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4) Other High-Dimensional Forecasting Methods 
 

Recall the introductory discussion of optimal forecasting with many 
orthogonal predictors, in which the frequentist problem was shown to be 
closely linked to the Bayes problem: 
Frequentist:  minδ r (

nG d ) = 2( ) ( )nE d d dG dκ −∫   cdf of di 

Bayes:    minδ r (G d ) = )2( ) (E d d dG dκ −∫     subjective prior 

Empirical Bayes: minδ rˆ (G d ) = )2 ˆ( ) (E d d dG dκ −∫  estimated “prior” 

 
So far we have focused on a setup – the DFM – in which the DFM 
imposed structure on the coefficients in  

Yt+1 = δ′Pt + εt+1, t = 1,…, T,  

The DFM said that, if Pt are the principal components, then only the first r 
of them matter – the rest of the coefficients are exactly zero. 
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High-dimensional methods, ctd. 
The DFM implication that only the first r elements of δ are nonzero is 

an intriguing conjecture, but it might be false, or (more usefully) might not 
provide a good approximation. 

The methods we will discuss now address the possibility that the 
remaining n – r (= 135 – 4 = 131, say) principal components matter – or 
equivalently, all the X’s enter separately with some small but useful 
weight. 

This problem of prediction with many predictors has received a lot of 
attention in the stats literature so we will draw on it heavily: 
• Empirical Bayes (parametric and nonparametric) 
• Bayesian model averaging (BMA) 
• Bagging, Lasso, etc 
• Hard threhsholding methods including false discovery rate (FDR) 

(which is closely linked to Empirical Bayes, see Efron (2003)) 



High-dimensional methods, ctd. 
We will focus on methods for orthogonal regressors (some generalize to 
non-orthogonal, some don’t) 

      Yt+1 = δ′Pt + εt+1, t = 1,…, T, 

where P′P/T = In  (e.g. P = principal components) 

Some (of many) methods: 

1. Optimal Bayes estimator under the assumption δi = di/ T , di i.i.d. G;  
The di i.i.d G model is the opposite extreme from a DFM 
(exchangeability: ordering i doesn’t matter) 

2. Hard thresholding (i.e. using a fixed t-statistic cutoff).   
3. Information criteria AIC, BIC: here these reduced to hard thresholding 

with a cutoff cT, where cT → ∞ (but not too quickly) 
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High-dimensional methods, ctd. 
 

4. False discovery rate (FDR) methods. In this problem, FDR turns into 
hard thresholding, except using the t-statistic is compared to a cutoff cT 
that depends on the full distribution of t-statistics, t1,…, tn.  Used in 
genomics (10 million probes on a chip, pick out the sites that have 
unusual characteristics controlling the false positive rate, not the false 
negative rate as in testing). 

  
5. Bootstrap aggregation (“bagging”) (Breiman (1996), Bühlmann and 

Yu (2002); Inoue and Kilian (2008)).   
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High-dimensional methods, ctd. 
6. Bayesian model averaging (BMA). 

• References 
o Leamer (1978); Min and Zellner (1990); Fernandez, Ley, and 

Steele (2001a,b), Koop and Potter (2004) 
o Surveys: Hoeting, Madiga, Raftery, and Volinsky (1999), Geweke 

and Whiteman (2004)  
• Basic idea: there are many possible models (submodels); assign them 

prior probability and compute posterior means. 
• The BMA setup (notation: using Xt, not Pt – this doesn’t need 

orthogonalized regressors in theory). 
Yt+1 | Xt is given by one of K models, denoted by  M1,…, MK. 
Models are linear, so Mk lists variables in model k 
π(Mk) = prior probability of model k 
Dt denotes the data set through date t 



BMA, ctd. 
The predictive density is the density of YT+1 given the past data – the priors 
and the model are integrated out: 

  f(YT+1|DT) = 1
1

( | ) Pr( | )
K

k T T k T
k

f Y D M D+
=
∑ , 

where fk(YT+1|DT) = kth predictive density  
 
The posterior probability of model k is: 

Pr(Mk|DT) = 
1

Pr( | ) ( )
Pr( | ) ( )

T k k
K

T i ii

D M M
D M M

π
π

=∑
, 

where  

Pr(DT|Mk) = Pr( | , ) ( | )T k k k k kD M M dθ π θ θ∫  

θk = parameters in model k  
π(θk|Mk) = prior for θk in model k 
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BMA, ctd. 
Under quadratic loss, optimal forecast is the mean of the predictive 
density, which is the weighted average of the forecasts you would make 
under each model, weighted by the posterior probability of that model: 

1|TY + T  = T, 1|
1

Pr( | )
k

K

k T M T
k

M D Y +
=
∑ ,  

where , 1|kM TY + T  = posterior mean of YT+1 for model Mk. 

