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Abstract

I analyze the equilibrium in a labor market where firms offer wage-tenure contracts
to direct the search of employed and unemployed workers. Each applicant observes
all offers and there is no coordination among individuals. Workers’ applications
(as well as firms’ recruiting decisions) are optimal. This optimality requires the
equilibrium to be formulated differently from the that in the literature of undirected
search. I provide such a formulation and show that the equilibrium exists. In the
equilibrium, individuals explicitly tradeoff between an offer and the matching rate
at that offer. This tradeoff yields a unique offer which is optimal for each worker to
apply, and applicants are separated endogenously according to their current values.
Despite such uniqueness and separation, there is a non-degenerate and continuous
wage distribution of employed workers in the stationary equilibrium. The density
of this distribution is increasing at low wages and decreasing at high wages. In
all equilibrium contracts, wages increase with tenure, which results in quit rates to
decrease with tenure. Moreover, the model makes novel predictions about individuals’
job-to-job transition and comparative statics.
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1. Introduction

Directed search is a matching process in which an individual can use his offer to affect his

matching rate. The objective of this paper is to study the equilibrium in a labor market

where firms offer wage-tenure contracts to direct workers’ search. A wage-tenure contract

is a time profile of wages which describes how a worker’s wage will evolve with tenure. All

firms post contracts before workers apply and each applicant observes all offers. Employed

workers continue to search on the job for better contracts elsewhere. I characterize the

equilibrium and establish its existence. The equilibrium yields novel predictions about

job-to-job transitions, the wage distribution, and effects of unemployment policy.

To see why directed search is interesting to study, it is useful to contrast it with the

large literature on undirected search developed from Diamond (1982), Mortensen (1982),

and Pissarides (1990). There are two classes of models in this literature. In one class, as in

the three pioneering works, prices (wages) are a result of bargaining after individuals are

matched. In the other class, some individuals post prices but the searching individuals do

not know who posted what prices (e.g., Burdett and Mortensen, 1998, and Burdett and

Coles, 2003). In both classes of models, search is undirected because prices play no role,

ex ante, to direct workers to particular matches.

Although undirected search is a useful way to model search, it misses some important

features of labor market search. First, some search is directed rather than completely

random. For example, searching workers often have information about wages from job ad-

vertisement, word of mouth, or referrals. This is particularly true for workers who search

on the job. Second, it has been a long tradition in economics to treat prices as a useful

mechanism to direct the allocation of resources, ex ante. By abandoning this role of prices,

the literature of undirected search generates an array of market inefficiencies. The correc-

tive policy depends on arbitrary details of matching and price determination processes (see

Hosios, 1990). Directed search can eliminate most of these inefficiencies. Third, undirected

search models generate wage dispersion that is sensitive to the assumption on how many

wages a worker knows before search. Before the application, a worker is assumed to know

either no wage quotes as in the three pioneering works, or one wage (the worker’s current

wage) as in the on-the-job search model of Burdett and Mortensen (1998). If each applicant

knows two or more wages, instead, then wage dispersion disappears in those models. This

sensitivity reduces the potency of undirected search as an explanation for wage dispersion.

Directed search eliminates this sensitivity.

During the last fifteen years or so, a literature has grown to analyze directed search.
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Peters (1984, 1991) and Montgomery (1991) provide two of the earliest formulations. Ex-

amples of the further exploration include Moen (1997), Acemoglu and Shimer (1999a,b),

Julien, et al. (2000), Burdett, et al. (2001), Shi (2001, 2002), Coles and Eeckhout (2003),

Galenianos and Kircher (2005), and Delacroix and Shi (2006). They have shown that an

equilibrium with directed search and its efficiency properties are significantly different from

those with undirected search.

This literature has not yet introduced wage-tenure contracts; instead, it has assumed

that each firm posts a single fixed wage for the entire duration of the worker’s employment

in the firm. Moreover, only one model in this literature (i.e., Delacroix and Shi, 2006) has

incorporated on-the-job search. Without wage-tenure contracts, the literature of directed

search is unable to explain the empirical regularities that wages rise and quit rates fall with

tenure (e.g., Farber, 1999). Without on-the-job search, a model cannot make predictions

on job-to-job transitions which constitute a large part of the flow of workers in the data.

Given the appealing features of directed search discussed above, there is an urgency to

bridge these gaps between directed search theory and the data.

It is a challenging task to characterize a directed search equilibrium with contracts. To

appreciate the challenge, let me compare the task with the one in undirected search, which

is accomplished by Burdett and Coles (2003, termed as BC henceforth). With undirected

search, one does not need to formulate workers’ application decisions, because workers are

assumed to send their applications randomly to a pool of recruiting firms. With directed

search, in contrast, each worker’s application must be optimal. In this decision, a worker

makes the optimal tradeoff between the level of an offer and the likelihood of obtaining the

offer. Similarly, each firm understands that it can raise the offer to entice more workers

to apply to it. To describe this tradeoff, I need two new objects in addition to the set of

optimal contracts. One is the employment rate function, which describes how the rate at

which an applicant gets a particular offer varies with the offer. The other is the hiring

rate function, which describes how the rate at which a recruiting firm successfully hires

a worker varies with the offer. These functions are equilibrium objects: They must be

consistent with the aggregation of individuals’ optimal choices, and the hiring rate must

ensure that all equilibrium offers earn the same expected profit to a firm. A challenge in

establishing existence of the equilibrium is to show that these functions exist.

I formulate the equilibrium in an environment where all matches have the same pro-

ductivity, and then establish the existence of the equilibrium. In equilibrium, the hiring

rate associated with an offer is indeed an increasing function of the offer, and the employ-

ment rate is a decreasing function of the offer. Thus, the tradeoff between an offer and
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the matching rate is meaningful. A striking feature of the procedure of determining the

equilibrium is that the matching rate functions, equilibrium contracts and value functions

can all be determined first without any reference to the distributions of offers and workers.

This feature makes the model suitable for business cycle research, as I will elaborate in the

concluding section.

On wage-tenure contracts, the equilibrium extends several realistic properties from the

BC model of undirected search to directed search. First, wages increase and quit rates fall

with tenure. Second, all equilibrium contracts are sections of a baseline contract. In the

baseline contract, wages start at the lowest equilibrium level and then increase with tenure.

Any other equilibrium contract that starts at a different wage is identical to the remaining

section of the baseline contract from that wage level onward. Third, wage-tenure contracts

and on-the-job search generate wage dispersion among workers, even though all matches

have the same productivity.

Beyond these similarities, the equilibrium with directed search has little resemblance to

the one with undirected search. One main difference is the predictions about individuals’

job-to-job transitions and wage mobility. With directed search, the tradeoff between an

offer and the matching rate induces each worker to apply to a unique offer. Moreover, this

target offer is an increasing function of the applicant’s current state, i.e., the value generated

by the worker’s current contract or unemployment benefit. As workers choose to separate

themselves this way in the application process, wage mobility is endogenously limited by

workers’ current states despite the fact that there is no difference in productivity across

matches. Such limited wage mobility seems realistic (see Buchinsky and Hunt, 1999). In

contrast, undirected search models assume that job applications are random and exogenous

(e.g., BC, 2003, and Burdett and Mortensen, 1998). There, a worker can receive an offer

that lies anywhere in the support of the wage distribution, and a worker can transit to any

wage that lies above his current wage.

The second difference from undirected search lies in the wage distribution. Not only

does wage dispersion survive when all applicants observe all offers before they apply, the

distribution also has a more realistic shape here. The density function of the distribution

of employed workers over wages is increasing at low wages and decreasing at high wages in

the current model. This non-monotonic shape of the density function is an empirical regu-

larity (see Kiefer and Neumann, 1993), but it is not the prediction of an undirected search

model with homogeneous matches. Instead, an increasing density function of employed

wages is necessary to support an equilibrium when search is undirected and matches are

homogeneous. To modify this unrealistic prediction, the literature has introduced hetero-
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geneity across matches (e.g., van den Berg and Ridder, 1998). It is important to know that

directed search can generate the non-monotonic wage density without such heterogeneity.

The third difference lies in the effects of unemployment policy. In the current model, an

increase in unemployment benefits in the first-order stochastic dominance has no effect on

the set of equilibrium contracts or individual workers’ job-to-job transition rates, although

it affects the shape of the wage distribution. If search were undirected, however, such

an increase in unemployment benefits would increase the slope of the wage-tenure profile

and increase the transition rate from low wages to high wages, as well as affecting wage

distributions. Similarly, an increase in the arrival rate of offers to unemployed workers

has much smaller effects on equilibrium contracts and job-to-job transitions in the current

model than in undirected search models. These differences reflect the feature described

earlier that matching rates and optimal contracts in the current model can be determined

first without any reference to the distributions of wages and workers.

Now, turn to the literature of directed search. To this literature, the main contribution

of this paper is to incorporate wage-tenure contracts and on-the-job search, as discussed

earlier. Here, a contrast to Delacroix and Shi (2006) is necessary, because that paper also

examines directed search on the job and establishes the result of limited wage mobility.

However, that paper does not analyze wage-tenure contracts; instead, firms are assumed to

offer only fixed wages. By incorporating wage-tenure contracts, the current paper not only

explains empirical regularities, but also simplifies the characterization of the equilibrium.

In Delacroix and Shi, the equilibrium wage structure is a wage ladder, the discreteness

of which makes the analysis of the equilibrium quite messy. Wage-tenure contracts fill in

those gaps between wages and induce a continuous wage distribution, as any initial gap

between two offers will eventually be filled in by the increasing wage profile. Moreover, the

characterization of the equilibrium here is much more general than in Delacroix and Shi.

Another contribution of the current model to the literature of directed search is to

generate a continuous distribution of wages among homogeneous matches. In a similar

setting, the literature of directed search generates only a finite number, or even a singleton,

of equilibrium wages. In the current model, the main cause of a continuous distribution

of wages is optimal wage-tenure contracts. Because such contracts specify wages as an

increasing function of tenure, they enable a worker who got jobs earlier to earn more than

a worker who got jobs later, even if the two workers are employed under the same contract.

Another cause of wage dispersion is search on the job, because workers who got jobs earlier

apply to higher wages than do workers who did not get jobs.

To emphasize the differences between directed and undirected search, I maintain four
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assumptions imposed by BC. First, workers are risk averse; second, the capital market is

imperfect so that workers cannot borrow against their future income. These two assump-

tions are important for generating the wage-tenure relationship, as discussed by BC. Third,

a firm does not respond to the worker’s outside offers. How reasonable this assumption is

clearly varies across different types of markets.1 In any case, the assumption is commonly

imposed in the literature, and it enables me to compare the results clearly with those

in BC. For a model of undirected search without this assumption, see Postel-Vinay and

Robin (2002). Finally, I assume that the productivity of a match is public information

and deterministic. For private information or learning about productivity, see Jovanovic

(1979), Harris and Holmstrom (1982), and Moscarini (2005). Such productivity differences

between matches or over time are clearly important for wage dynamics and turnover, but

abstracting from them enables me to have the clearest exploration of search frictions.

2. The Model

Consider a labor market that lasts forever in continuous time. There is a unit measure

of risk averse workers whose utility function is u(w), where w is income. Workers do not

have access to the financial market to borrow against their future wage income, and so the

lower bound on wages is 0. All workers have the same productivity: when employed, each

worker produces a flow of output, y > 0. When unemployed, a worker enjoys a flow of

utility, u(b), which is derived from leisure and other benefits in unemployment. I will refer

to b simply as the unemployment benefit.

To simplify the analysis, I assume that unemployment benefits are distributed in an

interval, rather than being concentrated on a discrete set or degenerate.2 More precisely, at

(and only at) the time when a worker enters unemployment, he draws a value of b from the

interval [b, b̄] according to a continuous distribution H, where 0 < b < b̄. Let the density

function be h(b) = H 0(b) and assume that h is differentiable. To simplify the analysis

further, I set b̄ = w̄, where w̄ is the highest wage specified later.

1In most occupations, workers who obtain outside offers often choose to quit rather than asking their
current employers to match the offers. However, in some occupations such as economists and professional
athlets, it is common for employers to match workers’ outside offers. In these occupations, a main motiva-
tion for matching offers might be the competition for workers’ ability. Because the current model abstracts
from all heterogeneity in productivity across matches, the assumption of not responding to outside offers
may not be unreasonable.

2The assumption that b is continuously distributed is made purely for technical convenience. Most of
the analysis and results will remain unchanged even if the distribution of b is degenerate. In particular,
a continuous wage dispersion will exist even if b is the same for all unemployed workers. See the end of
section 4 for more discussion.
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All workers face the process of death at a Poisson rate σ ∈ (0,∞). Dead workers are
replaced with newborns who enter the labor market through unemployment and who draw

unemployment benefits according to the distribution H. In addition to endogenous quits

and exogenous death σ, there is no other cause of job separation. This modelling approach

is convenient because it implies that a worker has no incentive to save if wages increase

with tenure. I normalize the rate of time preference to zero. However, the probability of

death generates effective discounting on the future.

