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Abstract 

The empirical literature in international finance has produced three key results about 
international price deviations: borders give rise to flagrant violations of the law of one price, 
distance matters enormously for understanding these deviations, and most papers find that 
convergence rates back to purchasing power parity are inconsistent with the evidence of micro 
studies on nominal price stickiness. The data underlying these results are mostly comprised of 
price indexes and price surveys of goods that may not be identical internationally. In this paper, 
we revisit these three stylized facts using massive amounts of US and Canadian data that share a 
common barcode classification. We find that none of these three main stylized facts survive. We 
use our barcode level data to replicate prior work and explain what assumptions caused 
researchers to find different results from those we find in this paper. Overall, our work is 
supportive of simple pricing models where the degree of market segmentation across the border 
is similar to that within borders. 
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I. Introduction 
 

Data limitations have prevented researchers from comparing the prices of identical goods 

systematically within and across borders. This restriction has led researchers to infer the extent 

of market segmentation from the behavior of price indexes, aggregate prices of goods that may 

not be identical internationally, and a non-random selection of particular goods (e.g. Big Macs). 

Most papers in this literature have emphasized three key results about international price 

deviations: borders give rise to flagrant violations of the law of one price (LOP), distance matters 

enormously for understanding these deviations, and convergence rates back to purchasing power 

parity (PPP) are inconsistent with the evidence of micro studies on nominal price stickiness (c.f., 

Rogoff (1996)). In this paper we revisit these three stylized facts using massive amounts of US 

and Canadian barcode data. Our findings suggest that none of these conventional facts survive 

scrutiny of micro data. The law of one price in its absolute form holds as well across the border 

as it does within countries, distance coefficients are five to ten times larger in aggregate data than 

in micro data, and rates of price convergence within and across borders are fast and completely 

in line with micro studies. In short, the data is supportive of simple pricing models where the 

degree of market segmentation across the border is similar to that within borders.  

While the use of micro data in international pricing has become more widespread (see 

Atkeson and Burstein (2008), Gopinath and Rigobon (2007) and Goldberg and Verboven (2001) 

for important applications), comparing identical goods internationally has remained a challenge. 

We take advantage of the fact that the US and Canada share a common barcode system to 

compare prices of a vast number of products. Using data within and across 10 cities in the US 

and 6 regions in Canada we revisit the main facts in international pricing. Our data includes 

around 40 percent of all expenditures on goods in consumption, and is also vastly richer at the 

micro level than that used in national statistics.1 Moreover, unlike all prior work, we have both 

price and quantity data, which lets us form theory based, as opposed to ad hoc, indexes of PPP. 

One important feature of the data is that it lets us compare the extent of international 

market segmentation with segmentation within countries. We confirm the early finding by Isard 

(1977) that the LOP is flagrantly violated in international data. However, we can show that that 

the LOP is also flagrantly violated across cities in the same country. Thus, the observation that 
                                                 
1 For example, our data contains 700,000 price quotes for the US in a typical year. By contrast the sample is only 5 
percent as large. 
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an identical can of soda sells at different prices in different countries is not very informative 

about border barriers because prices vary substantially across space even within borders.  

Obviously, the more interesting question is how much larger are international violations 

than domestic ones.  Here we find the answer to be – not much. In their seminal work, Engel and 

Rogers (1996) compare border barriers with regional ones by expressing the “width” of the 

border in terms of distance equivalents. Using barcode data and the same methodology as they 

do, we find the distance-equivalent border effect to be 3 miles – roughly what one might expect 

if trucks crossing to border had to stop briefly to fill out some paperwork. In other specifications 

the “width” of the border rises to a few hundred miles, but never anything close to the tens of 

thousands of miles found in the original paper and in subsequent work (e.g., Parsley and Wei 

(2001)).  

Our second contribution is to explain why micro data reveals small border effects but 

aggregate data reveals much larger impacts. We begin by demonstrating that if we form price 

indexes using our barcode data and then replicate Engel and Rogers (1996), our results are quite 

similar to theirs. Clearly, something about aggregating micro data causes the border effect to 

appear larger. We argue that a vast amount of information about market segmentation across 

space is lost when one uses price indexes. In particular, because aggregate indexes collapse the 

large within-country idiosyncratic variation of relative goods prices while preserving the 

variation due to exchange rate movements, they make the cross-country variation appear much 

larger than the within country variation. Thus, aggregation of individual goods’ prices 

mechanically serves to amplify the measured impact of the borders on prices. In our data, this 

unintended consequence of aggregating individual prices into disaggregate product categories is 

entirely responsible for the large size of the border when using price index data.  

We also find a tiny border effect when we look at deviations in the LOP. Here we 

compare international LOP deviations with those within the US after controlling for distance. 

Our finding is particularly surprising given that the impact of distance on the price deviations of 

identical goods is only about one tenth as high as that obtained using price index data. This 

underscores the role that compositional effects have in explaining the relationship between price 

dispersion and distance previously found in the literature. We document that the set of common 

goods across cities varies systematically across space and borders and therefore unless all 

individual prices within the index move together, price indexes will appear to deviate across 
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space and borders simply due to the fact that the underlying weights and goods are different. We 

next document that the underlying prices within indexes vary enormously across time even for 

narrowly defined product categories, e.g. “fresh eggs.” This implies that the majority of the 

increased dispersion in aggregate prices that we observe as the distance between cities rises is 

not the result of actual deviations from the LOP but rather from compositional effects in the set 

of goods used to compute city-specific price indexes. 

Finally, we turn our attention to understanding what Rogoff (1996) has termed “The PPP 

Puzzle”: the fact that international price adjustment occurs at much slower rates than what one 

would expect from micro data. We first use our barcode data to confirm that convergence rates to 

long-run levels are fast using disaggregate data  but slow to non-existent using aggregate data 

formed from our barcode data. Once again, the question arises of why the aggregate results differ 

so much from those using micro data.  We show that strong non-linearities in the response to 

shocks are behind Rogoff’s puzzle. We confirm on our disaggregate barcode data the finding that 

convergence rates are highly non-linear (see, for example, Obstfeld and Taylor (1997) and 

Parsley and Wei (1996)). Large relative price deviations disappear very rapidly but small ones 

are quite persistent. This implies that when calculating the average convergence speed for 

individual goods OLS puts a large weight on observations with big price deviations which 

converge rapidly. By contrast, when the data is aggregated, large negative and positive price 

deviations cancel each other and a larger weight is given to observations where price deviations 

are small. We show that the pervasiveness of the non-linear responses can explain all the 

differences in the rates of convergence found at the aggregate versus disaggregate level. In 

particular, we also show that in our data heterogeneity of the convergence coefficient across 

goods does not generate a quantitatively important aggregation bias.2 

The structure of the paper is as follows. In Section II we provide a review of the theory 

and the empirical literature on international pricing. In Section III we describe the data and 

preview some of the main results and in Section IV we examine the width of the border at the 

aggregate and micro level and explain the sources of the different results. In Section V we 

examine the issue of convergence rates to PPP within and across the border both at the aggregate 

                                                 
2 A number of papers have examined whether heterogeneity of the convergence coefficient across goods can explain 
this aggregation bias and have found mixed success . Most prominently Imbs et al (2005) suggest that heterogeneity 
in the coefficients across goods is important to explain the PPP puzzle, while Chen and Engel (2005), Parsley and 
Wei (2007), Reidel and Szilagyi (2005), and Choi, Mark and Sul (2007) find otherwise. 
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and micro level. In Section VI we provide an explanation for the difference in convergence rates 

between different levels of aggregation.   

 

 

II. Theory and Literature Review 

 

The empirical literature on international pricing is vast, and it is useful to have an 

organizing framework for understanding the prior work. We find it useful to write down the 

simple prediction of the theory of the LOP in its “exact” form and then contrast these equations 

with their “approximate” forms, i.e. the equations that are estimated in the literature. The 

difference between both forms will be instructive in understanding where the problems in the 

existing tests of this theory lie. Unfortunately, the empirical literature has not been consistent in 

its usage of terms like LOP and PPP, especially when narrow aggregates of products are 

compared. In order to avoid any confusion, we will use the terms LOP and PPP in the same way 

as in Rogoff (1996) – i.e. if the prices of a good in two different locations are compared, we will 

refer to that as a test of LOP, and if two price aggregates are compared, we will refer to that as a 

test of PPP.3  

 “Absolute LOP” states that the price of an identical good should be the same across 

locations when denominated in a common currency. Formally, this suggests that Puct (i.e. the 

price of good u in city or region c in time t) can be written as 

(1) ' 'uct cc t uc tP E P=  

where Puc´t is the price of the good in a different region or country and Ecc´t is the exchange rate 

which equals unity if the two cities or regions are in the same country.  

Tests of equation (1) have been extremely limited. Previous studies have found that 

commodities that are traded on organized exchanges, e.g. gold, tend not to have large deviations 

in the LOP. For the handful of goods that have also been studied, authors have typically found 

large deviations from the LOP. Examples include the work on Big Macs by Cumby (1996), 

                                                 
3 One of the drawbacks of this approach is that we will refer to some papers as tests of PPP even though the authors 
refer to their work as tests of LOP. This is regrettable, but because many of the results in this paper turn crucially on 
what exactly is being tested, we feel it necessary to be precise about our terminology. 
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IKEA sales by Haskel and Wolf (2001), and The Economist magazine by Ghosh and Wolf 

(1994).  

 A second class of studies has sought to test what might be called “Approximate Absolute 

LOP:” 

(2) ' ' 'uct cc t u c tP E P= , 

where goods u and u’ belong to a similar product category but are not identical goods. Since 

different goods are being compared, tests based on equation (2) (as opposed to equation (1)) 

cannot distinguish violations in the LOP from violations of the assumption that good u and good 

u´ enter into consumer utility identically.  For example, interesting recent work based on the 

Eurostat database (c.f., Crucini, Telmer, and Zachariadis (2005) and Crucini and Shintani 

(2006)) test this form of the LOP. However, it is difficult to know how much of an observed 

violation in the LOP is due to the fact that borders prevent arbitrage from eliminating price 

differentials for goods like “lady’s boots” and how much is due to the sample of lady’s boots 

varying across countries.4  

 Concern over this unobserved heterogeneity has motivated researchers to examine 

“Relative LOP,” which we define as follows: 

(3) ' 'uct cc t uc tp e pΔ = Δ + Δ , 

where lower case letters refer to natural logarithms of the upper case letters, and the Δ’s refer to 

time differences. Tests of equation (3) relax the assumption that prices must converge to the 

same level (perhaps due to a constant trade barrier), and only test whether prices tend to remain a 

constant level apart. 

 The micro studies in the literature have typically worked with an equation that might be 

termed “Approximate Relative LOP:” 

(4) ' ' 'uct cc t u c tp e pΔ = Δ + Δ . 
The major advantage of using equation (4) relative to equation (3) is that it corrects for any 

unobserved heterogeneity that causes good u and good u´ to enter into consumer utility 

differently. This is what motivated Parsley and Wei (1996) to use this form of the LOP in their 

pioneering study of urban prices in the US. Differencing the data does not come without a cost. 

