
Conditional Markov Chain And Its Application In

Economic Time Series Analysis

Jushan Bai� and Peng Wangy

New York University, New York, NY

March 16, 2008

Abstract

Motivated by the great moderation in major U.S. macroeconomic time series, we

propose a new method to study the nonstationarity of time series data. We take the

long-run volatility change as a recurrent structure change, while the short-run/medium-

run mean growth rate change is viewed as switching of regimes. The state of the

economy is thus characterized by its structure and regime, both of which are unobserved

and must be inferred from the data. We assume that structure follows an exogenous

�rst order Markov chain. Conditioning on the structure, regimes also follow a �rst

order Markov chain, whose transition matrix is structure-dependent. Empirical studies

show that this model well identi�es both medium-run regime switching and long-run

structure change in U.S. macroeconomic data.
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1 Introduction

The volatility of major macroeconomic variables has experienced a substantial decline since

early 1980s.1 The evidence to this decline is so striking that economists have named it the

�Great Moderation�. This feature should be captured in the calibration and estimation of

macroeconomic models that are applied to the entire postwar U.S. data. For example, in a

stochastic growth model, when modeling the endowment process, the volatility of exogenous

income should be treated as a random process, not just one parameter to be estimated.2

Hamilton (1989)�s seminal application of a Markov switching model to U.S. GDP growth

data successfully captured its cyclical behavior, but at that time, the changing volatility was

not a noteworthy feature of the data. In fact, the original version of the Hamilton model

(constant variance) fails to simultaneously explain pre-1984 and post-1984 periods.

To allow for changing volatility, Kim and Nelson (1999) added an unknown change point

to the Markov switching model. They found that, for U.S. postwar GDP growth data, not

only is there a structure change toward stabilization around the �rst quarter of 1984, but the

gap between growth rates during recessions and booms has narrowed. Lettau, Ludvigson and

Wachter (2006) applied an independent Markov switching framework, as in McConnell and

Perez-Quiros (2000), for consumption data, and found evidence of a shift to substantially

lower volatility regimes at the beginning of 1990s. By dividing the whole sample of GDP

growth time series into two subsamples according to these estimated structure breaks, we

�nd evidence to support Kim and Nelson (1999)�s conclusion on the narrowing gap between

mean growth rates. We also �nd evidence for a notable di¤erence between pre-break and

post-break transition probabilities for booms and recessions. Recession durations also vary

across the subsamples.

1See Kim and Nelson (1999), McConnell and Perez-Quiros (2000), Warnock and Warnock (2000), Blan-
chard and Simon (2001), Kim, Nelson, and Piger (2004), etc.

2An alternative method is to assume there was a structure break in variance for the endowment process.
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One of the objectives of this paper is to establish a simple model that captures these key

features of the data, such as the narrowing mean growth rate gap and changing transition

probabilities3. A good model should be able to identify all these features endogenously, using

the whole sequence of the observed data.

In order to do so, this paper explicitly models both long-run and short-run regime

switches. The state of the economy is categorized into two groups: the exogenous state

and the endogenous state. The exogenous state is named structure. This is designed to

characterize long-run structure change. The endogenous state is called regime, and will be

used to describe the short-run/medium-run business cycles. The exogenous state evolves ac-

cording to a homogeneous Markov chain. Given the exogenous state, the endogenous state

also follows a homogeneous Markov chain, whose transition probabilities are determined by

the exogenous state. The endogenous state thus follows a �conditional Markov chain�, where

the Markov property applies only after conditioning on the exogenous state.

The model is closely related to the conventional Markov regime switching model. It can

be viewed as an extension of the Markov switching model to allow for time varying transition

probabilities that are driven by some (persistent) hidden states. For simplicity, we will call

our model the conditional Markov chain model. Later we will see that a version of our model

can also be viewed as a way to impose structural restrictions on a Markov switching model,

with only part of the states directly a¤ecting the observed data. However, the conditional

Markov chain framework admits much richer forms to model cyclical behavior. For example,

we can allow mean gap and the duration for regimes to vary across di¤erent structure states.

Another bene�t of our model is that it keeps the number of parameters reasonably small.

Consider the following example. Let yt be the log di¤erence of GDP time series data,

3The later also implies changing recession durations.
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i.e., yt = log(GDPt)� log(GDPt�1):

yt = �t + et

where et � N(0; �2t ): Let there be two structure states: high or low volatility. Thus the

structure state belongs to fAH � �2H ; AL � �2Lg:4 The structure state evolves over time

according to an exogenous �rst order Markov chain with transition matrix PA: Let there

be two regime states: high/low mean fsL; sHg. Within high volatility structure, the pair

of means is given by f�HL ; �HHg; while within low volatility structure, the mean takes value

in f�LL; �LHg:5 Given that the structure is �2H for time t; the transition between regimes sL

and sH is given by PH ; PL is de�ned as transition matrix for regimes under low volatility

structure. With this speci�cation, the medium-run business cycles are characterized by

switches between high and low mean growth rate of GDP, while the long-run change of

volatility can be viewed as a transition from �2H to �
2
L:
6

To convey the main idea, we start with a simpli�ed notation. Let structure At take

a value in f1; 2g and regime st be either 1 or 2: By assumption, At follows a �rst order

stationary Markov chain, with a 2� 2 transition matrix PA: Regime st follows a conditional

�rst order Markov chain described as follows:

Under structure A = k, regime switching is dominated by the transition matrix Pk; where

k = 1; 2: For example, we assume P1(i; j) � Pr(st = ijAt = 1; st�1 = j)7: By assumption,

the model is characterized by three transition matrices and joint distribution of initial states

4The subscript �H�denotes high, while �L�denotes low.
5We can think of � as a function of the joint state (At; st); for example �(AH ; sL) = �HL ; and �

2 as a
function of structure At alone. Then we can also write the model as yt = �(At; st) + et; et � N(0; �2(At)):

6It is a long-run change in the sense that the probability of staying in the same structure will be highly
persistent, say 0.99.