 
Comments  
• Akin to forecast combining – where there are K forecasts 
• How many models are there?  How many distinct subsets of 135 

variables can you make? 
• fun for computational Bayesians (MCMC, etc) 
• This simplifies with orthogonal regressors however… 
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BMA, ctd. 
BMA with orthogonal regressors  
Clyde, Desimone, and Parmigiani (1996), Clyde (1999): 
• Variable j is in the model with probability π (coin flip) 
• Given the model, the coefficients are distributed with a conjugate “g-

prior” – and you get a closed form expression for posteriors 
 
Comments: 
1. Link to forecast combination – Bates and Granger (1969) 
2. If the parameters of the prior (the “hyperparameters”) are estimated, 

then this is parametric empirical Bayes. 
3. All the theory and setup of BMA is for the cross-sectional case – the 

theoretical Bayes justification doesn’t go through with predetermined 
regressors, nor for multistep forecasts.  So its motivation is by analogy 
to to the i.i.d./exogenous regressor case. 



Digression: shrinkage representations  
All the estimators based on the regression 

Yt+1 = δ′Pt + εt+1, t = 1,…, T, P′P/T = In  (e.g. principal components) 

except FDR are shrinkage estimators (remember James-Stein) and produce 

forecasts of the form (at least, asymptotically as n, T → ∞),  
 

1|
1

ˆˆ ( )
n

t t i i i
i

Y t tPψ δ+
=

=∑          (1) 

 

where ψ is a function that depends on the estimator (typically 0 ≤ ψ(x) ≤ 

1) and ti is the t-statistic testing whether δi = 0. 
The shrinkage expression (1) also has a forecast combination 

interpretation: ˆ
ti iPδ  is the forecast made using the ith predictor  
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Shrinkage representations, ctd 

       t1|
1

ˆˆ ( )
n

t t i i i
i

Y t Pψ δ+
=

=∑   

Here are some ψ functions: 

Optimal Bayes estimator under the assumption δi = di/ T , di i.i.d. ~ G;  

ψB(u) = 1 + ( )t
t

 

where  is the score of the marginal distribution of îδ  

 
Hard thresholding (i.e. using a fixed t-statistic cutoff).   

ψ(t) = 1(|ti| > c), c is some cutoff 
 
Information criteria AIC, BIC: here these reduced to hard thresholding 

with ψ(t) = 1(|ti| > cT), where cT → ∞ (but not too quickly) 
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High-dimensional methods, ctd. 
 
7. Large VARs  
 
De Mol, Giannone, and Reichlin (2006)  
• Strong priors and estimated hyperparameter (EB implementation) 
• Also consider Lasso (another high-dimensional method from statistics) 
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5) Empirical Performance of High-Dimensional Methods 
 
(a) Data selection and preparation issues 
(b) Comparisons among factor estimation methods 
(c) Comparisons among many-predictor forecasting methods 
(d) Empirical evidence on in-sample fit of DFM model 
(e) Many-predictor methods vs. the world 
  
Disclaimer:  There now is a large literature and considerable practitioner 
experience with empirical DFMs, and a smaller but also substantial 
literature examining other many-predictor methods.  This discussion is 
informed by this body of empirical knowledge but does not pretend to be a 
survey.  See the survey and meta-analysis by Eichmeier and Ziegler 
(2006) for a bibliography.
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(a) Data selection and preparation issues 
 
Bear in mind that… 
• The factors you get out depend on the data you put in. 
 
• More variables do not always mean more information, for example 

putting in CND, CD, CS and total consumption doesn’t make sense 
(aggregation identity). 

 
• Judgment should be exercised about the balance between various 

categories of data; if most of the data are production and output, your 
dominant factor will be an output factor 
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(b) Comparisons among factor estimation methods 
 
Discussed above.  Empirical evidence suggests estimation method is not a 
first order issue although there is limited evidence on MLE (2-step or full) 
to date. 
 
