend on its composition reflected in the number of trades,
their size and direction. In theory, only a tiny fraction of trading volume is informed trading,
so noise trading is almost all of observed trading volume. Thus, we expect that σU,1 can
be closely approximated by the standard deviation of order imbalances. Determining order
imbalances from data on trades and quotes is not straightforward because trade direction is
usually unobservable. Whether empirically estimated standard deviation of order imbalances
provides a reasonable alternative for estimation of market impact, is an interesting issue for
future research.

2.2 Theories of Market Microstructure Invariants

The goal of our theoretical modeling is to generate predictions which make it possible to
use trading activity to explain how σU varies cross-sectionally across stocks. The theory
will then provide a mathematical formula for market depth as a function of expected price
volatility, expected average daily volume, and an unknown constant implied by the theory.
Portfolio transition data can be used both to estimate the unknown constant implied by the
theory and to estimate whether the model predicts correctly how market impact varies with
volatility and volume.

The distribution of trade sizes in the portfolio transition data can also be used to test
the models predictions concerning how σU varies across stocks, if the identifying assumption
is made that portfolio transition trades are representative of liquidity trades implied by our
theory.

Plugging equations (2) and (8) into equation (1) yields

λ =
σrP

σQγ
1/2
1

. (10)

This equation can also be written (see equation (6))

λ =
σrP

θQ̄γ
1/2
1

. (11)

We need to define several other variables before formulating our theories of invariants.
Average daily volume (per calendar day), denoted V , is the product of average trade fre-
quency γ1 and average trade size Q̄:

V = γ1Q̄ (12)
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Instead of operating with Q̄ defined in number of shares and therefore affected by splits,
we think of liquidity trades as bets with a given dollar standard deviation over the lifetime
of the bet. This assures that liquidity trades have risk transfer properties immune to stock
splits and leverage changes, thus satisfying the Modigliani-Miller invariance principle. Let
liquidity “bet risk” B1 denote the dollar standard deviation of liquidity trades. Then B1 is
given by

B1 = σrPσQ. (13)

Let BH denote the dollar standard deviation of a liquidity trade over an entire trading day
H. Then BH = B1H

1/2 is given by

BH = σrPσQH1/2. (14)

We next describe our proposed theory of trading structure invariance, as well as two
alternative “naive” theories, one based on bet size invariance and the other based on bet
frequency invariance. Our proposed theory is based on the idea that the trading game itself
is invariant, except for the length of time represented by the trading day over which it is
played. Our naive alternative theories assume either that the number of bets per calendar
day are constant or that the size of liquidity traders’ bets are constant.

Model of Invariant Trading Structure: Our proposed theory of invariant trading struc-
ture assumes that both average bet frequency γH and average bet risk BH are constant per
trading day, not per calendar day. Intuitively, these assumptions imply that the trading
game for one stock is the same as the trading game for another stock, except for the speed
with which the game is played. The differences in the speed with which the game is played
show up as differences in H, with small H corresponding to faster games played in more
active stocks and large H corresponding to slower games played in less active stocks.

The three equations (7), (12), and (14) contain three cross-sectionally varying unobserv-
able parameters Q̄, γ1, H, which we can solve for in terms of three observable quantities
σr, P, V and three unobservable constants BH , γH , θ. The solution expressed in terms of
trading activity W = σrPV is

H = (γHBHθ−1)2/3 ×W−2/3, (15)

γ1 = (γ
1/2
H B−1

H θ)2/3 ×W 2/3, (16)

Q̄ = (γ
1/2
H B−1

H θ)−2/3 ×W−2/3 × V (17)

Our model implies that market depth, denoted λTS and calculated from (11), is given by

λTS = θ−1(γ
1/2
H B−1

H θ)1/3 ×W 1/3 × σrP

V
. (18)

In this equation, the subscript TS indicates that the trading structure is invariant in the sense
that the solution for λTS holds γH and BH constant. Of course, the length of the trading
day itself varies according to equation (15). When price impact is measured in units of price
standard deviation σrP , our theoretical model predicts that the impact of trading a given
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percentage of average daily volume V , λTSV/(σrP ), changes across stocks different trading
activity W . A one percent increase in trading activity leads to an increase of one-third of
one percent in the price impact.

As we shall see below, empirically there seems to be an important fixed component of
trading costs, equivalent to a bid-ask spread. In the model of Kyle (1985), however, there is
no explicit bid-ask spread. The discrete-time version of the model can be modified by making
market makers imperfectly competitive, as in Kyle (1983). This has the effect of creating
extra price impact which would not persist in a dynamic setting, capturing something like
a fixed bid-ask spread. The size of this additional component of transactions is a function
of the competitiveness of the market making process, as measured by the number of market
makers. Since this extra component of the spread is proportional to both price impact λ and
typical trade size σQ, we model the bid-ask spread as φλTSσQ, where φ is a constant across
all stocks. The resulting solution for the bid-ask spread, denoted k, can be written

kTS = 2φ(γ
1/2
H B−1

H θ)−1/3 ×W−1/3 × σrP. (19)

The model also implies that trade size as a share of average daily volume is given by

Q̄TS

V
= (γ

1/2
H B−1

H θ)−2/3 ×W−2/3. (20)

In these equations, the subscript TS indicates that the trading game is invariant in the
sense that the solutions for kTS and Q̄TS/V hold γH and BH constant.

Model of Invariant Bet Frequency: Our first naive theory proposes that as average
daily volume increases, average trade size Q̄ and bet size B1 increase proportionately but
average bet frequency γ remains constant. To convert equation (11) into a prediction based
on average daily volume and volatility, we solve equation (12) for Q̄ and plug the solution
into equation (11), obtaining

λγ = θ−1γ
1/2
1 ×W 0 × σrP

V
. (21)

In this equation, the subscript γ indicates that the solution for λγ holds γ1 constant. This
naive theory is intuitively plausible. It states that when price impact is measured in units
of price standard deviation σrP , then the impact of trading a given percentage of average
daily volume V is constant across stocks of different trading activity W .

This model is common in the literature.
Similar logic for the bid-ask spread implies that the spread is given by

kγ = 2φγ
−1/2
1 ×W 0 × σrP. (22)

Trade size as a share of average daily volume is given by

Q̄γ

V
= γ−1

1 ×W 0. (23)

In these equations, the subscript γ indicates that the solutions for kγ and Q̄γ hold γ1

constant.
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Model of Invariant Bet Size: Our second naive theory proposes that as average daily
volume increases, average trade frequency per day γ1 increases but average bet size of horizon
one day B1 remains constant. To convert equation (11) into a prediction based on average
daily volume and volatility, we solve equation (12) for γ1, plug the solution into equation
(11), and use equation (13) obtaining

λB = θ−1(B−1
1 θ)1/2 ×W 1/2 × σrP

V
. (24)

In this equation, the subscript B indicates that the solution for λB holds B1 constant.
Our logic from above implies that the bid-ask spread is given by

kB = 2φ(θB−1
1 )−1/2 ×W−1/2 × σrP. (25)

Trade size a s a share of average daily volume is given by

Q̄B

V
= (θB−1

1 )−1 ×W−1. (26)

In these equations, the subscript B indicates that the solutions for kB and Q̄B hold B1

constant.

Model Formulation for Testing: In order to make estimated parameters have intuitive
meaning, we define an arbitrary “benchmark stock” as a stock with price of $40 per share,
trading volume of one million shares per day, and volatility of 2% per day. We also re-scale
the non-identified constants so that both the constant for price impact and the constant
for bid-ask spread are expressed as trading costs in basis points for trading one percent of
average daily volume (10,000 shares) for the benchmark stock. We denote these constants,
λ̄ and k̄, respectively.

Let X denote the number of shares traded. Let C(X) denote the expected cost of trading
X shares of some stock, measured in basis points. We write C(X) as follows:

C(X) =
1

2
λ̄× σr

0.02

[ W

(0.02)(40)(106)

]α0 × X

(0.01)V
+

1

2
k̄× σr

0.02

[ W

(0.02)(40)(106)

]α1 . (27)

In this equation the first term on the right-hand-side is the component of transactions cost
due to market impact (which, if scaled to be a faction of volatility, is proportional to X
given trading activity W ), and the second term is the component of transactions costs due
to bid-ask spread (which, if scaled to be a fraction of volatility, is constant given market
activity W ). The quantity (0.02)(40)(106) in the denominator of W represents our measure
of trading activity for the benchmark stock, i.e., it is the product of the 2 percent daily
volatility, benchmark $40 stock price, and one million share trading volume. Thus, the
ratio of W to (0.02)(40)(106) is one for the benchmark stock. Similarly, the ratio of X to
(0.01)V is one when the trade size is one percent of average daily volume. As a result of
these scaling conventions, the right hand side is scaled so that λ̄ measures in basis points the
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market impact of trading one percent of average daily volume in the benchmark stock, and
k̄ measures in basis points the bid-ask spread. To be precise, if a trade X, representing one
percent of average daily volume in the benchmark stock, incurs 8 basis points of expected
costs due to price impact and 3 basis points of expected costs due to spread, then λ/2 = 8
and k/2 = 3. The total transactions cost C(X) adds up to 11 basis points. Since the trade
is for 10,000 shares of a $40 stock, the 11 basis point transactions cost represents 4.4 cents
per share, or $440 for all 10,000 shares.