7�Pr�means probability of an event.
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(A0; s0); that is

PA =

0B@ p 1� q

1� p q

1CA ; P1 =

0B@ p1 1� q1

1� p1 q1

1CA P2 =

0B@ p2 1� q2

1� p2 q2

1CA
and Pr(A0; s0); where At 2 f1; 2g; st 2 f1; 2g: We assume both states are hidden states, not

observed by econometricians.

Like the conventional Markov switching model, the econometrician only observes a time

series data fytgTt=1; where the data generating process of yt is determined by yt = �(At; st)+et;

et � N(0; �2(At)). This implies yt � N(�(At; st); �2(At)):

Because both At and st are not observed, we treat them as missing data and apply an

expectation-maximization algorithm to estimate the entire model. By applying this model

to US post-war data on GDP, employment, we �nd that there is a volatility change at around

the �rst quarter of 1984, consistent with most existing literature, and all NBER recession

dates are precisely identi�ed by looking at smoothed or �ltered recession probabilities. The

estimated structure transition probabilities also suggest that the volatility change is highly

persistent.

2 Relations to Other Markov Switching Models

The above model is designed such that it can identify both short-run/medium-run regime

switching and long-run structure change.8 It admits rich model features while keeps a rea-

8Notice that we can also model this long-run and short-run transitions within the conventional Markov
regime switching framework, with four regime states, i.e., st 2 f(�2H ; �HL ); (�2H ; �HH); (�2L; �LL); (�2L; �LH)g:
The problem with this setup is that there are 12 probability parameters concerning the transition matrix
of these 4 states, whose MLE estimates are hard to �nd. Also there might be multiple local maximum
for the likelihood function, and it is hard to achieve a reasonable local maximum. Instead, by explicitly
modelling the long-run and short-run regime changes, our model only involves 6 parameters concerning the
transition matrix, which greatly reduces the computation burden. Thus our model can also be viewed as a
parsimonious way to model the above 4-state Markov regime switching problem.
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sonably parsimonious model structure. For example, it includes the unknown change point

Markov switching model (Kim and Nelson, 1999) and the independent Markov switching

model (McConnell and Perez-Quiros, 2000, and Lettau et al, 2006) as special cases.

Example 1 (Unknown change point Markov switching model) In the conditional Markov

chain model, let 0 < p < 1 and q = 1; then the low variance structure state is an absorbing

state. What remains is to estimate the location of the (deterministic) permanent structural

change. By further restricting P1 = P2; the resulting model is equivalent to the unknown

change point Markov switching model as in Kim and Nelson (1999)9. The transition matrices

are given by PA =

0B@ p 0

1� p 1

1CA ; P1 = P2 =
0B@ p1 1� q1

1� p1 q1

1CA : We will see in the next
example that it is also a special case of the independent Markov switching model.

Example 2 (Independent Markov switching model) If we restrict our model such that p1 =

p2 and q1 = q2; then the resulting model is equivalent to the independent Markov switching

model, where the switching of regime st no longer depends on the structure state At: We can

see that the independent switching model essentially requires the conditional transition matrix

for regime st to be the same across di¤erent structures, i.e., P1 = P2 =

0B@ p1 1� q1

1� p1 q1

1CA ;
with no restrictions imposed on transition matrix for structure At:

Recently, Geweke et al. (2007) proposed a Hierarchical Markov Normal Mixture model

(HMNM) to study �nancial asset returns. Our model also includes HMNM as a special case

by imposing some restrictions on the transition matrices.

Example 3 (HMNM) If we restrict the conditional transition matrix for regimes such that

the diagonal terms add up to one and each row contains the same elements, then our model

becomes a HMNM model. In particular, the resulting transition matrices take the following

9They considered a general setup to allow mean gap di¤erence and variance change, i:e:; mean growth
rate depends on both At and st; while variance only depends on At:
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forms: PA =

0B@ p 1� q

1� p q

1CA ; P1 =
0B@ p1 p1

1� p1 1� p1

1CA ; P2 =
0B@ p2 p2

1� p2 1� p2

1CA :
In particular, HMNM restricts the conditional transition kernel such that it degenerates:

Pr(st = ijAt = k; st�1 = j) = Pr(st = ijAt = k); for all i; k; j: Conditioning on a speci�c

structure At = k; the regime st follows a mixture of Normals distribution.