Assumption 1. The utility function has the following properties: 0 < u0(w) < ∞ and

−∞ < u00(w) < 0 for all w ∈ (0,∞); u0(0) =∞; and u(0) = −∞.

There are two notable parts of this assumption. One is risk aversion, which is critical

for the main results. If workers were risk neutral, the optimal wage path would be a step

function; i.e., the wage would be zero initially, followed by a jump to a permanent level (see

Stevens, 2004). Risk aversion ensures that such jumps are not optimal. Another notable

part of the assumption is u(0) = −∞. As discussed extensively by BC, if u(0) <∞, then
wages may stay at zero for a finite duration and then increase continuously. Although this

possibility does not pose a serious problem to the analysis, it is cumbersome to be included.

There are also a large number of identical firms that can enter the market. Entry

is competitive: a firm can post a vacancy at a flow cost k > 0. As typically assumed

in the literature, a firm has a production technology with constant returns to scale and

considers different jobs independently. Normalize the production cost to 0. Recruiting

firms announce wage-tenure contracts to compete for workers. A contract offered at time s

is a time path of wages, W (s) = {w(t)}∞t=s, conditional on the continuation of the worker’s
employment in the firm. Although a worker can quit at any time, the firm is assumed to

commit to the contract. Thus, employment is permanent until the worker either quits the

firm or dies. For simplicity, there is no exogenous separation other than death.

Let V (t, s) be the remaining value of the contract to a worker whose tenure in the firm

is (t− s). This value is the worker’s expected utility derived from the remaining contract

from t onward, given the worker’s optimal quitting strategy in the future. I will refer to

an offer by its value to the worker, V (s, s), because this is all that matters to the worker.

All offers are bounded in
h
V , V̄

i
, where

V̄ = u(w̄)/σ, V = u(b)/σ.

Here, w̄ is the highest wage which will be given by Lemma 3.3. The upper bound V̄ is the

lifetime utility of a worker who is employed at the highest wage permanently. The lower
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bound V is the lifetime utility of a worker who has the lowest unemployment benefit forever

and who does not have the opportunity to apply to any job. Because an unemployed worker

does have the opportunity of application, all equilibrium offers will be strictly higher than

V . I say that a result holds for all V if it holds for all V ∈ [V , V̄ ].
Both unemployed and employed workers can search for jobs. At any instant, an un-

employed worker receives an opportunity to apply to a job with probability λ0, and an

employed worker receives the opportunity with probability λ1. I allow for the possibility

λ0 = λ1 = 1 by letting λ0, λ1 ∈ (0, 1].3 A worker who receives the application opportunity
observes all firms’ offers instantly without any cost and then chooses the offer to which he

applies. As in most search models, each worker can apply to only one offer.4

Individuals cannot coordinate their actions. This coordination failure generates unem-

ployment. It is probable that two or more workers apply to the same offer, in which case

the firm randomly selects one to employ. If the selected worker is employed elsewhere, the

worker must quit that job before accepting the offer. As discussed in the introduction, the

worker’s incumbent firm is assumed not to respond to the worker’s outside offers. A job is

destroyed when either the worker accepts another firm’s offer or the worker dies.

Because workers observe the offers before they apply, the offers can direct workers’

search. Workers and firms both make the tradeoff between an offer and the matching rate

at that offer. When choosing a value to offer, a firm faces a hiring rate function, q(.).

That is, by changing the offer, a firm knows that its hiring rate will change according to

q(.). Similarly, an applicant understands that different offers are associated with different

employment rates according to an employment rate function, p(.). Note that p and q are

Poisson rates instead of probabilities, and so they can exceed one.

The functions q(.) and p(.) are equilibrium objects, since they must satisfy two equi-

librium requirements. First, they must be consistent with aggregation. That is, as firms

and workers make their choices under these functions, the resulting matching rates must

indeed be given by these functions. Second, the hiring rate function must ensure that the

3Note that the λ’es are not Poisson rates, but rather the probabilities of receiving a job application
opportunity at any instant. As such, they are bounded above by one.

4Let me clarify two assumptions here. One is that an applicant observes all offers. This assumption is
not necessary, because the essential results in directed search are the same if each applicant is assumed to
observe two offers that are randomly drawn from the offer distribution (see Acemoglu and Shimer, 1999b).
The second assumption is that each applicant can apply to only one offer at a time. (For a directed search
model with multiple applications, see Galenianos and Kircher, 2005). In continuous time, this assumption
is not as restrictive as it may sound. Although a worker in reality may be able to send out multiple
applications, the probability with which two or more of his applications will be received by different firms
at the same instant is negligible.
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expected profit of recruiting be the same for all equilibrium offers. Delaying the second

requirement to section 4, I specify the first requirement below.

Let me start with a matching function,M(θ, 1), which specifies the measure of matches

between a measure θ of workers and a unit measure of firms. Refer to θ as the tightness.

Assume thatM is linearly homogeneous. Given the two functions p(.) and q(.), individuals’

decisions generate the tightness, θ(V ), at each value V . Aggregate consistency requires that

the matching rates satisfy: q(V ) =M(θ(V ), 1) and p(V ) =M(θ(V ), 1)/θ(V ). Using these

relationships to eliminate θ, I can express aggregate consistency as p(V ) = P (q(V )).

The function P (q) embodies all essential properties of the matching function. From

now on, I will take P (q) as a primitive of the model and refer to it as the matching

function.5 To specify the properties of the matching function, let q(V ) ∈ [q, q̄] for all V ,
with 0 < q < q̄, where q̄ is a natural upper bound on q given by the matching function and

q will be restricted by (5.4) later.

Assumption 2. The matching function P (q) has the following features: (i) P (q) is con-

tinuous for all q ∈ [q, q̄] and, for all q in the interior of (q, q̄), the derivatives P 0(q) and P 00(q)
exist and are finite; (ii) q̄ <∞ and P (q̄) = 0; (iii) P 0(q) < 0; (iv) −qP 00(q)/P 0(q) ≤ 2.

Part (i) is a regularity condition that is satisfied by many well-known matching func-

tions. Part (ii) is imposed for the convenience of working with bounded functions. Part (iii)

is equivalent to 0 < θM1/M < 1, which is satisfied by all matching functions of constant

returns to scale that are strictly increasing in the arguments. In equilibrium, I will show

q0(V ) > 0. Then, part (iii) ensures p0(V ) < 0. Part (iv) restricts convexity of P (q), which

will be useful for ensuring uniqueness of a worker’s application decision.6

Assumption 2 is satisfied by the so-called urn-ball matching function endogenously

derived by Peters (1991) and Burdett et al. (2001). To see the assumption in a different

example, consider the matching function with a constant elasticity of substitution:

Example 2.1. If M(θ, 1) = [αθρ + 1− α]1/ρ, where α ∈ (0, 1) and −∞ < ρ < 1, then

P (q) = q
µ
qρ − 1
α

+ 1
¶−1/ρ

5I follow the approach in Moen (1997) and Acemoglu and Shimer (1999a) to take the matching function
as given. In contrast, some directed search models have gone one step further to derive the matching
function endogenously by aggregating agents’ strategies, e.g., Peters (1991), Burdett et al. (2001), Julien
et al. (2000) and Delacroix and Shi (2006). The main results of the current paper continue to hold when
the matching function is endogenized so.

6For a general matching function, part (iv) of the assumption requires 1−θM1/M ≤ [−θM11/(2M1)]
1/2,

where the left-hand side of the inequality is the share of vacancies in the matching function.
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Parts (i) and (iii) of Assumption 2 are satisfied. Part (ii) is satisfied iff −∞ < ρ < 0, i.e.,

iff the elasticity of substitution between searching workers and vacancies is less than one.

In this case, q̄ = (1− α)1/ρ. Part (iv) is satisfied iff α ≥ 1 − (1 − ρ)qρ/2. When ρ ≤ −1,
this condition is satisfied for all α > 0. When −1 < ρ < 0, the condition puts a lower

bound on α. Note that, for ρ < 0, the derivative P 0(q) is unbounded at q = q̄.

3. Workers’ and Firms’ Optimal Decisions

In this section, I will characterize agents’ optimal decisions and their value functions.

Throughout this paper, denote ẋ = dx/dt for any variable x.

3.1. Optimal Application

Workers’ search is directed by the employment rate function, p(V ), which gives the Poisson

rate of getting an offer V . As emphasized before, this function is an equilibrium object.

Before analyzing workers’ search decisions, I describe the properties of this function by the

following lemma, which is an implication of Lemma 5.1 later.

Lemma 3.1. Under Assumption 2, p(V ) is bounded, continuous and concave for all V .

Moreover, p(V ) is differentiable and strictly decreasing for all V < V̄ , with p(V̄ ) = 0.

Examine an applicant at time t, who can be either employed or unemployed. Let

V (t) be the value for the worker, or the worker’s state, generated by the worker’s current

contract or unemployment benefit. If the worker is employed, this notation suppresses the

starting time of the contract. After receiving a job application opportunity, the expected

increase in the value for the worker is:

D(V (t)) = max
f∈[V (t),V̄ ]

p(f) [f − V (t)] . (3.1)

Denote the solution as f(t) = F (V (t)). Then, F is given implicitly as follows:

V = F (V ) +
p(F (V ))

p0(F (V ))
. (3.2)

The following lemma, proven in Appendix A, describes the main features of optimal

application with directed search. The lemma can be viewed as a generalization of the results

from the space of wage levels, such as those in Delacroix and Shi (2006) and Galenianos

and Kircher (2005), to the space of values and contracts.

9



Lemma 3.2. F (V̄ ) = V̄ . For all V < V̄ , the following results hold: (i) There is a

unique and interior solution to (3.1), f = F (V ); (ii) F (.) is continuous and D(V ) is

differentiable, with D0(V ) = −p(F (V )) < 0; (iii) F (.) is strictly increasing; (iv) F (V )

obeys (3.2) and satisfies [F (V2)− F (V1)] / (V2 − V1) ≤ 1/2 for all V2 6= V1, and so F (.) is
a Lipschitz function. If, in addition, p(.) is twice continuously differentiable, then F (V ) is

differentiable with 0 < F 0(V ) ≤ 1/2, and D(V ) is twice differentiable.

For a worker at a value V , applying to the offer F (V ) is the only optimal choice. This

is true despite the fact that the worker observes all other offers. Offers higher than F (V )

have too low employment probabilities to be optimal, while offers lower than F (V ) have

too low values. Only the offer F (V ) provides the optimal tradeoff between the value and

the probability of obtaining it.

   f    indifference curve for V1

0 > df/dp = - (f0 - Vi)/p0
 f '

indifference curve
  f0       for V2 > V1

  p2   p1       p0     p
Figure 1. Monotonicity of a worker’s optimal application

Not only is a worker’s optimal application unique, it is also increasing in the worker’s

state. That is, the higher the worker’s current value, the higher the offer to which the

worker will apply. Thus, the workers choose to separate themselves in the application

process according to their states. This separation is optimal because an applicant’s payoff

function has the single-crossing property. The higher a worker’s state, the more he can

tolerate the risk of not getting an offer, and hence the higher the offer to which he will

apply. This difference in the tolerance of risks is not a feature of preferences, but rather

a consequence of the lack of insurance. When a worker fails to get the offer to which he

applies, he has to fall back onto his current contract or unemployment benefit. The better
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this backup is, the more a worker can afford to “gamble” on the application, and hence

the higher the offer to which he will apply.

Figure 1 illustrates the single-crossing property with two workers, 1 and 2. Worker 1 is

at a value V1 and worker 2 at value V2, where V2 > V1. Worker i’s indifference curve can be

written as f = Vi +Di/p, for i = 1, 2. Suppose that the two indifference curves cross each

other at a point, (f0, p0), where f0 > V2. At this point, the slope of worker i’s indifference

curve is df/dp < 0, and the absolute value of this slope decreases with Vi. This implies

that the worker with the higher value (worker 2) is willing to tolerate a lower employment

probability than does the worker with the low value. Equivalently, to compensate for the

same reduction in the probability of getting an offer, worker 2 needs a smaller increase in

the offer than worker 1 does.

The optimality of the application decision is one of the key differences between this

model and the BC model or, more generally, between directed search and undirected search.

Models with undirected search have no counterpart to the above decision problem by an

applicant. Instead, they assume that each applicant applies to a value which is randomly

drawn from the offer distribution. Clearly, such an application strategy is not optimal.

This contrast between the two models leads to sharply different predictions on job-to-

job transitions and wage mobility. Directed search predicts a definite pattern of transition

and endogenously limited mobility in wages between jobs. For example, take two workers

whose current wages are w1 and w2, respectively, with w1 < w2. Let wA be the starting

wage of the contract to which worker 1 chooses to apply, and wB (> wA) be the starting

wage of the contract to which worker 2 chooses to apply. For these two workers, the

probability of transiting immediately to a wage above wB is zero. Moreover, conditional

on that both have transited to new jobs, the likelihood between worker 2’s and worker

1’s probability of having transited to a wage w0 ∈ (wA, wB) is zero. In undirected search
models, the probability of transiting to wages above wB is positive for both workers, and

the likelihood ratio of transiting to w0 is a positive and finite constant.