 



(c) Comparisons among many-predictor forecasting methods 
Papers include Inoue and Kilian (2008), Koop and Potter (2004), Bańbura, 
Gianonne, and Reichlin (2008), Stock and Watson (2006a, 2006b). 
• DFMs generally outperform the many-predictor statistical methods. 
• Results from Stock and Watson (2006b) are consistent with this 

literature and make the point.  SW consider forecasts in the shrinkage 
family, 

1|
1

ˆˆ ( )
n

t t i i i
i

Y t Ptψ δ+
=

=∑   

Forecasting methods:  basic DFM (4 factors), bagging, BMA with 
fixed hyperparameters, Empirical Bayes (parametric, nonparametric), 
BIC hard thresholding; US monthly data. Figures are: 
(1) the ψ functions for the different procedures 
(2) the resulting ψ(t) weights on the ordered principle components 
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Fig. 1.  Shrinkage factors for PC forecasting model (unemployment) 
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Fig. 2.  Weights ψ(ti) on the ordered principle components 
(a) Unemployment rate 
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(b) CPI inflation rate 
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(c) 10-Year T-bond Rate 
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(d) Empirical evidence on in-sample fit of DFMs 
 
Applications to US and EU data find that the first few PCs explain a large 
fraction of the data. 
 
Watson (2004) comment on Giannone, Reichlin and Sala (2004) 



Watson (2004) comment on Giannone, Reichlin and Sala (2004) 
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Empirical evidence on in-sample fit of DFMs, ctd 
 
Stock and Watson (2005) 
• Test exact DFM restrictions, find large fraction of rejections in U.S. 

quarterly data 
• But the rejections are all very small in a R2 sense.  
• The approximate DFM seems to be a good description of the data 
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(e) Many-predictor methods vs. the world  
 
Generally speaking, it depends on the application 
Eichmeier and Ziegler (2006) (limitations) 
 
Inflation 

U.S. survey by Stock and Watson (2008) 
 
Output 

US, EU – generally find substantial improvements (especially US) 
over other models 
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6)  SVARs with Factors: FAVAR 
 

Challenges & critiques of standard SVAR modeling include: 
• The Rudebush (1998) critique of SVARs with short-run timing 

identification:  Fed uses more information than is in a standard VAR 
• The invertibility problem in SVARs: is Rut = εt, εt = R–1ut plausible? 
• Including more variables in the VAR might improve forecast 

efficiency and provide an internally consistent set of forecasts for a 
large number of variables – but confronts the n2p parameter problem 

 
Bernanke, Boivin, and Eliasz’s (2005) (BBE) idea is to use factors as a 
way to solve this problem: in a DFM, factors summarize all the relevant 
information on the economy.  The result is the BBE Factor Augmented 
VAR (FAVAR). 
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FAVAR, ctd 
There are a number of ways FAVAR can be implemented, the following 
papers use related approaches but differ in the details: 
Bernanke, B.S., and J. Boivin (2003), Bernanke, Boivin, and Eliasz (2005) 
(BBE), Favero and Marcellino (2001), Favero, Marcellino, and Neglia 
(2004); also see Giannone, Reichlin, and Sala (2004) on the invertibility 
issue. 
 
Here we follow the spirit of BBE (2005) although some technical details 
(but not identification ideas) are different – this development follows 
Stock and Watson (2005). 
 
One approach would be simply to put factors into a SVAR, however the 
factors themselves are not identified so making any identification 
assumptions about their innovations is difficult. 
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FAVAR, ctd. 
VAR form of the exact DFM 
DFM with first order dynamics from above: 
        Ft = ΦFt–1 + Gηt  

Xt  = ΛFt  + et 
et = Det–1 + ζt 

 
where D is diagonal. Quasi-difference Xt: 

(I – DL)Xt  = (I – DL)ΛFt + ζt =  ΛFt – DΛFt–1 + ζt 
Substitute in Ft = ΦFt–1 + Gηt: 

(I – DL)Xt  = Λ(ΦFt–1 + Gηt) – DΛFt–1 + ζt 
Rearrange: 

Xt  = (ΛΦ – DΛ)Ft–1 + DXt–1 + ΛGηt + ζt 
 
Putting the Ft and Xt equations together yields, 



VAR form of the DFM, ctd. 
 

t

t

F
X

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
0

D D
Φ⎛ ⎞

⎜ ⎟ΛΦ − Λ⎝ ⎠
1

1

t

t

F
X

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + 
0G

G I
⎛ ⎞
⎜ ⎟Λ⎝ ⎠

t

t

η
ζ
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 
Writing the reduced form VAR as A(L)Xt = ut, the VAR innovations are 
ut = Xt – Proj(ut|Ft–1, Ft–2,…, Xt–1, Xt–2,…) = ΛGηt + ζt, where we are 
treating the F’s as observed (this is justified by large n asymptotics). 
 