3 General Model Setup and Properties

In general, the model admits M exogenous states and N endogenous states, with At 2

f1; :::;Mg and st 2 f1; :::; Ng: We have an M �M probability matrix PA to characterize

the evolution of At: Accordingly, there are altogether M probability matrices characterizing

transitions of st conditional on At; each being of dimension N �N:

We can de�ne a joint state Zt � (At; st); which is proved to be �rst order Markovian (see

the Lemma). A typical realization of joint state is given by (At = m; st = n); m 2 f1; :::;Mg;

n 2 f1; :::; Ng. The number of joint states is given by MN:

Lemma 4 The joint state Zt is �rst order Markovian, i.e.,

Pr(At+1; st+1jAt; st; At�1; st�1; :::; A0; s0) = Pr(At+1; st+1jAt; st)

Proof: Write out the probability using Bayes rule:

Pr(At+1; st+1jAt; st; At�1; st�1; :::; A0; s0)

= Pr(st+1jAt+1; At; st; At�1; st�1; :::; A0; s0) � Pr(At+1jAt; st; At�1; st�1; :::; A0; s0)

= Pr(st+1jAt+1; st) � Pr(At+1jAt)

The second equality comes from two model assumptions. Firstly, conditional on the struc-

ture state At; st is �rst order Markovian. This implies that conditioning on At; st�1 forms a

su¢ cient statistic for all past history for predicting st; or Pr(st+1jAt+1; At; st; At�1; st�1; :::; A0; s0) =
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Pr(st+1jAt+1; st). Secondly, At is assumed to be exogenously �rst order Markovian, which

meansAt�1 forms a su¢ cient statistic for predictingAt; or Pr(At+1jAt; st; At�1; st�1; :::; A0; s0) =

Pr(At+1jAt): Q.E.D.

Then the MN �MN transition matrix PZ characterizing the Markov process fZtg can

be constructed as follows10

Pr(At+1; st+1jAt; st) = Pr(st+1jAt+1; At; st) � Pr(At+1jAt; st)

= Pr(st+1jAt+1; st) � Pr(At+1jAt)

where Pr(st+1jAt+1; st) and Pr(At+1jAt) are given by elements of Pm (m = 1; :::;M) and PA

respectively.

Example 5 Consider a simple case with only two structures (At = 1 or 2) and two regimes

(st = 1 or 2), where PA =

0B@ p 1� q

1� p q

1CA ; P1 =
0B@ p1 1� q1

1� p1 q1

1CA ; P2 =
0B@ p2 1� q2

1� p2 q2

1CA :
If we order the joint state Zt � (At; st) as [(1; 1); (1; 2); (2; 1); (2; 2)]0; then the corresponding

transition matrix takes the form

PZ =

0B@ p � P1 (1� q) � P1

(1� p) � P2 q � P2

1CA
10We can also let transition from st�1 to st to be 1st-order stationary conditional on past structure At�1:

For example, we can let P1(i; j) � Pr(st = ijAt�1 = 1; st�1 = j): Then we can carry the same analysis
throughout with the new joint state Ẑt = (At�1; st)� we will have Pr(At; st+1jAt�1; st) = Pr(st+1jAt; st) �
Pr(AtjAt�1): Also notice that the structure is unobservable, so all the properties developed as follows do no
depend on whether At�1 or At contribute to the evolution from st�1 to st:
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Denote the time t unconditional distribution of At and Zt by

�A;t � [Pr(At = 1); :::;Pr(At =M)]0

�Z;t � [Pr(Zt = (1; 1));Pr(Zt = (1; 2)); :::;Pr(Zt = (M;N � 1));Pr(Zt = (M;N))]0

then from the Markovian property,

�A;t+1 = P
A � �A;t

�Z;t+1 = P
Z � �Z;t

It is worth mentioning that the marginal process fstg by itself is not Markovian, i.e.

Pr(st+1jst; :::; s0) 6= Pr(st+1jst): In the business cycle example, regime represents low or high

growth rate, while structure represents high or low variance state. Under Hamilton�s (1989)

original setup, low (high) growth rate means recession (boom), and regimes are assumed to be

an exogenous �rst order Markov process. Suppose all historical regimes are observed. Then

Hamilton�s model assumption implies that we can drop all except the most recent observation

of regimes, and still will not lose any information in predicting the next period regime. While

under our conditional Markovian assumption, since all information on historical regimes is

useful for making inference on the variance state, dropping any historical information would

result in a less e¢ cient prediction for future regimes. The non-Markovian property for fstg

is summarized in the following proposition.

Proposition 6 In the conditional Markov chain model, the marginal process of regime fstg

is not Markovian11, i.e.,Pr(st+1jISt ) 6= Pr(st+1jst) for t � 1, where ISt = fs0; s1; :::; stg
11Throughout the paper, we use Markovian to denote �rst order Markov property.
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Proof:

Pr(st+1jISt ) =
X
At+1

X
At

Pr(At+1; st+1; AtjISt )

=
X
At+1

X
At

Pr(At+1; st+1jAt; ISt ) � Pr(AtjISt )

=
X
At+1

X
At

Pr(At+1; st+1jAt; st) � Pr(AtjISt )

Here Pr(At+1; st+1jAt; ISt ) = Pr(At+1; st+1jAt; st) because the joint state (A; s) is 1st-order

Markovian. But Pr(AtjISt ) generally depends on the whole history ISt . Q.E.D.

The intuition is as stated in the business cycle example. Under conditional Markovian

assumption, all information on historical regimes is useful for inferring At+1. Thus by using

today�s regime information alone would result in a less accurate prediction for future regimes

because of a less e¢ cient estimation of At+1. Precisely estimating At+1 is crucial because it

determines the pattern of transition probabilities from st to st+1 in our model.

