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1 Introduction

Severe catastrophes frequently fuel the discussion about the necessity of public intervention

in the private market for insurance. One form of public intervention that has emerged in

several forms is disaster relief programs. Popular examples include the California Earthquake

Authority (CEA) and the Federal Emergency Management Agency (FEMA), or more

recently the Terrorism Risk Insurance Act (TRIA) - a government reinsurance facility aiming

to provide support for the insurance industry subject to terrorism risk, see Cummins and

Mahul (2008) for an international survey.

The goal of this paper is to provide a normative approach to public intervention in

catastrophe insurance. We build a case for intervention by assuming the existence of market

power. Specifically, we model an economic agent who can introduce a disaster relief fund to

an insurance monopoly. The agent’s goal is to improve risk sharing by mitigating the effects

of monopoly power, while ensuring that the insurance seller continues to produce for the

private market. There are of course several market imperfections that could be associated

with inefficient risk sharing in cat risk insurance, as summarized in Gollier (2008), but our

objective is to study one friction in isolation. Market power can generally be present in cat

risk insurance, see Froot (2001), but it seems particularly relevant after the occurrence of

a severe catastrophe. Typically, fewer firms serve the primary market in those times, see

Cummins (2006), often resulting in the introduction of new disaster relief funds for which

specific policies need to be determined - a task that we undertake in this paper.

The key players in our model are insurance buyers and a seller, as well as a risk-neutral

government entity. Our proposed fund has the form of an ex-ante program, as argued for by
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Kunreuther and Pauly (2006). All agents know about its existence and account for disaster

relief payments in their decision making process. The fund collects premia proportionally

from buyer and seller such that the fund is funded at expected losses, suggested by Jaffee

(2006). Buyer and seller in our model are assumed to be risk averse. We calibrate the

risk tolerance values such that the model delivers average prices in the private market of

approximately 1.3 times expected losses without public intervention. This price appears

slightly below the current pricing of catastrophe insurance, which is justified since market

power is typically not the only source for high prices, as in Froot and O’Connell (2008).

Comparative statics of the policy implications with respect to the buyers and sellers risk

tolerance are shown in the main body of the text.

Our model provides support for the existence of a disaster relief fund, since the buyer

strictly prefers having access to the additional risk sharing mechanism – the absence of

disaster relief is never optimal given our parameterizations. On average, we find that 20%

of the fund serves as complementary insurance while 80% effectively serves as catastrophe

reinsurance. The model also predicts a positive correlation between the size of the disaster

relief fund and the fraction that serves as complementary insurance. Specifically, we find that

a 1% increase in the fraction of the fund serving the buyer is associated with a .36% larger

fund size. Our predictions about the key role of reinsurance are, for example, consistent with

Kunreuther (1996), who argues for additional reinsurance coverage for cat losses to protect

insurers against potential insolvency. Our results, however, are obtained solely based on the

objective of risk sharing.

We find that the introduction of a disaster relief fund can promote higher demand and
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lower prices in the market for catastrophe insurance. We predict buyers to increase their

demand by 15% and the seller to lower prices by 30%, which is approximately 50% of the

distance to an otherwise competitive market without public intervention. The model shows

that the introduction of a disaster relief fund will decrease the extent of monopoly rents, a

prediction consistent with insurers’ negative abnormal performance found in Brown et al.

(2004) due to the “make available rule” of TRIA. Interestingly, the design of TRIA as a

reinsurance facility also matches the 80% policy resulting from our model, which is the

reason why the insurer continues to produce although being worse off in the private market.

The downside of the design is that the seller may ultimately be overhedged, and it becomes

more costly for a potential new firm to enter the market.

The modeling structure of arrival probabilities plus conditional loss distributions are

important to capture the nature of catastrophe risk, as compared to more traditional forms

of insurance. Diversification does not play a role in our model. The disaster fund that

we investigate is effectively a non-tradable asset whose payoffs are perfectly correlated with

catastrophic risk. The fund has, however, a different risk and return trade-off than the

insurance product offered in the private market. This stems from the possibility that a

governmental agency is in a position to time-diversify even catastrophic risks and can provide

government funding should the net balance of the fund be negative, as argued in Lewis and

Murdock (1996). Comparative statics show that funding the fund at prices higher than

expected losses can have a severe impact. In general, the optimal size of the fund will shrink

and its distribution policy will favor the seller.
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2 The Model

We consider a one-period economy in which three agents interact. The first agent is facing

risks stemming from the impact of a catastrophic event, and she is aiming to protect herself

by buying insurance in the primary market. The second agent, a monopolistic seller, sets the

price of the insurance given the buyer’s inverse demand function. While the buyer and the

seller lock in a simple insurance contract, they also take into account the possible existence

of an additional risk sharing mechanism, i.e. a disaster relief fund. The third agent - a social

planner or governmental agency - determines the design of this disaster fund.

The catastrophic event may occur with probability λ ∈ [0; 1] at the end of the period.

Conditional on the occurrence of a catastrophe, the potential impact corresponds to a

loss distribution l ∈ [0; 1], characterized by expected losses given by l ∈ [0; 1], as well as

uncertainty about losses given by σ2
l = V ar [l] = l2 − l

2
. All agents are equally informed

about the source and the extent of catastrophic risk. Our model has four choice variables:

First, the buyer maximizes utility by choosing demand q. Second, the buyer maximizes

utility by setting the price p. Third, the governmental agency determines the size of the

disaster relief fund ν ∈ [0; 1], and the fraction of the fund paid for and received by the buyer,

κ ∈ [0; 1]. Her objective is to implement a fund that improves risk sharing and is weakly

preferred by the buyer and by the seller.