                                                 
4 While efforts to compare goods of comparable quality are usually highlighted in survey manuals, the comparison 
of identical goods is generally impossible. 
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One can easily imagine that the heterogeneity between two different goods contains a constant 

component and a time varying component. To the extent that the time varying component is 

small, estimating equation (4) will be similar to estimating equation (3), but if different goods 

experience very different shocks across time, it is easy to see how equation (3) might hold 

closely but equation (4) might be violated severely.  

 Much of our theory only requires average prices to equilibrate; hence we turn our 

attention to PPP.  We can derive Absolute PPP by weighting equation (1), summing and then 

taking logs to produce: 

(5) ' 'ln ln ln
c c

uc uct cc t uc uc t
u I u I

w P E w P
∈ ∈

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

.
 

Alternatively, one can first take logs of equation (1) and then sum to produce  

(6) ( ) ( )' 'ln ln ln
c c

uc uct cc t uc uc t
u I u I

w P E w P
∈ ∈

= +∑ ∑
.
 

There are two important features of equation (5) and (6). First, there is no intellectual content to 

equations (5) and (6) that is not captured in equation (1). If equations (5) and (6) hold but 

equation (1) does not, this simply is a statement that there is a weighting scheme that can cause 

the deviations in equation (1) to cancel. Second, assuming the Absolute LOP holds, Absolute 

PPP will hold only if one uses the same weights in both locations.5  

 Given the data limitations to find price levels across countries, the literature has in 

general tended to focus more on Relative PPP. The theoretical version of Relative PPP can be 

written down by first differencing equation (5): 

(7) ' 'ln ln ln
c c

uc uct cc t uc uc t
u I u I

w P E w P
∈ ∈

⎛ ⎞ ⎛ ⎞
Δ = Δ + Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

However, all previous work on PPP has focused on what might be termed “Approximate 

Relative PPP:” 

(8) 
'

' ' 'ln ln ln
c c

uc uct cc t uc uc t
u I u I

w P E w P
∈ ∈

⎛ ⎞ ⎛ ⎞
Δ = Δ + Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

. 

                                                 
5 It is hard to classify studies like Goldberg and Verboven (2001, 2005) and Lutz (2004) that have examined variants 
of equation (2) and (6) in which the prices are aggregated together using hedonically adjusted price indexes. 
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Prominent studies include Isard (1977) Giovannini (1988), and Knetter (1989, 1993) on average 

import prices, and Engel (1993), Froot, Kim, and Rogoff (1995), and Rogers and Jenkins (1995) 

on price indexes.  

There are three important differences between equation (8) and equation (7). First, 

equation (7) may hold but equation (8) will not if the price changes of the set of goods Ic and Ic´ 

are different because of idiosyncratic shocks. Second, equation (7) may hold but equation (8) 

may not if the log price changes of goods u and u´ do not equal the simple price changes.6 Third, 

equation (8) may not hold because the weights on the left hand side do not equal those on the 

right. This last critique is particularly important because statistical agencies make no effort to 

insure that international or even urban price indexes use the same weights and/or goods.  

 Finally, Engel and Rogers (1996) seminal work deserves special mention. Working 

around the limitations of existing price data they have instrumented a useful test based on the  

“variance ratio” of price changes. In the simplest form, one can imagine taking the variance of 

equation (3) and seeing if the variance is larger when c and c´ are in different countries relative 

to when they are in the same country. However, instead of taking the variance of equation (3), 

Engel and Rogers are forced to work with the variance of equation (8). In section IV we explore 

the unintended consequences of their tests of (3) based on the relative volatility of the terms in 

equation (8).  

 The foregoing analysis provides a simple roadmap for understanding the way this paper 

is structured. First we will examine the LOP and PPP in their absolute and relative “exact” forms 

using thousands of barcode products both within and across borders. Next, every time we find a 

difference between our results and those of other papers that have examined these relationships 

in their “approximate” forms we will investigate whether we can replicate the results and 

pinpoint to the assumption that gives rise to the failure or anomaly. This enables us to not only 

do precise testing but also understand the previous literature.  

 

 

III. Data Description 

III. A. Overview 

                                                 
6 For example, some CPI indexes are based on Laspeyres and others incorporate on geometric averages.  
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 A major difference between this paper and prior work is that we bring barcode data to 

bear on the question of international price differences. We use three datasets that are extracts of 

ACNielsen’s Homescan database.  The Homescan database is collected by ACNielsen in the 

United States and ACNielsen Canada in Canada. In each country Universal Product Code (UPC) 

scanners are given to a demographically representative sample of households. In the US, 

approximately 60,000 households in 23 cities receive these scanners and approximately 15,000 

households in 6 regions receive them in Canada. Households then scan in every purchase they 

make. If the purchase is made from a store with ScanTrak technology, the prices of each good 

are downloaded directly from the store’s database. If the good is purchased elsewhere, e.g. on the 

internet, the household directly enters the price. As such, the database provides us with a vast 

array of goods with barcodes. The majority of these goods are in the grocery, drug, and mass 

merchandise sectors.  

 Because the full dataset is extremely expensive, we purchased three extracts that we will 

make use of in this study. The first one is the database that we will refer to as the “US National 

Database” and was used in Broda and Weinstein (2007). In this extract, we had ACNielsen 

collapse the city and household dimension of the database, and thus we have price and quantity 

data on every UPC purchased by the US sample of households for every quarter between 

2001:Q1 and 2003:Q4 at the national level. This database contains information on approximately 

700,000 goods each year.  

 The second database, we refer to as the “US Cross-Sectional Database,” is new. In this 

database, we have household level data on every purchase in the fourth quarter of 2003 by a 

subsample of 3,000 households evenly divided across 10 US cities. In each city, the households 

were randomly selected from the full sample so that their demographic characteristics match 

those of the city as a whole.  

 Finally, the third database, which we shall call the “Canadian Regional Database”, is also 

new. ACNielsen Canada provided us with average price and quantity data by region in Canada 

for every quarter between 2001:Q1 and 2004:Q4. Table 1 describes the basic statistics of each of 

these three different databases. As one can see from the table, our data provides a much richer 

breakdown of prices for this sample of goods than is available in national statistics. 

These databases have three key features that lend themselves to the study of pricing in 

different markets. The first is that we identify different goods using barcodes. Since companies 
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only use one barcode per good, when we compare goods internationally, we can be confident 

that we are comparing precisely the same goods (see Table A1 in the appendix for examples of 

the level of detail in our database). Second, we can also compare variation of prices across cities 

within and across borders. This lets us precisely examine the border effect in levels; something 

no one has done before. Third, because we have both price and quantity data, we know exactly 

how to weight the goods when building price indexes, which allows us to examine the role that 

compositional effects play in studies that use national statistic data.  

 

III.B. Data Preview 

Before plunging into the econometrics, it is useful to examine the raw data to obtain some 

intuition for how prices vary across regions and time. The first point that is important to 

contemplate is the vastness of barcode information that is included in our database. In the US 

National and Canadian Regional Database there are 700,000 and 490,000 UPCs available, 

respectively. Even within narrow product categories, consumers have access to an enormous 

number of different goods.  We made use of the US National Database to examine how many 

UPCs were sold in each of the 123 “Product Groups” in the US. In the ACNielsen classification 

system, a product group is a highly disaggregated subset of the total database. For example, fresh 

eggs, ice, and milk are all different product groups. We plot a histogram of the count of the 

number of UPCs per product group in Figure 1. The first thing that is immediately apparent from 

the figure is the vast number of UPCs per product group. With the exception of a few product 

groups – yeast, meal starters, road salt, canning supplies, and contraceptives – all products in the 

US are comprised of over 200 different UPCs. The typical product group has 2700 different 

UPCs. Even relatively homogeneous goods like fresh eggs are comprised of 2275 different 

varieties.  

The simple fact that there are many UPCs per product group would be an intellectual 

curiosity if it weren’t for the fact that the degree of sample overlap varies systematically with 

variables of interest. In Figure 2, we plot the share of UPCs that are common between cities in 

the US and regions in Canada and the distance between those two locations. For expositional 

purposes, the bilateral city data is shown in three different plots: comparisons within city pairs in 

the US, within region pairs in Canada and between cities in the US and regions in Canada. The 

pattern observed in each of these plots is unmistakable: as distance between cities rise, the share 
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of common identical goods between cities falls. Within the US, the share of common goods 

across cities is over 28 percent between New York and Philadelphia – the closest city pair in our 

data – and is less than 18 percent for goods between New York and Los Angeles – the two cities 

further apart. Within Canada, Ontario and Quebec share almost 60 percent of goods while British 

Columbia and Maritimes share less than 45 percent of the goods. 7  In Table A3 in the appendix 

we show regressions of the share of common goods in terms of the simple count of the number 

of goods and in value terms against bilateral distance between cities.  

Despite the large sample of goods that are included in each city, only around 25 percent 

of the UPCs are common between any two cities in the US. While this probably understates the 

true degree of overlap in the US because some UPCs might not have been purchased by the 

sample households included in our data but did exist in the city, it underscores the importance of 

compositional effects when comparing prices of similar “product categories” across cities within 

a country. Our sample of over 50,000 UPCs per city is around 40 times larger than those used by 

the Bureau of Labor Statistics when computing regional price indexes.8 This suggests that the 

amount of overlap in city or regional price indexes in national statistics data is quite small.  

Figure 2C shows the importance of compositional effects across the border. A large 

number of the products sold in the US are not sold in Canada in identical form. In the typical 

bilateral city/region comparison between the US and Canada only 7.5 percent of the goods are 

common, this is less than one third the common set of goods available between city pairs of 

equal distance within the US (Figure 2A and 2C are directly comparable). This means that the 

composition of a random sample of goods sold in the US is likely to differ substantially with the 

composition of a sample of goods sold in Canada. By the same token, more proximate locations 

have more similar consumption bundles than distant locations.  

The fact that price indexes across regions or countries are largely composed of different 

goods would not be a problem for understanding the LOP or PPP if goods within categories are 

fairly homogenous. In this case, one could have a reasonable degree of confidence that similar 

goods would have similar prices or at least these prices would move together.  In Figure 3, we 

plot the kernel density of quarterly UPC relative price changes and quarterly UPC relative price 
                                                 
7 The levels of the share of common goods within cities are not directly comparable between Figures 2A and 2B. 
This is because our data is based on different household sizes per city/region in the US and Canada, and because 
regions in Canada include several large cities. 
8 The BLS collects around 34,000 price quotes (for the same categories included in our database) over 23 different 
cities. This implies that they collect around 1,260 price quotes per city. 
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changes after controlling for product group-time fixed effects.9 Formally, let ,ugc tp  be the log 

price of UPC u that belongs to product group g in city c and period t. We denote the relative log 

price of a UPC with respect to a region or city c’ as qugcc’,t = pugc,t – pugcc’,t. Both prices are 

expressed in US dollars when city c and c’ are in different countries.10 For simplicity, we drop 

the c’ subscript when we use Ontario, Canada’s largest region, as the reference region.  