Example 7 To see how Pr(AtjISt ) depends on the whole history ISt ; the simplest example

would be Pr(A1js1; s0) 6= Pr(A1js1): Suppose the initial distribution �Z;0 is given, from which

we can compute Pr(A0js0) = Pr(A0;s0)P
A0
Pr(A0;s0)

:Then we can update Pr(A1js0) =
P

A0
Pr(A1; A0js0) =P

A0
Pr(A1jA0) Pr(A0js0); which depends on s0:We can further update Pr(A1js1; s0) = Pr(A1;s1js0)

Pr(s1js0) =

Pr(s1jA1;s0) Pr(A1js0)P
A1
Pr(s1jA1;s0) Pr(A1js0) which depends on both s0 and s1:The following is a numerical exam-

ple. Let Ps0 = [ 1=3 1=5; 2=3 4=5 ]; where Ps0(i; j) = Pr(A0 = ijs0 = j): Assume the

conditional transition matrix and structure transition matrix are given by

PA =

0B@ 3=5 1=5

2=5 4=5

1CA ; P1 =
0B@ 3=4 1=3

1=4 2=3

1CA ; P2 =
0B@ 11=12 2=3

1=12 1=3

1CA
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Using the formula given at the beginning, we obtain two matrices

PA1 =

0B@ 0:2903 0:1628

0:6000 0:4375

1CA ; PA2 =
0B@ 0:7097 0:8372

0:4000 0:5625

1CA
where PAk(i; j) = Pr(A1 = kjs1 = i; s0 = j); k; i; j = 1; 2: We can see that all elements in

PA1 and PA2 are di¤erent, meaning that all the conditioning information of �s�is useful in

predicting A1: For example Pr(A1 = 1js1 = 1; s0 = 1) 6= Pr(A1 = 1js1 = 1; s0 = 2) such that

s0 is relevant for inferring A1:

In the long run, the whole dynamic system is stationary, and detailed properties are

analyzed in Appendix A.

3.1 A state-space representation

Suppose in the general setup, yt = �(At; st) + et; et � N(0; �2(At)): The process for joint

state Zt admits an AR(1) representation with a specially de�ned system error

Xt+1 = P
ZXt + Vt+1

where Xt 2 fe1 = [1; 0; :::; 0]0; e2 = [0; 1; 0; :::; 0]0; :::; eN = [0; :::; 0; 1]0g; with ej representing

jth joint state, j = 1; :::;MN: PZ is the transition matrix for (At; st); and Vt+1 � Xt+1�PZXt

satis�es E(Vt+1jXt) = 0
12:

The process for observed yt is given by yt = �(At; st) + �(At) � "t; "t � N(0; 1): If we

de�ne two MN � 1 constant vectors �� and ��; whose jth elements correspond to �(Zt = ej)

12I.e., Vt+1 is a martingale process adapted to Xt:
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and �(Zt = ej); then the measurement equation takes a nonlinear form

yt = ��
0 �Xt + ��

0 �Xt � "t; with "t � N(0; 1)

4 Applications to economic time series data

The GDP growth data we considered span from the second quarter of 1947 to the fourth

quarter of 2006.13 To see how the model works for the simplest setup, we abstract from

autoregressive components for economic variable for the moment, and concentrate on the

basic mixture-of-normals setup as in section 1 and 2.

The employment growth data span from the second quarter of 1947 to the fourth quarter

of 2006.

4.1 GDP

The growth rate is measured as the di¤erence of log-valued GDP multiplied by 100. We

estimate a conditional Markov chain model with two pairs of means corresponding to the

regime state, and two states of variance (i.e., with mean gap). The estimation procedure

features a two-step process. We use EM algorithm as the �rst step to obtain initial estimates

for parameters, while in the second we directly maximize the likelihood function to re�ne

our estimates and obtain the standard errors.

Maximum likelihood parameter estimates are given by

13Data source: U.S. Department of Commerce, Bureau of Economic Analysis. All data are measured in
2000 chain-weighted dollars.
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�1 �HL �HH �LL �LH �2H �2Lb�1 -0.0849 1.4149 0.1716 0.8913 0.8780 0.1590

(0.2181) (0.1610) (0.1492) (0.0545) (0.1326) (0.0258)

�2 p1 q1 p2 q2 p qb�2 0.7572 0.8637 0.8332 0.9630 0.9933 1.0000

(0.0867) (0.0629) (0.1181) (0.0273) (0.0066) (0.0000)

where standard errors are shown in parenthesis.

log(likelihood) = -188.6801

Implied transition probabilities for the joint states14 are given by

PZ =

0BBBBBBB@

0:7522 0:1354 0:0000 0:0000

0:2412 0:8580 0:0000 0:0000

0:0055 0:0002 0:8332 0:0370

0:0011 0:0064 0:1668 0:9630

1CCCCCCCA
Probabilities for low growth regimes15 and high variance structures are shown in the

following �gure. The shaded areas are NBER dated recessions. Reference period: 1947Q2 �

14The order of the four states are �high variance, low mean�, �high variance, high mean�, �low variance,
low mean�and �low variance, high mean�.
15In the model, recession is described as the regime with low mean growth rate. Notice that the NBER

recession is de�ned as �a signi�cant decline in economic activity spread across the economy, lasting more
than a few months, normally visible in real GDP, real income, employment, industrial production, and
wholesale-retail sales.�The intriguing feature of Markov switching model is that its estimates for recession
probabilities accord with NBER�s recession dates amazingly well, by just looking at a single time series.
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We can see that not only the NBER recessions are very precisely estimated16, but the low

frequency movement of variance is well captured17. The parameter estimates also suggest

that besides a substantial volatility drop, a changing mean growth gap is also an important

feature. Along with the added assumption that recession duration depends on volatility

structure, this model is able to provide much more precise recession probabilities than exist-

ing literature. McConnell and Perez-Quiros (2000) use a Markov switching model with mean

and variance having independent switching, which does not capture the reduced recession

duration observed in the post-1984 U.S. GDP data. Although their model identi�es the

volatility change very well, the recessions are estimated with much less precision as we will

see from the following exercise.