2.1 Buyer’s Demand Policy

Without loss of generality, we assume the buyer’s initial wealth is normalized to one unit,

Wb,0 = 1. The buyer is facing a quadratic utility function defined over end of period wealth
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given by Wb, such that

Ub = −1

2
E

[
(Ab −Wb)

2] , 0 ≤ Wb < Ab. (1)

The parameter Ab > 1 characterizes the buyer’s risk tolerance, where higher values of Ab

correspond to lower degrees of risk aversion. End of period wealth is uncertain and it depends

on the price paid for insurance, the catastrophe contingent payoff, as well as the extent of

the disaster relief fund. We consider an insurance contract in which the buyer pays the seller

a fraction of the total insured wealth at the beginning of the period. If the cat event occurs,

the buyer is fully compensated for losses of the insured wealth. Due to normalization, the

insured wealth is a fraction q ∈ [0; 1] of total wealth Wb,0, such that the parameter q also

represents the buyer’s demand policy.

An indirect form of insurance is offered by the properties of the fund. At the occurrence

of a catastrophe, the buyer receives amount νb = κν, where as the remaining amount

νs = (1 − κ)ν is paid to the seller. Such policies require additional funding which we

assume to be collected proportionally. The buyer pays amount Cb =
(
λl + ∆C

)
κ per unit

of ν to the third agent, the seller pays amount Cs =
(
λl + ∆C

)
(1 − κ). For most of our

analysis we assume that the disaster relief fund is financed at expected losses, i.e. ∆C = 0.

However, we will leave ∆C as an exogenous parameter to be able to derive some comparative

statistics with respect to disaster funding costs.

In summary, the distribution of buyer’s end of period wealth is given by

Wb =

{
1− pq − Cbν, prob = 1− λ

1− pq − Cbν − l (1− q − νb) , prob = λ.
(2)
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We define the insurance loading factor as ∆p = p − λl, and it will be useful to introduce a

rescaled loading factor as x = ∆p
√

γ, where

γ =
(
λl2 − (

λl
)2

)−1

=
(
λ (1− λ) l

2
+ λσ2

l

)−1

. (3)

Intuitively, the parameter γ corresponds to the inverse of the unconditional variance of losses.

Proposition 1

The buyer’s demand policy q∗ = arg max
q

[Ub] is given by

q∗ (ν, κ, x) = (1− νb)
1− αx

1 + x2
, (4)

where

α (ν, κ) =

√
γ

(
(Ab − 1) + λl (1− νb) + νCb

)

1− νb

. (5)

It follows from equation (4) that when insurance is actuarially fair, the buyer will protect all

her wealth by using private insurance plus the disaster relief fund, q∗ + νb = 1.1 However,

the loading factor is typically positive and the buyer will protect a fraction strictly less than

one. All comparative statics of the buyer’s demand function are standard. Ceteris paribus

and given a positive loading, the buyer’s demand for insurance is larger the higher the level

of risk aversion, and the demand is larger for higher levels of conditional expected losses or

conditional variance, respectively.

1Since we assumed that νb does not depend on the buyer’s demand q, it could happen that total coverage
is greater than 100%, i.e. q + νb > 1. This is a waste of resources and does not occur in equilibrium.
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2.2 Seller’s Price Policy

The insurance seller is also risk averse and faces a quadratic utility function with risk

tolerance parameter As. She derives utility from selling insurance in the primary market

and from possible participation in the disaster relief fund given by

Us = −1

2
E

[
(As −Ws)

2] , 0 ≤ Ws < As, (6)

where Ws is the seller’s end of period wealth such that

Ws =

{
pq − Csν, prob = 1− λ

pq − l (q − νs)− Csν, prob = λ.
(7)

The previous equation can also be written as

Ws = ∆pq∗ (∆p) + λlνs − Csν −∆l̃ (q∗ (∆p)− νs) , (8)

while introducing unexpected losses defined by ∆l̃ = l̃ − λl. The seller sets the optimal

insurance loading ∆p∗ given the buyer’s inverse demand function (4). It will be useful to

consider two new quantities, the maximal loading accepted by the buyer, ∆p2, and the

minimal loading acceptable for the seller, ∆p1. The corresponding rescaled loading factors

are given by

x2 (ν, κ) = (α (ν, κ))−1 , (9)

and

x1 (ν, κ) = (β (ν, κ))−1 , (10)
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respectively, where the function β (ν, κ) > α (ν, κ) is given by

β (ν, κ) =

√
γ

(
(Ab + 2As − 1) + λl (1− νb − 2νs) + ν (Cb + 2Cs)

)

1− νb − 2νs

.

As expected, x1 vanishes in the limit As →∞ as the seller becomes risk-neutral.

Proposition 2

The seller’s price policy ∆p∗ = arg max
∆p

[Us] is characterized by the optimal rescaled loading

factor

x∗ (ν, κ) =
(√

1 + z2 − z
)

, (11)

where

z (ν, κ) =
1− x1x2

x1 + x2

. (12)

Combining the results of Propositions 1 and 2, the buyer’s and seller’s and indirect utilities

are summarized in the following Theorem.

Theorem 1

The buyer’s demand yields

q∗ (ν, κ) =
(1− νb)

2

(
1− x1

1− zx1

√
1 + z2

)
, (13)

leading to indirect utilities

U∗
s = −1

2

(
ν2

s

γ
+

(
As − λlνs + νCs

)2
)

+
(1− νb) (1− νb − 2νs)

2γx1x2

(x2 − x∗) (x∗ − x1)

1 + (x∗)2 , (14)
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and

U∗
b = −(1− νb)

2

2γx2
2

(
1 + x2

2 −
(x2 − x∗)2

1 + (x∗)2

)
. (15)

We expect a single insurance seller to extract monopoly rents. However, the degree to

which this happens is affected by the size and the policy of the disaster relief fund. The

demand for insurance q∗ can either increase or decrease due to a larger value of ν, depending

on the policy parameter κ. Hence, there is one region in which a disaster relief fund will

serve as a substitute for private market insurance. But there is also a region in which the

existence of a disaster fund will increase the demand for insurance in the primary market, a

channel that we explore further in the next section.