The red line in Figure 3 shows the distribution of Δqugc,t for all UPCs in all time periods 

in Canada. The blue line shows the kernel distribution of ,ugc tqΔ  where , , ,ugc t ugc t gc tq q q= − , where 

qgc,t is the average relative price differential between UPCs in group g, city c, in time t. The blue 

distribution shows the log relative price change of a particular UPC in a particular city and time 

once it has been purged of common group-city-time effects. As one can see from the plot, there 

is enormous dispersion of prices within product groups as both distributions lie almost on top of 

each other. In other words, common product-group and time factors play a tiny role in explaining 

the observed time-series volatility of UPC prices. The standard deviation of the UPC specific 

component of prices is close to 15 percent, which is almost identical to the standard deviation of 

the raw price changes. If we focus our attention on a relatively homogeneous good like fresh 

eggs, the standard deviation falls to 10 percent, but it is pretty clear that one cannot even treat a 

relatively homogeneous good like fresh eggs as a single item.11 

The preceding analysis suggests that even though goods may have identical prices, goods 

categories might exhibit very different average prices and price changes. Fortunately, the use of 

UPC data means that we can be precise about the prices that we are comparing. In Table 2, we 

compare the prices of individual UPCs across cities and regions in the fourth quarter of 2003. In 

the first panel, we focus on the US. Since we have data for 10 cities, we can make 45 bilateral 

comparisons of prices across city pairs. The middle and lower panels examine all bilateral 

comparisons between regions in Canada and between cities in the US and regions in Canada. As 

the first column indicates, we typically have 10,616 prices of common UPCs for every city pair 
                                                 
9 The time series properties of disaggregated data have been examined extensively in Broda and Weinstein (2007) 
and Klenow and Kryvtsov (2007), so here we will just review a few key stylized facts uncovered in those papers. 
10 We adjust Canadian prices downwards by 7 percent because Canadian prices are inclusive of the VAT. 
11 These numbers imply that there is vastly more volatility in the raw price data than in exchange rates. The typical 
quarterly exchange rate change among developed economies with flexible exchange rates is less than 2 percent (see 
Calvo and Reinhart (2004)).  The large volatility of the raw price data relative to exchange rate data has an important 
implication for examining convergence. It implies that a large share of the fluctuations in the prices of individual 
goods across countries is likely to come from UPC specific shocks that are ignored at the aggregate level. 
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in the US, 25,094 goods in the typical bilateral region comparison within Canada and 1,531 

identical goods between bilateral pairs across countries.  Columns 2-3 of Table 2 present 

medians, averages, and standard deviations of bilateral city comparisons for several sample 

statistics (in Table A3 in the appendix we present all city pair comparisons). In Column 2, we 

first computed the median price differential for each city pair. In Column 3, we compute the 

standard deviation of log relative prices of the same UPCs consumed in each city pair.  

The table shows that the typical price differential between city pairs in the US is 0, with a 

standard deviation of 0.016 (upper panel). We repeat the same exercise for Canadian regions and 

obtain very similar results (middle panel). These results suggest that the typical price differential 

does not vary much across cities.12 The typical difference in prices of identical goods does seem 

to rise as we cross borders, but the rise is quite modest (lower panel). The median price 

difference in the 4th quarter of 2003 for a given UPC in a US city relative to a Canadian region is 

only 1.9 percent higher on average.13  

We present the standard deviation of the log relative prices in Column 3. The table 

reveals that the typical standard deviation of log price differences between any two cities is 22.3 

percent in the US and 18.7 percent in Canada. These numbers reveal something very important 

about the LOP: even within a country the standard deviation of prices of identical goods is 

typically 20 percent. To put this number in perspective, consider the results of Froot, Kim, and 

Rogoff’s [1995] study of international violations of the law of one price. In that study, they 

concluded, “the volatility of law of one price deviations is both remarkably high (typically on the 

order of 20% or more per year for most commodities in most centuries) and remarkably stable 

over time.” The important fact to bear in mind is that the LOP deviations that these authors found 

internationally are approximately the same magnitude as those we observe within countries. In 

other words, the prices of individual goods vary substantially across space regardless of whether 

two regions are in the same country or not.   

This point notwithstanding, we can see that the dispersion of prices of individual goods 

vary slightly more when crossing the border. The lower panel of Table 2 shows that the standard 

deviation of prices of identical goods across the border is typically 26.7 percent, roughly 4 

                                                 
12 This finding is present in our data in all quarters for which we have regional Canadian data. 
13 This result, however, is not robust to the time period being studied, as large cumulative exchange rate movements 
over this period have made absolute PPP fluctuations vary from around 15 percent to 2 percent. 
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percentage points larger than within the US and 8 percentage points larger than within Canada. 

Results are similar using the typical absolute price difference between cities.  One can also 

inspect the importance of the border visually in Figure 4. Here we plot the kernel densities of all 

relative prices across cities within the US, within Canada, and between the US and Canada. As 

the plot makes clear, prices in the US are a bit higher than prices in Canada, and there is 

evidence of greater dispersion in international prices than in domestic prices, but the distributions 

are not radically different. Rather the border seems to add a small amount to the very large 

within-country dispersion in prices across cities. This creates some tension with the results of 

Engel and Rogers (1996), and is a point that we will need to explore more systematically.  

 In sum, the sample statistics reveal a number of important lessons for understanding 

international pricing. First, there are a vast number of goods in the market and the composition of 

consumption varies systematically with distance and across borders. This implies that one must 

take great care about how samples are constructed when comparing relative price movements 

across space and borders. Second, the prices of these goods vary substantially even for narrowly 

defined commodities. This implies that absolute deviations in the LOP will be quite sensitive to 

whether precisely the same goods are compared. Third, one should not equate the international 

violation of the law of one price with a barrier at the border. The data strongly suggests that there 

are substantial violations of the law of one price within countries and that these violations are of 

similar magnitudes as international violations. Fourth, there is vastly more volatility in individual 

price quotes than in price indexes. This means that much of the price variation is eliminated 

when one focuses on price indexes. As we will see in the next few sections, each of these 

stylized facts will play a key role in understanding why absolute price convergence holds and 

why it has been so hard to find evidence in favor of it.  

 

 

IV. The Width of the Border Redux 

 

 In order to understand the magnitude of international deviations of the LOP, we need to 

think of a benchmark. One of the simplest and most compelling reasons why prices may differ 

spatially is that it is difficult to transport goods. Thus, one might expect smaller LOP deviations 

in close cities than in distant cities. In their seminal work, Engel and Rogers [1996] developed 
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this concept further by expressing border effects in terms of distance – a convention we will 

adopt here.  

 A simple way of computing the “width” of the border is to regress a measure of the price 

dispersion on the log of distance and a dummy variable that is one if the price difference is 

computed for a good purchased in cities that are located in different country. In this case one can 

compute the width of the border by dividing the border coefficient by the distance coefficient 

and then exponentiating. In Table 3, we present the results for a similar regression as that in 

Engel and Rogers. The only difference is that we use two different measures of price dispersion. 

First, we look at a price variance measure: the square of the log price difference of a UPC 

purchased in two different cities, i.e. ( ) ( )2 2

', , ',ugcc t ugc t ugc tq p p= − ; second, we look at the absolute 

log price difference paid for the same UPC in two cities, i.e. ', , ',ugcc t ugc t ugc tq p p= − .  

Specifically, we run the following regression: 

(9) ( )2

', ' ' ',lnugcc t c cc cc ugcc tq dist Borderα β γ ε= + + +  

(10) ', ' ' ',lnugcc t c cc cc ugcc tq dist Borderα β γ ε= + + +  

where  cα   are city dummies, and standard errors are clustered by city pair. The “width” of the 

border adopted by Engel and Rogers is given by ˆˆexp( / )γ β , where circumflexes indicate 

estimated parameters. 

 One of the problems of this approach is that this measure of the border is unitless, and 

hence one cannot strictly interpret it in terms of a mileage equivalent.14 However, the coefficient 

can be interpreted in terms of the relative distance between any two cities.15 This point 

notwithstanding we will stick with convention for the purposes of comparability with prior 

research and sometimes express the “width” of the border in terms of miles. At times we will 

                                                 
14 For instance, whether we measure distance in inches or in miles would imply the same γ  and β coefficients.  
15 This can most easily be understood in terms of an example. Suppose there are three cities: A, B, and C. Let |qugAC,t| 
and |qugBC,t| be the absolute relative price differences between city pairs AC and BC, respectively. If the distance 
between cities A and C is 2 log units more than the distance between cities B and C and the border coefficient is 2, 
then the impact of crossing the border would have the same impact on absolute relative price differences as 
comparing relative prices in city B with those in city A. Note that the critical factor driving the width of the border is 
not the distance from B to C but the relative differences from C of A and B. Thus, if there were two additional cities 
A´ and B´ that were twice as far from C as A and B respectively, the border effect would have an identical impact on 
relative prices as travelling from A´ to B´. 
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focus on the magnitude of the border coefficient, which is a less colorful, but more meaningful 

measure of the border.  

 The results of this exercise are presented in Table 3. The first panel presents the raw 

regression results and the second panel presents results in which we weight the observations by 

the sales of the UPC.16 The weighted regression results are probably more reasonable because 

the forces of goods arbitrage are probably much greater for a good with a large amount of sales 

than for a good that is only purchased by a few people. In all regressions, distance contributes 

significantly to price dispersion and there is a positive and significant border effect. This is 

comforting because our priors strongly suggest that borders and distance interfere with the law of 

one price. 

 What is most interesting in the table, however, is our estimate of the impact of the border. 

If we look at the regressions with the absolute log price difference as the dependent variable, we 

see that the border introduces a price wedge of seven percent between the US and Canada. We 

can obtain some sense of how small this is compared to prior work by computing the “width” of 

the border. In the unweighted regressions, the width of the border ranges from 720 miles to 328 

miles depending on the specification. By contrast the point estimate in Engel and Rogers was 

75,000 miles for all goods and 3.8 million miles for food at home – the category closest to our 

sample of goods. Similarly Parsley and Wei (2001) estimate that the width of the border vis à vis 

Japan is 43 quadrillion miles. Of course, the unweighted estimates are likely to overstate the 

border for the reasons we have highlighted above. If we turn to the weighted regression results, 

we find that that width of the border ranges between 36 and 106 miles. In other words, Canada is 

not located midway between the Earth and the Moon – it’s really just a few miles north of 

Buffalo. We show in Figure A1 in the appendix that this result is robust to the quarter we use.   

 The fact that we find the border effect to be so small strikes us as both deeply comforting 

and confounding. On the one hand given Canada’s proximity to the US, the existence of a Free 

Trade Agreement, and the similarity of the economies suggests that we should expect small 

border effects. However, it is puzzling why we should find such a small border effect when so 

many other studies have not.  