16Here in terms of �ltered and smoothed recession probabilities.
17The smoothed probabilities for high variance structures around the turning point are given by

Pr(1984Q1jIT ) = 0:9821; Pr(1984Q2jIT ) = 0:8075; Pr(1984Q3jIT ) = 0:2880; and Pr(tjIT ) > 0:99 for
t � 1983Q4:
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We reestimate the independent Markov switching model as in McConnell and Perez-

Quiros (2000), where the regime changes of mean growth rate and variance are independent

of each other. Independent Markov switching model can be seen as a special case of our

conditional chain model by forcing the transition matrix for mean growth rate to be the

same across di¤erent structures. The graph shows that although the persistent volatility

change is well identi�ed, the recessions before 1984 are only weekly identi�ed in terms of

lower �ltered or smoothed recession probabilities.
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4.2 Employment

Again, the growth rate is measured as log di¤erence of employment multiplied by 100. We

apply the model to nonfarm employment data spanned from 1947Q2 to 2006Q4.
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Two-step parameter estimates, with standard error in parentheses, are given by

�1 �HL �HH �LL �LH �2H �2Lb�1 -0.6274 0.8550 -0.1354 0.5735 0.2598 0.0364

(0.1227) (0.0584) (0.0587) (0.0264) (0.0364) (0.0061)

�2 p1 q1 p2 q2 p qb�2 0.7480 0.9252 0.8910 0.9721 0.9847 0.9880

(0.0823) (0.0268) (0.0738) (0.0195) (0.0142) (0.0157)

log(likelihood) = -138.8607

Recession and high variance probabilities are shown in the following graph.
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Again, the NBER recession dates are very precisely estimated in terms of smoothed

or �ltered recession probabilities. Post-1984 periods are identi�ed to be under low-variance

structure. But there are also several pre-1984 years to be identi�ed as low variance structure,
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such as early 60s, 70s and 80s. The reason why we get di¤erent result from that of GDP

data is that the employment growth of early 50s appears to be extremely volatile, compared

with what we observe since the 60s. The growth rate shoots up to a record high from a

negative growth rate within only several quarters. The data around early 50s tend to bring

up our estimates for high variance to a certain level, such that it is hard for the simpli�ed

two-variance structure model to identify high variance structure unless the actual variance

is high enough. To justify our conjecture, we reestimate the model using data from 1950Q4

to 2006Q4. The resulting recession and high variance probabilities are as follows
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Parameter estimates are given by

�1 �HL �HH �LL �LH �2H �2Lb�1 -0.5931 0.8145 -0.1336 0.5666 0.1914 0.0351

(0.1105) (0.0444) (0.0542) (0.0253) (0.0251) (0.0055)

�2 p1 q1 p2 q2 p qb�2 0.7323 0.9338 0.9008 0.9702 0.9928 1.0000

(0.0889) (0.0244) (0.0673) (0.0208) (0.0072) (0.0001)

log(likelihood) = -108.7197

4.3 Adding an autoregressive component

We modify the above model by adding an autoregressive (AR) component. The estimated

AR coe¢ cient for GDP data is rather small. But for employment data, it is very large.

This �nding suggests that the model in previous sections is a good approximation for mod-

eling GDP time series, but an AR component is needed for a better characterization of the

employment data.

4.3.1 GDP with AR component

The model is speci�ed as

yt � �(At; st) = �(At) � (yt�1 � �(At�1; st�1)) + et; et � N(0; �2(At)):
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Parameter estimates are about the same as in previous sections, with very small AR coe¢ -

cients,

�1 �HL �HH �LL �LH �2H �2L �H �Lb�1 -0.0583 1.3371 0.1752 0.8953 0.9369 0.1543 0.2336 -0.0818

(0.3745) (0.2392) (0.1308) (0.0505) (0.1738) (0.0253) (0.1312) (0.1213)

�2 p1 q1 p2 q2 p qb�2 0.7397 0.8703 0.8328 0.9627 0.9933 0.9997

(0.1405) (0.0764) (0.1157) (0.0283) (0.0067) (0.0020)

log(likelihood) = -285.2330

Recession probabilities are also similar to previous results
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4.3.2 Employment with AR component

Data range is from 1950Q4 to 2006Q4. The model is speci�ed as yt � �(At; st) = �(At) �

(yt�1 � �(At�1; st�1)) + et; et � N(0; �2(At)): Parameter estimates are given by

�1 �HL �HH �LL �LH �2H �2L �H �Lb�1 -0.2541 0.6796 0.1102 0.4989 0.1986 0.0223 0.7132 0.8909

(0.2607) (0.2109) (0.1530) (0.1343) (0.0622) (0.0037) (0.0944) (0.0401)

�2 p1 q1 p2 q2 p qb�2 0.7297 0.8917 0.6916 0.9599 0.9778 0.9899

(0.1323) (0.0680) (0.1846) (0.0248) (0.0158) (0.0101)

log(likelihood) = -52.9063

Estimates for recession probabilities
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The above �gure shows that estimated duration of recessions �t the data better than
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the case without AR component, especially for post-1984 periods. A large part of 1960s is

identi�ed to be under the low-variance structure.