2.3 Size and Policy of the Disaster Fund

The third agent is able to observe the buyer’s and seller’s policies and their corresponding

indirect utilities. Therefore, she is able to compare how the market for catastrophe insurance

is affected by the introduction of a disaster relief fund. In the first step, we identify the set of

disaster relief policies that buyer and seller weakly prefer over the economy without disaster

relief, i.e. the set Θ containing those values of ν and κ satisfying

U∗
b (ν, κ) ≥ U∗

b (0, κ), and (16)

U∗
s (ν, κ) ≥ U∗

s (0, κ).

Note that the indirect utilities U∗
b (0, κ) and U∗

s (0, κ) correspond to the case when there is

no disaster relief fund, and therefore U∗
a (0, κ) = U∗

a (0, 0) for a ∈ b, s. In a second step, we
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assume the third agent implements the design that maximizes the buyer’s utility. Formally,

(ν∗, κ∗) = arg max
(ν,κ)∈Θ

[U∗
b ] . (17)

Our social planner or governmental agency acts on behalf of the buyer of insurance, while

making sure the seller continues to produce in the primary market. This is motivated by the

feature that the buyer faces the catastrophic risk to begin with and originates the economic

problem at hand.

In many cases, we should expect this optimization problem to lead to a solution in which

U∗
s (ν∗, κ∗) = U∗

s (0, κ). This is driven by the observation that the seller’s monopoly profits will

diminish while the disaster relief fund acts as a secondary provider of insurance. The seller

can, however, benefit from participation in the disaster relief fund – from her perspective

a form of catastrophe reinsurance. Hence the loss in utility from diminishing monopoly

profits is compensated by a gain in utility through the third agent acting also as an effective

reinsurer - a feature that several disaster funds display in reality. From the perspective of

the buyer, introducing a disaster relief fund to the set of risk sharing mechanisms can lead to

strict Pareto improvement, i.e. U∗
b (ν∗, κ∗) > U∗

b (0, κ). Two mechanisms are at work: First,

the buyer might insure an additional fraction of wealth directly through the disaster relief

fund at more reasonable prices. Second, the seller can reduce prices in the primary market

due to the existence of reinsurance.
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3 Results and Interpretation

3.1 Properties of Buyer’s and Seller’s Policies

We first show some general properties of the seller’s demand policy and buyer’s loading policy.

We parameterize the model with equal risk tolerance for buyer and seller, As = Ab = 2, not

necessarily implying that buyer and seller have equal effective risk aversion. Buyer and seller

both face the monotone region of a quadratic utility function, and thereby only care about

unconditional expected losses and standard deviation, given by lλ = 8% and γ−.5 = 20%. As

we will see later, the modeling structure of arrival intensities plus conditional loss properties

is important to capture the nature of catastrophe risk, as compared to more traditional forms

of insurance.

The effect of introducing a disaster relief fund on the buyer’s demand in the private

market is ambiguous, and Figure 1 displays some interesting effects. The demand for private

market insurance generally decreases with the size of government intervention for high values

of κ. This is the region in which the disaster relief fund acts as a substitute for private market

insurance, being preferred by the buyer due to a lower price. As can be seen in the right graph

of Figure 1, any value of κ will lead to a smaller loading factor. Hence, it is not surprising

that the demand approaches zero with a unit disaster payment and κ = 1. Interestingly,

when a large fraction of the disaster payment is routed to the seller, in our case κ < .4, the

demand is larger as compared to not having access to the disaster fund. This feedback effect

is driven by the risk sharing that occurs on the seller’s side. Suppose all disaster relief is

paid to the seller, then such a mechanism acts as a form of reinsurance. Some amount of

catastrophic risk is transferred to the third agent, being implicitly less risk averse compared

11



to the seller, by charging no loading while financing the fund. To rule out the possibility

that this effect is the result of our choice of parameters, we show the more general case.

Proposition 3

The buyer’s optimal demand q∗ (ν, κ) is increasing in the volume ν at sufficiently low values

of the policy parameter κ.

The following Proposition summarizes the feedback effects on the seller’s policy.

Proposition 4

The seller’s optimal rescaled loading factor x∗ (ν, κ) , and the seller’s income q∗ (ν, κ) p∗ (ν, κ)

are decreasing in the volume of the disaster fund ν.

In addition to the feedback effects on private market insurance, we might ask what the

net positions of buyer and seller yield after the introduction of disaster relief, see Figure 2.

The buyer’s total insured wealth is strictly increasing in ν, and the total price for both forms

of insurance per unit of insured wealth is strictly decreasing, due to no loading charged by

the third agent. Hence, we should also expect the seller’s monopoly rents to be reduced. This

effect is further strengthened by the price the seller has to pay for her fraction of disaster

relief, as shown in the lower left graph of Figure 2.

The disaster relief fund can also have a severe effect on the net risk position of the

insurance seller, in which the seller ends up being overhedged through the risk transfer to

the third agent. Given our parametrization, a negative net risk position occurs for low

values of κ with values of ν larger than .5. Please note that such cases do not correspond

to an arbitrage opportunity from the perspective of the seller, even though insurance and
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disaster fund payments are perfectly correlated. Claims on the disaster relief fund are not

marketable, and the fund’s implementation is governed by the social planner.

Before moving to the optimal policy of the disaster relief fund, we show the general effects

on the buyer’s and seller’s indirect utilities given the same set of parameters, see Figure 3.

The net effect on either agent is ambiguous. It is not surprising that the buyer prefers access

to disaster relief for almost all fund sizes and policy values. We can identify a small region,

ν < .4 and κ < .04, for which the buyer is not better off. This occurs in cases where the

feedback effect on prices in the private insurance market is so small, that even though the

buyer’s insured wealth has slightly increased, the net effect on the buyer’s utility is negative.