In defining the expected transactions cost C(X), both the price impact parameter λ and
the bid-ask spread k are divided by 2. Costs due to price impact are divided by two because
the transition manager is assumed to walk up or down the demand curve, generating an
average cost which is half the marginal cost represented by the price impact parameter λ.
Costs due to bid-ask spread are divided by 2 because the bid-ask spread represents a cost
for a two-sided trade involving both a buy or a sell, while the one-sided trade X is either a
buy or a sell, but not both.

Trade size as a fraction of average daily volume can be expressed

Q̄

V
= q̄ × [ W

(0.02)(40)(106)

]α2 . (28)

Using the above formulation, our proposed model of invariant trading structure implies

α0 = 1/3, α1 = −1/3, α2 = −2/3. (29)

Our naive model of invariant bet frequency implies

α0 = 0, α1 = 0, α2 = 0. (30)

Our naive model of invariant bet size implies

α0 = 1/2, α1 = −1/2, α2 = −1. (31)

3 Data

3.1 Portfolio Transition Data

The empirical implications of each of the three proposed theoretical models are tested using
a proprietary database of portfolio transitions from a leading vendor of portfolio transition
services. During the evaluation period, this portfolio transition vendor supervised more
than 30 percent of outsourced U.S. portfolio transitions. The sample includes about 2,680
portfolio transitions executed over the period from 2001 to 2005. This database is derived
from the post-transition reports prepared by transition managers for their U.S. clients. This
is the same database used by Obizhaeva (2009a, 2009b).

The portfolio transitions database contains the data on individual transactions. Each
observation has the following fields: a trade date, an identifier of a portfolio transition, its
starting and ending dates, the name of the stock traded, the number of shares traded, buy or
sell indicator, the average execution price, the pre-transition benchmark price, commissions,
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and fees. The data is given on separate lines for three trading venues: internal crossing net-
works, external crossing networks, and open market transactions. It is also given separately
for each of trading days in a trading package. Old and new portfolios usually overlap. For
example, both portfolios may have positions in some large and therefore widely held securi-
ties. Instead of first selling overlapping holdings from legacy portfolios and then acquiring
them into target portfolios, these positions are transferred from one account to another one
as “in-kind” transactions which do not incur transactions costs. Thus, if the old portfolio
had 10,000 shares of IBM and the new portfolio had 4,000 shares of IBM in portfolio transi-
tion A, then 4,000 shares are transferred in-kind and recorded as in-kind transactions. The
balance of 6,000 shares will be sold. If the transition manager sells these shares in two days
with open market trades on the first day and both external crosses and open market trades
on the second day, then there will be 4 lines in the database corresponding to IBM stock
in a given portfolio transition: a 4,000 share in-kind transaction, an open market trade the
first day, an open market trade the second day, and an external cross the second day. Our
empirical results do not depend at all on in-kind transfers. Instead, our empirical results are
based on open market trades, external crosses, and internal crosses.

The original data is further grouped at order level. For example, aforementioned trans-
actions are combined into one line corresponding to the order for IBM stock in portfolio
transition A. This observation contains the name of the stock, the pre-transition benchmark
price, buy or sell indicator, the number of shares executed over different trading venues, the
average execution price for each of them, as well as the data on portfolio transition such as
its beginning and ending dates.

The portfolio transition data are then matched with the CRSP to get data on stock
prices, returns, and volume. Only common stocks (CRSP share codes of 10 and 11) listed
on the New York Stock Exchange (NYSE), the American Stock Exchange (Amex), and
NASDAQ in the period of January 2001 through December 2005 are included in the sample.
ADRs, REITS, and closed-end funds were excluded. Also excluded were stocks with missing
CRSP information necessary to construct variables used for empirical tests, low-priced stocks
defined as stocks with prices less than 5 dollars, and transition observations which appeared
to contain typographical errors and obvious inaccuracies. Since it was unclear from the data
whether adjustments for dividends and stock splits were made in a consistent manner across
all transitions, all observations with non-zero payouts during the first week following the
starting date of portfolio transitions were excluded from statistical tests.

After exclusions, the number of daily observations was 441,865 orders (204,780 buy orders
and 237,085 sell orders).

Portfolio Transitions and Implementation Shortfall The fundamental problem with
using implementation shortfall to measure transactions costs is that the actual quantities
traded may not be known at the start date due to order cancelations or changes in trading
intentions which occur after the start date and affect actual quantities traded. Statistically,
the resulting selection bias problem can lead to significant underestimation of transactions
costs if orders tend to be either canceled when prices move in an unfavorable direction or
increased when prices move in a favorable direction. Implementation shortfall can also lead
to biased estimates of transactions costs if the trading decisions are based on short-lived
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private information which is incorporated into prices during the period when the trades
occur. Portfolio transition data has several important properties which make it particularly
advantageous for estimating transactions costs using implementation shortfall.

For each stock in a portfolio transition, the quantities to be traded are known precisely at
a specific time before the trades are actually executed. The composition of legacy and target
portfolios is fixed in the mandates that transition managers receive the night before portfolio
transitions begin. These managers then execute orders regardless of the unfolding price
dynamics. This makes it reasonable to assume that the initial orders or trading intentions
are exactly equal to the quantities subsequently traded. Thus, portfolio transition data
tends not to be affected by the selection bias problem that would affect databases of trades
where the quantities traded change in a manner correlated with price changes between the
time orders are placed and the time they are executed, canceled, or increased. For portfolio
transitions, it is reasonable to assume that there are no order cancelations or increases.

The timing of portfolio transitions is likely determined by a schedule of investment com-
mittee meetings of institutional sponsors, who make decisions to undertake transitions. The
investment committee meets regularly on schedules set well in advance of the meetings.
Among the issues boards discuss are the replacement of fund managers and the changes of
asset mix. If a decision is made to replace a portfolio manager, then a portfolio transition
is arranged shortly after the meeting. These decisions are unlikely to be correlated with
short-term price dynamics of individual securities during the period of the transition. This
makes it possible to obtain estimates of price impact and spread that are not affected by
short-lived information likely to be incorporated into prices during the period the transition
trades are executed.

These properties of portfolio transitions are not often shared by other data. Consider
a database built up from trades by a mutual fund, a hedge fund, or a proprietary trading
desk at an investment bank. In such samples, the trading intentions of traders may not be
recorded in the database. Furthermore, trading intentions before traders begin trading may
not coincide with realized trades because the trader changes his mind as market conditions
change. Traders often condition their trading strategies on prices by using limit orders or by
canceling parts of their orders, thus hard-wiring into their strategies a selection bias problem
for using such data to estimate transactions costs. The trading intentions themselves can
be significantly affected by overall price dynamics, e.g., traders may be following trends
or playing contrarian strategies. This dependence of actually traded quantities on prices,
consequently, makes it impossible to use implementation shortfall in a meaningful way to
estimate market depth and bid-ask spreads from data on trades only.

Portfolio Transitions as Liquidity Trades The three proposed models deliver very
different predictions about how the sizes of liquidity trades vary across stocks with different
levels of trading activity. To test these different predictions empirically, it is necessary to
identify the theoretical concept of a liquidity trade Q with actual data. Who are the liquidity
traders in the stock market? One partial answer to this question is that professional equity
managers are representative of liquidity traders. Although these asset managers may try to
trade on the basis of private information they work hard to collect, the difficulty professional
asset managers have in beating the market suggests that many of their trades do not contain
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much private information, and thus may be considered liquidity trades in the context of
models like Kyle (1985).

If the portfolios put together by professional asset managers result from liquidity trades,
then the differences in these portfolios represent the results of numerous liquidity trades in
many different stocks. Therefore, we make the identifying assumption that the differences
in professionally managed portfolios, while not exactly liquidity trades themselves, vary in
a manner proportional to the size of liquidity trades.

Portfolio transitions represent transactions in the differences between portfolios of two
different professional asset managers. Note that the quantities traded often do not exactly
match the positions in legacy and target portfolios. When legacy and target portfolios over-
lap, the overlapping positions are transferred from one account to another one as “in-kind”
transactions. These in-kind transactions are transfers of positions, not trades. Therefore,
these in-kind transfers are excluded from the empirical tests in this paper. As a result, the
trades used in the empirical tests below represent differences in portfolio across two different
asset managers.

Our notation makes a distinction between the theoretical concept of a liquidity trade,
denoted Q, and the individual trades made by transition managers. To emphasize the
distinction, we use the notation X̄i to represent the number of shares transacted in a given
security during given a portfolio transition. The notation X̄i represents the actual buy
orders for target portfolios and the actual sell orders for legacy portfolios, excluding shares
transferred in-kind. The index i ranges across 441,685 stock-transition pairs.

We focus on transactions rather than positions because our models are designed to explain
the cross-sectional differences in the execution data. The three models establish a link
between trading activity (the product of volume, price, and volatility) and trading costs
with trade sizes. The models are not meant to explain the absolute levels of holdings.

3.2 Prices,Volume and Volatility

Our three models use trading activity to explain how transactions costs and expected trade
size vary across stocks. Trading activity is the product of trading volume (in shares), share
price (in dollars), and volatility (percentage standard deviation of daily returns). To measure
implementation shortfall, a pre-trade benchmark price is needed. The components of trading
activity and the pre-trade benchmark are calculated from CRSP data.

As a pre-trade price, denoted P0,i, we use the closing price of the corresponding security
on the evening before the portfolio transition trades begin. A portfolio transition involves
trades in numerous stocks. Typically, many of the stocks are traded on the first day of the
transition. For each stock in the transition, the benchmark price P0,i is the price before the
first trade is made in any of the stocks, even if a particular stock itself is not traded on the
first day.

As expected trading volume during portfolio transitions, denoted Vi, we use the average
daily trading volume (in the number of shares) of the corresponding security in the pre-
transition month.