In addition to limited wage mobility, directed search also yields predictions on the gain

to a worker from an application.7 First, a worker who has a high current value gains less

from an application than a worker who has a low current value. This is true in terms of

the expected gain from an application, because D0(V ) < 0. The result is also true in terms

of the actual gain in percentage, (F − V )/V , because F 0(V ) ≤ 1/2 < F (V )/V . With

7Delacroix and Shi (2006) establish similar features in a model with directed, on-the-job search, but
they restrict that offers must be a constant wage over time. Nevertheless, the similarity suggests that these
features are common in directed search models.
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risk aversion, however, this decreasing gain in the value does not necessarily translate into

a decreasing gain in wages. The decreasing gain in the value partly reflects the worker’s

decreasing marginal utility as the wage increases. Second,D00(V ) > 0. That is, the decrease

in the expected gain from an application slows down as the worker’s current value increases.

3.2. Value Functions of Workers and Firms

For an employed worker, the value can change over time for four possible reasons. The first

is the change in wages during the contract with the same firm. The second is the event

that the worker obtains a better offer and quits the current job.8 The third is death. The

fourth is the adjustment to the steady state. As in the literature, I abstract from the last

source of changes in the value by focusing on a stationary equilibrium. Because the rate

of time preference is zero, the value for an employed worker evolves as follows:

V̇ (t) = σV (t)− u(w(t))− λ1D(V (t)) (3.3)

If wages were constant over tenure, then V̇ = 0.

In contrast to wages, the unemployment benefit does not change over time once it is

drawn. Thus, the value to an unemployed worker with a given benefit, b, will be constant

over time as long as he stays unemployed. Denote this value as Vu(b). Then,

0 = σVu(b)− u(b)− λ0D(Vu(b)). (3.4)

To characterize a firm’s value function, consider a firm that is employing a worker at

time t under a contract whose remaining value to the worker is V (t). (Again, I suppress the

starting time of the contract in this notation.) Let J(t) denote this firm’s value. Because

the worker quits at rate λ1p(F (V (t))) and dies at rate σ, then

J̇(t) = [σ + λ1p(F (V (t)))] J(t)− y + w(t). (3.5)

This equation has embodied the aforementioned assumptions that a firm commits to the

contract and that it does not respond to the worker’s outside offers.

For dynamic optimization, it is useful to express the firm’s values as the discounted

sum of profits. To do so, let t0 be an arbitrary point in [s, t], where s ≤ t is the starting
8The worker can also choose to quit the job to become unemployed if the wage profile is sufficiently

decreasing. However, this event will never occur in the equilibrium, because the optimal wage profile has
increasing wages with tenure, as shown later.
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time of the contract. Let γ(t, t0) be the probability that a worker will still be with the firm

at time t given that he is with the firm at t0. Then,

γ(t, t0) = e
−
R t
t0
[σ+λ1p(F (V (τ)))]dτ . (3.6)

Equivalently, γ is given by the solution to the following differential equation:

dγ(t, t0)

dt
= − [σ + λ1p(F (V (t)))] γ(t, t0), (3.7)

where γ(t0, t0) = 1 and γ(∞, t0) = 0. Because J is bounded, it satisfies the transversality
condition limt→∞ J(t)γ(t, t0) = 0. Integrating (3.5) yields:

J(t0) =
Z ∞
t0
[y − w(t)] γ(t, t0)dt.

For any t0 ≥ s, this value is determined by the remaining contract from t0 onward.

3.3. Optimal Recruiting Decisions and Contracts

Take an arbitrary time s ≥ 0. A firm’s recruiting decision at time s contains two parts.
The first part is to choose a value V (s) at which to recruit. The optimal choice maximizes

the firm’s expected value, q(V (s))J(s), taking the function q(V ) as given. As I will explain

later, the solution to this part of the firm’s problem is a continuum of positive values of

V (s). The second part of a firm’s problem is to choose a wage profile (i.e., a contract) to

maximize J(s) and to deliver the value V (s). I characterize this decision below.

The optimal contract, {w(t)}∞t=s, solves:

(P) max J(s) s.t. (3.3) for all t ≥ s.

In this problem, V (s) is taken as given, and so the maximized value of J(s) is a function

of V (s). I express this fact by writing J(s) as J(V (s)).

Treat γ(t, s) as an auxiliary state variable in the dynamic optimization and (3.7) as the

law of motion of γ. Then, the Hamiltonian of the dynamic optimization is:

H(t, s) = (y − w)γ(t, s)− Λγ [σ + λ1p(F (V ))] γ(t, s) + ΛV [σV − u(w)− λ1D(V )] ,

where Λγ and ΛV are shadow prices of γ and V .
9 I suppressed time on the right-hand

side, except for γ. Following a similar argument to that in BC, it can be shown that

9It can be shown that the program (P) is concave in terms of Gâteaux derivatives in a neighborhood
of the optimal contract, and so the optimum is characterized by optimality conditions below.
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the assumption u(0) = −∞ implies w(t) > 0 for almost all t in all optimal contracts.

Optimality conditions are: Λγ = J , ΛV = −γ/u0(w) and

ẇ =
[u0(w)]2

u00(w)
λ1J(V )

"
dp(F (V ))

dV

#
. (3.8)

Optimal contracts have three important properties. First, an optimal contract provides

optimal sharing of the value between a firm and its worker. To express this feature formally,

note that the Hamiltonian is zero at the optimum.10 Thus, an optimal contract satisfies:

−J̇ = 1

u0(w)
V̇ . (3.9)

To explain, suppose that the contract increases the value to the worker by a marginal

amount, V̇ . This will entail an increase in the wage by an amount, V̇ /u0(w). The cost to

the firm, in terms of lost profit, is −J̇ . The above condition requires that this cost to the
firm should be equal to the marginal benefit to the worker.

For the analysis later, it is useful to substitute (3.5) and (3.3) to rewrite (3.9) as:

u0(w)(y − w) + u(w) = u0(w) [σ + λ1p(F (V ))]J(V ) + [σV − λ1D(V )] (3.10)

The best way to explain this equation is to view a match as a joint asset. With this view,

the left-hand side of the equation measures the flow of “dividends” to the asset, which

consists of the firm’s profit, evaluated with the worker’s marginal utility, and the worker’s

utility of the wage. The right-hand side is the “permanent income” in utils generated

by the asset. In particular, the permanent income to the firm is [σ + λ1p(F )]J , which is

translated into units of utility with the marginal utility of the worker. The permanent

income to the worker is [σV − λ1D(V )]. The optimal contract requires that the flow of

dividends to the joint asset should be equal to the permanent income of the asset.

Second, an optimal contract provides wages that increase with tenure. This feature and

the bounds on wages are stated as follows (see Appendix B for a proof):

Lemma 3.3. ẇ(t) > 0 for all V < V̄ . Moreover, w̄ = y − σk/q̄ < y, V̄ = u(w̄)/σ,

J(V̄ ) = k/q̄ > 0, and q(V̄ ) = q̄ <∞.

There are two forces that make an optimal wage profile increase smoothly with tenure.

The first is a firm’s incentive to retain a worker in the absence of commitment by the

10To obtain this result, differentiate the Hamiltonian with respect to time, and then substitute (3.3),
(3.5) and the optimality conditions. This shows that the Hamiltonian, H(t, s), is constant over t. Because
γ(∞, s) = 0, then H(t, s) = H(∞, s) = 0 for all t ≥ s.
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worker, and the second is a worker’s risk aversion. Because a worker cannot commit to the

job, a firm can increase the worker’s opportunity cost of quitting by backloading wages.

As wages rise with tenure, the probability with which the employee can find a better offer

elsewhere falls, and so the worker’s quit rate falls with tenure. Thus, a rising wage profile

is less costly to the firm than a constant wage profile that provides the same expected

value to the worker. However, if workers are risk neutral, then the best way for a firm

to backload wages is to offer zero wage initially with a promised jump in wages in the

future (see Stevens, 2004). This jump is not desirable for risk averse workers and so, for

such workers, the optimal contract has smoothly increasing wages over tenure. These two

forces appear in (3.8): the incentive to retain a worker appears through the derivative

dp(F (V ))/dV (< 0) and risk aversion through u00 < 0.

Because wages are increasing with tenure and bounded above, wages in all optimal

contracts increase toward the upper bound w̄ as t → ∞. Accordingly, the value for an
employed worker converges to V̄ .11 This convergence in the value is also monotonic, as I

will show later in Corollary 5.3. As a result, a firm’s value falls over time.

The third property is that all optimal contracts are sections of a baseline contract. To

describe this property, let the baseline contract be {wb(t)}∞t=0, where wb(0) is the lowest
wage in equilibrium. Every other optimal contract, {w(t)}∞t=0, traces out the baseline
contract from a particular initial wage. That is, the entire set of optimal contracts is:

{{w(t)}∞t=0 : w(t) = wb(t+ s) for all t, where s ∈ [0,∞)} .

This property is an implication of the principle of dynamic optimality. To explain why,

note that, once V is given, the firm’s optimization problem does not depend on the starting

time of the contract, s. Consider two contracts: contract 1 is offered at time s1 and contract

2 offered at s2 > s1. The value offered by contract 2 is V2. Suppose that contract 1 from

s2 onward also delivers V2, then the remaining part of contract 1 must be the same as

contract 2. Otherwise, the firm that offers contract 1 could replace the remaining part of

the contract by contract 2 which, by the optimality of contract 2 from s2 onward, would

improve the firm’s expected value.

This property of dynamic optimality simplifies the analysis greatly. One simplification

is that characterizing the entire set of optimal contracts at any time is equivalent to tracing

out the baseline contract over time. Similarly, characterizing the set of offer values at any

time is equivalent to tracing out the values provided by the baseline contract over time.

11Offers above V̄ are not optimal because they generate expected values to the firm that are less than
the recruiting cost.
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From now on, I will focus on the baseline contract, suppress the subscript b, and suppress

the starting point of a contract.

Another simplification is that the wage at any tenure can be written as a function of

the value remaining in the contract, rather than a function of tenure. To do so, let V be
the set of equilibrium lifetime utilities. Define v1 = inf (V) and define T by

T (V (t)) = t, with T (v1) = 0. (3.11)

Then, T (x) is the length of tenure required for a worker to increase the value from v1 to x

according to the baseline wage contract. The wage level of a worker with tenure t on the

baseline contract is w(T (V (t))). With a slight abuse of the notation, I express this wage

as w(V ) and refer to the function as the wage function. The above explanation makes it

clear that w(V (t)) is also the starting wage of a contract that is offered at t with a value

V (t) to the worker. The notation w(V ) should be construed to mean that wage can only

vary over time when the value to the worker changes over time.

Similarly, the notation J(V ) indicates that a firm’s value can only change over time

when the value to the worker changes over time. Thus, I can rewrite (3.9) as

J 0(V ) = − 1

u0(w(V ))
< 0. (3.12)

4. Definition and Configuration of the Equilibrium

Let n be the fraction of workers who are employed and (1−n) the fraction of workers who
are unemployed. Let Ge be the cumulative distribution function of employed workers over

values and Gu be the distribution of unemployed workers over values.