We can also identify a region in which the seller weakly prefers the economy with access to

disaster relief. If the fraction of the fund received by the buyer is too large, however, then

the seller is not better off due to a loss in monopoly rents which can not be compensated by

any benefits that might arise from the structure of the fund. This is an important feature

of the model in order to sustain optimal policies, therefore shown formally.

Proposition 5

The seller’s indirect utility U∗
s (ν, κ) is increasing in the volume ν at sufficiently low values

of the policy parameter κ.

3.2 Optimal Disaster Relief Fund Policies

We compute optimal disaster relief policies according to the objective outlined in Section

2.3. To gauge cross-sectional variation, we generate 10,000 random draws from uniform

distributions with the following limits: We allow for risk tolerance values between 1 and 3,
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and assume unconditional expected losses to be within a range between 2% and 14%, and

the unconditional variance to be between 10% and 30%. The average values of the model

parameters correspond to the case analyzed in the previous subsection.

The average optimal size of the disaster fund is .58, a significant value given that the

buyer’s initial wealth is normalized to one unit. As shown in Figure 4, the maximum fund

size is .75, the smallest is .35. It is also noteworthy that the absence of disaster relief is

never optimal, since the buyer strictly prefers having access to the additional risk sharing

mechanism. Given the size of the fund, on average 20% should be paid to the buyer and the

remaining 80% to the seller. This confirms our earlier finding that a key feature of disaster

relief is being able to provide reinsurance. We also observe significant variation in the policy

parameter κ, ranging between 0 and .45. The mass, however, is centered between .10 and

.25. Looking at both choice variables jointly, the model predicts a strong positive correlation

between size and policy, see equation (C3). Specifically, we find that a 1% increase in the

fraction of the fund owned by the buyer is associated with a .36% larger fund size.

To better understand the cross-sectional variation of these values we show the results

of a regression analysis with the dependent variables volume and policy, respectively, see

equations (C1) and (C2) in Figure 4. Ceteris paribus, disaster relief is larger for lower risk

aversion of the buyer and higher risk aversion of the seller, with the buyer’s risk tolerance

having a significantly larger sensitivity. The sign on buyers’s risk tolerance is somewhat

surprising, as disaster relief at zero loading could be more attractive the higher the buyer’s

risk aversion. However, the demand for private insurance at the optimal policy is decreasing

in the buyers’ risk tolerance, see equation (C4), so that buyers are left with a larger fraction of

uninsured wealth for which the existence of disaster relief can be beneficial. This follows from
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equation (4) and is also confirmed by the results in equation (C2), suggesting that a larger

fraction of the fund should be paid for and received by the buyer for lower degrees of risk

tolerance. The largest part of the variation in volume is explained by the second statistical

moment, such that higher variance of losses suggests more government intervention, but with

increasing participation by the seller, see equation (C2).

We utilize the same random draws to compute the corresponding values for demand and

loading, see Figure 5. The results show that equilibrium demand in the private market

increases with the size of the disaster fund, and it decreases significantly in the fraction of

the fund owned by the buyer, see regression (C6). This suggests that in equilibrium disaster

relief does not serve as a substitute but as a complement for the private market. A similar

effect occurs with respect to the price, see regression (C7), again indicating that offering

reinsurance to the seller has a significant feedback effect on the buyer’s well-being. We note

that on average the introduction of disaster relief increases the demand for private market

insurance by 15%, and it decreases loading factors by 30%, see Figure 6.

In the previous subsection we pointed towards the possibility that disaster relief could

result in the seller having negative net risk exposure to catastrophic risk. Hence, we

investigated whether this is the case under the optimal design. The results are summarized

in Figure 7, and we find that in 70% of all cases the seller does indeed overhedge. Although

the average risk exposure is only -3%, this does point towards a risk sharing distortion that

might arise from our design. It stems from the “optimality” requirement where the seller

should not be made worse off with disaster relief. Since monopoly rents will decrease, the

seller requires a benefit in order to continue producing for the private market, and especially

for large amounts of uncertainty in catastrophic losses as seen in equation (C11).
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3.3 Effects on the Impact of Monopoly Pricing

As seen above, the introduction of the disaster relief fund affects the pricing of insurance

in the primary market. But we would like to explore more specifically to which extent is

monopoly pricing reduced, or how close is the new economy to an otherwise competitive

market?

One diagnostic of the competitive limit is the minimal accepted (rescaled) loading by the

seller in case of no disaster relief, x1 (0, κ). Since we allow the seller to be risk averse, this

value does not equal zero and it corresponds to the smallest loading factor at which the seller

starts producing. Hence, the distance x∗ (0, κ) - x1 (0, κ) is a measure of monopoly pricing,

and the ratio (x∗ (0, κ)) - x∗ (ν∗, κ∗) / (x∗ (0, κ) - x1 (0, κ)) a measure of the disaster fund

impact.

Results are summarized in Figure 8, left graph. The initial spread due to monopoly

pricing is reduced by 50% at the optimal design of disaster relief. In 90% of the cases the

reduction is between 0% and 100%. We note that in 10% of the cases the new loading in the

primary market is even lower than the competitive limit without disaster relief. These are

the cases in which a large fraction of catastrophic risk is ultimately transferred to the social

planner, essentially a risk-neutral agent who is willing to accept risks below the risk averse

competitive limit set by the seller.

As a second diagnostic, we attempt to measure how a potentially new entrant is affected

by the introduction of disaster relief. A Bertrand competition among insurance sellers has to

be treated carefully since one can show there is no symmetric Nash equilibrium in our model.