                                                 
16 We use the average value of consumption of each UPC between city pairs as a weight. 
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 One possible explanation harks back to our earlier discussion of the heterogeneity of 

products within product categories. If categories like “fresh eggs” are very heterogeneous, then a 

basket of fresh eggs in one country is likely to contain very different eggs than a basket of eggs 

in another country. We have already seen that this compositional effect becomes more important 

with distance and when one crosses a border. We can now examine the importance of this effect 

in three stages. Our first task is to demonstrate that carefully aggregating the data does not affect 

the estimates of the border effect. In order to do this, we need to be precise about what goods and 

weights are used to compute city price indexes. We first define Igcc’ as the set of commonly 

consumed UPCs in city pair cc´ that belong to product group g. We first construct a common 

weighted index as a Geometric index of the relative prices of common goods within every 

product group in every bilateral city pair: 

(11) 
( )1

'2

'

'
'

Common Weight Index
ugc ugc

gcc

s s

ugct
gcc t

u I ugc t

P
P

+

∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏  

where sugct is the share of expenditure in product group g on UPC u in city c in time t. Note that 

the log of equation (11) can be expressed in terms of the actual log price difference of a UPC 

purchased in two different cities ( )
'

1
' ' ',2ln(Common Weight Index )

gcc
gcc t ugc ugc ugcc tu I

s s q
∈

= +∑ . 

The two key characteristics of this index is that it only uses prices for common UPC across cities 

and it only depends on the average share of consumption in the two cities and not on the city 

specific expenditure shares.  

The second index we consider is the city-specific index: 

(12) 
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In contrast to the common-weight index, the city-specific index can vary with the market shares 

of expenditures in two locations even if the average expenditure level is the same. The 

distinction is important because it lets us examine whether simply allowing the weights of 

common goods to vary has an effect on the results. We would expect distance to have a different 

effect on this index if compositional effects are important. 

 Finally we form an all-goods price index defined below: 
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(13) 
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where Igc is the set of UPCs available in city c and product group g. The major difference 

between this equation and equation (12) is that we now allow all goods in each city to enter the 

index, not just the common ones.  

Our basic tests involve re-estimating the regressions in equations (9) - (10) using the log 

of the price indexes at the product group level instead of the log price differences of individual 

UPCs to see whether the simple act of aggregation creates a problem. As one can see in the first 

panel of Table 4, simply using common goods price indexes has almost no impact on our 

measure of the border.  The estimated border effects do not move by much and the “width” of 

the border stays within 100 miles of the estimates that we obtained with the UPC-level data.  

 However, it is important to remember that the data used by researchers to examine border 

effects is not based on a common set of goods, but rather on non-overlapping samples of the 

goods available in each country. Panels 2 and 3 in Table 4 can help us understand the impact of 

using price indexes to assess the border effect. The second panel shows the impact that 

compositional effects through city-specific weights can have on the distance and border 

coefficients. The impact of distance on the square log price differences is over 5 times larger 

than in the first panel and the border dummy jumps by a factor of 3. The difference between the 

two panels can be traced directly to compositional effects. The prices of disaggregated goods 

categories may vary a lot even if the underlying prices hardly vary at all. The border dummy also 

rises to almost 3 times its value when common-weights are used.  Since compositional effects 

tend to raise both the log distance and border coefficients the impact on the “width” of the border 

is not strongly affected by using city-specific weights.  

The importance of distance and the border rises dramatically when we use an index 

composed of all goods.  Now the distance and border coefficients rise by at least an order of 

magnitude. Interestingly, when goods that are specific to each city are included, the width of the 

border dummy jumps to literally astronomical values. Most of this is driven by an enormous 

jump in the border coefficient. The width of the border ranges from 23 million miles to 7.9 

billion miles depending on the specification. The difference between this set of results and the 

previous one arises solely from the fact that the composition of goods within a product group 
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differs across the border sufficiently to affect the average price. This large border effect results in 

apparent rejections of the law of one price or PPP because the Canadians drink RC Cola and 

Americans drink Coca-Cola. While one may hope that RC Cola and Coca-Cola move together in 

the time series, there are many reasons to worry that this may not be the case. At the very least, 

one can see ample reasons why LOP might hold precisely, but the way in which aggregate 

indexes are formed produces failures of PPP. This establishes that it can be very misleading to 

estimate deviations from the law of price or PPP using even highly disaggregated product 

categories.  

 This explanation, however, is unsatisfactory to explain the results of Engel and Rogers 

(1996) because those results are based on the time-series volatility of price indexes as opposed to 

the dispersion of price levels. For instance, if prices in a product group all move together, it is 

possible for the levels to deviate across regions but the time series not to show a large border 

effect. In order to examine what role is played by aggregation in the results by Engel and Rogers 

we exploit the fact that we have time series data at the UPC level in the US National Sample and 

for each of six Canadian regions in the Canadian Regional Sample. Following Engel and Rogers, 

for each region pair, we compute the standard deviation of the relative log price changes of the 

goods common to that pair. In particular, we calculate ',( )ugcc tsd qΔ  where 

', ', ', 1ugcc t ugcc t ugcc tq q q −Δ = − . This is the same statistic that Engel and Rogers use in their study but 

computed at the UPC level rather than at the product group level. We then regress these standard 

deviations on the log of distance between the regional pairs (counting the US as another region) 

and a border dummy, using the average distance between the Canadian region and our sample of 

cities as a proxy for the Canadian region’s distance to the US. That is, we just use this time-series 

proxy for market segmentation as the dependant variable in regression (9).  

 The results from this exercise are presented in Table 5. At first glance, the results are 

quite similar to those of Engel and Rogers (1996) – we find that the standard deviation of relative 

inflation rates rises with distance and jumps discretely at the border. This result is suggestive of 

trade costs and border effects mattering for price arbitrage. However, what is most striking is the 

magnitude of the border. While Engel and Rogers found a border effect of 3.8 million miles for 

the “food at home” sector, we find a more modest border that is 3 miles wide. Thus the UPC 

level data also suggests much smaller relative border effects even when we use the same proxy 

for market segmentation as Engel and Rogers. 
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 But why do these results differ so much? Before we begin our investigation of the cause 

for the much smaller border effect, it is useful to first focus on why it is likely that disaggregated 

data would produce different results. The major difference between Engel and Roger’s use of 

price indexes and our use of UPC level data is that price indexes are averages of individual price 

quotes. We have already seen in our analysis of the sample statistics that individual price 

movements exhibit enormous volatility in the time series but there is not much difference in the 

average price level across cities. Thus, averaging the prices of UPCs together tends to eliminate 

much of the idiosyncratic variance of UPCs and leaves us with only the relatively small levels of 

variance of average prices across cities. Internationally, however, the impact of exchange rate 

fluctuations is not compressed by averaging because the impact is common to all UPCs in a 

country. This causes the border coefficient to fall less slowly than the distance coefficient. Since 

we divide by the distance coefficient when computing the border effect, ceteris paribus, this will 

tend to make the border appear wider. 

 We can see this formally by conducting the following exercise. We can decompose the 

change in the relative price as follows: 

(14) ' ' 'ugcc t cc t et ugcc tq δ δ εΔ = + + , 

where the  δ’s correspond to city pair and exchange rate shocks, and εugcc’t is the idiosyncratic 

shock to a UPC. Similarly if two cities are in the same country, we decompose the price 

movement using the same terms with the exception that δet = 0. If we assume that all these terms 

are independent, then we can write  

(15) ( ) 2 2 2
' 'ugcc t cc eVar q εσ σ σΔ = + +  

in the case when the cities are in different countries and  

(16) ( ) 2 2
' 'ugcc t ccVar q εσ σΔ = +  

when the cities are in the same country. In this case the border effect (expressed in terms of 

ratios of variances instead of standard deviations) would be  

(17) 
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However, if there are n UPCs in a product group and we first average the data before computing 

the variances, the ratio of the variances will be  
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(18) 
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which is strictly larger than the expression given in equation (17) for n > 1. This suggests that if 

one computes border effects by comparing the variances of relative prices using price indexes, 

one will tend to find larger effects than if one uses the underlying micro-data. Moreover in 

datasets like ours, where the variance of the idiosyncratic shocks is likely to be large and the 

variance of bilateral city-pair shocks small, one would expect this effect to be substantial for 

large n. 

 In Table 6, we examine this aggregation bias by running the same regressions that we ran 

in Table 5, but first pooling the UPC level data to form product group averages and then 

computing the standard deviations in the movements of the product group level prices. We 

present two sets of results based on the two different ways of pooling the data given by equations 

(11) and (13). As one can see from the upper panel of this table, the coefficient on the border 

dummy quadruples and  the “width” of the border rises substantially (relative to Table 5). 

Averaging the data causes the width of the border to rise to 1000 to 100,000 miles depending on 

the specification.  

 Although these numbers are much larger, they are still smaller than the typical border 

effects of millions, if not quadrillions of miles, that often appear in studies. The lower panel of 

Table 6 shows the width of the border based on aggregate city-specific price indexes. A key 

distinction between these aggregate prices and those used in the upper panel is that each product-

group index is an average of a much larger number of UPCs than in the upper panel. This is 

because the share of common goods across the border is less than 5 percent the size of the 

sample of goods in each region in Canada. As we noted earlier, this suggests that we might 

expect to see even larger border effects if we just formed indexes based on the set of UPCs 

consumed within a city in a particular product group. We verify that using indexes based on all 

the UPCs within a city widens the border substantially. The border with Canada now rises to 

between 16 billion to 120 billion miles – still not in the quadrillion mile range but much further 

away than the 3 miles suggested by the UPC-level data.  

Finally, the last two columns of the lower panel show the impact that the exchange rate 

fluctuations have on the measure of market segmentation based on aggregate price indexes. We 
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replicate the results in Columns 2 and 4 but drop the exchange rate from the relative price terms, 

i.e. we simply compute the US price index in US dollar terms and the Canadian price index in 

Canadian dollar terms. Not surprisingly we find no border effect in this case. This result 

underscores the importance of exchange rates shocks that are common across all UPCs when 

using aggregate data that collapses the UPC specific shocks. 

 

 

V. Absolute Convergence Within and Across Countries 

 

Having established that border effects are small, we now turn our attention to 

convergence. We have two objectives in this section. First, we want to estimate convergence 

rates using barcode data and second we want to explain why our results differ from those in other 

studies that use more aggregate data.  