An equilibrium is a set of lifetime utilities, V, a Poisson rate of employment, p(.), an
application strategy, F (.), a value function J(.), a wage function w(.), and distributions of

workers, (Ge, Gu, n), that satisfy the following requirements:

(i) Ge, Gu and n are stationary;

(ii) F (V ) solves (3.1), given p(.);

(iii) Given F (.) and p(.), each value V ∈ V is delivered by a contract that solves
(P) for s = 0 with a starting wage w(V ), and the resulting value function of
the firm is J(V );

(iv) Zero expected profit of recruiting: q(V )J(V ) = k for all V ∈ [V , V̄ ], and
q(V )J(V ) < k for all V > V̄ , where q(V ) = P−1(p(V )).
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Most elements of this definition are self-explanatory, but requirement (iv) needs clar-

ification. This requirement asks the function q(V ) to induce zero expected profit from

recruiting for all V ∈ [V , V̄ ], not just for V ∈ V. Since V is a strict subset of [V , V̄ ], as I
will argue after (6.1), the requirement imposes a restriction on beliefs out of the equilib-

rium. The reason for imposing this restriction is as follows. For a non-equilibrium value

V /∈ V, there can be two different reasons why the value is not in the equilibrium set. One
is the self-fulfilling expectation that no worker will apply to that value: This expectation

induces firms not to offer that value, in which case no worker will apply to that value,

indeed. The second reason is that, even after firms offer that value, workers still find it

optimal not to apply to it. The first reason for a “missing market” may not be robust to

a trembling event that exogenously puts some recruiting firms at the value V . Require-

ment (iv) excludes such non-robust equilibria, and hence, refines the set of equilibria. This

refinement resembles trembling-hand perfection.12

Requirement (iv) determines the hiring rate function, and hence, the employment rate

function. For given J(.), the requirement yields q(V ) = k/J(V ), and so p(V ) = P (k/J(V ))

for all V ∈ [V , V̄ ]. For all V > V̄ , (iv) requires that a firm recruiting at V should make an
expected loss. This part of the requirement is always satisfied, because Lemma 3.3 implies

q(V )J(V ) ≤ q̄J(V ) < q̄J(V̄ ) = k.
I illustrate the configuration of the equilibrium in Figure 2. The set of equilibrium

values for employed workers is V = [v1, V̄ ] and the set of equilibrium values for unemployed
workers is [v0, V̄ ], where v1 = F (v0) > v0 > V and v0 will be defined later by (6.1). The

arrows in Figure 2 depict the applications of the workers at the special values vj, where

vj+1 = F (vj) with j = 0, 1, 2, .... A worker at vj applies to vj+1. If he gets the job, his

value jumps to vj+1. If he does not get the job, his value increases smoothly above vj

according to the contract and the target of his application increases above F (vj). Thus,

the gap between any two special values, vj and vj+1 (with j ≥ 1), is filled in by workers
who have stayed with their contracts for some time. There are employed workers at every

level in [v1, V̄ ] and unemployed workers at every level in [v0, V̄ ]. A worker whose value lies

in the interior of (vj, vj+1) chooses to apply to a unique value in the interior of (vj+1, vj+2).

12Similar refinements have been used in directed search models, e.g., Acemoglu and Shimer (1999b)
and Delacroix and Shi (2006). In Delacroix and Shi, the refinement restricts the applicants’, rather than
firms’, expected payoff off the equilibrium path. It requires a worker’s expected surplus from applying
to every offer (including a non-equilibrium offer) to be the same. In an environment with homogeneous
workers, this alternative restriction achieves the same purpose as requirement (iv) does. However, when
the applicants are heterogeneous as in the current model, the alternative restriction is not useful because
it is not possible to find one function p(.) or q(.) that induces all applicants to be indifferent between
equilibrium and non-equilibrium offers.
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This application is not depicted in Figure 2.

As emphasized earlier, the unique choice of each worker’s application contrasts with the

application strategy in undirected search models, such as Burdett and Mortensen (1998)

and BC, where a worker sends the application to a randomly selected value in [v1, V̄ ].

This difference in the nature of search implies that the two types of models work in very

different ways. For an equilibrium with undirected search, the most important objects are

the distributions of values and workers, which affect the employment rate and the hiring

rate. In contrast, for an equilibrium with directed search, the most important objects

are the employment rate function, p(V ), and the hiring rate function, q(V ). One can

determine these functions, and hence determine optimal application and hiring decisions,

by invoking requirements (ii) — (iv) of the above definition, without any explicit reference

to the distributions of offers and workers.

 employed
 workers:

 v1         v2  v3 ……    V

 unemployed
 workers:

      v0  v1         v2  v3 ……    V
Figure 2. An illustration of the equilibrium

Now, it is useful to clarify the role of the assumption of a continuous distribution of

unemployment benefits. The main use of this assumption is to make the distribution of

employed workers smooth (i.e., differentiable) at the critical levels vj for j ≥ 3. As is clear
from the above discussion of the equilibrium definition, the assumption does not play any

role in the characterization of the wage function, contracts, or individuals’ matching rates

in the equilibrium. Moreover, the assumption is not necessary for existence of a continuous

wage distribution. Even if all unemployed workers have the same benefit, wage-tenure

contracts and search on the job will continue to generate a continuous wage distribution in

equilibrium. As in Delacroix and Shi (2006), search on the job enables workers who luckily

got jobs earlier to apply to higher wages than those who get jobs later. Furthermore (and
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in contrast with Delacroix and Shi), because wages increase with tenure, those workers

who got jobs earlier have had their wages grow to higher levels than those who got jobs

later. With continuous time, these features generate a continuous wage distribution.

5. Equilibrium Employment Rate and the Wage Function

The main step of determining an equilibrium is to determine the employment rate function,

p(V ). However, it is more convenient to build the proof of existence around the wage

function. The following procedure develops a mapping for w and obtains other functions,

(p, J, F ). The procedure will also be useful for comparative statics later.

Start with any function w(.) and add the subscript w to other functions constructed

with this given function. First, given w(.), I integrate (3.12) and use J(V̄ ) = k/q̄ to get:

Jw(V ) = k/q̄ +
Z V̄

V

1

u0(w(z))
dz (5.1)

Second, the zero-profit condition for recruiting yields qw(V ) = k/Jw(V ) and hence

pw(V ) = P

Ã
k

Jw(V )

!
(5.2)

Third, using pw(V ) as the employment rate, I can express an applicant’s optimal decision

as f = Fw(V ) and the expected gain as Dw(V ). Fourth, I explore (3.10), a requirement on

a firm’s optimal recruiting decision. Treat w on the left-hand side of (3.10) as a variable

but substitute the given function w(V ) for w on the right-hand side. To avoid confusion,

use w1 instead of w on the left-hand side. Then,

u(w1) + u
0(w1)(y − w1) = u0(w(V )) [σ + λ1pw(Fw(V ))]Jw(V ) + σV − λ1Dw(V ) (5.3)

Denote the solution for w1 as w1(V ) = (Γw)(V ). Equilibrium wage function, w(V ), is a

fixed point of the mapping Γ. That is, w(V ) = (Γw)(V ) for all V .

Confirming an earlier statement, the above procedure does not involve the distributions

of workers and offers. Thus, optimal contracts and applications are independent of such

distributions. I will explore this feature of the equilibrium later in section 7.

To characterize the fixed point for w, let me specify the bounds on various functions.

First, using the constant w̄ to replace the function w(V ) in (5.1) and (5.2), I obtain

Jw̄(V ) and pw̄(V ). Because Jw(.) and pw(.) are monotone in w, then Jw(V ) ≤ Jw̄(V ) and
pw(V ) ≤ pw̄(V ) for all V . Second, define

q = k/Jw̄(V ). (5.4)
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Since Jw̄(V ) is decreasing, q(V ) ∈ [q, q̄] for all V , and q ∈ (0, q̄). This lower bound on q is
the one used in Assumption 2. Similarly, p(V ) is bounded in [0, P (q)]. Third, let w be a

strictly positive number that is sufficiently close to 0.

Assumption 3. Assume that b, V and w satisfy:

(0 <) b < w̄ = y − σk/q̄ (5.5)

Jw̄(V ) [σ + λ1pw̄(V )] < y (5.6)

u(w) + u0(w) [y − w − Jw̄(V )(σ + λ1pw̄(V ))] ≥ u(b). (5.7)

The condition (5.5) is a regularity condition: When it is violated, all workers will choose

to stay out of employment. The condition (5.6) requires that the permanent income of a

job to a firm be less than output even when the firm is providing the lowest value to

the worker. To see which parameters this condition restricts, note that Jw̄(V ) and pw̄(V )

are decreasing functions. Then, the left-hand side of (5.6) is decreasing in V , and hence

decreasing in b. As a result, (5.6) is satisfied if b is bounded below by some number. If I

set b = w̄, the left-hand side of (5.6) is equal to σk/q̄, which is less than y by (5.5). Thus,

there exists b̂ ∈ (0, w̄) such that (5.5) and (5.6) are satisfied if b ∈ (b̂, w̄).
To see what (5.7) entails, note that the left-hand side of (5.7) is a decreasing function

of w for sufficiently small w. Thus, (5.7) imposes an upper bound on w. Because w is

chosen to be sufficiently close to 0, a sufficient condition for (5.7) is:

lim
w↓0
[u(w) + u0(w)(a− w)] =∞ for all a > 0.

This sufficient condition is satisfied by the example u(w) = (w1−η − 1) /(1−η) with η > 1.

Define
Ω = {w(V ) : w(V ) is continuous and (weakly) increasing;

w(V ) ∈ [w, w̄] for all V ; w(V̄ ) = w̄
o

Ω0 =
n
w ∈ Ω : w(V ) is strictly increasing for all V < V̄

o
.

I establish that a fixed point of Γ exists in Ω and then show that it lies in the subset Ω0.

First, the following lemma holds (see Appendix B for a proof):

Lemma 5.1. For any w ∈ Ω, Jw(V ) defined by (5.1) is strictly positive, bounded, strictly

decreasing and continuously differentiable for all V . The function pw(V ) defined by (5.2)

has all the properties stated in Lemma 3.1.
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This lemma shows that pw(V ) has all the properties that enable parts (i) - (iii) in Lemma

3.2 to hold. As a result, there is a unique and interior solution to (3.1), Fw(V ), which is

continuous and strictly increasing for all V < V̄ . Moreover, D0
w(V ) = −pw(Fw(V )) < 0.

Theorem 5.2. Maintain Assumptions 1, 2 and 3. Assume that the image of Γ is compact.

Then, the mapping Γ has a fixed point, w∗ ∈ Ω0. That is, w∗(V ) is continuous on [V , V̄ ],

its values lie in [w, w̄] with w∗(V̄ ) = w̄, and it is strictly increasing for all V < V̄ . The

implied functions Jw∗(V ) and pw∗(V ) are strictly concave, in addition to the properties

stated in Lemma 5.1.

Proof. See Appendix C.

In the remainder of this paper, I will suppress the * on the fixed point and the subscript

w∗ on the equilibrium functions J , p, F and D.

The above theorem establishes continuity, but not differentiability, of the wage function.

However, differentiability is useful for various parts of the analysis. Moreover, I need to

confirm that the value to a worker, as well as the wage, increases with tenure. To deliver

these features, I focus on wage profiles that are smooth over tenure, as the following

corollary states (see Appendix D for a proof):

Corollary 5.3. If |ẇ(t)| < ∞ for all t, then w(V ) is differentiable, with 0 < w0(V ) < ∞
for all V . Moreover, the following results hold for all V < V̄ : (i) the derivatives J 00(V ),

p00(V ) and F 0(V ) exist and are finite; (ii) V̇ > 0 and J̇(V ) < 0.

It is informative to compare wages with unemployment benefits. To do so, let B(V )

be the unemployment benefit starting at which a worker can achieve the lifetime value V .

I refer to this function as the benefit function and compare it with the wage function. To

compute B(V ), use (3.4) to solve Vu = Vu(b). Inverting this solution yields:

B(V ) = u−1 (σV − λ0D(V )) . (5.8)

Since D0(V ) < 0, then B0(V ) > 0 and V 0u(b) > 0. Also, the assumption b̄ = w̄ implies

Vu(b̄) = V̄ .

For all V ∈ [v1, V̄ ], V̇ ≥ 0, and so the following holds for all λ0 ≤ λ1:

u(w(V )) = σV − λ1D(V )− V̇ ≤ σV − λ0D(V ) = u(B(V )).

Thus, w(V ) ≤ B(V ). The inequality is strict when V̇ > 0, i.e., when V < V̄ . Thus, I have
established the following result:

21



Corollary 5.4. w(V̄ ) = B(V̄ ). If λ0 ≤ λ1, then w(V ) < B(V ) for all V ∈ [v1, V̄ ).

The novel part of this corollary is the case λ0 = λ1. In this case, an unemployed worker

has the same access to jobs as an employed worker. Yet, the unemployment benefit must

be higher than the wage in order for an unemployed worker to achieve the same value V

as an employed worker. Put differently, if the unemployment benefit is the same as (or

lower than) an employed worker’s wage, the present value for the unemployed worker is

lower than that for the employed worker. The reason is that an employed worker enjoys

the prospect of rising wages while an unemployed worker’s benefit does not change over

time. This disadvantage of an unemployed worker must be compensated by a higher

unemployment benefit in order for the unemployed worker to achieve the same value as an

employed worker. This result may hold even for some λ0 > λ1.

Of course, if λ0 < λ1, then an unemployed worker has a more difficult access to jobs

than an employed worker. In this case, there is an additional reason for B(V ) > w(V ), as

in Burdett and Mortensen (1998).

6. Equilibrium Distributions of Workers and Firms

Having determined individuals’ optimal decisions and the functions of matching rates, I

now compute the distribution of unemployed workers, Gu, and the distribution of employed

workers, Ge. Let gu be the density function corresponding to Gu and ge corresponding to

Ge. Note that these distributions are over values. The distributions over wages or unem-

ployment benefits can be recovered with w(V ) and B(V ). For example, the distribution

of employed wages, denoted as Gw(w), is given by Gw(w(V )) = Ge(V ), and the density

function is gw(w) = ge(V )/w
0(V ). I do not characterize the distribution of offers, because

it is not important for the analysis.