Intuitively, the entrant has to always undercut the monopolist by lowering the loading, in
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which case the entrant attracts all demand and effectively becomes a monopolist herself. We

can, however, treat the value x1 (ν∗, κ∗) as a reference point at which a potential entrant is

indifferent between entering and not entering. We first obtain the following general property.

Proposition 6

The spread between the optimal and the lowest acceptable loadings x∗ (ν, κ) − x1 (ν, κ) is

increasing in the volume ν at sufficiently low values of the policy fraction κ.

Results are summarized in Figure 8, right graph, showing the ratio (x∗ (ν∗, κ∗)) - x1 (ν∗, κ∗)

/ (x∗ (0, κ) - x1 (0, κ)). A potential entrant is hurt by the existence of the optimal fund in all

cases. Parameter combinations at which the entry cost decreases do exist in theory, but this

does not occur in equilibrium. The entry cost increases by 15% on average. In summary,

the introduction of disaster relief does mitigate several of the effects due to monopoly power,

but it does not promote forces of market competition in the private market.

3.4 Catastrophe Insurance versus Traditional Insurance

Buyer and seller face quadratic utility functions and therefore base their decision on mean

and variance. This could relate to any source of uncertainty, but we intentionally chose to

incorporate three parameters in order to capture the nature of catastrophic risk. Namely, the

case of catastrophe insurance typically corresponds to high conditional losses but relatively

low arrival probabilities, while more traditional insurance is characterized by relatively low

conditional losses and high arrival probabilities.

To illustrate the difference, we assume the level of unconditional expected losses is fixed

at λl = µ = 0.08 = 8%, and analyze the resulting equilibria for different values of the arrival
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probability λ ∈ (0.08; 0.30]. It follows that the level of unconditional variance becomes a

function of λ, and based on equation (3) we obtain

γ−1 = λ (1− λ) (
µ

λ
)2 + λσ2

l =

(
1

λ
− 1

)
ψ2 +

1

λ
σ2

ψ =
1

λ

(
ψ2 + σ2

ψ

)− ψ2. (18)

Therefore, the effective variance γ−1 monotonically increases as the arrival rate λ decreases.

Even under the assumption of zero conditional standard deviation, the unconditional

standard deviation will range between 12% and 27%.

A set of simulation results is summarized in Figure 9, where λ is the dependent variable

under observation. The coefficient in the volume regression is large and negative, suggesting

that more frequent events are indeed associated with a smaller size of the disaster relief

fund. Furthermore, the coefficient in the policy regression is positive, suggesting that for

more frequent events the optimal policy is to favor the buyer. This result is of course driven

by the amount of standard deviation in the economy, but it shows that “disaster relief”

indeed emerges from catastrophe risk as compared to more traditional types of insurance.

3.5 Funding Disaster Relief with a Small Loading

We operate under the assumption that the fund is funded at expected losses. While this

could be seen as reasonable from the perspective of a risk-neutral social planner who can time

diversify even catastrophic events, one could also make an argument that at least operational

costs should be covered on average. Hence, we analyze a comparative static in which buyer

and seller contribute to the disaster fund based on a small positive loading, i.e. ∆C = .001.

How the size of optimal disaster relief and the policy are affected is shown in Figure 10.
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We find that charging a small loading reduces the size of the fund in 88% of the cases,

in some cases significantly. The price feedback due to the seller having access to more

expensive reinsurance is not attractive to the buyer. Interestingly, for 12% of the cases the

size of optimal disaster relief increases. Those are cases in which the buyer’s demand in

the private market decreases and those buyers find complementary insurance through the

fund, even with a small loading, more beneficial. A comparison of loading versus no loading,

however, should be treated with care since on average a small fraction of financial wealth

leaves the economic system.

As an aside, a positive result for a disaster relief fund that charges market prices can not

be sustained. Although such a design might be preferred by a buyer in several scenarios,

it is never weakly preferred by the seller. The seller has no other source of income in our

model, and this would require the seller to contribute to the fund at the same price levels

she extracts rents at, leading to a strictly inferior situation.

4 Conclusion

We studied a role for government intervention in a monopolistic setting. Our results stem

from the objective of risk sharing, in which a disaster relief fund represents an additional asset

that is perfectly correlated with catastrophic risks, but has a different trade-off between risk

and return than the insurance product offered in the private market. We conclude that the

introduction of government funded disaster relief can mitigate some of the negative effects of

monopoly power. Such a fund, optimally designed, promotes higher demand and lower prices

in the private market for cat insurance. Our model delivers specific predictions regarding the
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size and the policy of the fund, resulting in a prominent role of reinsurance. It also shows

that large, perhaps too large, cat risk exposure may be transferred to the government entity.

In future research, it might be useful to investigate additional imperfections that are

present in the cat insurance market but not considered in our model, namely moral

hazard and adverse selection. Further modeling work is needed to better understand the

interactions between government intervention and issues such as insurance deductables,

insurer insolvency, or product discrimination.
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5 Appendix

5.1 Proofs

Proof of Proposition 1

The buyer’s expected utility can be written as

−2Ub =
(
(Ab − 1) + λl (1− νb) + νCb + ∆pq

)2
+

(1− q − νb)
2

γ
. (B1)

Applying the FOC and minimizing the r.h.s. with respect to q, we obtain for q∗ =

arg min
q

[−Ub] = arg max
q

[Ub]

q∗ = (1− νb)
1− α

√
γ∆p

1 + γ (∆p)2 , (B2)

with γ as defined in equation (3) and α as in equation (5).

Q.E.D.

Proof of Proposition 2

The seller’s expected utility can be written as

−2Us =
(
As −∆pq − λlνs + νCs

)2
+

(q − νs)
2

γ
, (B3)

which can be written in terms of the rescaled loading x =
√

γ∆p in the form of

2Us = const + B
(x2 − x) (x− x1)

1 + x2
, (B4)
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where the constant does not depend on ∆p, and

B = B1B2 > 0, (B5)

with

B1 =
(
(Ab − 1) + λl (1− νb) + νCb

)
> 0,

B2 =
(
(Ab + 2As − 1) + λl (1− νb − 2νs) + ν (Cb + 2Cs)

)
> 0.