Our measure of relative prices is the log difference between the price of the UPC in a 

particular region and the price of the same UPC in Ontario. In modeling deviations of relative 

prices from their long-run levels we start by estimating the following regression equation that 

include higher order auto-regressive terms as in Dickey-Fuller (1979): 

(19) , , 1 , 1 ,1

S
ugc t c ugc t s ugc s ugc ts

q q qα β γ ε− −=
= + + Δ +∑  

where , 1 , 1 , 2ugc t ugc t ugc tq q q− − −Δ = −  and S is the number of lags included in the regression, αc is a 

city-specific dummy and β denotes the speed of convergence. Under the null of no convergence, 

β  is equal to one. In this case, a shock to ,ugc tq , i.e. ,ugc tε , is permanent. Convergence implies that 

β is less than one, with the approximate half-life of a shock to log prices given by ln(0.5)/lnβ.17 

If β is less than one, the long-run level of relative prices is given by αc/(1 – β). If αc = 0 and β < 

1, then we can say that we observe absolute convergence in the data. This means that not only 

are shocks to relative prices transitory, but that eventually relative price differences between 

cities disappear. In the case where 0cα ≠  and β < 1 then we observe relative convergence in the 

                                                 
17 As Goldberg and Verboven (2005) note, this formula is only correct for AR1 processes. In general, the correct 
half-life can be computed from the impulse response functions. However, we will follow the literature and drop the 
word “approximate” in future discussions of the half-life. 
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data, i.e. shocks to ,ugc tq  are transitory but relative price differentials will persist. The dummies 

αc capture city fixed effects that account for non-time dependent price differences across cities 

(and countries). In addition to the speed of convergence, β, we are also interested in examining 

the absolute values of αc. If these are zero or small (and β is less than one), then markets are not 

very segmented, and absolute price convergence is a good description of the data.   

Since we are interested in studying the different convergence speeds of prices within and 

across countries, we allow for the convergence and autocorrelation terms to vary by country. 

Specifically, we estimate the following equation:  

(20) 
4
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where Border is a dummy that takes the value of 1 when city c is not in Canada, wβ  is the 

convergence parameter “within” countries, wβ + aβ  is the convergence parameter “across” 

countries, and four is the optimal amount of lags as given by the Schwarz criterion. In each of the 

specifications we run several tests: 1) whether 0cα =  within countries and 0cα =  for cities 

across countries; 2) whether 1wβ = , that is if there is a unit root within countries; 3) whether

w 1aβ β+ = , that is if the data supports a unit root process across countries; and 4) whether

0aβ = , that is if the convergence rates within country are the same as across country.  

 Table 7, Column 1, reports the results for equation (20) estimated on all the set of 

common UPCs between cities assuming a homogenous panel (i.e., 0c cα = ∀ ). The coefficient 

estimate for β  is 0.789 with a standard error of 0.021. Since we have a limited time series 

dimension (12 – 16 quarter), it is inappropriate to employ conventional panel unit root tests that 

rely on large T asymptotics. Instead, we employ a unit root test for short panels developed by 

Harris and Tzavalis (1999). In the homogeneous panel case we can reject the unit-root test within 

and across borders at the 1 percent level. This suggests that prices revert back to their long-run 

level. In particular, the implied half-life for convergence is 2.9 quarters.  

A notable feature of our data is that we can compare the rates of convergence back to 

PPP across as well as within countries. The second column allows for the β  coefficient to vary 

within and across countries. In particular, we find that aβ , the difference in the autoregressive 



 

 24

coefficient within and across the border to be around 0.08 and statistically significant. This 

suggests that while prices take longer to converge back to PPP when cities are across the border 

as opposed to within countries, the increase in the half-life of the shock is less than 2 quarters! 

Overall this implies a half-life for convergence of shocks across the border in this specification is 

4.5 quarters.  

 Column 3 repeats the regression in Column 2 but weights each UPC by how important 

they are in consumption in each pair of city.18  Half-lives for shocks within Canada rise to 4.8 

quarters as UPCs with large weights in consumption seem to have slightly slower convergence 

rates. The rate of convergence for UPCs across country also rises, but the difference between 

convergence rates between and within countries is only 3 quarters. While we discuss the 

magnitude of city-specific effects below, when these are included in the regression convergence 

rates across countries rise to around 8 to 9 quarters, while within country convergence rates 

remain around 4 quarters. Overall, we find estimates for the rate at which PPP deviations 

diminish of between 3 to 4 quarters within borders and 4 to 9 quarters across borders. These 

numbers are broadly consistent with the micro price evidence on sticky prices. For example, Bils 

and Klenow (2004) find that half of domestic goods' prices last less than 4.3 months while the 

median duration in prices (including sales) in Nakamura and Steinsson (2007) is around 4.6 

months. Gopinath and Rigobon (2007) find that price stickiness in US import prices can last up 

to 11 months. 19 

Given that we have price data on identical goods across cities within and across countries 

we can assess the economic magnitude of the deviations from absolute PPP within and across 

countries. As mentioned above, cα /(1 – β ) defines the long-run level of ,ln ugc tq . In Columns (4) 

– (6) we compare test whether the absolute deviations from PPP between the average Canadian 

province and Ontario is systematically different than that between the US and Ontario. We find 

that prices in the average Canadian province converge back to levels that are between 3.4 percent 

and 13.6 percent lower than those in Ontario. However, while prices of the US converge to even 

lower levels, in two out of the three specifications we cannot reject the hypothesis that there is a 
                                                 
18 The actual weight used is 

0 0, ,0.5 0.5ugc ugc t ugOnt tw value value= × + × where 0t  is 1999.  
19 As an additional robustness check, we can also test whether exchange rate shocks have a different impact than 
idiosyncratic price shocks. To do this we added the lagged log exchange rata and the log differences in the exchange 
rate as independent variables in equation (20). The coefficient on the lagged exchange rate was 0.03 and the 
convergence coefficient hardly changed. This indicates that both exchange rate and non-exchange rate shocks 
dissipate similarly. 
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difference between the average US and Canadian long run levels. This is strong evidence in 

favor of a small role played by the border in terms of market segmentation.  

 

 

VI. Aggregation and Non-Linear Convergence Rates 

 

  With the notable exception of Imbs et al (2005), studies have not investigated why the 

convergence results are so dependent on the level of aggregation of the data. For example, 

Crucini and Shintani (2006) find faster half lives when using more disaggregated data than is 

typically found using aggregate data, but after rejecting the aggregation bias explanation of Imbs 

et al (2005), they do not offer an explanation reconciling these two findings.  We now turn to 

trying to understand this puzzle 

The evidence presented in Table 7 suggests that when individual product data is used, we 

find estimates for the rate at which PPP deviations diminish is between 3 to 6 quarters within 

borders and 4 to 9 quarters across borders. In particular, in the next two tables we not only assess 

whether half-lives estimated using aggregate data are large but also examine what are the reasons 

behind any difference between results at different level of aggregations.  

Table 8 re-estimates equation (20) using product-group price indexes across cities instead 

of UPC price ratios. In particular, we run the following specification: 
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where Pgc,t  is a product-group price index. We will vary the method we use to compute this 

index to obtain a better understanding of how aggregation affects the data.  

We consider two ways of computing these price indexes. First, we consider an index in 

which we allow all goods in each city to be averaged together.  
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where ,0ugcw is the weight of UPC u in product group g in city c in 1999 and gcI includes all the 

set of available UPCs in product group g in city c. Second, we build an index that aggregates 

only those goods that are common in Ontario and the region:  

(23) 
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where 1 1
,0 ,02 2ugc ugc ugOntw w w≡ + .  

 Table 8 shows the convergence results under the these different aggregation schemes. For 

simplicity we will focus our discussion on Columns 8 and 12 but results are similar in the other 

specifications with fewer controls. Aggregation of the micro data produces significantly higher 

half lives. If we aggregate the data using only common goods, the convergence coefficient rises 

from 0.85 (Table 7 Column 6) to 0.95 (Table 8 Column 8). Despite the increase in half-lives, the 

rich panel nature of our data allows us to reject the presence of a unit-root in all cases (using the 

Harris and Tzavalis (1999) distributions).  The implied half-life of price shocks rises from 4 to 

13 quarters within Canada and from 9 to 49 quarters across the border. If we form the index 

using all goods within the product group instead of just the common ones, the half lives jump to 

138 quarters within Canada, and we fail to find convergence across the border.  

 These results suggest that whatever causes the discrepancy between aggregate results and 

those of micro data studies is present in our data. However, we can immediately rule out one 

source of this bias. Since we were consistent in the construction of the price indexes, we know 

that the difference between aggregate results and those obtained with the UPC-level variation is 

not due to differences in how aggregate indexes are constructed internationally. Compositional 

effects may explain why indexes comprised of disjoint samples of goods exhibit unit roots (e.g. 

the difference between Columns 8 and 12), but they do not explain why the results in Column 8 

of Table 8 differ from those in Column 6 of Table 7.  

 A second hypothesis for what might be driving aggregation bias has been suggested by 

Imbs et al (2005). Their explanation relies on the convergence coefficients varying 

systematically across goods. However, it is difficult to see how it could apply here. The bias we 

have identified is present even though we estimate only one β in the UPC-level regressions and 

only one β in the aggregate regressions.  
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 Nonetheless, we can examine the importance of this form of aggregation bias in our data. 

In particular, the type of aggregation bias they study can be briefly explained using a general 

version of equation (19):  

(24) 4 4
, , 1 , ,1 1ugc t cu u ugc t su ugc t s su t s ugc ts s

q q q qα β γ γ ε− − −= =
= + + Δ + Δ +∑ ∑   

where tqΔ  is the average log price difference between periods t and t–1. The main difference 

between equation (24) and (19) is that the parameters are allowed to vary with each UPC u, i.e. 

we have βu instead of β, and that we allow for common correlated effects through the lagged 

price changes.20 For simplicity, we can define u uβ β δ= + , where ( ) 0uE δ =  . In the case where 

the true model is that given by (24) but instead equation (19) is estimated, then Imbs et al. (2005) 

argue that the estimated β̂  from (19) has a bias. In particular, under certain conditions

( )ˆE β β χ= + where 0χ > .  

Estimation of equation (24) requires us to truncate the data because we do not always 

have many observations for each UPC. Secondly, because some of the parameters are estimated 

very imprecisely, we compute the Mean Group-Common Correlated Effects (MG-CCE) estimate 

by taking a weighted average of the coefficients according to the following formula:  

(24) ˆ

1
ˆ

u

u

u

MG

u
u

β
σ

σ

β = ∑ ∑
, 

Where ˆuσ is the estimated standard error of the estimate.  

We first estimated a pooled version of equation (24) on only UPCs in which we had at 

least 30 usable observations and constrained the coefficients to be equal for every UPC.  Still this 

leaves us with over one hundred thousand observations. Our estimate of the pooled convergence 

coefficient was 0.84 (with a standard error of 0.002), which corresponds to an approximate half-

life of 3.9 quarters and is quite similar our earlier estimates. We then computed the MG-CCE 

estimate given by equation (24). The mean group estimate was 0.82, which implies  a half-life of 

3.7 quarters. Similarly, when we estimated the across border convergence coefficients we 

obtained estimates of 0.94 and 0.92 for the pooled and MG-CCE estimates. Despite the small 

positive aggregation bias, standard tests reject the equality of the mean group coefficient with the 

homogenous coefficient. Hence, like Crucini and Shintani (2006), who also looked at the 
                                                 
20 Equation (24) is identical to the benchmark regression used in Imbs et al (2005). 
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importance of this form of aggregation bias, we conclude that heterogeneity of the convergence 

coefficient across goods does not generate a quantitatively important aggregation bias in our 

data21  

If the aggregation bias does not resolve the PPP puzzle in our data, how can we explain 

the large differences in estimated persistence at different levels of aggregation? An attractive 

explanation is the presence of strong nonlinearities in response to shocks. Nonlinearities have 

been found in other studies, e.g. Parsley and Wei (1996), but no one has conjectured that these 

nonlinearities can explain the difference between national and international convergence results. 