We estimate the expected volatility of daily returns, denoted σr,i, for ith trade using past
daily CRSP returns for the stock involved in the ith trade. We use two different estimates
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of volatility, a simple estimate equal to average daily volatility from the past month and a
more complicated estimate from an ARIMA model.

For each security, we first calculate the monthly standard deviation of returns from daily
CRSP returns data. Let ri,t,k denote the CRSP return for the kth day of month t for stock
involved in the ith trade. Letting Ni,t denote the number of CRSP trading days in month t,
the standard deviation for month t for stock in ith trade, denoted σm

i,t, is

σm
i,t =

[ Ni,t∑

k=1

r2
i,t,k

]1/2
(32)

We do not de-mean the returns data since the mean return in a month is very small relative to
the standard deviation. We also do not adjust the estimates for autocorrelation of returns by
adding a cross-product of adjacent returns, since this might result in the negative estimates
of volatility for some stocks.

One simple estimate of daily volatility for stock in trade i for month t, denoted σh
i,t, is

the monthly standard deviation converted to daily units:

σ̂h
i,t =

1√
Ni,t

σm
i,t. (33)

We also estimate an ARIMA model to obtain another forecast of the daily return standard
deviations for each stock j and month t. To reduce effects from the positive skewness of
the standard deviation estimates, we use a logarithmic transformation for the volatility. We
estimate a third-order moving average process for the changes in ln σm

i,t over the whole sample
from 2001 to 2005:

(1− L) ln σm
i,t = Θ0 + (1−Θ1L−Θ2L

2 −Θ3L
3)ut (34)

The conditional forecast for the volatility of daily returns is

σ̂e
i,t =

1√
Ni,t

exp

[
ln σm

i,t +
1

2
V̂ (u)

]
(35)

where V̂ (u) is the variance of the prediction errors of the ARIMA model.
In the empirical tests below, both σ̂e

i,t−1 and σ̂h
i,t−1 are used as proxies for σr,i in the ith

transition trade. It is possible that using these proxies in our regressions may introduce
an error-in-variables problem due to the volatility estimates themselves having errors. The
empirical results are quantitatively similar for both proxies. Thus, only results for the
estimates based on σ̂e

i,t−1 are reported. We use the pre-transition variables known before
portfolio transition trades in order to avoid any spurious effects from using contemporaneous
variables, except to the extent that the ARIMA model uses in-sample data to estimate model
parameters.

3.3 Descriptive Statistics

Table 1 Table 1 reports statistical characteristics of both securities traded and individual
transition trades. Statistics are calculated for all securities in aggregate as well as separately
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for ten groups sorted by average daily dollar volume. Instead of dividing the securities into
ten deciles with the same number of securities, volume break points are set at the 30th, 50th,
60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of trading volume for the universe
of stocks listed on the NYSE with CRSP share codes of 10 and 11. Group 1 contains stocks
in the bottom 30th percentile by dollar trading volume. Group 10 contains stocks in the
top 5th percentile. Smaller percentiles for the more active stocks make it possible to focus
on the stock which are most important economically. For each month, the thresholds are
recalculated and the stocks are reshuffled across bins.

Panel A of Table 1 reports statistical properties of the securities. There is a column for
each of the ten groupings as well as a column which reports aggregate statistics. For the
entire sample of stock , the median volume is $19.99 million per day, ranging from $1.22
million for the lowest volume decile to $212.55 million for the highest volume decile. Since
the average dollar volume ranges over more than two orders of magnitude, this variation in
the data should create statistical power helpful in determining how transactions costs and
trade size vary with dollar volume. Panel A reports that the median volatility for all stocks
is a standard deviation in returns of 1.85 percent per day. Volatility tends to be slightly
higher in the lower volume deciles than the higher ones. The volatility for the lowest volume
decile is 2.04 percent, and it is 1.76 percent for the highest volume group.

Panel A reports that the median bid-ask spread, a quoted spread obtained from the
transition database, is 11.54 basis points. Its mean is 23.67 basis points. From lowest volume
grouping to highest volume grouping, the median bid-ask spread declines monotonically
across groups from 38.16 basis points in the lowest volume group to 4.83 basis points in
the highest volume group. This monotonic decline of almost one order of magnitude in
reported bid-ask spreads is so large that significant statistical power should be generated
to differentiate the different predictions of the models for bid-ask spreads. This, of course,
assumes that the spreads reported in Panel A, which are quoted spreads not estimated from
implementation shortfall, also show up in statistical estimates based on implementation
shortfall.

For example, our proposed model of invariant trading structure predicts that spreads
should decrease one-third of one percent for each increase of one percent in trading volume,
holding volatility constant. From lowest to highest quintile, volume increases by a factor of
212.55/1.22 = 174.22. A back-of-the envelope prediction for the decrease in spreads across
these deciles groups is the one-third power of the increase in volume, i.e., 174.221/3 = 5.58.
The actual decrease in spreads is a factor of 38.16/4.83 = 7.90. While this back-of-the-
envelope calculation suggests that spreads decrease more than the model of invariant trading
structure predicts, the difference between 5.58 and 7.90 is small enough to warrant further
statistical investigation. It is possible that effective spreads estimated from implementation
shortfall are different from quoted spreads, and thus results based on implementation shortfall
will be different.

Panel B of Table 1 reports properties of daily trades in the portfolio transition data.
The mean portfolio trade is 3.90 percent of average daily volume of the stock traded. The
means decline monotonically across the ten volume groups from 15.64 percent in the smallest
group to 0.49 percent in the largest. The median portfolio transitions trade is 0.56 percent of
average daily volume. The median also declines monotonically across the ten volume groups,
from 3.48 percent in the smallest to 0.14 percent in the largest. The fact that the medians
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are much smaller than the means indicates that the order size is skewed to the right. This is
to be expected, since the order size is a non-negative number, and there may be some very
small trades from highly diversified portfolios involving smaller transitions as well as very
large trades from less diversified portfolios involving larger transitions.

The significant variation in mean order size as a fraction of average daily volume across
dollar volume deciles is expected to have several important effects on statistical estimates.

On the one hand, the larger order size in the lower deciles generates more statistical
power for using implementation shortfall to estimate market impact in the lower deciles
than in the higher ones, holding constant market impact of an order of constant percentage
of trading volume. On the other hand, our proposed model of invariant trading structure
predicts that price impact increases as volume increases, holding order size as a percentage
of volume constant. Of the other two models, one predicts no change in impact while the
other predicts an even larger increase. Since the three proposed models each make very
different predictions concerning how market impact varies with trading activity, all three
models will try to extrapolate the statistical power from one volume group to another, but
the extrapolation will operate differently for the different models.

Second, the variation in the order size across volume groups makes it possible to test the
predictions of the three models concerning how the size of trades varies across stock with
different trading activity levels. From highest to lowest group, median daily volume increases
by a factor of 212.55/1.22 = 174.22 From lowest group to highest group, median trade size
decreases as a fraction of average volume by a factor of 3.48/0.14 = 24.86. According to
our proposed model of invariant trading structure, average trade size as a percent of volume
should decrease by two-thirds of one percent for every one percent increase in volume, holding
volatility constant. As a back-of-the envelope calculation, this implies that the decrease in
trade size from lowest to highest quintile should be the two-thirds power of the increase in
dollar volume, i.e., the factor 24.86 should be 1742/3 = 31.2. While the back-of-the-envelope
calculation of 31.2 does not exactly match the prediction of 24.86, the numbers are close
enough to suggest that further statistical investigation is warranted.

4 Empirical Results

All three proposed models offer distinctively different predictions concerning the cross-
sectional variation of price impact, effective spread, and order sizes. Portfolio transition
data are used to test these different predictions. Implementation shortfall is used to esti-
mates price impact and effective spread parameters. Order size data is used to test model
implications for order size.

4.1 Estimates Based on Implementation Shortfall

The transactions cost formula C(X) in equation (27) calculates transactions costs in terms
of four parameters. For a trade in the benchmark stock equal to one percent of average
daily volume, the two parameters λ̄ and k̄ represent the market impact and effective spread
in basis points. The two remaining parameters, the exponents α0 and α1, describe how the
models extrapolate market impact and spread costs across stocks with different levels of
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activity. Since the three models make dramatically different predictions concerning α0 and
α1, it should be possible to test the models by estimating all four parameters.

We make the identifying assumption that, in a correctly specified model, the imple-
mentation shortfall from the portfolio transition database is an unbiased estimate of the
transactions cost C(X). We can think of implementation shortfall as representing the sum
of two components: the transactions costs incurred as a result of market impact and effec-
tive spread, plus the effect of random price changes between the time the benchmark price
is set and the trades are executed. Since implementation shortfall is an unbiased estimate of
transactions costs, we can think of the random price changes as an error in a regression. This
suggests an estimation strategy of adding an error term to C(X), then estimating the four
parameters using a non-linear regression. The regression is non-linear because the exponent
parameters α0 and α1 appear in C(X) in a non-linear manner.

To implement this strategy, two adjustments are made, one based on statistics and one
based on economics.

First, since the errors in the regression are likely to be proportional in size to the price
volatility of the stock, both the right-hand-side and left-hand-side variables are divided by
price volatility σr,i. This has the effect of making a crude correction for a heteroscedasticity
problem which would otherwise occur. Furthermore, the imperfectly observed volatility σr,i

is replaced by its estimate σ̂e
i,t−1. To the extent that σ̂e

i,t−1 is an imperfect estimate of σr,i,
the problem of bias associated with errors in variables is reduced by placing this variable on
the right-hand-side.