The maximal and minimal loadings are defined as in equations (10) and (9) with

β (ν, κ) =

√
γ

(
(Ab + 2As − 1) + λl (1− νb − 2νs) + ν (Cb + 2Cs)

)

1− νb − 2νs

. (B6)

Applying the FOC and maximizing the r.h.s. with respect to x, we obtain

x∗ (ν, κ) =
(√

1 + z2 − z
)

, (B7)

with

z (ν, κ) =
1− x1x2

x1 + x2

. (B8)

Q.E.D.

Proof of Theorem 1

22



Making use of equations (11) and (4), we obtain

q∗ (ν, κ) = (1− νb)
1− αx∗

1 + (x∗)2 = (1− νb)
1− x∗

x2

1 + (x∗)2 . (B9)

Combining (B9) and (12), we obtain

q∗ (ν, κ) =
(1− νb)

2

1− z+x1

1−zx1

(√
1 + z2 − z

)

1− z
(√

1 + z2 − z
) (B10)

=
(1− νb)

2 (1− zx1)

1− z
(√

1 + z2 − z
)− x1

√
1 + z2

1− z
(√

1 + z2 − z
)

=
(1− νb)

2

(
1 +

zx1

1− zx1

− x1

1− zx1

√
1 + z2

1− z
(√

1 + z2 − z
)
)

.

The last equation can be transformed to

q∗ (ν, κ) =
(1− νb)

2

(
1− x1

1− zx1

( √
1 + z2

1− z
(√

1 + z2 − z
) − z

))

=
(1− νb)

2

(
1− x1

1− zx1

√
1 + z2 − z + z2

(√
1 + z2 − z

)

1− z
(√

1 + z2 − z
)

)

=
(1− νb)

2

(
1− x1

1− zx1

(√
1 + z2 − z

)
(1 + z2)

1− z
(√

1 + z2 − z
)

)
.

Multiplying numerator and denominator of the last equality by
(√

1 + z2 + z
)

and using the
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identity
(√

1 + z2 − z
) (√

1 + z2 + z
)

= 1, we obtain

q∗ (ν, κ) =
(1− νb)

2

(
1− x1

1− zx1

(√
1 + z2 − z

)
(1 + z2)

1− z
(√

1 + z2 − z
)

)

=
(1− νb)

2

(
1− x1

1− zx1

(√
1 + z2 − z

) (√
1 + z2 + z

)
(1 + z2)(

1− z
(√

1 + z2 − z
)) (√

1 + z2 + z
)

)

=
(1− νb)

2

(
1− x1

1− zx1

(1 + z2)√
1 + z2

)
=

(1− νb)

2

(
1− x1

1− zx1

√
1 + z2

)
,

which proves the first claim of the Theorem 1. The second claim follows from q∗ (ν, κ), plus

equations (6) and (11). The third claim is obtained combining q∗ (ν, κ), plus equations (B1)

and (11).

Q.E.D.

Proof of Propositions 3 and 4

We first show the effect on the seller’s price policy. Making use of (B7) with (B8), we obtain

dx∗ (ν, κ)

dν
=

dx∗ (ν, κ)

dz

dz

dν
, (B11)

with

dz

dν
=

∂z

∂x1

∂x1 (ν, κ)

∂ν
+

∂z

∂x2

∂x2 (ν, κ)

∂ν
. (B12)

We notice that

dx∗ (ν, κ)

dz
= −

(
1− z√

1 + z2

)
≤ 0, (B13)

and

dz

dν
=

(
(1 + x2

2) x2
κ

1+λl
+ (1 + x2

1) x1
2−κ
5+λl

)

√
γ (x1 + x2)

2 ≥ 0. (B14)
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Substituting (B13) and (B14) into (B11), we conclude that

dx∗ (ν, κ)

dν
≤ 0. (B15)

Next, we show the effect on the buyer’s demand policy

∂q∗ (ν, 0)

∂ν
=

∂q∗ (ν, 0)

∂x∗
dx∗ (ν, κ)

dν
, (B16)

with

∂q∗ (ν, 0)

∂x∗
= −1 + 2x2x

∗ − (x∗)2

x2

(
1 + (x∗)2)2 . (B17)

The positive root r2 of the concave quadratic function f (y) = 1 + 2x2y − y2 is given by

r2 = x2 +
√

1 + x2
2 ≥ x2 ≥ x∗, (B18)

and hence f (x∗) ≥ 0. Therefore, ∂q∗(ν,0)
∂x∗ ≤ 0. Combining this with (B15) and substituting

into (B16), we conclude that

dq∗ (ν, 0)

dν
≥ 0. (B19)

Finally, the effect on the seller’s income, analogous to the above

∂ (x∗q∗ (ν, 0))

∂ν
=

∂ (x∗q∗ (ν, 0))

∂x∗
dx∗ (ν, κ)

dν
, (B20)
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with

∂ (x∗q∗ (ν, 0))

∂x∗
= −

(
1 + 2x2x

∗ − (x∗)2) x∗

x2

(
1 + (x∗)2)2 (B21)

+
x2 − x∗

x2

(
1 + (x∗)2) .

Collecting terms, we obtain

∂ (x∗q∗ (ν, 0))

∂x∗
= −

(
−1 + 2

x2
x∗ + (x∗)2

)

(
1 + (x∗)2)2 . (B22)

The positive root of the convex quadratic function g (y) = −1 + 2
x2

y + y2 is given by

r2 =

√
1 +

1

x2
2

− 1

x2

≥ x∗, (B23)

and hence g (x∗) ≤ 0. Therefore, ∂(x∗q∗(ν,0))
∂x∗ ≥ 0. Combining this with (B15) and substituting

into (B20), we conclude that

d (x∗q∗ (ν, 0))

dν
≤ 0. (B24)

Q.E.D.