Let me start by defining the following particular values:

v0 = Vu(b) and vj = F
(j)(v0), j = 1, 2, ... (6.1)

where F (0)(v0) = v0 and F
(j)(v0) = F (F (j−1)(v0)). The support of Gu is [v0, V̄ ] and the

support of Ge is [v1, V̄ ], as depicted earlier in Figure 2. Clearly, v1 > v0 = V +λ0D(v0)/σ >

V . Thus, the set of equilibrium values is a strict subset of [V , V̄ ].

Next, define Φ(V ) = H(B(V )) and φ(V ) = Φ0(V ). The function Φ transforms the

distribution of unemployment benefits into a distribution of values. Drawing a benefit b

according to H is equivalent to drawing a value V according to Φ. Because B0(V ) > 0,
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then

φ(V ) = h(B(V ))B0(V ) =
σ + λ0p(F (V ))

u0(B(V ))
h(B(V )). (6.2)

Because h(.), F (.) and B(.) are differentiable, φ(.) is differentiable. In Appendix D, I prove

the following lemma:

Lemma 6.1. The distribution of unemployed workers and the fraction of employment are:

Gu(V ) =
σ

1− n
Z V

v0

φ(z)

σ + λ0p(F (z))
dz. (6.3)

n = 1− σ
Z V̄

v0

φ(z)

σ + λ0p(F (z))
dz. (6.4)

Now I compute Ge. Examine the group of employed workers whose values are greater

than V , where V ∈ [v1, V̄ ]. Since death is the only flow out of this group, the outflow from
this group in a small interval dt is σn[1−Ge(V )](dt). There are three flows into the group.
One is the group of workers who were employed at or below V and whose values increased

above V according the contract. The size of this flow is n[Ge(V ) − Ge(V − V̇ dt)]. The
second inflow is the group of workers who were employed at or below V and who received

offers above V . This inflow exists only if the workers’ values before the application are

equal to or greater than v1, i.e., if F
−1(V ) ≥ v1; otherwise, the workers were unemployed.

The third inflow is the group of unemployed workers who received offers above V . Before

receiving offers, these workers had values in [F−1(V ), V̄ ]. Equating the outflows to the sum

of inflows, and taking the limit dt→ 0, I get:

σn [1−Ge(V )]
= n limdt↓0

Ge(V )−Ge(V−V̇ dt)
dt

+ λ1n
R V
max{v1,F−1(V )} p(F (z))dGe(z)

+λ0(1− n) R V̄F−1(V ) p(F (z))dGu(z).
(6.5)

To solve for ge, partition the support of Ge into subintervals [vj, vj+1), where vj is

defined by (6.1). Add a subscript j to ge(V ) and Ge(V ) for V ∈ [vj, vj+1). Also, define
∆(V ) = [Φ(V )− (1− n)Gu(V )] /n and

δ(V ) ≡ ∆0(V ) =
λ0p(F (V ))φ(V )

n [σ + λ0p(F (V ))]
. (6.6)

I prove the following theorem (see Appendix E for a proof):
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Theorem 6.2. The distribution of employed workers, Ge, does not have a mass point.

The density function, ge (V ), is continuously differentiable for all V 6= v2. Moreover,

ge(V )V̇ = σ∆(F−1(V ))− σGe(V )− λ1

Z V

max{v1,F−1(V )}
p(F (z))dGe(z). (6.7)

With T (V ) defined by (3.11), ge can be solved piece-wise as follows:

ge1(V )V̇ = σ
Z V

v1
γ(T (V ), T (z))δ(F−1(z))dF−1(z), (6.8)

gej(V )V̇ − gej(vj)v̇jγ(T (V ), T (vj))
=

R V
vj
γ(T (V ), T (z))

n
σδ(F−1(z)) + λ1p(z)ge(j−1)(F−1(z))

o
dF−1(z)

(6.9)

where (6.9) holds for j ≥ 2. Moreover, gej(vj) = limV ↑vj ge(j−1)(V ) for all j.

The theorem gives the following procedure to compute ge. Starting with j = 1, (6.8)

gives ge1. Taking the limit V ↑ v2 in the formula yields ge2(v2). Then, setting j = 2 in (6.9)
yields ge2(V ). Taking the limit V ↑ v3 in the result yields ge3(v3). Continue this process
until gej is obtained for all j.

The following corollary describes the shape of ge (see Appendix E for a proof):

Corollary 6.3. ge(v1) = 0 and g
0
e(v1) > 0. If F

0(V̄ ) > 0, then ge(V̄ ) = 0. In this case,

there exists V̂ ∈ (v1, V̄ ) such that g0e(V ) < 0 for all V ∈ [V̂ , V̄ ).

The corollary says that the density function of employed workers is increasing at low

values and decreasing at high values. Thus, the density function is non-monotonic, with

more workers being employed at intermediate values than at values at the two ends. Note

that the density of employed wages is also non-monotonic. To see this, recall that the

density of employed wages is gw(w) = ge(V )/w
0(V ). Because 0 < w0(V ) < ∞ by Lemma

5.3, the above corollary yields gw(w1) = gw(w̄) = 0, where w1 = w(v1). Thus, the shape of

gw(w) at the two ends is similar to the shape of ge(V ) at the two ends. That is, the density

of employed wages is increasing when wage is low and decreasing when wage is high.

Before discussing this result, let me check how easily the condition F 0(V̄ ) > 0 can be

satisfied. Consider the matching function in Example 2.1. Write the first-order condition

of a worker’s application as F−1(V ) = V + p(V )/p0(V ). Differentiating this condition and

evaluating at V̄ yields dF−1(V )/dV |V=V̄ = 1− ρ. Thus, with the CES matching function,

F 0(V̄ ) > 0 is always satisfied under Assumption 2.

The non-monotonicity described in the above corollary is a robust feature of the data.

In particular, the wage density is decreasing at high wages (see Kiefer and Neumann,
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1993). Directed search is able to capture this feature of the data because workers choose

their applications optimally. To see why, consider a worker with a value V and assume

F (V ) < V̄ . This worker also observes other offers including those higher than the target

value, F (V ). The choice of not applying to higher offers is optimal only if higher offers

are more difficult to be obtained than the target value. For this to be true, the measure

of recruiting firms per applicant must be smaller at high values than at the target value.

In particular, at values close to the upper bound V̄ , the measure of recruiting firms per

applicant should be close to zero. In turn, as few workers apply to such high values, it is

indeed optimal for only few firms to recruit at these values. The measure of workers who

succeed in obtaining jobs at values near V̄ is close to zero. This feature makes the density

function of employed values decreasing near the upper end of the distribution.

In contrast, undirected search models with homogeneous matches are unable to produce

a density function that decreases at high values (or wages). The density function in such

models is increasing and convex (see Burdett and Mortensen, 1998, and BC). The cause for

this failure is the assumption of undirected search. Under this assumption, all applicants

send their applications randomly and uniformly to the recruiting firms. In this case, firms

cannot hope to attract more applications by increasing offers. Instead, they use high offer

to increase acceptance and retention. For these purposes, a high value is superior to a

low value, and so more firms recruit at high values than at low values. The increasing

density of recruiting firms ensures that recruiting yields the same expected profit at all

equilibrium values. It also results in more workers being employed at high values than

at low values, i.e., an increasing density of employed workers. To modify this unrealistic

prediction, models of undirected search have introduced heterogeneity across matches in

workers’ or firms’ characteristics (e.g., van den Berg and Ridder, 1998).

The above difference between the two classes of models can be illustrated with the roles

of the functions of p(V ) and q(V ). A directed search model and an undirected search model

both require zero net expected profit from recruiting at all values, i.e., q(V ) = k/J(V ).

Both models produce a decreasing and concave value function of firms, J(V ), which implies

that q(V ) is increasing and convex. However, the difference between the two models arises

in the link between q(V ) and the distribution of workers. This link is tight when search

is undirected. In that case, a firm’s hiring rate at V is equal to the rate at which the

application comes from a worker employed below V . That is,

λ1nGe(V ) + λ0(1− n)Gu(V ) = q(V )

Because q(V ) is convex, then the density functions ge(V ) and gu(V ) are likely to be both
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increasing. Directed search breaks this close link between q and Ge. With directed search,

the critical determinant of the equilibrium distribution of workers is not the hiring rate, but

rather workers’ application decisions which is governed by the function p(V ) = P (q(V )).

Although q(V ) is still convex, the function p(V ) is decreasing and concave. In particular,

the employment rate at values close to V̄ is almost zero. As a result, few workers are

employed at such high values, and so the density of employed workers is decreasing at this

high end of the distribution.

Note that Corollary 6.3 holds independently of the shape of the density function of

unemployment benefits, h(b). Thus, ge is non-monotonic here regardless of whether h(b)

is increasing, decreasing, flat, or non-monotonic. Heterogeneity in unemployment benefits

is not the cause for the feature that the density of employed workers is decreasing at high

values (or wages).13

7. Comparative Statics

In this section, I conduct two comparative statics, one with respect to the distribution of

unemployment benefits and the other with respect to the parameter λ0. These comparative

statics further illustrate the differences between the current model of directed search and

undirected search models.

Suppose that the distribution of unemployment benefits, H, increases in the first-order

stochastic dominance, with the support remaining unchanged. The effects of this change

are summarized in the following corollary:

Corollary 7.1. An increase of the first-order stochastic dominance in unemployment ben-

efits has no effect on workers’ optimal applications and equilibrium contracts. It does not

affect the supports of the distributions Gu(.) and Ge(.), either, although it affects the shape

of these distribution functions.

Proof. The analysis in section 5 are independent of the distributions, Ge, Gu and H.

Thus, the functions, w(.), p(.), q(.), J(.), F (.), and D(.) after the change in H are all

the same as before. Because the function D(.) is independent of H, the function Vu(.) is

independent of H. Under the assumption that b does not change, v0 and v1 do not change,

either, because v0 = Vu(b) and v1 = F (v0). Taken together, these results imply that the

13If the distribution of b is degenerate at a particular value, then ge may be positive at v1, but ge will
still be decreasing at values close to V̄ .
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change in H has no effect on a worker’s optimal application strategy or the equilibrium set

of contracts. However, Gu and Ge change with H, because Φ does. QED

The distributions of workers, Ge, Gu and H, do not play any role in the determination

of optimal contracts and optimal applications. Although this feature arises from the pro-

cedure in section 5, it is worthwhile explaining the feature. To do so, start with a worker’s

application. For a worker to choose the optimal application, F (V ), he only needs the em-

ployment rate function. In turn, the employment rate must satisfy the requirement that

recruiting should yield zero expected profit at all equilibrium offers. This requirement pins

down p(V ), given a firm’s value function, J(V ). However, a firm value function depends

only on what happens after the hiring, that is, on the contract offered, w(V ), and the

worker’s quit rate, p(F (V )). By the proceeding argument, the two functions that deter-

mine the quite rate, p(.) and F (.), are only functions of optimal contracts. Thus, the only

thing still to be determined is the set of optimal contracts, i.e., the function w(V ). The

function w(V ) provides efficient sharing of the value between a firm and a worker, in the

sense that −J̇ = V̇ /u0(w). Again, J̇ and V̇ involve only the functions F (V ), p(V ), J(V )

and w(V ) (see (3.3) and (3.5)). The solution to this fixed-point problem is independent of

the distributions of employed and unemployed workers.14

A strong (testable) implication of the above corollary is that changing unemployment

benefits can change wage distributions and the average duration of unemployment, but

it does not change individual workers’ job-to-job transition rates or their wage paths. Of

course, aggregate flows between jobs do change, because they depend on the distribution

of workers over the values.

The above predictions are markedly different from those in undirected search models.15

There, an increase in unemployment benefits reduces the probability with which a given

offer will be accepted by a worker, thereby inducing the equilibrium distribution of offers to

increase. As more firms are offering higher values than before, the transition rate from low-

value jobs to high-value jobs increases. That is, the quitting rate at low-value jobs increases.

In order to mitigate this increase in the quitting rate, firms offer contracts in which wages

14There are two qualifications. First, the distribution H can affect equilibrium contracts if the number
of firms is fixed in ths short run, rather than being determined by competitive entry. In that case, a firm’s
expected value from recruiting is endogenous, rather than being given by the vacancy cost k. All effects
of the distributions on equilibrium contracts come through this expected value of recruiting, and these
effects vanish in the long run when entry becomes competitive. Second, if there is exogenous separation
between a worker-firm pair and the worker returns to unemployment after such exogenous separation, then
the increase in unemployment benefits will affect optimal contracts by affecting the equation for V̇ .
15One can verify the statements here by introducing a continuous distribution of unemployment benefits

into BC or Burdett and Mortensen (1998).
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increase more quickly with tenure than before. As is clear from this explanation, the main

cause for this difference is that the offer distribution plays a critical role in determining

workers’ quit rates under undirected search, but not so under directed search.