We do so by first verifying the importance of nonlinearities in our data. We can estimate their 

importance by running the following regression 

(24) , 1 , 1 2 , 1 , 1 , 1 ,1

S
ugc t c ugc t ugc t ugc t ws ugc s gc ts

q q q q qα β β γ ε− − − −=
= + + + Δ +∑  , 

which is identical to the regression run in Parsley and Wei (1996). Here, if β2 is less than zero, 

then this implies that larger shocks dissipate faster than small ones. In this case, the decay rate 

can be written as β1 – 1 + 2β2|qugc,t-1| and the approximate half-life is ln(0.5)/ln(β1 + 2β2|qugc,t-1|). 

We run this regression separately for within Canada relative prices and relative prices across the 

border. Table 9 reports the results of these regressions. β2 is less than zero regardless of the data 

set used, indicating that there is strong evidence in favor of non-linear price adjustment both 

within countries and across the border. The importance of these nonlinearities can be assessed by 

considering a number of different-sized shocks. The standard deviation of qugc,t-1  is 26 percent 

which implies an approximate half-life of two quarters within Canada and about 6 quarters 

across the border. This implies that the typical price shock dissipates quite rapidly.  

 Given these non-linearities, smaller price shocks are obviously more persistent.  In 

particular, quarterly exchange rate shocks over this period had a standard deviation of 4 percent. 

Small shocks like these are estimated to have a half-life of 4 quarters in Canada but 23 quarters 

(5.75 years) across the border. In other words, the UPC-level data is completely consistent with 

the observation that prices respond very slowly to exchange rate shocks. The nonlinearity of 

price adjustment implies that these shocks should be very persistent.   

As attractive as this explanation seems, it still does not resolve why the convergence 

coefficient rises as we move to aggregate indexes. In order to see this result more clearly, it is 
                                                 
21 Other studies have also found small biases (c.f. Chen and Engel (2005), Parsley and Wei (2007) and Reidel and 
Szilagyi (2005)). 
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useful to draw a picture that summarizes our findings. In particular the non-linearity implies that 

the persistence of relative price deviations will drop off  as the absolute magnitude of the 

deviation rises. We portray this in Figure 5. The implication of this non-linearity is that the slope 

of a regression of current relative prices on past relative prices will depend on the amount of 

dispersion observed in the relative prices of the past period. The convergence coefficient, β, will 

be strongly influenced by this non-linearity because the OLS estimates will place a heavy 

emphasis on the observations where |qugc,t-1| was large. However, if we aggregate the data, these 

large positive and price deviations are likely to cancel and hence the relative weight given to 

goods with small price deviations will rise. To the extent that these goods converge at a slower 

rates, this means that the use of aggregated data such as a price index will produce estimates of 

the convergence coefficient that are larger than those produced using disaggregated data.  

In Table 10 we present an illustrative example of this effect. We assume that there are 

three goods purchased in US cities and Ontario that initially have log price deviations of 0.5, –

0.5, and 0.05 (i.e. two goods with initial prices that are two standard deviations above and below 

zero and one with an initial price equal to the median log price difference). Each of these goods 

has a non-linear decay rate whose coefficients are identical to those estimated in Column 4 of 

Table 9. If a researcher had access to the microdata for the three goods and estimated a standard 

linear convergence regression with one lag of the relative price, the estimate of the convergence 

coefficient would be 0.903 and the corresponding approximate half-life would turn out to be 7 

quarters. However, the researcher performed the same estimation on the price averages, the 

convergence coefficient would jump to 0.968 and the half-life would equal 21 quarters or just 

over 5 years. As this simple example illustrates, one can observe significant aggregation biases 

even though the parameters determining the convergence rates of every good are identical.  

   One final way to see that this is what is driving the aggregation bias is to form our 

aggregates in such a way that we preserve much of the underlying volatility of the UPC level 

data and then see if this causes us to recover our disaggregated estimates. In order to do this, we 

form our product group price indexes according to equation (23) but only use 5 UPCs chosen at 

random to form the product group level price indexes. By using a small number of UPCs we 

allow the product group prices to be affected by large outliers. As one can see from the estimates, 

the rate of convergence in this table hardly differ from those of Table 7. The contrast with Panel 

2 of Table 8 is striking, however. Increasing the number of UPCs in the aggregate price index 
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drives up the convergence coefficient significantly because the individual relative price 

deviations cancel out in the larger sample. As a result, the estimated convergence coefficient 

rises in all specifications and the corresponding half-lives rise as well.  

 

 

VII. Conclusion 

 

 The use of barcode data reveals a very different picture of international price differences 

than what one sees with coarser data. In particular we find that the LOP and PPP hold in their 

absolute forms as well across the border as they do within countries. Moreover, the importance 

of distance for price differences is five to ten times larger in aggregate data than in barcode data. 

Much of this is driven by the fact that the set of common goods falls systematically with distance 

leading price indexes to diverge because their composition diverges. Finally, we find that rates of 

price convergence within and across borders are fast and completely in line with micro studies.  

 Our study also explains why prior work has failed to identify these facts. Given our use 

of microdata for a large sample of goods, we are in a unique position to examine the impact that 

price indexes can have on our understanding of price differences across locations.  Our 

examination of barcode data reveals that there is enormous heterogeneity in the individual goods 

that enter these price indexes even when one examines product categories that strike most 

researchers as homogeneous. In particular, this gives rise to a biased picture of how distance and 

borders affect the degree of market segmentation when based on aggregate price index data. We 

argue that the problems underlying the use of price indexes to study these issues are related to 

two factors: 1) the systematic link between the composition of goods sold in different cities and 

the distance between cities,  and 2) the implications of  collapsing the large idiosyncratic 

component of price changes. 

 We are also able to demonstrate that in our data non-linearities in the rate of price 

convergence can resolve the PPP puzzle suggested by Rogoff (1996).  We show that the 

pervasiveness of the non-linear responses can explain all the differences in the rates of 

convergence found at the aggregate versus disaggregate level. In particular, heterogeneity of the 

convergence coefficient across goods does not generate a quantitatively important aggregation 

bias in our data. 
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Finally, the non-linearity of price adjustment is present both when we look within and 

across borders.  These results imply that the relatively small price differences generated by the 

typical exchange rate movement will tend to be quite persistent, but larger ones will be short 

lived. This may have important implications for understanding why prices sometimes seem to 

respond to exchange rate changes but other times do not. Obviously more work is needed to 

understand the implications of this for local versus producer currency pricing.  
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Figure 2B: Within Regions in Canada
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Figure 2A: Within Cities in the US
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Figure 5
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US National US Cross-Section Canada-Regional 

Number of Cities/Regions 1 10 6
Number of Households per City/Region 55,000 300 2500
Time Period 1999Q1 - 2003Q4 2003Q4 2001Q1-2004Q4

Number of UPCs per City/Region 697,312 50,628 57784

Number of Product Groups per City/Region 123 118 156

Number of UPCs per Product Group per City/Region 5,669 429 370

Number of CPI Individual Quotes per ELI per City/Region - 10 30

Cities included in the US: Boston, Chicago, Houston, Los Angeles, New York, Atlanta, Detroit, Philadelphia, 
Buffalo-Rochester, and Phoenix.
Regions included in Canada: Alberta, British Columbia, Manitoba, Maritimes, Ontario and Quebec. 
Source: ACNielsen Homescan US and ACNielsen Homescan Canada.

Table 1: Descriptive Statistics 



Number of 
Common UPCs Median Standard Deviation

(1) (2) (3)

Upper Panel:  U.S. - U.S.
All 45 US city comparisons:
Median 10,616 0.000 0.223
Average 10,730 -0.001 0.224
St. Deviation 1,303 0.016 0.012

Middle Panel:  Canada - Canada
All 15 Canadian region comparisons:
Median 25,094 0.003 0.187
Average 25,980 0.007 0.181
St. Deviation 4,682 0.010 0.015

Lower Panel:  U.S. - Canada
All 60 U.S. City-Canada region comparisons:
Median 1,531 0.021 0.267
Average 1,634 0.019 0.266
St. Deviation 328 0.020 0.008

Table 2: Law of One Price Deviations within City/Region Pairs in the U.S. and Canada

Price Differences across Cities Common UPCs Only



Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.0047 0.0028 0.0083 0.0120 0.0068 0.0213

[0.0006]** [0.0007]** [0.0006]** [0.0015]** [0.0016]** [0.00165]**
Border Dummy 0.0312 0.0694

[0.0009]** [0.0020]**
Observations 970338 482869 389701 970338 482869 389701
R-squared 0.02 0.00 0.01 0.03 0.00 0.01
"Width" of the Border 720 328

Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.0062 0.0024 0.0084 0.0182 0.0058 0.0245

[0.0006]** [0.0008]** [0.0007]** [0.0019]** [0.0019]** [0.0023]**
Border Dummy 0.0290 0.0654

[0.0013]** [0.0027]**
Observations 970338 482869 389701 970338 482869 389701
R-squared 0.04 0.00 0.01 0.05 0.00 0.03
"Width" of the Border 106 36

Absolute Log Price Difference

Square of log Price Difference Absolute Log Price Difference

All Regressions include city dummies. Robust standard errors in brackets. All standard errors are clustered by city 
pair. ; * significant at 5% level; ** significant at 1% level.