Second, some of the portfolio transitions are the result of internal crosses. In an internal
cross, one of the transition manager’s customers buys from the other at some price. In fact,
it is possible that both the buyer and the seller represent different portfolio transitions, but
internal crosses with other types of customers also occur. Since the buyer and the seller pay
the same price, it seems reasonable to assume that there is no effective spread incurred for
internal crosses. Concerning external crosses and open market transactions, is is assumed
that the transition manager optimally chooses the percentages of the orders not crossed
internally to execute via open market transactions and external crosses. To the extent that
external crosses are cheaper than open market transactions, this is expected to show up as
a larger percentage of the orders being executed with external crosses than open market
transactions, not as lower market impact and spread costs on external crosses. The fact that
both external crosses and open market transactions are used in a significant proportion of
orders suggests that there are significant pools of liquidity in both crossing networks and
open markets, i.e., neither dominates the other. It is thus assumed that there is price impact
associated with internal crosses, of the same magnitude as for external crosses and open
market trades.

Table 2. Let Xi denote the number of shares in the ith order. Let Xomt,i and Xec,i de-
note the number of these shares executed in open market transactions and external crosses,
respectively. Then the number shares crossed internally, denoted Xic,i is by definition given
by Xic,i = Xi −Xomt,i −Xec,i.

With these two adjustments, the four parameters λ̄, k̄, α0, α1 are estimated in the follow-
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ing non-linear regression:

(Pex,i − P0,i)

P0,i

104 (0.02)

σr,i

=
1

2
λ̄
[Wi

W∗

]α0 Xi

(0.01)Vi

+
1

2
k̄
(Xomt,i + Xec,i)

Xi

[Wi

W∗

]α1

+ ε̃ (36)

In this non-linear regression, the observed data items have subscript i: Pex,i, P0,i, Wi, Xi,
Vi, σe

r,i. Since P0,i denotes the benchmark price established the night before the transition
begins and Pex,i denotes the average execution price, the expression (104)(Pex,i − P0,i)/P0,1

is the implementation shortfall measured in basis points. The term (0.02)/σr,i adjusts for
heteroscedasticity. The trading activity variable Wi is defined as the product of benchmark
price P0,i, last month’s trading activity Vi, and estimated volatility σr,i:

Wi = P0,iViσr,i. (37)

The scaling constant W∗ = (40)(106)(0.02) corresponds to Wi for the hypothetical benchmark
stock with price $40 per share, trading volume of one million shares per day, and volatility of
0.02. The term Xi/(0.02)Vi is the size of the trade relative to average volume, scaled so that
the size is one for a trade of one percent of average daily volume. The variables are scaled
so that λ̄/2 estimates in basis points the market impact costs of a trade of one percent of
average daily volume, and k̄/2 estimates in basis points the effective spread cost.

The results of the non-linear regression are reported in Table 2. The first column of
the table reports the results of a non-linear regression pooling all the data. The four other
columns in the table report results for four separate regressions in which the four parameters
are estimated separately for NYSE Buys, NYSE Sells, NASDAQ Buys, and NASDAQ Sells.

To adjust standard errors for positive contemporaneous correlation in returns, the 441,865
observations are pooled by week over the 2001-2005 into 4,389 cluster across 17 industry
categories using the pooling option on Stata.

Recall that the three models make very different predictions concerning α0 and α1. The
model of trading game invariance predicts α0 = 1/3 and α1 = −1/3. The model of invariant
trade frequency predicts α0 = 0 and α1 = 0. The model of invariant order size predicts
α0 = 1/2 and α1 = −1/2.

The estimates for the parameters α0 and α1 are strongly supportive of the model of
invariant trdaing structure over the alternatives. The estimate for α0 is α̂0 = 0.33 (t =
13.37). This point estimate is almost exactly equal to the value of 1/3 predicted by the
model of invariant trading structure. Furthermore, the standard error 0.33/13.37 = 0.025 is
sufficiently small that predictions of the other two models, α0 = 0.50 and α0 = 0 are soundly
rejected.

The estimate for α1 is α̂1 = −0.39 (t = −15.73). This estimate is somewhat more negative
than the value α = −1/3 predicted by the model of trading game invariance, by a margin
of slightly more than two standard errors. The result suggests that effective bid-ask spreads
decrease faster than the model predicts as trading activity increases. This is consistent with
the back-of-the-envelope calculation from Table 1 suggesting that quoted bid-ask spreads
decline faster than the model predicts as activity increases.

A Stata F-test for the joint hypothesis α0 = 1/3, α1 = −1/3 is rejected with a borderline
p-value of 0.0742. Similar F-tests soundly reject the other two models with p-values less
than 0.0001.
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The estimate for half-price-impact is λ̂/2 = 2.85 (t = 11.60), and the estimate for half-
spread is k̂/2 = 6.31 (t = 6.31). These estimates imply that a hypothetical trade in the
benchmark stock equal to one percent of daily volume incurs a market impact cost of 2.85
basis points and a spread cost of 6.31 basis points. The total cost of 9.16 basis points
represents 3.66 cents per share for a $40 stock, or $366 for the hypothetical 10,000 share
benchmark block.

The estimate for the bid-ask spread k is double the point estimate for the half-spread k/2,
i.e. 12.62 basis points. This estimate is somewhat higher than the median spread of 8.09
basis points reported in Table 1 for volume group 7, to which the hypothetical benchmark
stock would belong. It is, however, similar to its mean value of 12.14 basis points.

Similarly, the estimate for λ is double the estimate of 2.85 for λ/2, i.e., it is 5.70. This
means that a trade of 10,000 shares, one percent of average daily volume in the benchmark
stock, increases the $40 price by 5.70 basis points, or 2.28 cents per share. The model implies
that this increase persists over time, but it is not permanent, since the persistent effects of
liquidity trades eventually dissipate due to informed trading driving the price back towards
its long-term fundamental value. In the model, how fast this happens depends on the length
of the trading day. In an active stock with a short trading day, markets are very resilient
and the effects of noise trading are not likely to persist for long.

When the four parameters are estimated separately for NYSE Buys, NYSE Sell, NAS-
DAQ Buys, and NASDAQ Sells, the results are also supportive of the model of invariant
trading structures. In three of the four regressions with the exception of NYSE Buys, the
estimated coefficient for α0 is close to the predicted value of 1/3, but α1 is more negative
than predicted. In these three cases, F-tests either fail to reject or narrowly reject the trading
structure invariance predictions α0 = 1/3, α1 = −1/3, with p-values of 0.1057, 0.9114, and
0.0443.

The disaggregated results for NYSE Buys, NYSE Sells, NASDAQ Buys, and NASDAQ
Sells also suggest that buying is more expensive than selling. For NYSE and NASDAQ, both
estimate impact costs and estimated spread costs are larger for buy orders than for sell orders
by margins that are economically meaningful if not statistically significant. For example,
the effective spread for NASDAQ buys is estimated to be more than twice as large as the
effective spread for NASDAQ sells. This is consistent with the idea that the market believes
buy orders contain more information than sell orders. See Obizhaeva (2009a) for further
discussion of this idea. It is also consistent with the possibility that closing benchmark
prices are biased towards the bid side of the market.

Table 3. Table 3 reports the results of a non-linear regression with a more general speci-
fication than Table 2. Three separate market impact parameters and three separate spread
parameters are estimated for open market trades, external crosses, and internal crosses. In
addition, the exponents on the three components of market activity (volume, price, volatility)
are allowed to differ. The regression estimated is
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(Pex,i − P0,i)
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σr,i

=
1

2
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i

(0.02)(40)(106)
+ ε̃

Because the exponents on the W -terms are set to be 1/3 and −1/3, the model of trading
game invariance predicts

β1 = β2 = β3 = β4 = β5 = β6 = 0. (39)

The model of invariant bet frequency predicts

β1 = β2 = β3 = −1/3, β4 = β5 = β6 = 1/3. (40)

The model of invariant bet size predicts

β1 = β2 = β3 = 1/6, β4 = β5 = β6 = −1/6. (41)

The first column of the table presents the results for all buys and sells. The remaining
four columns present results for separate regressions for NYSE Buys, NYSE Sells, NASDAQ
Buys, and NASDAQ Sells.

F-tests of the above restrictions for the model of invariant bet frequency (F = 78.25) and
the model of invariant bet size (F = 13.71) are rejected very strongly (p << 0.0001).

An F-test of the restrictions in equation (39) is rejected less strongly, with F = 4.55,
p = 0.0001. From the table, it appears that one reason for this rejection is that bid-ask
spreads decrease faster than predicted as trading volume increases: The estimate of β6 is
−0.09(t = 3.46). But the bid-ask spread does not decrease as fast as predicted when stock
price increases, since β5 is estimated as 0.18(t = 1.83). The rapid decrease with trading
volume is consistent with the results from Table 1. Another reason for the rejection is that
the estimates of β1 and β2 are quite negative. The estimate of β1 is −0.31(t = −1.61), and
the estimate of β2 is −0.22(t = −2.26). The estimate of β3 is close to zero. These results say
that market impact behaves as predicted by the model of invariant trading structure when
shares traded increase, but market decreases relative to what is predicted when volatility
and stock price increase.

The rejection of the model of invariant trading structure seems to be related to the fact
that the exponents for volatility and price behave differently from the coefficients for share
volume. But the coefficients for volatility behave similarly to the coefficients for price. This
suggests that the rejection might depend in a subtle manner on tick effects. When volatility
is high and stock price is high, the tick size is small relative to a typical day’s trading range.