5 Identifying recessions dates using partial data

There is a noteworthy lag when NBER recession dating committee announced the most

recent recession. For example, the November 2001 trough was announced July 17, 2003,

while the March 1991 trough was announced December 22, 1992. Can we do better in

terms of identifying recession dates with a shorter time lag of announcement? By �tting out

model to GDP growth data up to 2002Q1, we are already con�dent to see the 2001 recession

by looking at model estimates. The estimated recession probability by 2002Q1 is close to

1. In this exercise, we use observations up to 2002Q1 instead of the whole sample to get

parameter estimates. Thus the �ltered/smoothed low growth probabilities are di¤erent from

those obtained in section 4.1.
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Using GDP growth data up to 1991Q2, we are also able to identify the 1991 March

trough; the estimated recession probability is close to 1, as is shown below.
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By looking at GDP growth rate alone, and within a very simple Markov switching frame-

work, we can provide a very nice guide to the estimates for recession dates, which precisely

accords with NBER�s announced recession dates. A noteworthy advantage of our model is

that we do not need to wait too long to obtain a reasonable estimate of smoothed or �ltered

recession probabilities.

6 Conclusion

Using a conditional Markov chain model, we are able to incorporate several important fea-

tures for major aggregate economic time series data. Economic explanations well accord with

the model structure. Empirically, the volatility decline since the 80s is well identi�ed and

is highly persistent. Recessions during each volatility structure are also precisely identi�ed
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in terms of �ltered and smoothed probabilities. The method of this paper can be applied

to macro or asset pricing models with Markov switching and learning. For example, it is

possible to reformulate the learning mechanism of Lettau et al. (2006) for their consumption

process. Our next step includes developing a multivariate model incorporating monthly data

to identify and forecast state of the economy.
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7 Appendix A: Properties of the regime process

Because the number of joint states is �nite, there exist invariant distributions18 �Z;t ! �Z

and �A;t ! �A; as t ! 1: These two are mutually consistent in that they are related

by the equality
PN

n=1 �Z(At = m; st = n) = �A(At = m):19 Also the marginal stationary

distribution of s is obtained via
PM

m=1 �Z(At = m; st = n) = �s(st = n):

Lemma 8 The conditional probability Pr(st+1jst) is asymptotically time invariant.

To see this, let�s assume joint stationarity of (At; st) has been achieved. Then the joint

distribution of Zt = (At; st) does not change over time, so does the marginal distribution for

st: Moreover the conditional probability Pr(Atjst) is time invariant. Thus, the conditional

probability

Pr(st+1jst) =
Z
At+1

Z
At

Pr(At+1; st+1; Atjst)dAtdAt+1

=

Z
At+1

Z
At

Pr(At+1; st+1jAt; st) Pr(Atjst)dAtdAt+1 � g(st+1; st)

is also time invariant, where g(�; �) is a function of st+1 and st; not depending on time. To get

intuition of the result, �rst notice that the transition matrix carries marginal distribution

from the current to the next period. By assumption the unconditional distribution of joint

state (At; st) already achieves stationarity, and thus will not change over time. As a result,

the marginal distribution of regimes will also be the same over time. However, it is important

to notice that although the conditional probability Pr(st+1jst) is time invariant given that the

joint state has achieved its long-run distribution, the marginal process for st is not Markovian

18If we assume that elements of P1; :::; PM and PA are all strictly positive, then elements of PZ are strictly
positive, which implies the invariant distribution for joint state Z is also unique.
19Here �Z(A = m; s = n) means the probability of the event (A = m; s = n) under invariant distribution

�Z :
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as we have discussed. Even in the long run, the dynamic behavior will be di¤erent from that

of a �rst Markov process with transition probabilities given by g(st+1; st):

Generally, the conditional probability Pr(st+1jst) depends on the initial distribution of

joint state and changes over time.

To see this, �rst notice that the conditional probability Pr(Atjst) = Pr(At;st)
Pr(st)

changes over

time. The numerator is an element of the MN � 1 probability vector �Z;t, which is obtained

via �Z;t = (PZ)t � �Z;020: The denominator, if we regard it as element of a N � 1 probability

vector �s;t, is obtained directly by summing up corresponding elements of �Z;t21:We can see

that Pr(Atjst) depends on both the initial distribution of joint state, which can be treated

either as given or as model parameters, and the time t; thus so does P St ; whose elements is

given by Pr(st+1jst) =
P

At+1

P
At
Pr(At+1; st+1; Atjst) =

P
At+1

P
At
Pr(At+1; st+1jAt; st) �

Pr(Atjst):

8 Appendix B: Estimation of the model

From now on, we use eXT = fX1; X2; :::; XTg to denote the full history of X up to time T:

Given the time series of observables, the likelihood function is given by

L(�; eyT ) = fy(eyT j�) = Z
](A;s)T

f(eyT ; eAT ; esT j�)d(̂A; s)T
=
X
(A;s)T

X
(A;s)T�1

� � �
X
(A;s)1

f(eyT ; eAT ; esT j�)
where (A; s)t = (At; st). In the simple case with a binary structure and binary regime,

involves computation and summation of 4T terms. It will be a great computational burden

to do so. Here we turn to the Expectation-Maximization method to estimate the model. A

20Notice here that if �Z;0 is the stationary distribution of the joint state, then �Z;t = �Z;0 for all t; and
the previous corollary applies.
21For example, for n = 1; :::; N; we have

PM
m=1 �Z;t(At = m; st = n) = �s;t(st = n):
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by-product of the EM procedure is that the likelihood function is recursively computed.