Table 3: Deviations in the Prices of UPCs

Lower Panel:  Weighted Regression

Upper Panel:  Unweighted Regression
Square of log Price Difference



Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.003 0 0.004 0.02 0.004 0.03

[0.001]** [0.000] [0.000]** [0.003]** [0.002]* [0.002]**
Border Dummy 0.018 0.064

[0.002]** [0.005]**
Constant -0.019 0.002 -0.023 -0.119 0.028 -0.148

[0.007]* [0.002] [0.003]** [0.033]** [0.013]* [0.017]**
Observations 12471 5211 2333 12471 5211 2333
R-squared 0.12 0.02 0.08 0.15 0.04 0.14
"Width" of the Border 403 25

Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.016 0.004 0.024 0.048 0.011 0.07

[0.002]** [0.001]** [0.003]** [0.006]** [0.004]** [0.006]**
Border Dummy 0.063 0.109

[0.005]** [0.010]**
Constant -0.086 0.017 -0.141 -0.232 0.094 -0.365

[0.017]** [0.013] [0.019]** [0.051]** [0.039]* [0.046]**
Observations 12471 5211 2333 12471 5211 2333
R-squared 0.06 0.02 0.1 0.12 0.06 0.17
"Width" of the Border 51 10

Dependent Variable
Data All US-US Can-Can All US-US Can-Can
Log Distance 0.162 0.013 0.15 0.103 0.023 0.173

[0.071]* [0.004]** [0.032]** [0.024]** [0.011]* [0.034]**
Border Dummy 3.693 1.746

[0.100]** [0.029]**
Constant -0.973 0.016 -1.188 -0.387 0.16 -1.207

[0.453]* [0.032] [0.289]** [0.156]* [0.089] [0.308]**
Observations 12471 5211 2333 12471 5211 2333
R-squared 0.34 0.02 0.19 0.54 0.09 0.25
"Width" of the Border 7.95E+09 2.30E+07

Robust standard errors in brackets; * significant at 5% level; ** significant at 1% level.

Table 4: Border Effects for Product Group Level Price Indexes

Panel 1:  Common Weighted Index of Common Goods
Absolute Log Price DifferenceSquare of log Price Difference

 Panel 2:  City-Specific Weighted Index of Common Goods
Square of log Price Difference

Panel 3:  City-Specific Weighted Index Composed of All Goods

Absolute Log Price Difference

Square of log Price Difference Absolute Log Price Difference



Dependent Variable St. Deviation over time of the Log of Price Ratio between Cities
Data Within Canada All Within Canada All
Weighted No No Yes Yes

Log Distance 0.01 0.009 0.014 0.012
[0.0010]** [0.0008]** [0.0018]** [0.0013]**

Border Dummy 0.012 0.012
[0.0048]** [0.0039]**

Observations 99444 116744 99444 116744
R-squared 0.01 0.01 0.01 0.01
"Width" of the Border 3.8 2.7

Robust standard errors in brackets; * significant at 5% level; ** significant at 1% level.

Table 5: Engel and Rogers at the UPC level 

All UPCs 



Dependent Variable St. Deviation over time of the Log of Price Ratio between Cities
Data Within Canada All Within Canada All
Weighted No No Yes Yes

Log Distance 0.01 0.004 0.003 0.002
[0.0017]** [0.0019]* [0.0007]** [0.0009]*

Border Dummy 0.046 0.014
[0.0036]** [0.0027]**

Observations 1213 4336 1213 4336
R-squared 0.01 0.07 0.01 0.02
"Width" of the Border 98716 1097

Dependent Variable
Currency of Canadian Prices US $ US $ US $ US $ Canadian $ Canadian $
Data Within Canada All Within Canada All All All
Weighted No No Yes Yes No Yes

Log Distance 0.007 0.002 0.007 0.002 0.002 0.002
[0.0007]** [0.0006]** [0.0007]** [0.0006]** [0.0006]** [0.0006]**

Border Dummy 0.051 0.047 -0.005 -0.003
[0.0000]** [0.0000]** [0.005] [0.003]

Observations 1268 11941 1268 11941 11941 11941
R-squared 0.01 0.27 0.01 0.27 0.18 0.18
"Width" of the Border 1.19E+11 1.61E+10 . .

Robust starndard errors in brackets; * significant at 5% level; ** significant at 1% level.

Table 6: Engel and Rogers at the Product Group level using only Common UPCs across Cities

All Product Groups - Common UPCs - Common Weights

St. Deviation over time of the Log of Price Ratio between Cities
All Product Groups - All UPCs - City-Specific Weights



Dependent Variable
City Dummies No No No Yes Yes Yes
Value Weights No No Yes No No Yes

(1) (2) (3) (4) (5) (6)

qugc,t-1 0.787 0.779 0.866 0.772 0.762 0.853
[0.002] [0.002] [0.005] [0.020] [0.002] [0.006]

qugc,t-1 * Border 0.079 0.05 0.156 0.071
[0.006] [0.020] [0.008] [0.024]

Dummy ALB -0.013 -0.014 -0.020
[0.001] [0.000] [0.001]

Dummy BRC -0.017 -0.018 -0.020
[0.000] [0.001] [0.002]

Dummy MAN -0.009 -0.01 -0.014
[0.000] [0.001] [0.002]

Dummy MAR 0.004 0.003 -0.006
[0.001] [0.001] [0.002]

Dummy QUE 0.003 0.003 -0.005
[0.001] [0.001] [0.001]

Dummy US -0.005 -0.030 -0.019
[0.005] [0.002] [0.007]

Constant -0.005 -0.006 -0.012
[0.000] [0.000] [0.000]

Observations 399879 399879 399879 399879 399879 399879
R-squared 0.39 0.39 0.61 0.4 0.4 0.62

Half-life Within Canada 2.9 2.8 4.8 2.7 2.6 4.4
p-value (†) 0.000 0.000 0.000 0.000 0.000 0.000

Half-life Across Border . 4.5 7.9 . 8.1 8.8
p-value (†) . 0.000 0.000 . 0.000 0.001

Long-Run Convergence 
Coefficient within Canada -0.026 -0.026 -0.090 -0.029 -0.029 -0.088

Absolute Convergence Test  
within Canada (p-value) 0.000 0.000 0.000 0.000 0.000 0.000

Equality Test between Within 
and Across Absolute 
Convergence    (p-value)

0.677 0.000 0.291

(†) P-value for a standarized normal coefficient test based on the asymptotic distribution estimated by Harris and Tzavalis (1999). 
(‡) This is the average of the dummies for canada divided by the coefficient on L1dlnp. Standard errors are computed using the
delta method.
Robust standard errors in brackets.

Table 7: Convergence Rates at the UPC Level

Log of UPC Price Ratio Relative to Ontario



Dependent Variable
City Dummies No No Yes Yes No No Yes Yes No No Yes Yes
Product Group Weights No Yes No Yes No Yes No Yes No Yes No Yes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

qugc,t-1 0.821 0.843 0.82 0.83 0.873 0.967 0.848 0.947 0.989 0.999 0.986 0.995
[0.028] [0.053] [0.030] [0.057] [0.014] [0.016] [0.016] [0.019] [0.006] [0.003] [0.006] [0.003]

qugc,t-1 * Border 0.075 0.038 0.138 0.111 0.015 -0.034 0.135 0.039 -0.01 0.001 0.017 0.033
[0.040] [0.055] [0.051] [0.066] [0.034] [0.030] [0.048] [0.033] [0.011] [0.016] [0.012] [0.013]

Dummy ALB 0.013 0.015 0.01 0.009 0.002 0.007
[0.003] [0.006] [0.002] [0.003] [0.003] [0.003]

Dummy BRC 0.014 0.018 0.013 0.009 0.006 0.005
[0.004] [0.005] [0.003] [0.003] [0.003] [0.003]

Dummy MAN 0.003 0.003 0.006 0.006 0.001 0.003
[0.004] [0.006] [0.003] [0.003] [0.003] [0.003]

Dummy MAR -0.003 0.003 0 0.004 -0.002 0
[0.004] [0.007] [0.003] [0.003] [0.004] [0.003]

Dummy QUE -0.006 -0.001 -0.002 0.003 -0.001 0.003
[0.004] [0.007] [0.003] [0.003] [0.003] [0.003]

Dummy US -0.04 -0.022 -0.04 -0.03 -0.041 -0.033
[0.009] [0.011] [0.009] [0.010] [0.005] [0.012]

Constant 0.002 0.006 0.003 0.006 -0.001 0.004
[0.001] [0.002] [0.001] [0.001] [0.001] [0.001]

Observations 6144 6144 6144 6144 6144 6144 6144 6144 6432 6432 6432 6432
Average UPCs per product group 5 5 5 5 80 80 80 80
R-squared 0.63 0.71 0.64 0.71 0.73 0.86 0.72 0.87 0.97 0.98 0.97 0.98

Half-life Within Canada 4 4 3 4 5 21 4 13 63 . 49 138
p-value (†) 0.001 0.012 0.000 0.010 0.001 0.012 0.000 0.010 0.214 1.000 0.063 0.161

Half-life Across countries 6 5 16 11 6 10 40 49 33 . . .
p-value (†) 0.504 0.000 0.000 0.015 0.504 0.000 0.000 0.015 0.125 1.000 1.000 1.000

Long-Run Convergence Coefficient 
within Canada

0.011 0.039 0.022 0.044 0.024 0.182 0.0342 0.149 -0.091 2.628 0.114 0.879

Absolute Convergence Test  within 
Canada (p-value) 0.093 0.000 0.000 0.000 0.002 0.035 0.000 0.011 0.410 0.628 0.083 0.152

Equality Test between Within and 
Across Absolute Convergence    (p-
value)

0.000 0.015 . . 0.000 0.043 . . . .

(†) P-value for a standarized normal coefficient test based on the asymptotic distribution estimated by Harris and Tzavalis (1999). 
(‡) This is the average of the dummies for canada divided by the coefficient on L1dlnp. Standard errors are computed using the delta method.
Robust standard errors in brackets; * significant at 5% level; ** significant at 1% level

Table 8: Results from Aggregating UPC prices at the product group level

Common UPCs - Common Weights - Small Sample
Log of Product Group Price Ratio Relative to Ontario Log of Product Group Price Ratio Relative to Ontario

Common UPCs - Common Weights - Large Sample All UPCs - City-Specific Weights - Large Sample
Log of Product Group Price Ratio Relative to Ontario



Dependent Variable
(1) (2) (3) (4)

City Dummies Yes Yes Yes Yes
Product Group Weights Yes Yes Yes Yes

qugc,t-1 0.779 0.845 0.866 0.984
[0.002] [0.004] [0.008] [0.019]

qugc,t-1 * |qugc,t-1| -0.221 -0.17
[0.012] [0.037]

Observations
Average UPCs per product group 389343 389343 10536 10536

2.8 2.2 4.8 6.3

R-squared 0.37 0.37 0.60 0.60

Log of UPC Price Ratio Relative to Ontario

Within Canada Across the Border

Table 9: Non-Linearity in Price Adjustment within and Across the Border

Approximate half-life for a one 
standard deviation price shock



Initial Log Price Deviation 
(Period 0) Period 1 Period 2

Good 1 0.5 0.450 0.408
Good 2 -0.5 -0.450 -0.408
Good 3 0.05 0.047 0.045

Average 0.0159 0.0155 0.0151

Estimation Results Based on Simulated Data

Aggregate Convergence Coefficient 0.968
Aggregate Half-Life 21
Microdata Convergence Coefficient 0.903
Microdata Half-Life 7

Table 10: A Simple Example of the Role of Non-Linearities

Note: In this table we conduct a assume that all price deviations decay with the non-linear decay rates 
given by the across-the-border specification in Table 9. The aggregate convergence rate and half-life 
are computed using the average price deviation data assuming the researcher runs a simple 
regression of the current log price on its lag and assumes no non-linearities. The microdata 
convergence rate and half-life are computed analogously using the microdata for goods 1,2, and 3. 