Proof of Proposition 5

Rewriting the seller’s expected utility in the form

−2γUs = (b− qx + ν (1− κ) χ)2 + (q − ν (1− κ))2 , (B25)
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with the dimensionless loading of the fund χ defined by

χ =
√

γ∆C. (B26)

Differentiating (B25) and making use of the envelope property, we obtain

γ
dU∗

s

dν
= θ (ν, κ)

(
∂q

∂ν

(
2x +

q

qx

)
− (1− κ)

(
χ + x +

q

qx

))
, (B27)

where

θ (ν, κ) = (b− qx + ν (1− κ) χ) ≥ 0. (B28)

Note that qx = ∂q
∂x
≤ 0 and ∂q

∂ν
≤ 0 are given by

∂q

∂x
= −

(
2x∗ (1− νκ) + (α + νκχ)

(
1− (x∗)2))

(
1 + (x∗)2)2 , (B29)

and

∂q

∂ν
= −κ

1 + κχ

1 + (x∗)2 , (B30)

respectively. Collecting the terms, we obtain a condition that dU∗s
dν
≥ 0, iff

Θ (ν, κ) ≥ Γ (ν, κ) , (B31)

with

Θ (ν, κ) =
1− νκ− x∗ (α + νκχ)

2x∗ (1− νκ) +
(
1− (x∗)2) , (B32)
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and

Γ (ν, κ) =
(1− κ) (χ + x) + 2κx∗

1+(x∗)2
(1 + χx∗)

(
(1− κ)

(
1− (x∗)2) + κ (1 + χx∗)

) . (B33)

In the limit k = 0, the above condition is simplified to

(1− αx∗)
(
1− (x∗)2)

2x∗ + α
(
1− (x∗)2) ≥ x, (B34)

which is satisfied if h (x∗) ≤ 0 with

h (y) = −1

3
+

2

3
αy + y2. (B35)

Analyzing the roots of the quadratic function h (y) analogous to how this was done before,

we conclude that the condition h (x∗) ≤ 0 can always be satisfied.

Q.E.D.

Proof of Proposition 6

Making use of (B7) and (B8), we obtain

x∗ − x1 =

√
1 + x2

1√
1 + x2

1 +
√

1 + x2
2

(x2 − x1) . (B36)

Differentiation yields

∂ (x∗ − x1)

∂ν
=

√
1 + x2

1√
1 + x2

1 +
√

1 + x2
2

1√
γ

Ω (ν, κ) , (B37)
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with

Ω (ν, κ) =
2− κ

5 + λl
(1− ϕ)− κ

1 + λl
(1− ψ) , (B38)

and

ϕ (ν, κ) =

√
1 + x2

2√
1 + x2

1 +
√

1 + x2
2

x1

1 + x2
1

< 1, (B39)

ψ (ν, κ) =

√
1 + x2

2√
1 + x2

1 +
√

1 + x2
2

x2

1 + x2
2

< 1. (B40)

Note that Ω (ν, κ) is a smooth function in both arguments. We have Ω (ν, 0) =

2
5+λl

(1− ϕ (ν, 0)) ≥ 0, and therefore

∂ (x∗ (ν, 0)− x1 (ν, 0))

∂ν
≥ 0. (B41)

From the smoothness argument formulated above, it follows that

∂ (x∗ (ν, κ)− x1 (ν, κ))

∂ν
≥ 0, (B42)

holds in the finite segment κ ∈ [0; κmax] with κmax > 0.

Q.E.D.
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5.2 Figures and Numerical Results
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Figure 1: Equilibrium Demand and Price. The figures show properties of the equilibrium
demand and loading in the private insurance market, depending on the size of the disaster relief
fund ν – volume, and the fraction of the fund paid for and received by the buyer κ – policy (fraction
buyer). Exogenous parameters are: 8% unconditional expected loss, 20% unconditional standard
deviation, buyer’s risk tolerance = 2, seller’s risk tolerance = 2.
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Figure 2: Net Position of Buyer and Seller. The figures show the properties of the buyer’s
and seller’s net position, depending on the size of the disaster relief fund ν – volume, and the
fraction of the fund paid for and received by the buyer κ – policy (fraction buyer). The top left
graph shows the buyer’s total insured wealth, q + νb, and the top right graph the total price paid
per unit of insured wealth, (q(lλ + ∆p) + Cbν)/(q + νb). The lower left graph shows the seller’s
net income, (q(lλ + ∆p) − Csν), the lower right graph shows the net cat risk exposure given by
q − νs. Exogenous parameters are: 8% unconditional expected loss, 20% unconditional standard
deviation, buyer’s risk tolerance = 2, seller’s risk tolerance = 2.
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Figure 3: Expected Utilities. The figures show the properties of buyer’s and seller’s indirect
utilities, depending on the size of the disaster relief fund ν – volume, and the fraction of the fund
paid for and received by the buyer κ – policy (fraction buyer). Upper graphs show the levels of
indirect utilities, lower graphs show the weakly preferred strategies. Exogenous parameters are:
8% unconditional expected loss, 20% unconditional standard deviation, buyer’s risk tolerance = 2,
seller’s risk tolerance = 2.
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volume = 0.5089 + 0.0529 ∗ AB − 0.0282 ∗ AS + 0.0573 ∗ EXPL + 0.1843 ∗ SDEV (C1)

policy = 0.0742 + 0.1258 ∗ AB − 0.0705 ∗ AS + 0.1147 ∗ EXPL− 0.0276 ∗ SDEV (C2)

volume = 0.5328 + 0.3551 ∗ policy (C3)