Now let me turn to the effects of an increase in λ0, the probability with which an

unemployed worker receives a job application opportunity. Again, the functions w(.), p(.),

q(.), J(.), F (.), and D(.), are all unaffected, because the analysis in section 5 does not

depend on λ0. However, the function Vu(.) does depend on λ0. An increase in λ0 increases

Vu(b) for any given b. Thus, v0 increases, and so does v1. The distributions of unemployed

and employed workers change as well.

The increases in λ0 has only a limited effect on the job-to-job transition rate and the

wage path. To see this, let v̂1 be the new level of v1 after the increase in λ0. Because

w(.), p(.) and q(.) are unaffected, the optimal baseline contract after the increase in λ0 is

the part of the original baseline contract from v̂1 onward. Put differently, the new set of

optimal contracts is identical to the subset of the original contracts whose starting values

are equal to or greater than v̂1. Therefore, the job-to-job transition rate and the wage

path of a worker to whom the contract provides v̂1 or more do not change. Again, these

results contrast with those in undirected search models, where an increase in λ0 increases

the job-to-job transition rate and the steepness of the wage path.

The comparative statics above have obvious policy implications. If policymakers at-

tempt to affect the labor market outcomes of employed workers, changing the aspects of

the market for unemployed workers would be a wrong place to put the resource. Instead,

the policy should directly target the aspects of the labor market relevant for employed

workers, such as λ1.

8. Conclusion

In this paper, I analyze the equilibrium in a labor market where firms offer wage-tenure

contracts to direct the search of employed and unemployed workers. Each applicant ob-

serves all offers and there is no coordination among individuals. Because search is directed,

workers’ applications (as well as firms’ recruiting decisions) must be optimal. This opti-

mality requires the equilibrium to be formulated differently from the that in the large

literature of undirected search. I provide such a formulation and show that the equilib-

rium exists. In the equilibrium, individuals explicitly tradeoff between an offer and the

matching rate at that offer. This tradeoff yields a unique offer which is optimal for each

worker to apply. Despite this uniqueness and directed search, the stationary equilibrium

28



has a non-degenerate and continuous distribution of wages.

One cause of wage dispersion in the model is the feature that the optimal application

increases with the value that a worker’s current state yields. Even if all workers were

initially identical, those who obtained jobs earlier will apply to higher wages than those

who obtain jobs later. In the stationary equilibrium, a continuum of values are offered,

each of which is tailored to workers who have a particular current value. The other cause of

the wage distribution is the wage-tenure contract. With risk-averse workers and imperfect

capital markets, it is optimal for a firm to offer a wage profile that increases smoothly with

tenure. Such a contract provides partial insurance to the worker and backloads wages to

increase retention of the worker. The positive wage-tenure relationship implies that workers

who are employed under the same contract but at different times may earn different wages.

It also implies that the quit rate falls with tenure.

While preserving the realistic predictions of undirected search models that wages in-

crease, and quit rates fall, with tenure, the current model generates several novel impli-

cations. First, because applicants separate themselves according to their current values,

wage mobility is endogenously limited by the workers’ current wages. Second, the density

function of the wage distribution of employed workers over wages is increasing at low wages

and decreasing at high wages, even when all worker-firm pairs are equally productive. Fi-

nally, an increase in unemployment benefits has no effect on the set of equilibrium contracts

or individual workers’ job-to-job transition rates, although it affects wage distributions of

workers.

This paper provides a tractable model of on-the-job search that will be useful for busi-

ness cycle research. A striking feature of the equilibrium is that individuals’ decisions and

equilibrium contracts can all be characterized first without any reference to the distrib-

utions of workers and firms. This feature is a unique feature of directed search. With

undirected search, instead, the distributions are state variables in every individual’s de-

cision problem. As the distributions evolve endogenously over business cycles, the large

dimensionality of the state variables makes it intractable to solve for the dynamic equilib-

rium with on-the-job search, analytically or quantitatively. The above-mentioned feature

of the current model eliminates such a difficulty. It is not difficult to see that the feature

will continue to hold after aggregate and match-specific shocks are introduced into the

model. Using this feature, Menzio and Shi (2007) examine the implications of on-the-job

search on business cycles.
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Appendix

A. Proof of Lemma 3.2

The result F (V̄ ) = V̄ is evident. Let V < V̄ in the following proof. Temporarily denote
K(f, V ) = p(f)(f − V ). Because p(.) is continuous and bounded, as stated in Lemma
3.1, K(f, V ) is continuous and bounded. Thus, the maximization problem in (3.1) has a
solution. Because p(V̄ ) = 0, I have K(V̄ , V ) = 0 = K(V, V ). Since any interior value of f
gives a positive value of K(f, V ), then the solution is interior. To show that the solution
is unique, I show that K(f, V ) is strictly concave in f for all f ∈ (V, V̄ ). To do so, let
α ∈ (0, 1). Let f1 and f2 be two arbitrary interior values with f2 > f1 > V . Denote
fα = αf1 + (1− α)f2. Then,

K(fα, V ) = p(fα) [α(f1 − V ) + (1− α)(f2 − V )]
≥ [αp(f1) + (1− α)p(f2)] [α(f1 − V ) + (1− α)(f2 − V )]
= αK(f1, V ) + (1− α)K(f2, V ) + α(1− α)[p(f1)− p(f2)][f2 − f1]
> αK(f1, V ) + (1− α)K(f2, V ).

The two equalities come from rewriting, the first inequality from concavity of p, and the
last inequality from the feature that p(f) is strictly decreasing. Thus, K(f, V ) is strictly
concave in f , which establishes part (i) of the Lemma.
For part (ii), uniqueness of the solution implies that F (.) is continuous by the Theorem

of the Maximum. To show that D(.) is differentiable, let V1 and V2 be two arbitrary values
with V1 < V2 < V̄ . Express Fi = F (Vi) for i = 1, 2. Uniqueness of the solution implies
K(F1, V1) > K(F2, V1) and K(F2, V2) > K(F1, V2). Thus,

D(V2)−D(V1) > K(F1, V2)−K(F1, V1) = −p(F1)(V2 − V1);

D(V2)−D(V1) < K(F2, V2)−K(F2, V1) = −p(F2)(V2 − V1).
Divide the two inequalities by (V2 − V1) and take the limit V2 → V1. Because F (.) is
continuous, the limit shows that D(V ) is differentiable at V1 and that D

0(V1) = −p(F1).
Since V1 is arbitrary, this argument establishes part (ii).
For part (iii), again take two arbitrary values V1 and V2, with V1 < V2 ≤ V̄ . Then,

p(Fj)(Fj − Vi) < p(Fi)(Fi − Vi) for j 6= i. I have:

0 > [p(F2)(F2 − V1)− p(F1)(F1 − V1)] + [p(F1)(F1 − V2)− p(F2)(F2 − V2)]
= p(F2)(V2 − V1) + p(F1)(V1 − V2) = [p(F2)− p(F1)](V2 − V1).

This result implies p(F2) < p(F1). Because p(.) is strictly decreasing, F (V2) > F (V1).
For part (iv), note that differentiability of p implies that F (V ) is given by the first-order

condition of the maximization problem, which leads to (3.2). Also, because p is concave
and decreasing, the following inequalities hold for all V1 and V2 with V2 > V1:

p(F1) ≥ p(F2)− p0(F2) (F2 − F1) , p(F2) ≥ p (F1) + p0(F2) (F2 − F1)
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where Fi = F (Vi), i = 1, 2. Substituting the first inequality into (3.2) yields:

V2 − V1 ≥ 2 (F2 − F1) + p (F2) p
0 (F1)− p0 (F2)
p0 (F1) p0 (F2)

≥ 2 (F2 − F1) .

This implies (F2 − F1) / (V2 − V1) ≤ 1/2 for all V2 6= V1, and so F is Lipschitz. If, in
addition, p is twice differentiable, then differentiating the first-order condition generates
the derivative F 0(V ) and the above Lipschitz property yields F 0(V ) ≤ 1/2. In this case,
D00(V ) = −p0(F (V ))F 0(V ). QED

B. Proofs of Lemmas 3.3 and 5.1

I prove Lemma 3.3 first. By Lemmas 3.1 and 3.2, p0(F (V )) < 0 and F 0(V ) > 0 for all
V < V̄ . Because J(V ) > 0 for all V , as shown later, then (3.8) implies ẇ(t) > 0 for all
V < V̄ . Because V̄ is the highest value offered, then p(F (V̄ )) = 0 and V̇ = 0 at V = V̄ .
Then D(V̄ ) = 0, and (3.3) implies V̄ = u(w̄)/σ. Similarly, because J̇(V̄ ) = 0, (3.5) implies
J(V̄ ) = (y − w̄)/σ. Because recruiting at w̄ should yield zero net profit, q(V̄ )J(V̄ ) = k;
that is, w̄ = y− σk/q(V̄ ). If q(V̄ ) = q̄, then the stated expressions for w̄ and J(V̄ ) follow.
Since q̄ <∞ by Assumption 2, then w̄ < y and J(V̄ ) > 0.
To show q(V̄ ) = q̄, suppose that q(V̄ ) = q̄ − δ to the contrary, where δ > 0. Because

q(V̄ )J(V̄ ) = k > 0 and J(V̄ ) = (y − w̄)/σ, then w̄ = y − σk/(q̄ − δ). Consider a firm
that deviates from w̄ to w̄ + ε, where ε > 0, which generates a value to a worker as
V̂ = u(w̄ + ε)/σ. Because the firm is the only one that offers a wage higher than w̄, the
workers who are employed at w̄ will all apply to this firm, which yields q(V̂ ) = q̄. The
firm’s expected value of recruiting is q(V̂ )J(V̂ ) = (y − w̄ − ε)q̄/σ, which exceeds k for
sufficiently small ε > 0. This result contradicts the fact that V̄ is an equilibrium value.
Thus, q(V̄ ) = q̄. This completes the proof of Lemma 3.3.
Now, turn to Lemma 5.1. Let w(V ) be an arbitrary function in Ω. It is easy to

verify that Jw(V ) defined by (5.1) is strictly positive, bounded, strictly decreasing and
continuously differentiable, with J 0(V ) = −1/u0(w(V )) < 0. Because w(V ) is increasing,
then J 0(V ) is decreasing and J(V ) is (weakly) concave. Moreover, Jw(V̄ ) = k/q̄. Similarly,
pw(V ) defined by (5.2) is bounded and continuous for all V (including V = V̄ ), with
pw(V̄ ) = P (q̄) = 0. For all V < V̄ , pw(V ) is differentiable and strictly decreasing because

p0w(V ) =

Ã
P 0
k

J2w

!
1

u0(w(V ))
< 0,

where the argument of P 0 is k/Jw(V ) and P 0 < 0 under Assumption 2. Moreover, for any
given value V ,

d

dJw

Ã
P 0
k

J2w

!
=
k

J3w

Ã
− k
Jw
P 00 − 2P 0

!
≥ 0

where the inequality follows from part (iii) of Assumption 2. Because Jw(V ) is decreasing,
the function P 0k/Jw(V ) is decreasing. Because 1/u0(w(V )) is increasing in V and P 0 < 0,
then p0w(V ) is decreasing. That is, pw(V ) is (weakly) concave. QED
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C. Proof of Theorem 5.2

The sets Ω and Ω0 are defined prior to Lemma 5.1 and the mapping Γ is defined by
w1(V ) = (Γw)(V ), where w1 is the solution to (5.3). It can be verified that Ω is a closed
and convex set. Lemmas C.1 and C.2 below state that Γ : Ω → Ω0 is a continuous
mapping in the supnorm. Under the assumption that the image of Γ is compact, the
Schauder fixed point theorem implies that Γ has a fixed point in Ω, denoted as w∗. Because
w∗(V ) = (Γw∗)(V ) ∈ Ω0, then w∗(V ) is strictly increasing for all V < V̄ . This implies that
Jw∗(V ) and pw∗(V ) are strictly concave, in addition to the properties stated in Lemma 5.1.

Lemma C.1. Γ : Ω→ Ω0 ⊂ Ω.

Proof. Temporarily denote the left-hand side of (5.3) as L(w1) and the right-hand side
as R(V ). Recall that w̄ < y. Because L(w) is continuous and strictly decreasing for all
w < y, it is invertible for all w ∈ [w, w̄]. Then, w1(V ) = L−1(R(V )). Pick an arbitrary
w ∈ Ω. I show that w1 ∈ Ω0. This is done in the following steps.
First, w1(V ) is continuous because Jw(.), pw(.) and Fw(.) are all continuous.
Second, w1(V ) is strictly increasing for all V < V̄ , i.e., R(V ) is strictly decreasing. Pick

arbitrary values V1 and V2, with V ≤ V1 < V2 < V̄ , we show that the following (stronger)
property holds:

0 < Jw (V2)S ≤ R (V1)−R (V2) ≤ Jw (V1)S, (C.1)

where
S = u0 (w (V2)) [σ + λ1pw (F2)]− u0 (w (V1)) [σ + λ1pw (F1)] > 0.