Log Price Difference Relative to Ontario



Figure A1
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UPC UPC Descriptor Product Group Descriptor

6897829901 PLAYSTATION 2 RF ADAPTER 1S (# AUDIO/VIDEO/COMPUTER UNITS
6897879500 XBOX UNI RF ADAPTER 1S (#79500 AUDIO/VIDEO/COMPUTER UNITS

1380300201 CANON POWERSHOT A10 DIG CAMERA CAMERAS/FILM/ACCESSORIES
1821070001 NIKON COOLPIX 2000 DIGITAL CAM CAMERAS/FILM/ACCESSORIES

5820038576 LUCERNE BUTTER UNSALTED 454GM BUTTER & MARGARINE
5574227472 SMART CHOICE SOFT TUB 454 GM(# BUTTER & MARGARINE

5980061302 NESTLE AFTER EIGHT BISCUIT CAR COOKIES & SWEET BISCUITS
7241709129 CADBURY CARAMEL FINGERS 125 GM COOKIES & SWEET BISCUITS

5610015728 PRINGLES REGULAR PLAIN 50 GM SNACK FOODS
6041002521 LAYS CLASSIC PLAIN BIG GRAB 70 SNACK FOODS

5218132276 SAFETY 1ST FISH N ROD TUB TOY TOYS
6487432633 MATTEL HOT WHEELS RIPPIN WHEEL TOYS

Table A1: Examples of Common UPCs across the Border



US-US Can-Can US-Can US-US Can-Can US-Can

Ln(Distance) -0.0301*** -0.0460** -0.0184*** -0.0301*** -0.0238 -0.0186***
[0.0029] [0.018] [0.0032] [0.0028] [0.027] [0.0029]

Border Dummy -0.134*** -0.157***
[0.0061] [0.0056]

Constant 0.434*** 0.972*** 0.347*** 0.469*** 0.888*** 0.387***
[0.026] [0.16] [0.027] [0.025] [0.24] [0.023]

Observations 45 15 105 45 15 105
R-squared 0.82 0.88 0.97 0.8 0.83 0.97

Robust standard errors in brackets; *** p<0.01, ** p<0.05, * p<0.1

Share of Common UPCs               
(in terms of the count of UPCs)

Share of Common UPCs (in terms of the 
value of UPCs)

Table A2: Regressions of the Share of Common UPCs on Distance and the Border



Number of Number of 
Common UPCs Median Standard Deviation Median Absolute Common UPCs Median Standard Deviation Median Absolute

City/Region 1 City/Region 2 (1) (2) (3) (4) City/Region 1 City/Region 2 (1) (2) (3) (4)

U.S. - U.S. U.S. - Canada

Boston Chicago 10,362 0.000 0.226 0.117 Boston Alberta 1737 0.018 0.267 0.152
Boston Houston 10,235 0.017 0.212 0.107 Boston British Columbia 1686 0.021 0.265 0.162
Boston Los Angeles 9,119 0.000 0.242 0.134 Boston Manitoba 1517 0.038 0.256 0.147
Boston New York 11,503 0.000 0.223 0.115 Boston Maritimes 1529 0.031 0.272 0.162
Boston Atlanta 10,257 0.001 0.208 0.098 Boston Ontario 2513 0.030 0.275 0.164
Boston Detroit 10,863 0.000 0.220 0.110 Boston Quebec 1616 0.036 0.275 0.175
Boston Philadelphia 12,346 0.000 0.220 0.106 Chicago Alberta 1569 0.025 0.255 0.145
Boston Rochester 10,996 0.000 0.214 0.102 Chicago British Columbia 1595 0.013 0.256 0.145
Boston Phoenix 10,111 0.000 0.227 0.117 Chicago Manitoba 1450 0.038 0.259 0.145
Chicago Houston 11,102 0.038 0.221 0.123 Chicago Maritimes 1407 0.034 0.274 0.155
Chicago Los Angeles 9,773 0.000 0.234 0.120 Chicago Ontario 2275 0.028 0.267 0.160
Chicago New York 9,231 0.000 0.232 0.122 Chicago Quebec 1442 0.029 0.274 0.171
Chicago Atlanta 10,677 0.021 0.219 0.114 Houston Alberta 1548 -0.013 0.249 0.153
Chicago Detroit 12,798 0.000 0.222 0.106 Houston British Columbia 1552 -0.028 0.250 0.149
Chicago Philadelphia 11,213 0.000 0.226 0.112 Houston Manitoba 1408 -0.003 0.254 0.144
Chicago Rochester 10,466 0.000 0.214 0.102 Houston Maritimes 1375 -0.003 0.267 0.152
Chicago Phoenix 10,996 0.000 0.227 0.112 Houston Ontario 2191 -0.010 0.269 0.163
Houston Los Angeles 10,425 -0.039 0.241 0.141 Houston Quebec 1450 -0.007 0.264 0.161
Houston New York 8,910 -0.062 0.235 0.143 Los Angeles Alberta 1558 0.007 0.257 0.147
Houston Atlanta 13,209 0.000 0.193 0.083 Los Angeles British Columbia 1558 -0.001 0.262 0.162
Houston Detroit 12,322 -0.023 0.213 0.113 Los Angeles Manitoba 1356 0.025 0.256 0.156
Houston Philadelphia 10,823 -0.013 0.214 0.109 Los Angeles Maritimes 1337 0.027 0.267 0.154
Houston Rochester 10,074 -0.018 0.215 0.109 Los Angeles Ontario 2210 0.021 0.279 0.169
Houston Phoenix 12,853 -0.019 0.218 0.115 Los Angeles Quebec 1437 0.018 0.272 0.158
Los Angeles New York 8,346 0.000 0.252 0.136 New York Alberta 1514 0.035 0.267 0.159
Los Angeles Atlanta 9,494 0.029 0.239 0.133 New York British Columbia 1518 0.038 0.271 0.169
Los Angeles Detroit 10,116 0.002 0.237 0.124 New York Manitoba 1358 0.057 0.257 0.166
Los Angeles Philadelphia 9,361 0.002 0.245 0.135 New York Maritimes 1401 0.067 0.267 0.167
Los Angeles Rochester 8,449 0.000 0.236 0.124 New York Ontario 2313 0.056 0.269 0.168
Los Angeles Phoenix 12,752 0.000 0.222 0.102 New York Quebec 1522 0.061 0.273 0.173
New York Atlanta 8,963 0.043 0.229 0.131 Atlanta Alberta 1383 -0.017 0.251 0.154
New York Detroit 9,964 0.001 0.232 0.118 Atlanta British Columbia 1363 -0.016 0.257 0.159
New York Philadelphia 12,893 0.003 0.226 0.116 Atlanta Manitoba 1234 0.004 0.257 0.151
New York Rochester 9,723 0.000 0.233 0.119 Atlanta Maritimes 1241 0.014 0.266 0.163
New York Phoenix 8,684 0.000 0.240 0.128 Atlanta Ontario 1982 0.001 0.273 0.168
Atlanta Detroit 12,539 -0.005 0.208 0.105 Atlanta Quebec 1345 0.000 0.265 0.163
Atlanta Philadelphia 11,280 0.000 0.212 0.098 Detroit Alberta 1756 0.007 0.262 0.152
Atlanta Rochester 10,616 0.000 0.209 0.094 Detroit British Columbia 1755 0.010 0.270 0.161
Atlanta Phoenix 11,464 -0.007 0.218 0.111 Detroit Manitoba 1608 0.022 0.256 0.151
Detroit Philadelphia 11,984 0.000 0.221 0.107 Detroit Maritimes 1617 0.034 0.270 0.159
Detroit Rochester 11,593 0.000 0.214 0.096 Detroit Ontario 2587 0.023 0.276 0.163
Detroit Phoenix 11,603 0.000 0.224 0.111 Detroit Quebec 1662 0.024 0.267 0.164
Philadelphia Rochester 12,196 0.000 0.214 0.100 Philadelphia Alberta 1624 0.024 0.254 0.151
Philadelphia Phoenix 10,510 0.000 0.231 0.119 Philadelphia British Columbia 1616 0.021 0.268 0.163
Rochester Phoenix 9,675 0.000 0.226 0.113 Philadelphia Manitoba 1464 0.034 0.260 0.165

Philadelphia Maritimes 1455 0.036 0.271 0.159
All 45 US city comparisons: Philadelphia Ontario 2411 0.031 0.270 0.168
Median 10,616 0.000 0.223 0.113 Philadelphia Quebec 1549 0.036 0.265 0.161
Average 10,730 -0.001 0.224 0.114 Rochester Alberta 1495 0.014 0.265 0.162
St. Deviation 1,303 0.016 0.012 0.013 Rochester British Columbia 1509 0.002 0.272 0.171

Rochester Manitoba 1381 0.021 0.271 0.164
Canada - Canada Rochester Maritimes 1388 0.026 0.274 0.171

Rochester Ontario 2215 0.026 0.282 0.177
Alberta British Columbia 29014 0.000 0.160 0.063 Rochester Quebec 1455 0.037 0.274 0.170
Alberta Manitoba 27824 0.000 0.154 0.056 Phoenix Alberta 1629 -0.015 0.258 0.154
Alberta Maritimes 22004 0.022 0.188 0.096 Phoenix British Columbia 1667 -0.010 0.268 0.156
Alberta Ontario 30995 0.003 0.187 0.085 Phoenix Manitoba 1483 0.015 0.261 0.156
Alberta Quebec 22359 0.005 0.193 0.094 Phoenix Maritimes 1410 0.016 0.268 0.156
British Columbia Manitoba 25094 0.007 0.168 0.071 Phoenix Ontario 2303 0.006 0.278 0.163
British Columbia Maritimes 20286 0.031 0.196 0.106 Phoenix Quebec 1532 0.002 0.282 0.169
British Columbia Ontario 29281 0.016 0.194 0.096
British Columbia Quebec 21126 0.017 0.200 0.103
Manitoba Maritimes 20879 0.008 0.189 0.092 All 60 Uscity-Canadian region comparisons:
Manitoba Ontario 28757 0.000 0.185 0.083 Median 1,531 0.021 0.267 0.161
Manitoba Quebec 20994 0.000 0.192 0.089 Average 1,634 0.019 0.266 0.160
Maritimes Ontario 30914 0.000 0.168 0.066 St. Deviation 328 0.020 0.008 0.008
Maritimes Quebec 24800 0.000 0.171 0.073
Ontario Quebec 35374 0.000 0.165 0.068

All 15 Canadian Region comparisons:
Median 25,094 0.003 0.187 0.085
Average 25,980 0.007 0.181 0.083
St. Deviation 4,682 0.010 0.015 0.016

Price Differences across Cities Common UPCs ONLY Price Differences across Cities Common UPCs ONLY

Appendix Table A3: Law of One Price Deviations within City/Region Pairs in the U.S. and Canada