The ζ’s are disturbances to the idiosyncratic process.  What we are 
interested in is the response of Xt to structural shocks, which affect all the 
variables.  The structural shocks εt are related to the innovations in the 
dynamic factors: 

Rηt = εt 
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FAVAR 

reduced form:   t

t

F
X

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
0

D D
Φ⎛ ⎞

⎜ ⎟ΛΦ − Λ⎝ ⎠
1

1

t

t

F
X

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + 
0G

G I
⎛ ⎞
⎜ ⎟Λ⎝ ⎠

t

t

η
ζ
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

structure:     
q q
R
× q q

tη
×

 = 
q q

tε
×

 
 
The structural IRF is the distributed lag of Xt on εt.  Now 

 
Xt = ΛFt + et  

and      Ft = ΦFt–1 + Gηt = ΦFt–1 + GR–1εt,  
 
so      Xt = Λ(I – ΦL)–1GR–1εt + et 
 
so the structural IRF is Λ(I – ΦL)–1GR–1. 
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FAVAR, ctd. 
Comments: 
1.Lags.  These formulas are for first order dynamics – with higher order 

dynamics the expression above becomes,  

   t

t

F
X

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
( ) 0

( ) ( ) ( )
L

L D L D L
Φ⎛ ⎞

⎜ ⎟ΛΦ − Λ⎝ ⎠
1

1

t

t

F
X

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + 
0G

G I
⎛ ⎞
⎜ ⎟Λ⎝ ⎠

t

t

η
ζ
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

structure:     
q q
R
× q q

tη
×

 = 
q q

tε
×

 
 
2.Identification.  The identification problem is finding R, where Rηt = εt.  

This is now amenable to applying the SVAR identification toolkit: 
• Timing scheme (BBE: slow/policy/fast, see Lecture #7) 
• long run restrictions 
• sign restrictions (see Ahmadi and Uhlig (2007)) 
• heteroskedasticity 
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FAVAR, ctd. 
 
3.Structural shocks. The ηt shocks are the shocks to the dynamic factors: 

Ft = ΦFt–1 + Gηt.  These are not the residuals from a VAR estimated 
using Ft:  the number of static factor innovations r ≥ q.  Implementation 
involves estimating the space of dynamic factor shocks, which in turn 
entails (i) estimating the number of dynamic factors q, and (ii) reduced 
rank regressions to estimate ηt. 

 
4.Many impulse responses. The structural IRF is Λ(I – ΦL)–1GR–1, which 

yields IRFs for all the X’s in the system! 



FAVAR, ctd. 
 
5.Overidentification. These systems move from being exactly identified 

SVARs to potentially heavily overidentified.  Consider the BBE 
fast/slow identification idea: the slow identification restriction now 
applies to a huge block of variables, specifically, r

tε  should not load on 
any of the slow moving variables.  Let  be the VAR innovations to the 
slow-moving variables, S

tu  = S
tX  – Proj( S

tX |Ft–1, Ft–2,…, Xt–1, Xt–2,…).  
Under the fast/slow identification scheme, Proj( S

tu | r
t

S
tu

ε ) should be zero.  
These many overidentifying restrictions are testable. 
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7)  Factors as Instruments 
 
Independently developed by Kapetanios and Marcellino (Oct. 2006, 
revised 2008) and Bai and Ng (Oct. 2006, revised 2007b) 
 
Remember the weak instrument problem… 
• Using factors might be a way to use more information, without the 

pitfalls of the many instrument problem! 
ˆ• The instruments tF  are linear combinations of the Xt’s, but the key 

insight is that the coefficients of that linear combination are estimated 
separately, not in the first-stage regression (the X’s don’t enter the 
moment conditions explicitly). 

• The mathematics is essentially the same as the math used to show that 
 can be used in a forecasting regression without a generated 

regressor problem. 
t̂F
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Factors as instruments, ctd. 
 
Main result: under conditions like those above (the approximate DFM 
conditions), and the “usual” large-n rate condition N2/T → ∞, and a strong 
instrument assumption, 
 

T ( ) – )  0       (2) ˆ (TSLS
tFβ ˆ ˆ( )TSLS

tFβ
p
→

 
where  is the PC estimator of the factors.  So IV is as efficient if the 
factors are known as if they are not when N is large. 

t̂F

 
Simulation results in Kapetanios and Marcellino (2008) and Bai and Ng 
(2007b) are promising concerning the finite-sample validity of (2) under 
strong instruments. 
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Factors as instruments, ctd. 
Additional comments 
1.The idea of using principal components as instruments is old (Kloek and 

Mennes (1960), Amemiya (1966)) – what is new is proving optimality 
results using the DFM as the conceptual framework. 