Note that S > 0, indeed, because w (V ) is increasing, pw (F ) is strictly decreasing and
Fw (V ) is strictly increasing. To establish (C.1), note that Jw(V ) is decreasing and concave
with derivative J 0w(V ) = −1/u0 (w (V )). Then,

V2 − V1
u0(w(V1))

≤ Jw(V1)− Jw (V2) ≤ V2 − V1
u0 (w (V2))

,

Similarly, because the function [σV − λ1Dw (V )] is increasing and concave with derivative
− [σ + λ1pw (F )], I have:

− [σ + λ1pw (F1)] ≤ [σV − λ1Dw (V1)]− [σV − λ1Dw (V2)]

V2 − V1 ≤ − [σ + λ1pw (F2)] .

Using the first part of the above two results to substitute Jw(V1) and [σV − λ1Dw (V1)] in
R (V1), I get R (V1) − R (V2) ≥ Jw (V2)S. Using the second part of the above two results
to substitute Jw (V2) in R(V1), I get the second part of R (V1)−R (V2) ≤ Jw (V1)S.
Third, w1(V ) ∈ [w, w̄] for all V , with w1(V̄ ) = w̄. Examine w1(V̄ ). Because w(V̄ ) = w̄,

then (5.3) implies:

L(w1(V̄ )) = R(V̄ ) = u
0(w̄)(y − w̄) + u(w̄) = L(w̄).

32



Because L(w) is strictly decreasing, the above equation implies w1(V̄ ) = w̄. Since w1(V )
is strictly increasing for V < V̄ , then w1(V ) < w̄ for all V < V̄ .
Finally, I show w1(V ) ≥ w. Since L0(w) < 0, w1(V ) ≥ w if and only if L(w) ≥ R(V ).

A sufficient condition is L(w) ≥ R(V ), because R(V ) is a decreasing function. Note that
the following holds:

R(V ) = u0(w(V )) [σ + λ1pw(Fw(V ))]Jw(V ) + σV − λ1Dw(V )
< u0(w) [σ + λ1pw(Fw(V ))]Jw(V ) + u(b)
≤ u0(w) [σ + λ1pw(V )]Jw(V ) + u(b)
≤ u0(w) [σ + λ1pw̄(V )]Jw̄(V ) + u(b)

The first inequality follows from the facts that w(V ) ≥ w, V = u(b)/σ and Dw(V ) > 0.
The second inequality follows from the facts that Fw(V ) ≥ V and that pw(.) is decreasing.
To obtain the third inequality, note that Jw(V ) ≤ Jw̄(V ) and pw(V ) ≤ pw̄(V ) for all V .
Therefore, a sufficient condition for w1(V ) ≥ w is:

L(w) ≥ u0(w) [σ + λ1pw̄(V )]Jw̄(V ) + u(b)

This condition can be re-arranged as (5.7), which is assumed to hold. This completes the
proof of Lemma C.1.

Lemma C.2. Γ is continuous in the supnorm.

Proof. To show that the mapping Γ is continuous in the supnorm, I show that the
following holds for all wa, wb ∈ Ω and all V :

|(Γwa)(V )− (Γwb)(V )| ≤ A kwa − wbk , (C.2)

where the norm is the supnorm and A > 0 is a finite constant. Once this is done, then

kΓwa − Γwbk = sup |(Γwa)(V )− (Γwb)(V )| ≤ A kwa − wbk ,

which implies that Γ is continuous in the supnorm.
To show (C.2), take arbitrarily wa, wb ∈ Ω and V ∈ [V , V̄ ]. Without loss of generality,

assume wa(V ) ≥ wb(V ) for the given value V . Shorten the subscript wi on J , p, F , and
D to i, where i = a, b. Also, denote the right-hand side of (5.3) with w = wi(V ) as Ri(V ).
Because w ≥ wL > 0, Assumption 1 implies that there are positive and finite constants ω1
and ω2 such that ω1 ≤ |u00(w)| ≤ ω2 for all w ∈ [w, w̄]. Then

|L0(w)| = (y − w) |u00| ≥ (y − w̄)ω1 ≡ A1.

Note that A1 is bounded above 0. Since L(w) is decreasing, then

|Ra(V )−Rb(V )| = |L(Γwa(V ))− L(Γwb(V ))| ≥ A1 |Γwa(V )− Γwb(V )| .
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I show that |Ra(V )−Rb(V )| ≤ A6 kwa − wbk for some positive and finite A6. Then, (C.2)
holds after defining A = A6/A1. To establish the desired inequality for R, suppress the
given V . I have:

|Ra −Rb| = |{[u0(wa)− u0(wb)] Ja + u0(wb)(Ja − Jb)} [σ + λ1pa(Fa)]
+ λ1u

0(wb)Jb [pa(Fa)− pb(Fb)]− λ1 [Da −Db]|
≤ [|u0(wa)− u0(wb)|Ja + u0(wb) |Ja − Jb|] [σ + λ1pa(Fa)]
+λ1u

0(wb)Jb |pa(Fa)− pb(Fb)|+ λ1 |Da −Db|
I find the bound on each of the absolute values in the above expression.
Because u00 < 0, then

|u0(wa)− u0(wb)| ≤ |wa − wb|max{|u00(wa)| , |u00(wb)|} ≤ ω2 kwa − wbk (C.3)

By the definition of Jw,

|Ja − Jb| =
¯̄̄R V̄
V

u0(wa(z))−u0(wb(z))
u0(wa(z))u0(wb(z))

dz
¯̄̄

≤ 1
[u0(w̄)]2

R V̄
V |u0(wa(z))− u0(wb(z))| dz

≤ ω2
[u0(w̄)]2

R V̄
V |wa(z)− wb(z)| dz ≤ ω2(V̄−V )

[u0(w̄)]2 kwa − wbk
(C.4)

The coefficient of kwa − wbk is bounded because u0(w̄) > 0 and ω2 <∞.
To develop bounds on |pa(Fa)− pb(Fb)| and |Da −Db|, let ε = kwa − wbk > 0 with loss

of generality. (If kwa − wbk = 0, then wa = wb for all V , in which case |pa(Fa)− pb(Fb)| =
|Da −Db| = kwa − wbk; these provide the required bounds.) I examine two cases sepa-
rately: the case where V is close to V̄ and the case where V is away from V̄ . The separation
is necessary because P 0(q) and P 00(q) might be unbounded at q = q̄ (i.e., at V = V̄ ).
Consider first the case where V is close to V̄ . In this case, Fa(V ) and Fb(V ) are close

to V̄ . Because pw(V ) is continuous for all V , including V = V̄ , and because F (V ) is
continuous, then for given ε > 0, there exists δ > 0 such that

V̄ − V < δ =⇒
¯̄̄
pi(Fi)− pi(V̄ )

¯̄̄
< ε/2, for i ∈ {a, b}

Because pi(V̄ ) = 0, the following holds for V > V̄ − δ:

|pa(Fa)− pb(Fb)| ≤ |pa(Fa)|+ |pb(Fb)| < ε = kwa − wbk (C.5)

|Da −Db| ≤ |pa(Fa)| (Fa − V ) + |pb(Fb)| (Fb − V ) < (V̄ − V ) kwa − wbk (C.6)

For the last inequality, I used the facts that |pi(Fi)| < ε/2 and that Fi−Vi ≤ V̄ −V . (C.5)
and (C.6) provide the required bounds when V > V̄ − δ.
Now consider the case where V ≤ V̄ − δ, where δ > 0. In this case, q < q̄, and

hence Assumption 2 implies that |P 0(q)| and |P 00(q)| are bounded for q ∈ [q, q̄). Because
p(V ) = P

³
k

J(V )

´
, then ¯̄̄̄

¯dP (k/J)dJ

¯̄̄̄
¯ =

Ã
− k
J2

!
P 0
Ã
k

J

!
34



¯̄̄̄
¯d2P (k/J)dJ2

¯̄̄̄
¯ =

Ã
k

J3w

!Ã
− k
Jw
P 00 − 2P 0

!
These absolute values are bounded above in the current case. Let A2 and A3 be the upper
bounds. Define

A4 = A2
ω2(V̄ − V )
[u0(w̄)]2

<∞

For any x ∈ [V , V̄ − δ],

|pa(x)− pb(x)| ≤ A2 |Ja(x)− Jb(x)| ≤ A4 kwa − wbk¯̄̄̄
¯dPadJa

− dPb
dJb

¯̄̄̄
¯ ≤ A3 |Ja − Jb|

These results lead to the following result:

|p0a(x)− p0b(x)| ≤
¯̄̄
dPa/dJa
u0(wa) −

dPb/dJa
u0(wb)

¯̄̄
≤
¯̄̄
dPa
dJa

¯̄̄ ¯̄̄
1

u0(wa) − 1
u0(wb)

¯̄̄
+ 1

u0(wb)

¯̄̄
dPa
dJa
− dPb

dJb

¯̄̄
≤ A2

[u0(w̄)]2 |u0(wa)− u0(wb)|+ A3
u0(w̄) |Ja − Jb|

≤ A4
V̄−V kwa − wbk+ A4A3/A2

u0(w̄) kwa − wbk

Suppose first that Fa ≥ Fb. If pa(Fa) ≥ pb(Fb), then
0 ≤ pa(Fa)− pb(Fb) ≤ pa(Fa)− pb(Fa) ≤ A4 kwa − wbk

The second inequality comes from the fact that p is decreasing and the last inequality from
the bound on |pa − pb| just derived. If pa(Fa) < pb(Fb), then

0 < pb(Fb)− pa(Fa) = −p0b(Fb)(Fb − V ) + p0a(Fa)(Fa − V )
≤ (Fa − V ) [p0a(Fa)− p0b(Fb)] ≤ (V̄ − V ) [p0a(Fb)− p0b(Fb)]
≤
h
1 + A3(V̄−V )

A2u0(w̄)

i
A4 kwa − wbk

The equality follows from the first-order condition for F , the second inequality from the
supposition Fa ≥ Fb, the third inequality from the facts that p0 is a decreasing function
and that Fa − V ≤ V̄ − V , and the last inequality from the bound on |p0a − p0b|. Thus, if
Fa ≥ Fb, then

|pa(Fa)− pb(Fb)| ≤
"
1 +

A3(V̄ − V )
A2u0(w̄)

#
A4 kwa − wbk (C.7)

Suppose now that Fa < Fb. By switching the roles of Fa and Fb, it can be shown that
(C.7) continues to hold. Thus, (C.7) holds for arbitrary Fa(V ) and Fb(V ) with V ≤ V̄ − δ.
Now let us examine |Da −Db| for the case V ≤ V̄ − δ. If Da ≥ Db, then

0 ≤ Da −Db = pa(Fa)(Fa − V )− pb(Fb)(Fb − V )
≤ pa(Fa)(Fa − V )− pb(Fa)(Fa − V )
= (Fa − V ) [pa(Fa)− pb(Fa)] ≤ (V̄ − V )A4 kwa − wbk
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The first equality comes from the definition of D(V ), the second inequality from the fact
that pb(f)(f − V ) is maximized at f = Fb, the last inequality from the bound on |pa − pb|
derived above and the fact Fa − V ≤ V̄ − V . The same result holds if Da < Db. Thus,

|Da −Db| ≤ (V̄ − V )A4 kwa − wbk (C.8)

Defining A5 = max{A4, 1} and replace A4 in (C.7) and (C.8) with A5. The resulting
bounds on |pa − pb| and |Da −Db| apply for both the case V > V̄ − δ and V ≤ V̄ − δ.
Substituting these bounds, (C.3) and (C.4), I have:

|Ra −Rb| ≤
nh
ω2Ja + u

0(wb)A4A2
i
[σ + λ1pa(Fa)]

+ λ1A5
h
u0(wb)

³
1 + A3(V̄−V )

A2u0(w̄)

´
Jb + λ1(V̄ − V )

io
kwa − wbk

Let A6 be the maximum value of the coefficient of kwa − wbk in the above expression,
taken over V ∈ [V , V̄ ]. Then, A6 is bounded above. Setting A = A6/A1 establishes the
inequality (C.2), which shows that Γ is continuous in the supnorm. This completes the
proof of Lemma C.2, and hence of Theorem 5.2. QED

D. Proofs of Corollary 5.3 and Lemma 6.1

To prove Corollary 5.3, suppose that |ẇ(t)| <∞ for all t. That is, ẇ(V (t)) is finite. If V̇ 6=
0, then w0(V ) = ẇ/V̇ exists and is finite. If V̇ = 0 at V1, then σV1−u(w(V1))−λ1D(V1) = 0.
Differentiating this equation with respect to V1 yields:

w0(V1) =
σ + λ1p(F (V1))

u0(w(V1))
∈ (0,∞). (D.1)