8.1 EM Algorithm

Let � be a vector of the model�s unknown parameters22. The EM algorithm will iterate

between expectation and maximization steps until some convergence criteria is met:

� Expectation step: Suppose we have complete data, then we multiply the log-likelihood

of the complete data by the likelihood evaluated using last step parameter estimates

(�k�1). The �expectation�is in the sense that we integrate out the e¤ect of unobserv-

ables, to obtain the following

H(�; eyT ; �k�1) = Z
](A;s)T

log[f(eyT ; eAT ; esT j�)] � f(eyT ; eAT ; esT j�k�1)d(̂A; s)T

� Maximization step: The objective function H is maximized with respect to parameters

of the model, resulting in the step-k estimates �k:

�k = argmax
�
H(�; eyT ; �k�1)

One favorable property of EM algorithm is that each iteration results in a higher value

of the likelihood function. With arbitrary initial values of the parameters, �0; the above two

steps are iterated until �k converges to a local maximum of the likelihood function23.

22Here, if we ignore the initial condition, we have 6 parameters concerning probabilities, 4 parameters for
mean, and 2 parameters for variance. And thus we have 12 parameters in total.
23The power of EM method is that we take �log� inside the integration, which will greatly simplify

computation, as we are soon to see.
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The joint density of eyT , eAT and esT can be written as,
f(eyT ; eAT ; esT ; �) = f(eyT j eAT ; esT ; �) � Pr( eAT ; esT ; �)

=
YT

t=1
f(ytjAt; st; �)

YT

t=1
Pr(At; stjAt�1; st�1; �)

=
YT

t=1
f(ytjZt; �)

YT

t=1
Pr(ZtjZt�1; �)

where Zt � (At; st) is the joint state.

And then the log likelihood is given by sum of a set of conditional probabilities,

log f(eyT ; eAT ; esT ; �) = TX
t=1

log f(ytjZt; �) +
TX
t=1

log Pr(ZtjZt�1; �)

It is useful to notice that the maximization of H is equivalent to maximize Q; with

Q(�; eyT ; �k�1)
� H(�; eyT ; �k�1)=f(eyT ; �k�1) = Z eZT log[f(eyT ; eZT j�)] � Pr( eZT jeyT ; �k�1)d eZT
=

Z
eZT log[f(eyT j eZT ; �)] � Pr( eZT jeyT ; �k�1)d eZT +

Z
eZT log[Pr(

eZT j�)] � Pr( eZT jeyT ; �k�1)d eZT
where Pr( eZT jeyT ; �k�1) can be obtained using a �ltering-smoothing procedure as described

in Kim and Nelson (1999).24

24Here we can treat the objective function Q as the conditional expectation of complete data likelihood
function, with the expectation taken over unobservables conditional on all information available.
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8.1.1 Inside the likelihood function

Nowwe compute
R eZT log[f(eyT j eZT ; �)]�Pr( eZT jeyT ; �k�1)d eZT and R eZT log[Pr( eZT j�)]�Pr( eZT jeyT ; �k�1)d eZT

to facilitate our deduction of �rst order conditions.

Z
eZT log[f(eyT j eZT ; �)] � P ( eZT jeyT ; �k�1)d eZT =

TX
t=1

Z
eZT log[f(ytjZt; �1)] Pr(

eZT jeyT ; �k�1)d eZT
=

TX
t=1

X
Zt

log[f(ytjZt; �1)] Pr(ZtjeyT ; �k�1)
where log[f(ytjZt; �1] = �1

2
log(2�)� 1

2
log(�2(At))� 1

2
(yt��(Zt))2
�2(At)

:

Similarly, we have

Z
eZT log[Pr(

eZT ; �2)] Pr( eZT jeyT ; �k�1)
=

Z
eZT

TX
t=1

log[Pr(ZtjZt�1; �2)] Pr( eZT jeyT ; �k�1)
=

TX
t=1

Z
eZT log[Pr(stjst�1; At; �2)] Pr(

eZT jeyT ; �k�1) + TX
t=1

Z
eZT log[Pr(AtjAt�1; �2)] Pr(

eZT jeyT ; �k�1)
=

TX
t=1

X
At;st;st�1

log[Pr(stjst�1; At; �2)] Pr(At; st; st�1jeyT ; �k�1)
+

TX
t=1

X
At;At�1

log[Pr(AtjAt�1; �2)] Pr(At; At�1jeyT ; �k�1)
8.1.2 Closed-form solution

First order condition concerning structure transition yields

p =

PT
t=2 Pr(At�1 = 1; At = 1jeyT ; �k�1)PT

t=2 Pr(At�1 = 1; At = 1jeyT ; �k�1) +PT
t=2 Pr(At�1 = 1; At = 2jeyT ; �k�1)

q =

PT
t=1 Pr(At�1 = 2; At = 2jeyT ; �k�1)PT

t=1 Pr(At�1 = 2; At = 1jeyT ; �k�1) +PT
t=1 Pr(At�1 = 2; At = 2jeyT ; �k�1)
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where p is the probability of staying in high-volatility structure if At = 1 means volatility

is high.