Despite increasing the number of estimated parameters from four to twelve, the adjusted
R2 in the aggregate regression increases only from 0.0123 to 0.0129.
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The estimates for the three half spread parameters are ˆkomt/2 = 6.56,, k̂ec/2 = 6.26,, and
k̂ic/2 = 0.25,. These results support the assumption that there is no spread associated with
internal crosses, and the spread associated with external crosses is the same as the spread
associated with open market trades.

The point estimates for market impact parameters are ˆλomt/2 = 4.49, λ̂ec/2 = 2.17, and
λ̂ic/2 = 2.41. These results support the assumption that internal crosses do have market
impact. The results, however, suggest that the impact for open market trades may be greater
than the impact for internal and external crosses.

Table 4. Table 4 presents estimates for equation (36), with the parameters α0 and α1

restricted to be as predicted in the model of invariant trading structure, the model of invariant
bet frequency, and the model of invariant bet size, respectively. For each of the three models,
only two parameters are estimated: half-price-impact λ/2 and half spread k/2.

For the model of invariant trading structure, the reduction from four parameters to two
parameters reduces the adjusted R2 from 0.0123 to 0.0122, consistent with very mild rejection
of the model reported in Table 2. Furthermore, the parameter estimates for half-price impact
λ/2 and half spread k/2 do not change much.

For the model of invariant bet frequency, the reduction from four parameters to two pa-
rameters reduces the R2 greatly, from 0.0123 to 0.0075, consistent with very strong rejection
of the model. Furthermore, the point estimate for half price impact drops enormously, from
λ̂/2 = 2.85 to λ̂/2 = 0.3788. This is offset by a large increase in the estimated half spread,
from k̂/2 = 6.31 to k̂/2 = 15.29. The model of invariant bet frequency is intuitively ap-
pealing since it suggests that the price impact of trading a given percentage of average daily
volume is constant as a fraction of daily returns standard deviation, regardless of the level
of trading activity in the stock. The strong rejection of this model, combined with the large
changes in estimated coefficients, suggests that this model leads to the misleading empirical
result that price impact is less important than it really is, and bid-ask spreads are more
important than they really are. Therefore, one of the justifications for the model of invariant
trading structure is that it allows for the importance of price impact to be estimated more
accurately from a better specified model.

For the model of invariant bet size, the reduction from four parameters to two parameters
reduces the adjusted R2 from 0.0123 to 0.0110, consistent with a strong rejection of this
model. The point estimates for half price impact and half spread change in the opposite
direction, with the point estimate for price impact increasing from 2.85 to 3.92 and the point
estimate for half spread decreasing from 6.31 to 3.4656.

In all three specifications, separate regressions for NYSE Buys, NYSE Sells, NASDAQ
Buys, and NASDAQ Sells continue to suggest that buying is more expensive than selling or
that benchmark prices are biased towards the bid side of the market.

Figure 1 Figure 1 presents the results of three linear regressions, one for each of the three
proposed models. The regression represents a modification of equation 36 in two ways. First,
similarly to Table 4, for each of the three models, the values of α0 and α1 are fixed at the
levels predicted by the models. Second, a dummy variable for each of the ten volume groups
is associated with a half-price impact parameter and a half spread parameter for each group.
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The result is a regression with twenty coefficients, two coefficients for each volume bin,
with one coefficient for half price impact and one coefficient for half spread. The regression
equation can be written

(Pex,i/P0,i − 1)/(σr,i/0.02) = (42)(
10∑

j=1

Ij,i × 1/2λj

)
×

[Wi

W∗

]α0 Xi

(0.01)Vi

+

(
10∑

j=1

Ij,i × 1/2kj

)
× (Xomt,i + Xec,i)

Xi

[Wi

W∗

]α1

+ ε̃

In the figure, for each of the three models, there is a graph of the estimates of the ten
dummy variables for half price impact λ/2 and a graph of the estimates of the ten dummy
variables for half-spread k/2. Each graph also show 95% confidence intervals around the
point estimates, as well as a horizontal line showing the point estimate from Table 4. If the
model is well specified, then the ten dummy variables should be the same and should equal
the point estimates from Table 4.

For the model of invariant trading structure, all of the point estimates lie either within the
95% confidence bands or slightly outside the 95% confidence bands, consistent with the mild
rejection of the model discussed above. For the smallest trade group, the estimate for the
half-spread has a very small confidence band, which anchors the point estimate close to the
two-parameter model. For the smallest trade group, the estimate for half price impact also
has a relatively small confidence band, which anchors it close to the two-parameter model
as well. For the two largest groups, the half-spread estimates are somewhat larger than the
unconstrained estimate and the half price impact estimates are somewhat smaller. The data
seem to be saying that for the very largest stocks, there is a somewhat bigger spread and
somewhat less price impact than implied by the model of invariant trading structure. For
trade groups 2-6, the data are saying the opposite, i.e., that the half spread should be smaller
and the half price impact larger than in the two parameter model.

Similar graphs for the dummy variables in the model of trade frequency invariance are
presented in the middle of the figure. This model says predicts that effective bid-ask spreads
do not decline as trading activity increases. It is clear from the figure, however, that the
estimated effective bid-ask spreads for the smallest volume group are far greater than the
estimated bid-ask spreads for the other nine groups. This places the effective spread for the
smallest group far above the point estimate from the two parameter model, and very far
outside the 95% confidence bands. For the price impact parameters, the model generates
a great deal of power from the smallest volume group because the trade size tends to be
larger. The point estimate of half price impact for the smallest volume group is therefore
very close to the point estimate from the two parameter model. But this forces the dummy
variables for half price impact for the nine large volume groups to lie far above the point
estimate from the two parameter model. If the smallest volume group were eliminated from
consideration, it appears from the figure that the model of trade frequency invariance would
perform almost as well as the model of trading game invariance.

Graphs of the dummy variables for the model of invariant bet size are present on the
right-hand side of the figure. The model generates very precise estimates of spreads for
the smallest size group. For the larger size groups, the predicted spreads are much larger
than the point estimates from the two parameter model. For half price impact, the dummy
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variables decrease almost monotonically, indicating that the rapid increase in market impact
implied by the model (α1 = 1/2) is greater than what is consistent with the data.

4.2 Estimates Based on Order Size

The three theoretical models make distinctly different predictions concerning how the size
of liquidity trades varies with the level of activity. The predictions can be expressed as a
simple linear regression of the form

ln
[ Xi

V1,i

]
= q + a0ln

[Wi

W∗

]
+ ε̃. (43)

In this regression, the model of invariant trading structure predicts a0 = −2/3, the model of
invariant bet frequency predicts a0 = 0, and the model of invariant bet size predicts a0 = −1.

Table 5 Table 5 presents estimates for the coefficients in equation (43). The estimate for
a0 is â0 = −0.63, t = −75.27. Economically, the point estimate for a0 is close to the value
predicted by the model of invariant trading structure a0 = −2/3, but this model is strongly
rejected (F = 17.03, p < 0.0001) because the standard error 0.0085 is so small. This point
estimate is so different from the predictions of the two other models that they are rejected
by overwhelming margins.

The table also presents four separate estimates broken down into NYSE Buys, NYSE
Sells, NASDAQ Buys, and NASDAQ Sells. The point estimates −0.63, −0.60, −0.71, and
−0.61 are consistently close to the predicted value of −2/3, but the model of invariant trading
structure is rejected in all cases due to the low standard error.

Table 6 Table 6 estimates the regression

ln
[Xi

Vi

]
= q − 2

3
ln

[Wi

W∗

]
+ b1ln

[ σr,i

(0.02)

]
+ b2ln

[ Pi

(40)

]
+ b3ln

[ Vi

(106)

]
+ ε̃. (44)

This regression imposes on ln(Wi/W∗) the coefficient a0 = −2/3 predicted by the model of
trading game invariance. It then allows the coefficient on the three components of Wi to
vary freely. Thus, the model of invariant trading structure predicts b1 = b2 = b3 = 0. The
model of invariant bet frequency predicts b1 = b2 = b3 = 2/3 and the model of invariant
bet size predicts b1 = b2 = b3 = −1/3. The table reports point estimates for the coefficient
on volatility of b1 = 0.25, the coefficient on price of b2 = 0.16, and the coefficient on share
volume of b3 = 0.01, with corresponding t-values of 8.17, 11.05, and 0.86, respectively. The
regression fails to reject the hypothesis b3 = 0, supporting the model of invariant trading
structure. But the coefficients on volatility and price are significantly positive, indicating
that trade size, as a fraction of average daily volume, does not decrease with increasing
volatility and volume as fast as predicted by the model of invariant trading structure.

Table 7 Table 7 estimates the constant term in the regression under the assumption that
the coefficient of ln(Wi) in equation (43) is fixed at the values implied by the three models.
For the model of invariant trading structure, fixing the coefficient at a0 = −2/3 results in a
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constant term estimate of log order size as a fraction of average daily volume equal to −5.69.
For the benchmark stock, this implies a median order size of 33.75 basis points of volume,
or 0.3375% of average daily volume.

Note that the adjusted R2 in this one-parameter (constant term only) regression is 0.3176,
compared with an adjusted R2 of 0.3211 in the four-parameter regression and 0.3188 in the
two-parameter regression. Economically, almost all the explanatory power in these regres-
sions comes from the prediction of the model of invariant trading structure that a0 = −2/3.