2.Not all the individual X’s need to be valid instruments – the e’s could be 
correlated with the included endogenous regressor, what matters is that 
the F’s are not correlated. 

3.If there isn’t a factor structure, then the PC estimates are going to 
random linear combinations of the X’s.  But if the X’s are all valid 
instruments, the t̂F ’s remain valid instruments even without a factor 
structure (details in Bai and Ng (2007)).  

4.If the instruments (F’s) are weak, then weak instrument asymptotics 
kicks in.  (The original hope is that weak instruments will be less of a 
problem using the F’s.) 
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8)  DSGEs and Factor Models 
 
“Reduced form” DFM with first order dynamics from above: 
        Ft = ΦFt–1 + Gηt  

Xt  = ΛFt  + et 
et = Det–1 + ζt 

Boivin and Giannoni (2006b) replace the reduced form state space model 
with a linearized DSGE: 

tF  = ΦF 1t−  + G tη       (3)  

  Xt = Λ Ft  + et,       (4) 

et = Det–1 + ζt       (5) 
 
where ~ means that (3) is a structural model (DSGE), cf. Sargent (1989), 
Boivin-Giannoni (2006b).   
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DSGEs and factor models, ctd.   = tF ΦF 1t−  + G tη        

    Xt = Λ Ft  + et,        

et = Det–1 + ζt        
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The DSGE implies restrictions on Λ  that identify : tF

• The elements of tF  correspond to “output gap” (xt), “inflation” (πt), 
“the interest rate” (rt), “hours worked”, etc.  In the example DSGE in 
lecture 8,  = (xt, πt, rt)′. tF

• The meanings of the elements  within the DSGE imply restrictions 

on  that identify  
tF

Λ tF

• The system, with restrictions on Λ  imposed, is in SS form and the KF 
can be used to compute the likelihood.  Estimation is a combination of 
DFM MLE and DSGE MLE with a small number of variables: 

o initial values using PC estimates of the factors 
o modified Jungbacker-Koopman (2008) speedup? 



Boivin-Giannoni (2006b) identification:  Setup:  let λ  denote a nonzero 
entry (not all the same – just dropping subscripts) 
 

Y

C

info

output gap series #1 0 0

output gap series #n 0 0
inflation series #1 0 0

inflation series #n 0 0

Information series #1

Information series #n

λ
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⎢ ⎥⎣ ⎦

 

Revised July 23, 2008 12-43 



Or 
 

   sensor, sensor

info, info

t
t

t

X
F

X
⎡ ⎤⎡ ⎤ Λ

= ⎢ ⎥⎢ ⎥ Λ⎣ ⎦ ⎣ ⎦
,  where  = tF (L) t tF εΦ + t 

 
In general the information series can have weights on expectations of 
future Ft (e.g. term spreads) but by the VAR structure of the factors plus 
the DFM assumptions those are projected back on Ft. 
 
Results from Boivin-Giannone (they use Bayes methods) 
Case A: 7 variables 
Case B: 14 variables 
Case C: 91 variables 
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Misc. concluding DFM comments 
 
1.Everything in this lecture has applied to variables with short-run 

dependence.  There is a fair amount of work extending DFMs to handle 
unit roots and cointegration, for one of several papers in the literature 
see Bai and Ng (2004) (and see their references). 

 
2.We also have ignored TVP and structural breaks in DFMs.  DFMs have 

a certain robustness to TVP and structural breaks, however the only 
published work with any TVP aspect in DFMs is Stock and Watson 
(2002) and Phillips and Sul (1997).  Recent unpublished work includes 
Stock and Watson (2007) and Banergjee, Marcellino, and Masten 
(2007). 
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Summary 
 
1.The quest for exploiting large data sets has made considerable advances 
2.Large n is a blessing – turning the principle of parsimony on its head 

(N2/T → ∞ results) 
3.State of knowledge of DFM estimation and factor extraction is pretty 

advanced: it doesn’t seem to make a lot of difference what method you 
use if n is large, but this said the MLE (two-step seems to be enough) 
has some nice properties theoretically and in initial applications.  

4.Applications to forecasting are well advanced and implemented in real 
time.  Applications to SVARs (FAVAR), IV estimation, and DSGE 
estimation are promising. 