Figure 4: Disaster Relief Policies. The graphs show histograms of the optimal disaster fund
policies. The objective is to maximize buyer utility, conditional on being a weakly preferred strategy
by the seller. The left graph shows the size of the fund - optimal volume, the right graph shows the
fraction of the fund paid for and received by the buyer - optimal policy (fraction buyer). Results
are based on monte-carlo simulations generating uniform distributions for the following sets of
exogenous parameters: Unconditional expected loss - EXPL - between 2% and 14%, unconditional
standard deviation - SDEV - between 10% and 30%, buyer’s risk tolerance - AB - between 1 and 3,
seller’s risk tolerance - AS - between 1 and 3. The equations show the corresponding cross-sectional
results of a regression analysis.
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ln(loading) = −3.341 + 1.344 ∗ volume− 8.066 ∗ policy (C7)

Figure 5: Demand and Loading. The graphs show histograms of the buyer’s optimal demand -
buyer demand, and the loading in the primary insurance market - ln(loading), associated with the
optimal disaster fund policies. Results are based on monte-carlo simulations generating uniform
distributions for the following sets of exogenous parameters: Unconditional expected loss - EXPL
- between 2% and 14%, unconditional standard deviation - SDEV - between 10% and 30%, buyer’s
risk tolerance - AB - between 1 and 3, seller’s risk tolerance - AS - between 1 and 3. The equations
show the corresponding cross-sectional results of a regression analysis.
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Figure 6: Demand and Loading relative to No Disaster Fund. The graphs show histograms
of the percentage change in demand and loading associated with optimal disaster fund policies,
relative to not having access to a disaster fund. Results are based on monte-carlo simulations
generating uniform distributions for the following sets of exogenous parameters: Unconditional
expected loss - EXPL - between 2% and 14%, unconditional standard deviation - SDEV - between
10% and 30%, buyer’s risk tolerance - AB - between 1 and 3, seller’s risk tolerance - AS - between
1 and 3. The equations show the corresponding cross-sectional results of a regression analysis.
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net seller = 0.002− 0.002 ∗ AB − 0.002 ∗ AS − 0.013 ∗ EXPL− 0.132 ∗ SDEV (C11)

Figure 7: Net Position of Buyer and Seller. The graphs show histograms of the net position
of buyer and seller associated with optimal disaster fund policies. The net position of the buyer is
the demand in the private insurance market plus the fraction of disaster payment received. The
net position of the seller is the amount sold in the private market net the fraction of the disaster
payment received. Results are based on monte-carlo simulations generating uniform distributions
for the following sets of exogenous parameters: Unconditional expected loss - EXPL - between 2%
and 14%, unconditional standard deviation - SDEV - between 10% and 30%, buyer’s risk tolerance
- AB - between 1 and 3, seller’s risk tolerance - AS - between 1 and 3. The equations show the
corresponding cross-sectional results of a regression analysis.
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mon power = 8.474+44.310∗AB−27.270∗AS +37.703∗EXPL+17.912∗SDEV (C12)

new entry cost = −96.506 + 148.396 ∗ volume + 300.650 ∗ policy (C13)

Figure 8: Effects on Competition. The graphs show the effects on monopoly power, measured
in terms of two diagnostics. The left graph shows how the drop in loading due to the existence
of the disaster fund compares to the initial monopoly power without a disaster fund. The right
graph shows the distance of loading relative to smallest accepted loading by the seller, with versus
without the existence of the disaster fund. Results are based on monte-carlo simulations generating
uniform distributions for the following sets of exogenous parameters: Unconditional expected loss -
EXPL - between 2% and 14%, unconditional standard deviation - SDEV - between 10% and 30%,
buyer’s risk tolerance - AB - between 1 and 3, seller’s risk tolerance - AS - between 1 and 3. The
equations show the corresponding cross-sectional results of a regression analysis.
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volume = 0.5723 + 0.0522 ∗ AB − 0.0298 ∗ AS − 0.1200 ∗ LAMBDA (C14)

policy = 0.0658 + 0.1304 ∗ AB − 0.0705 ∗ AS + 0.0179 ∗ LAMBDA (C15)

Figure 9: Disaster Relief Policies - Effect of Lambda. The objective is to maximize buyer
utility, conditional on being a weakly preferred strategy by the seller. The left graph shows the size
of the fund - optimal volume, the right graph shows the fraction of the fund paid for and received
by the buyer - optimal policy (fraction buyer). The unconditional expected loss is given by 8%,
arrival intensities - LAMBDA - are drawn from a uniform distribution between .08 and .30. Further
exogenous parameters are the buyer’s risk tolerance - AB - between 1 and 3, seller’s risk tolerance
- AS - between 1 and 3. Based on the inferred conditional expected losses between 27% and 100%,
the resulting unconditional standard deviation ranges between 12% and 27%.
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change in volume = −0.2131− 0.0496 ∗ AB − 0.0307 ∗ AS + 1.2671 ∗ SDEV (C16)

change in policy = −0.0259− 0.0089 ∗ AB − 0.0078 ∗ AS + 0.2033 ∗ SDEV (C17)

Figure 10: Disaster Relief Policies - Effect of Small Loading. These results are obtained
from a perturbation exercise, in which the disaster fund is not only funded at expected losses, but
also a small loading factor of .001. The left graph shows the effect on the size of the disaster fund -
optimal volume, the right graph shows the effect on the fraction of the fund paid for and received by
the buyer - optimal policy (fraction buyer). Results are based on monte-carlo simulations generating
uniform distributions for the following sets of exogenous parameters: Unconditional expected loss -
EXPL - between 2% and 14%, unconditional standard deviation - SDEV - between 10% and 30%,
buyer’s risk tolerance - AB - between 1 and 3, seller’s risk tolerance - AS - between 1 and 3. The
equations show the corresponding cross-sectional results of a regression analysis.
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