Figure 2 Figure 2 uses ten dummy variables for volume groups to estimate the three
versions of the regression

ln
[Xi

Vi

]
=

[ 10∑
j=1

Ij,iqj

]
+ a0 ln

[Wi

W∗

]
+ ε̃ (45)

in which the value of a0 is fixed at the value predicted from the three theoretical models,
and the ten dummy variables are estimated.

For the model of invariant trading structure, the regression fixes a0 = −2/3. The ten
dummy variables are plotted, along with 95% confidence bounds, on a graphs where the
value of the constant term from the one-parameter regression is plotted as a horizontal line.
If the regression is well-specified, then the values of the dummy variables should line up
along the horizontal line. In the first graph in the figure, it can be seen that the dummy
variables for the model of trading game invariance line up nicely along the horizontal line.
Upon close inspection however, it is possible to notice that the 95% confidence bounds are
so narrow that some of the points lie outside the 95% confidence bound, consistent with the
previous rejection of the model.

In the second graph in the figure, the ten dummy variables resulting from fixing a0 = 0,
as implied by the model of invariant trade frequency, are plotted. Instead of lining up nicely
on the horizontal line, the dummy variables decline monotonically from a level very far above
the line to a level very far below it, far outside the 95% confidence bounds. This is consistent
with strong rejection of this model.

In the third graph in the figure, the ten dummy variable resulting from fixing a0 = −1,
as implied by the model of invariant trade frequency, are plotted. Instead of lining up nicely
on the horizontal line, the dummy variables increase monotonically from a level far below
the line to a level far below it, far outside the 95% confidence bounds. This is consistent
with strong rejection of this model as well.

5 Conclusion

This paper proposes three theoretical models which make predictions concerning how price
impact and bid-ask spreads vary cross-sectionally across stocks.

Data on portfolio transitions is used to test the models in two ways. First, implications
for price impact and spreads are tested using estimates derived from implementation short-
fall. Second, under the identifying assumption that portfolio transitions are proportional to
liquidity trades, the size of portfolio transition orders is used to test predictions the models
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predictions concerning how liquidity order sizes varies across stock with different activity
levels.

The empirical results are supportive of the model of invariant trading structure, but with
some caveats. The model of invariant trading structure predicts transactions costs from
price impact and spread better than the other two alternatives. The empirical prediction
that a one percent increase in trading activity increases the price impact (in units of daily
standard deviation) by one-third of one percent is almost exactly the point estimate from
non-linear regressions based on implementation shortfall. This provides strong support for
the model. Strong support is also provided by the trade size regressions. The model predicts
that if trading activity increases by one percent, trade size as a fraction of daily volume falls
by two-thirds of one percent. The coefficient estimate of -0.63, is remarkably close to the
predicted value.

There are, however, several issues which need further investigation. First, the statistical
power behind implementation shortfall results come mostly from the 30 percent of stocks
in the lowest dollar volume group. For the top 70 percent of stocks by dollar volume, it
may be difficult to distinguish the model of invariant trading structure from the model
of invariant bet frequency. Second, in the implementation shortfall regressions, the bid-
ask spreads decrease with increased activity somewhat faster than the model of invariant
trading structure predicts. Third, our measure of trading activity can be thought of as
the product of share volume and price volatility in dollars per share. Although the model
predicts that these two components of trading activity should behave similarly, both the
implementation shortfall regressions and the trade size regressions suggest that they behave
differently. Trading volume (measured in shares) seems to be more consistent with the model
of invariant trading structure than dollar price volatility. It is possible that these issues have
something to do with the interaction between tick size effects and trading volume.

Interesting issues for further research include testing the three proposed models on differ-
ent databases. For example, the models predictions concerning spreads can be tested using
quoted spreads from TAQ data. Although it is difficult to measure the level of market depth
from TAQ data using, for example, the approach of Lee and Ready (1991), the model’s
cross-sectional implications concerning price impact might be testable using this approach.
The predictions concerning noise trading quantities can be tested using changes in holdings
of mutual funds or other reporting institutional traders.

It is also possible that the model tested on stock data in this paper generalized to other
markets. For example, market impact and spreads in bond markets, currency markets, or
futures markets may be consistent with the regressions estimated for stocks in this paper.
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Table 2: Model Testing for Price Impact and Effective Spread I

NYSE NASDAQ

All Buy Sell Buy Sell

1/2λ̄ 2.85*** 2.50*** 2.33*** 4.20*** 2.99***
(11.60) (4.86) (6.37) (5.58) (4.51)

α0 0.33*** 0.18*** 0.33*** 0.33*** 0.35***
(13.37) (4.05) (6.02) (6.18) (7.83)

1/2k̄ 6.30*** 14.94*** 2.82* 8.38* 3.94**
(5.57) (5.91) (2.02) (2.52) (2.63)

α1 -0.39*** -0.19*** -0.46*** -0.36*** -0.45***
(-15.72) (-4.33) (-7.56) (-5.85) (-9.62)

Model of Invariant Trading Structure: α0 = 1/3, α1 = −1/3

F-test 2.62 8.51 2.25 0.09 3.12
p-val 0.0731 0.0002 0.1057 0.9114 0.0443

Model of Invariant Bet Frequency: α0 = 0, α1 = 0

F-test 176.14 14.79 47.03 33.11 71.06
p-val 0.0000 0.0000 0.0000 0.0000 0.0000

Model of Invariant Bet Size: α0 = 1/2, α1 = −1/2

F-test 30.30 39.63 5.23 7.21 5.92
p-val 0.0000 0.0000 0.0054 0.0007 0.0027

d/g/n 4/2/4389 4/2/4018 4/2/4198 4/2/2855 4/2/2977
#Obs 441,865 135,006 152,701 69,774 84,384

R2 0.0126 0.0136 0.0067 0.0211 0.0195
Adj. R2 0.0123 0.0134 0.0064 0.0208 0.0192

Table presents the estimates for λ̄, k̄, α0, α1 in the regression Yi = 1
2 λ̄

[
Wi
W∗

]α0 Xi
(0.01)Vi

+
1
2 k̄

(Xomt,i+Xec,i)
Xi

[
Wi
W∗

]α1

+ ε̃. Each observation corresponds to order i. Yi is the im-

plementation shortfall in basis points calculated as (Pex,i−P0,i)
P0,i

104 (0.02)
σr,i

, where Pex,i is
the average execution price, P0,i is the pre-transition price, σr,i is the expected daily
volatility estimated as σe

i,t−1. The term (0.02)/σr,i adjusts for heteroscedasticity. The
trading activity Wi is the product of expected volatility σr,i, benchmark price P0,i, and
expected volume Vi measured as last month’s average daily volume. The scaling con-
stant W∗ = (0.02)(40)(106) corresponds to Wi for the benchmark stock with volatility
of 0.02, price $40 per share, and trading volume of one million shares per day. Xi

is the number of shares in the order with Xomt,i executed in open market and Xec,i

executed in external crossing networks. The term Xi/(0.01)Vi is the size of the trade
relative to average volume, the size is one for a trade of one percent of expected daily
volume. λ̄/2 estimates in basis points the market impact costs of a trade of one per-
cent of average daily volume in a benchmark stock, and k̄/2 estimates in basis points
the effective spread cost. The standard errors are clustered at weekly levels for 17
industries. F-statistics and p-values are reported for three models with d parameters,
g restrictions, and n clusters in the regression. The sample ranges from January 2001
to December 2005. The t-statistics are in parentheses. ∗∗∗, ∗∗, ∗denotes significance at
1%, 5% and 10% levels, respectively.
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Table 3: Model Testing for Price Impact and Effective Spread II

NYSE NASDAQ

All Buy Sell Buy Sell

1/2λ̄omt 4.49*** 2.41*** 4.35*** 5.39*** 4.33***
(7.47) (5.56) (5.45) (3.72) (4.09)

1/2λ̄ec 2.17*** 3.02*** 1.77** 3.64*** 1.34
(5.62) (6.42) (3.26) (3.76) (1.90)

1/2λ̄ic 2.40*** 2.20*** 1.77*** 2.07* 1.51**
(7.19) (3.54) (4.21) (2.33) (3.00)

β1 -0.31 -0.86*** -0.37 -0.10 -1.05***
(-1.61) (-6.08) (-1.12) (-0.29) (-3.70)

β2 -0.22* -0.01 -0.43* -0.17 -0.32
(-2.26) (-0.06) (-2.44) (-0.90) (-1.70)

β3 0.04 -0.19*** 0.13 0.01 -0.04
(0.90) (-6.11) (1.70) (0.19) (-0.98)

1/2k̄omt 6.56*** 18.55*** 3.05* 14.43*** 4.69*
(5.35) (5.24) (2.39) (3.64) (2.58)

1/2k̄ec 6.26*** 8.99*** 4.98** 11.13** 5.08**
(5.57) (3.82) (3.28) (3.02) (2.76)

1/2k̄ic 0.26 5.31 -4.38** 7.78 0.70
(0.14) (1.33) (-3.06) (1.01) (0.53)

β4 0.10 -0.06 0.60* -0.29 0.99***
(0.60) (-0.24) (2.31) (-0.99) (3.83)

β5 0.18** -0.22 0.06 0.26 0.36***
(2.97) (-1.30) (0.47) (1.87) (3.48)

β6 -0.09*** 0.26*** -0.12* 0.05 -0.11*
(-3.47) (4.70) (-2.29) (1.05) (-2.31)

Model of Invariant Trading Structure: β1 = β2 = β3 = β4 = β5 = β6 = 0.