The �rst order condition with respect to conditional transition matrix for regimes gives

us

pj =

PT
t=2 Pr(At = j; st = sL; st�1 = sLjeyT ; �k�1)PT

t=2 Pr(At = j; st = sL; st�1 = sLjeyT ; �k�1) +PT
t=2 Pr(At = j; st = sH ; st�1 = sLjeyT ; �k�1)

qj =

PT
t=2 Pr(At = j; st = sH ; st�1 = sH jeyT ; �k�1)PT

t=2 Pr(At = j; st = sH ; st�1 = sH jeyT ; �k�1) +PT
t=2 Pr(At = j; st = sL; st�1 = sH jeyT ; �k�1)

where j = 1; 2 and pj is the probability of staying in �low-mean� regime under structure

A = j:

Under normality assumption, we also have closed form solution for mean and variance.

For example the low mean under high variance structure is

�HL =

nPT
t=1 yt � Pr(At = 1; st = sLjeyT ; �k�1)onPT
t=1 Pr(At = 1; st = sLjeyT ; �k�1)o :

After obtaining all mean parameters, the high variance is given by

�2H =

nPT
t=1(yt � �HL )2 � Pr(At = 1; st = sLjeyT ; �k�1) +PT

t=1(yt � �HH)2 � Pr(At = 1; st = sH jeyT ; �k�1)oPT
t=1 Pr(At = 1jeyT ; �k�1)

In order to get the above parameter solutions, we still need 3 types of smoothed prob-

abilities: Pr(At; stjeyT ; �k�1);Pr(At; At�1jeyT ; �k�1) and Pr(At; st; st�1jeyT ; �k�1): The following
sections describe the expectation step, featured by a �ltering and smooth procedure.
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8.2 Filtering

Let It = eyt = fy0; y1; :::; ytg be the information available at time t. It is helpful to work with
the joint state Z = (A; s):25

Step 1. Given Pr(Zt�1 = ijIt�1); i = 1; 2; at the beginning of time t iteration, the

weighting terms Pr(Zt = jjIt�1); j = 1; 2; are calculated as

Pr(ZtjIt�1) =
X
Zt�1

Pr(Zt; Zt�1jIt�1)

=
X
Zt�1

Pr(ZtjZt�1) � Pr(Zt�1jIt�1)

Step 2. Once yt is observed at the end of time t; we can update the probability term in

the following way:

Pr(ZtjIt) = Pr(ZtjIt�1; yt) =
Pr(Zt; ytjIt�1)
f(ytjIt�1)

=
f(ytjZt) � Pr(ZtjIt�1)P
Zt
f(ytjZt) � Pr(ZtjIt�1)

where by de�nition It = fIt�1; ytg:

To start the above iteration, we need the initial guess Pr(Z0jI0); for which a good candi-

date is the invariant distribution computed from last step parameter estimates �k�1:

As a by-product, we also obtain the likelihood function as Likelihood =
P

Zt
f(ytjZt) �

Pr(ZtjIt�1); which is recursively computed during the above �ltering steps, treating �k�1 as

an unknown parameter �:

25In the simple case we considered, the state number is four.
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8.3 Smoothing

We can make inference on Zt; based on the entire available information in the sample, to

obtain the smoothed probability Pr(ZtjIT ) and Pr(Zt; Zt�1jIT ); t = 1; 2; :::; T:

Consider the following joint probability,

Pr(Zt = j; Zt+1 = kjIT ) = Pr(Zt+1 = kjIT ) � Pr(Zt = jjZt+1 = k; IT )

= Pr(Zt+1 = kjIT ) � Pr(Zt = jjZt+1 = k; It)

=
Pr(Zt+1 = kjIT ) � Pr(Zt = j; Zt+1 = kjIt)

Pr(Zt+1 = kjIt)

=
Pr(Zt+1 = kjIT ) � Pr(Zt+1 = kjZt = j; It) � Pr(Zt = jjIt)

Pr(Zt+1 = kjIt)

=
Pr(Zt+1 = kjIT ) � Pr(Zt+1 = kjZt = j) � Pr(Zt = jjIt)

Pr(Zt+1 = kjIt)

Notice that

Pr(Zt = jjZt+1 = k; IT ) = Pr(Zt = jjZt+1 = k; eIt+1;T ; It)
=
Pr(Zt = j; eIt+1;T jZt+1 = k; It)

Pr(eIt+1;T jZt+1 = k; It)
=
Pr(Zt = jjZt+1 = k; It) � Pr(eIt+1;T jZt = j; Zt+1 = k; It)

Pr(eIt+1;T jZt+1 = k; It)
= Pr(Zt = jjZt+1 = k; It)

where eIt+1;T = fyt+1; :::; yTg; and the last line of the above equation comes from the fact

that yt+1 and its future depends on Zt+1 only; once Zt+1 is known, Zt and It contain no

further information for eIt+1;T .
The other smoothed probability is calculated as follows,

Pr(Zt = jjIT ) =
4X
k=1

Pr(Zt = j; Zt+1 = kjIT )
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Thus given Pr(ZT jIT ) at the last iteration of the �ltering process, the above can be

iterated for t = T � 1; T � 2; :::; 1 to get the two types of smoothed probabilities we need.

Notice that Pr(Zt; Zt�1jIT ) = Pr(At; st; At�1; st�1jIT ): Integrating out the e¤ect of At�1 will

give us Pr(At; st; st�1jIT ): And Pr(At; At�1jIT ) is obtained by integrating out the terms st

and st�1:
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