F-test 4.59 20.96 2.80 1.38 11.26
p-val 0.0001 0.0000 0.0102 0.2168 0.0000

Model of Invariant Bet Frequency: β1 = β2 = β3 = −1/3, β4 = β5 = β6 = 1/3.

F-test 78.26 12.06 26.46 10.71 23.27
p-val 0.0000 0.0000 0.0000 0.0000 0.0000

Model of Invariant Bet Size: β1 = β2 = β3 = 1/6, β4 = β5 = β6 = −1/6.

F-test 13.77 44.25 5.94 6.85 28.79
p-val 0.0000 0.0000 0.0000 0.0000 0.0000

d/g/n 12/6/4389 12/6/4018 12/6/4198 12/6/2855 12/6/2977
#Obs 441,865 135,006 152,701 69,774 84,384

Adj. R2 0.0129 0.0147 0.0076 0.0222 0.0214
R2 0.0131 0.0150 0.0079 0.0225 0.0217
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Table presents the estimates for λ̄omt, λ̄ec, λ̄ic, k̄omt, k̄ec, k̄ic, β1, β2, β3, β4, β5, β6

in the regression Yi = 1
2

λomt,iXomt,i+λec,iXec,i+λic,iXic,i

(0.01)Vi

[
Wi
W∗

]1/3 σ
β1
i P

β2
0,i V

β3
i

(0.02)(40)(106)
+

1
2

komt,iXomt,i+kec,iXec,i+kic,iXic,i

Xi

[
Wi
W∗

]−1/3 σ
β4
i P

β5
0,i V

β6
i

(0.02)(40)(106)
+ ε̃. Each observation corresponds

to order i. Yi is the implementation shortfall in basis points calculated as
(Pex,i−P0,i)

P0,i
104 (0.02)

σr,i
, where Pex,i is the average execution price, P0,i is the pre-transition

price, σr,i is the expected daily volatility estimated as σe
i,t−1. The term (0.02)/σr,i

adjusts for heteroscedasticity. The trading activity Wi is the product of expected
volatility σr,i, benchmark price P0,i, and expected volume Vi measured as last month’s
average daily volume. The scaling constant W∗ = (0.02)(40)(106) corresponds to Wi

for the benchmark stock with volatility of 0.02, price $40 per share, and trading vol-
ume of one million shares per day. Xi is the number of shares in the order with Xomt,i

executed in open market, Xec,i executed in external crossing networks, Xic,i executed
in internal crossing networks. The term Xi/(0.01)Vi is the size of the trade relative
to expected daily volume, the size is one for a trade of one percent of expected daily
volume. λ̄omt/2, λ̄ec/2, λ̄ic/2 estimate in basis points the market impact costs of a trade
of one percent of average daily volume in a benchmark stock for open market trades,
external crosses, and internal crosses. k̄omt/2, k̄ec/2, k̄ic/2 estimate in basis points the
effective spread cost for open market trades, external crosses, and internal crosses.
The standard errors are clustered at weekly levels for 17 industries. F-statistics and
p-values are reported for three models with d parameters, g restrictions, and n clus-
ters in the regression. The sample ranges from January 2001 to December 2005. The
t-statistics are in parentheses. ∗∗∗, ∗∗, ∗denotes significance at 1%, 5% and 10% levels,
respectively.
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Table 4: Model Calibration for Price Impact and Effective Spread

NYSE NASDAQ

All Buy Sell Buy Sell

Model of Invariant Trading Structure: α0 = 1/3, α1 = −1/3
1/2λ̂ 2.8898*** 3.4199*** 2.3411*** 4.2361*** 2.7800***

(14.83) (7.74) (7.25) (9.76) (8.42)
1/2k̂ 7.9036*** 10.9695*** 4.7553*** 9.2870*** 7.3187***

(11.47) (7.99) (4.30) (6.13) (7.27)
Adj. R2 0.0122 0.0129 0.0062 0.0207 0.0184

R2 0.0125 0.0131 0.0064 0.0211 0.0188

Model of Invariant Bet Frequency: α0 = 0, α1 = 0
1/2λ̂ 0.3788*** 1.3291*** 0.4712*** 1.1857*** 0.2694***

(4.29) (11.76) (4.53) (8.61) (5.90)
1/2k̂ 15.2686*** 19.1143*** 6.4113** 19.2409*** 13.1085***

(9.75) (7.57) (2.77) (4.32) (3.70)
Adj. R2 0.0075 0.0126 0.0038 0.0178 0.0105

R2 0.0077 0.0128 0.0040 0.0182 0.0108

Model of Invariant Bet Size: α0 = 1/2, α1 = −1/2
1/2λ̂ 3.9202*** 3.9578*** 2.8730*** 6.5057*** 4.6229***

(12.91) (6.31) (6.62) (10.06) (7.66)
1/2k̂ 3.4648*** 5.7598*** 2.5020*** 4.2232*** 3.0040***

(11.88) (8.86) (6.09) (7.73) (8.38)
Adj. R2 0.0110 0.0108 0.0056 0.0195 0.0182

R2 0.0112 0.0110 0.0058 0.0198 0.0185

#Obs 441,865 135,006 152,701 69,774 84,384

Table presents the estimates for λ̄, k̄ in the regression Yi = 1
2 λ̄

[
Wi
W∗

]α0 Xi
(0.01)Vi

+
1
2 k̄

(Xomt,i+Xec,i)
Xi

[
Wi
W∗

]α1

+ ε̃ with α0 and α1 restricted to be as predicted in proposed
models. Each observation corresponds to order i. Yi is the implementation shortfall in
basis points calculated as (Pex,i−P0,i)

P0,i
104 (0.02)

σr,i
, where Pex,i is the average execution price,

P0,i is the pre-transition price, σr,i is the expected daily volatility estimated as σe
i,t−1.

The term (0.02)/σr,i adjusts for heteroscedasticity. The trading activity Wi is the prod-
uct of expected volatility σr,i, benchmark price P0,i, and expected volume Vi measured
as last month’s average daily volume. The scaling constant W∗ = (0.02)(40)(106) cor-
responds to Wi for the benchmark stock with volatility of 0.02, price $40 per share, and
trading volume of one million shares per day. Xi is the number of shares in the order
with Xomt,i executed in open market and Xec,i executed in external crossing networks.
The term Xi/(0.01)Vi is the size of the trade relative to expected volume, the size is
one for a trade of one percent of expected daily volume. λ̄/2 estimates in basis points
the market impact costs of a trade of one percent of average daily volume in a bench-
mark stock, and k̄/2 estimates in basis points the effective spread cost. The standard
errors are clustered at weekly levels for 17 industries. F-statistics and p-values are
reported for three models with d parameters, g restrictions, and n clusters in the re-
gression. The sample ranges from January 2001 to December 2005. The t-statistics are
in parentheses. ∗∗∗, ∗∗, ∗denotes significance at 1%, 5% and 10% levels, respectively.

35



Table 5: Model Testing for Order Sizes I

NYSE NASDAQ

All Buy Sell Buy Sell

q̄ -5.67*** -5.68*** -5.63*** -5.75*** -5.65***
(-342.14) (-253.47) (-313.86) (-174.49) (-182.49)

a0 -0.63*** -0.63*** -0.60*** -0.71*** -0.61***
(-75.27) (-61.16) (-75.28) (-37.95) (-49.27)

Model of Invariant Trading Structure: a0 = −2/3

F-test 17.01 13.74 72.00 6.53 18.56
p-val 0.0000 0.0002 0.0000 0.0107 0.0000

Model of Invariant Bet Frequency: a0 = 0

F-test 5664.91 3740.45 5667.60 1440.32 2427.51
p-val 0.0000 0.0000 0.0000 0.0000 0.0000

Model of Invariant Bet Size: a0 = −1

F-test 1920.13 1306.11 2537.08 229.30 966.99
p-val 0.0000 0.0000 0.0000 0.0000 0.0000

Q∗/V1,∗ 34.68 34.08 35.96 31.85 35.27
d/g/n 2/1/4389 2/1/4018 2/1/4198 2/1/2855 2/1/2977
#Obs 441,865 135,006 152,701 69,774 84,384

Adj. R2 0.3188 0.2588 0.2643 0.4364 0.3648
R2 0.3188 0.2588 0.2643 0.4364 0.3648

Table presents the estimates q̄, a0 for the regression ln
[
Yi

]
= q + a0ln

[
Wi
W∗

]
+ ε̃. Each

observation corresponds to order i. Yi is the size of the trade relative to expected
daily volume calculated as Xi/(0.01)Vi where expected daily volume Vi is measured
as the last month’s average daily volume, the size is one for a trade of one percent of
expected volume. The trading activity Wi is the product of expected daily volatility
σr,i, benchmark price P0,i, and expected daily volume Vi. The scaling constant W∗ =
(0.02)(40)(106) corresponds to Wi for the benchmark stock with volatility of 0.02, price
$40 per share, and trading volume of one million shares per day. q̄ is the measure of
order size such that the median order size Q∗/V1,∗ for a benchmark stock is calculated
as exp(q̄)×104 in basis points. The standard errors are clustered at weekly levels for 17
industries. F-statistics and p-values are reported for three models with d parameters,
g restrictions, and n clusters in the regression. The sample ranges from January 2001
to December 2005. The t-statistics are in parentheses. ∗∗∗, ∗∗, ∗denotes significance at
1%, 5% and 10% levels, respectively.
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Table 6: Model Testing for Order Sizes II

NYSE NASDAQ

All Buy Sell Buy Sell

q̄ -5.65*** -5.66*** -5.58*** -5.80*** -5.63***
(-349.80) (-251.70) (-316.06) (-170.90) (-197.44)

b1 0.25*** 0.30*** 0.36** 0.17* 0.24**
(8.16) (7.28) (9.92) (2.31) (3.26)

b2 0.16*** 0.11*** 0.21*** 0.02 0.22***
(11.02) (5.96) (15.04) (0.62) (7.91)

b3 0.01 0.02 0.03** -0.07*** 0.02
(0.87) (1.75) (3.66) (-4.02) (1.30)

Model of Invariant Trading Structure: b1 = b2 = b3 = 0

F-test 47.57 19.92 79.29 8.77 20.97
p-val 0.0000 0.0000 0.0000 0.0000 0.0000

Model of Invariant Bet Frequency: b1 = b2 = b3 = 2/3

F-test 2044.60 1286.85 1939.03 567.85 808.05
p-val 0.0000 0.0000 0.0000 0.0000 0.0000

Model of Invariant Bet Size: b1 = b2 = b3 = −1/3

F-test 747.74 465.71 947.01 78.19 325.63
p-val 0.0000 0.0000 0.0000 0.0000 0.0000

Q∗/V1,∗ 35.31 34.98 32.99 30.35 35.95
d/g/n 4/3/4389 4/3/4018 4/3/4198 4/3/2855 4/3/2977
#Obs 441,865 135,006 152,701 69,774 84,384

Adj. R2 0.3211 0.2614 0.2682 0.4382 0.3674
R2 0.3213 0.2616 0.2684 0.4384 0.3676

Table presents the estimates q̄, b1, b2, b3 for the regression ln
[
Yi

]
= q̄ − 2

3 ln
[

Wi
W∗

]
+

b1ln
[

σe
i

(0.02)

]
+ b2ln

[
Pi

(40)

]
+ b3ln

[
Vi

(106)

]
+ ε̃. Each observation corresponds to order i.

Yi is the size of the trade relative to expected daily volume calculated as Xi/(0.01)Vi

where expected daily volume Vi is measured as the last month’s average daily volume,
the size is one for a trade of one percent of expected volume. The trading activity
Wi is the product of expected daily volatility σr,i, benchmark price P0,i, and expected
daily volume Vi. The scaling constant W∗ = (0.02)(40)(106) corresponds to Wi for
the benchmark stock with volatility of 0.02, price $40 per share, and trading volume
of one million shares per day. q̄ is the measure of order size such that the median
order size Q∗/V1,∗ for a benchmark stock is calculated as exp(q̄)× 104 in basis points.
The standard errors are clustered at weekly levels for 17 industries. F-statistics and
p-values are reported for three models with d parameters, g restrictions, and n clusters
in the regression. The sample ranges from January 2001 to December 2005. The t-
statistics are in parentheses. ∗∗∗, ∗∗, ∗denotes significance at 1%, 5% and 10% levels,
respectively.
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Table 7: Model Calibration for Order Sizes

NYSE NASDAQ

All Buy Sell Buy Sell

Model of Invariant Trading Structure: a0 = −2/3

q̄ -5.69*** -5.70*** -5.67*** -5.70*** -5.71***
(-323.11) (-256.63) (-299.48) (-145.34) (-162.89)

Q∗/V1,∗ 33.75 33.35 34.61 33.60 32.99
Adj. R2 0.3177 0.2577 0.2608 0.4343 0.3618

R2 0.3178 0.2579 0.2609 0.4345 0.3620

Model of Invariant Bet Frequency: a0 = 0

q̄ -5.17*** -5.33*** -5.29*** -4.95*** -4.88***
(-248.32) (-215.81) (-253.11) (-106.38) (-113.95)

Q∗/V1,∗ 56.85 48.44 50.42 70.83 75.97
Adj. R2 -0.0002 -0.0002 -0.0002 -0.0004 -0.0003

R2 0.0000 0.0000 0.0000 0.0000 0.0000

Model of Invariant Bet Size: a0 = −1

q̄ -5.95*** -5.89*** -5.86*** -6.07*** -6.13***
(-282.93) (-249.11) (-262.51) (-136.10) (-136.95)

Q∗/V1,∗ 26.05 27.67 28.51 23.11 21.77
Adj. R2 0.2105 0.1683 0.1458 0.3669 0.2192

R2 0.2107 0.1685 0.1460 0.3671 0.2195

#Obs 441,865 135,006 152,701 69,774 84,384

Table presents the estimates q̄ for the regression ln
[
Yi

]
= q + a0ln

[
Wi
W∗

]
+ ε̃ with a0

restricted to be as predicted in proposed models. Each observation corresponds to
order i. Yi is the size of the trade relative to expected daily volume calculated as
Xi/(0.01)Vi where expected daily volume Vi is measured as the last month’s average
daily volume, the size is one for a trade of one percent of expected volume. The trading
activity Wi is the product of expected daily volatility σr,i, benchmark price P0,i, and
expected daily volume Vi. The scaling constant W∗ = (0.02)(40)(106) corresponds to
Wi for the benchmark stock with volatility of 0.02, price $40 per share, and trading
volume of one million shares per day. q̄ is the measure of order size such that the
median order size Q∗/V1,∗ for a benchmark stock is calculated as exp(q̄)× 104 in basis
points. The standard errors are clustered at weekly levels for 17 industries. F-statistics
and p-values are reported for three models with d parameters, g restrictions, and n
clusters in the regression. The sample ranges from January 2001 to December 2005.
The t-statistics are in parentheses. ∗∗∗, ∗∗, ∗denotes significance at 1%, 5% and 10%
levels, respectively.
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Figure 1: Price Impact and Spread across 10 Volume Groups
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Figure graphs the estimates of half price impact 1/2λ̄j (top plots) and half
effective spread 1/2k̄j (bottom plots) with the 95%-confidence intervals for
10 volume groups and for three proposed models from the regression Yi =(∑10

j=1 Ij,i × 1/2λj

)
×

[
Wi

W∗

]α0
Xi

(0.01)Vi
+

(∑10
j=1 Ij,i × 1/2kj

)
× (Xomt,i+Xec,i)

Xi

[
Wi

W∗

]α1

+ ε̃

as well as unconditional estimates from Table 4. In Model of Invariant Trad-
ing Structure, α0 = 1/3, α1 = −1/3. In Model of Invariant Bet Frequency,
α0 = 0, α1 = 0. In Model of Invariant Bet Size, α0 = 1/2, α1 = −1/2. Each
observation corresponds to order i. Ij,i is an indicator equal to one if order i
is executed in a stock from group j. λ̄j/2 estimates in basis points the market
impact costs of a trade of one percent of average daily volume in a benchmark
stock for volume group j, and k̄j/2 estimates in basis points the effective spread
cost for volume group j. Yi is the implementation shortfall in basis points cal-
culated as

(Pex,i−P0,i)

P0,i
104 (0.02)

σr,i
, where Pex,i is the average execution price, P0,i is

the pre-transition price, σr,i is the expected daily volatility estimated as σe
i,t−1.

The term (0.02)/σr,i adjusts for heteroscedasticity. The trading activity Wi is
the product of expected volatility σr,i, benchmark price P0,i, and expected vol-
ume Vi measured as last month’s average daily volume. The scaling constant
W∗ = (0.02)(40)(106) corresponds to Wi for the benchmark stock with volatility
of 0.02, price $40 per share, and trading volume of one million shares per day.
Xi is the number of shares in the order with Xomt,i executed in open market and
Xec,i executed in external crossing networks. The term Xi/(0.01)Vi is the size
of the trade relative to expected daily volume. Volume groups are based on the
pre-transition dollar trading volume with thresholds corresponding to 30th, 50th,
60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for
common NYSE-listed stocks. Group 1 (Group 10) contains stocks with the low-
est (highest) trading volume. The standard errors are clustered at weekly levels
for 17 industries. The sample ranges from January 2001 to December 2005.39



Figure 2: Order Size across 10 Volume Groups
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Figure shows the average logarithm of the order sizes q̄j with the 95%-confidence
intervals for 10 volume groups for Model 1, Model 2, and Model 3 from regression

ln
[
Yi

]
=

[ ∑10
j=1 Ij,iq̄j

]
+ a0 ln

[
Wi

W∗

]
+ ε̃ as well as unconditional estimates from

Table 7. In Model of Invariant Trading Structure, α0 = −2/3. In Model of
Invariant Bet Frequency, α0 = 0. In Model of Invariant Bet Size, α0 = −1.
Each observation corresponds to order i. Ij,i is an indicator equal to one if order
i is executed in a stock from group j. Yi is the size of the trade relative to
expected daily volume calculated as Xi/(0.01)Vi where expected daily volume Vi

is measured as the last month’s average daily volume, the size is one for a trade
of one percent of expected volume. The trading activity Wi is the product of
expected daily volatility σr,i, benchmark price P0,i, and expected daily volume Vi.
The scaling constant W∗ = (0.02)(40)(106) corresponds to Wi for the benchmark
stock with volatility of 0.02, price $40 per share, and trading volume of one
million shares per day. q̄j is the measure of order size such that the median order
size Q∗/V1,∗ for a benchmark stock is calculated as exp(q̄j)× 104 in basis points
for volume group j. Volume groups are based on the pre-transition dollar trading
volume with thresholds corresponding to 30th, 50th, 60th, 70th, 75th, 80th, 85th,
90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks.
Group 1 (Group 10) contains stocks with the lowest (highest) trading volume.
The standard errors are clustered at weekly levels for 17 industries. The sample
ranges from January 2001 to December 2005.
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