That is, w(V ) is differentiable at V1. This argument applies to V̄ , because V̇ = 0 at V = V̄ .
Thus, w0(V1) exists and is finite for all V . From (5.1), (5.2) and Lemma 3.2, one can then
verify that J 00(V ), p00(V ) and F 0(V ) all exist and are finite for all V < V̄ .
I still need to show that w0(V ) > 0, V̇ > 0 and J̇(V ) < 0 in the case V < V̄ . In

this case, F (V ) < V̄ . Lemma 3.2 implies dp(F (V ))/dV < 0. The right-hand side of (3.8)
is positive and finite, which implies ẇ(V ) > 0. Thus, w0(V )V̇ ∈ (0,∞) for all V < V̄ .
Because w(V ) is strictly increasing for all V < V̄ and V̇ is bounded (see (3.3)), then
w0(V ) ∈ (0,∞) and V̇ ∈ (0,∞) for all V < V̄ . Finally, J̇(V ) = J 0(V )V̇ ∈ (0,∞) for all
V < V̄ . This completes the proof of Corollary 5.3.
For Lemma 6.1, consider the group of unemployed workers whose values are greater

than V , where V ∈ [v0, V̄ ]. Equating the flows into this group to the flows out of this
group in a small interval of time dt, I obtain:

(σdt) {1− (1− n) [1−Gu(V )]} [1− Φ(V )]

= (σdt)(1− n)[1−Gu(V )]Φ(V ) + λ0(1− n) R V̄V [p(F (z))dt]dGu(z).
The left-hand side gives the flow into the group, which is generated by newborns who
replace workers who were not in the group and who just died. The measure of agents who
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were not in the described group is {1− (1− n) [1−Gu(V )]}. When such an agent dies
and is replaced by a new agent, the new agent belongs to the described group if the agent
draws a value of leisure higher than V , which occurs with probability 1 − Φ(V ). Note
that if agents who just died were in the described group and are replaced by new agents
who draw values above V , such newborns do not change the measure of the group. The
right-hand side of the above equation gives the flows out of the group. The first term is
caused by death in the group whose replacements draw values less than or equal to V .
The second term is the flow of agents who just exited the group as the result of becoming
employed (at higher values).
Dividing the two sides of the equation by dt and re-arranging, I obtain:

σ[n− Φ(V ) + (1− n)Gu(V )] = λ0(1− n)
Z V̄

V
p(F (z))dGu(z). (D.2)

From this equation one can show that Gu(V ) is continuous and differentiable for all V ∈
[v0, V̄ ]. Differentiating with respect to V , I get:

gu(V ) =
σφ(V )

(1− n) [σ + λ0p(F (V ))]
. (D.3)

Integrating over V yields (6.3). Because Gu(V̄ ) = 1, the fraction of employed workers
satisfies (6.4). QED

E. Proofs of Theorem 6.2 and Corollary 6.3

To prove Theorem 6.2, I establish continuity of Ge first. Use (D.2) to substitute for the
last term in (6.5). With ∆ being defined prior to (6.6), I get:

limdt↓0
Ge(V )−Ge(V−V̇ dt)

dt

= σ∆(F−1(V ))− σGe(V )− λ1
R V
max{v1,F−1(V )} p(F (z))dGe(z)

(E.1)

Suppose, contrary to the theorem, that Ge has a mass point at a value V ∈ [v1,V̄ ]. Then

lim
dt↓0

Ge(V )−Ge(V − V̇ dt)
dt

=∞.

This violates (E.1), because the right-hand side of (E.1) is bounded. Thus, Ge does not
have a mass point, and so it is a continuous function.
The density function, ge, is also continuous. To see this, denote

ge(V−) = lim
dt↓0

Ge(V )−Ge(V − dt)
dt

The left-hand side of (E.1) is equal to ge(V−)V̇ . The right-hand side is continuous in V ,
because Ge, F

−1 and p(F (.)) are continuous. Thus, ge(V−)V̇ must be continuous. Because
V̇ is also continuous, ge must be continuous. Thus, I can rewrite (E.1) as (6.7).
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Continuity of ge implies thatGe is continuously differentiable. Since F
−1 and p(F (.)) are

continuously differentiable, differentiability of Ge implies that the right-hand side of (6.7)
is continuously differentiable for all V 6= v2. Therefore, ge is continuously differentiable for
all V 6= v2.
Now I derive (6.8) and (6.9). For V ∈ [v1, v2), F−1(V ) < v1, and so (6.7) becomes:

ge1(V )V̇ = σ∆(F−1(V ))− σGe1(V )− λ1

Z V

v1
p(F (z))dGe1(z) (E.2)

Setting V = v1 in (E.2) leads to ge1(v1) = 0. Differentiate (E.2) and divide the result by
γ(T (V ), 0), where γ is defined by (3.6) and T by (3.11). I have:

g0e1(V )V̇ + a(V )ge1(V )
γ(T (V ), 0)

=
b(V )

γ(T (V ), 0)
(E.3)

where

a(V ) = σ + λ1p(F (V )) +
dV̇

dV
, b(V ) = σ

d

dV
∆(F−1(V ))

The definition of T (V ) implies T 0(V ) = 1/V̇ . Then, it can be verified that the left-hand
side of (E.3) is equal to the derivative of the function, ge1(V )V̇ /γ(T (V ), 0), with respect
to V . Integrate (E.3) from v1 to V . Using the fact γ(T (V ), 0)/γ(T (z), 0) = γ(T (V ), T (z))
to rewrite the result, I have (6.8). Since ge is continuous, taking the limit V ↑ v2 in (6.8)
gives ge(v2).
Now examine the case V ∈ [vj, vj+1), where j ≥ 2. In this case, F−1(V ) ≥ v1, and so

(6.7) becomes

gej(V )V̇ = σ∆(F−1(V ))− σGen(V )− λ1

Z V

F−1(V )
p(F (z))dGe(z) (E.4)

I do not add the subscript j to Ge on the right-hand side of the equation because, if
vj < V < vj+1, some applicants to values above V come from the interval [vj, V ) while
others come from the interval [F−1(V ), vj). Differentiating (6.7) yields:

g0ej(V )V̇ + a(V )gej(V ) = b(V ) + λ1p(V )ge(j−1)(F−1(V ))
dF−1(V )
dV

(E.5)

where a(V ) and b(V ) are defined as before. Using the same procedure as the one used to
solve for ge1 above, I obtain:

gej(V ) =
1

V̇

Z V

v1
γ(T (V ), T (z))

n
σδ(F−1(z)) + λ1p(z)ge(j−1)(F−1(z))

o
dF−1(z)

To obtain (6.9), set V = vj in the above solution:

gej(vj) =
1

v̇j

Z vj

v1
γ(T (vj), T (z))

n
σδ(F−1(z)) + λ1p(z)ge(j−1)(F−1(z))

o
dF−1(z)
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Note that
γ (T (V ), T (vj)) γ(T (vj), T (z)) = γ(T (V ), T (z)).

Using this fact and the above formulas for gej(V ) and gej(vj), one can compute the left-
hand side of (6.9) and show that it is equal to the right-hand side. Because ge is continuous,
then gej(vj) = limV→vj ge(j−1)(V ), all j. This completes the proof of Theorem 6.2.
Now, turn to Corollary 6.3. I have shown ge(v1) = 0 in the above proof. Because

0 < F 0(V ) ≤ 1/2 for all V < V̄ , then dF−1(V )/dV > 0 for all V < V̄ . Also, V̇ > 0 and
δ(V ) > 0 for all V < V̄ . These features imply that b(V ) > 0 for all V < V̄ . Substituting
this result and ge(v1) = 0 into (E.5) yields g

0
e(v1) > 0.

Supposing F 0(V̄ ) > 0, I now show that ge(V̄ ) = 0. The supposition F 0(V̄ ) > 0 implies
that dF−1(V )/dV is bounded. Because p(V̄ ) = 0, then regardless of whether V̄ = v2, the
following holds (see (E.3) and (E.5)):

g0e(V̄ )V̇ |V=V̄ + a(V̄ )ge(V̄ ) = b(V̄ )

The first term is zero because V̇ = 0 at V = V̄ . Since (D.1) holds for V1 = V̄ , then

dV̇

dV

¯̄̄̄
¯
V=V̄

= σ + λ1p(F (V̄ ))− u0(w(V̄ ))w0(V̄ ) = 0.

This implies a(V̄ ) = σ. Because p(F (V̄ )) = 0, then δ(V̄ ) = 0. In addition, dF−1(V )/dV is
finite at V = V̄ . Thus, b(V̄ ) = 0. The above form of (E.5) at V = V̄ becomes 0 = −σge(V̄ ),
i.e., ge(V̄ ) = 0.
The feature g0e(v1) > 0 implies that ge(v1 + ε) > 0, where ε > 0 is sufficiently small.

Because ge(V ) is continuous and ge(V̄ ) = 0, then ge(V ) must be decreasing when V is close
to V̄ . That is, there exists V̂ ∈ (v1, V̄ ) such that g0e(V ) < 0 for V ∈ [V̂ , V̄ ). QED

39



References

[1] Acemoglu, D. and R. Shimer, 1999a, “Efficient unemployment insurance,” Journal of
Political Economy 107, 893-928.

[2] Acemoglu, D. and R. Shimer, 1999b, “Holdups and efficiency with search frictions,”
International Economic Review 40, 827-850.

[3] Buchinsky, M. and J. Hunt, 1999, “Wage mobility in the United States,” Review of
Economics and Statistics 81, 351-368.

[4] Burdett, K. and M.G. Coles, 2003, “Equilibrium wage-tenure contracts,” Economet-
rica 71, 1377-1404.

[5] Burdett, K. and D. Mortensen, 1998, “Wage differentials, employer size, and unem-
ployment,” International Economic Review 39, 257-273.

[6] Burdett, K., Shi, S. and R. Wright, 2001, “Pricing and matching with frictions,”
Journal of Political Economy 109, 1060-1085.

[7] Coles, M. and J. Eeckhout, 2003, “Indeterminacy and directed search,” Journal of
Economic Theory 111, 2003, 265-276.

[8] Delacroix, A. and S. Shi, 2006, “Directed search on the job and the wage ladder,”
International Economic Review 47, 651-699.

[9] Diamond, P., 1982, “Wage determination and efficiency in search equilibrium,” Review
of Economic Studies 49, 217-227.

[10] Farber, H.S., 1999, “Mobility and stability,” in O. Ashenfelter and D. Card (eds.)
Handbook of Labor Economics, Vol. 3B, Amsterdam: Elsevier.

[11] Galenianos, M. and P. Kircher, 2005, “Directed search with multiple job applications,”
manuscript, University of Pennsylvania.

[12] Harris, M. and B. Holmstrom, 1982, “A theory of wage dynamics,” Review of Eco-
nomic Studies 49, 315-333.

[13] Hosios, A., 1990, “On the efficiency of matching and related models of search and
unemployment,” Review of Economic Studies 57, 279-298.

[14] Jovanovic, B., 1979, “Job matching and the theory of turnover,” Journal of Political
Economy 87, 972-990.

[15] Julien, B., Kennes, J. and I. King, 2000, “Bidding for labor,” Review of Economic
Dynamics 3, 619-649.

40



[16] Kiefer, N.M. and G.R. Neumann, 1993, “Wage dispersion with homogeneity: the
empirical equilibrium search model”, in: Bunzel, et al. (eds), Panel Data and Labour
Market Dynamics (pp. 57-74). Amsterdam: North Holland.

[17] Menzio, G. and S. Shi, 2007, “On-the-job search over the business cycles,” preliminary
work, University of Pennsylvania.

[18] Moen, E.R., 1997, “Competitive search equilibrium,” Journal of Political Economy
105, 385-411.

[19] Montgomery, J.D., 1991, “Equilibrium wage dispersion and interindustry wage differ-
entials,” Quarterly Journal of Economics 106, 163-179.

[20] Mortensen, D., 1982, “Property rights and efficiency in mating, racing, and related
games,” American Economic Review 72, 968-979.

[21] Moscarini, G., 2005, “Job matching and the wage distribution,” Econometrica 73,
481-516.

[22] Peters, M., 1984, “Bertrand equilibrium with capacity constraints and restricted mo-
bility,” Econometrica 52, 1117-1129.

[23] Peters, M., 1991, “Ex ante price offers in matching games: Non-steady state,” Econo-
metrica 59, 1425-1454.

[24] Peters, M., 2006, “Unobservable heterogeneity in directed search,” manuscript, Uni-
versity of British Columbia.

[25] Pissarides, C., 1990, Equilibrium Unemployment Theory, Cambridge, Massachusetts:
Basil Blackwell.

[26] Postel-Vinay, F. and J-M. Robin, 2002, “Equilibrium wage dispersion with worker and
employer heterogeneity,” Econometrica 70, 2295-2350.

[27] Shi, S., 2001, “Frictional assignment I: efficiency,” Journal of Economic Theory 98,
232-260.

[28] Shi, S., 2002, “A directed search model of inequality with heterogeneous skills and
skill-biased technology,” Review of Economic Studies 69, 467-491.

[29] Shimer, R., 2005, “The assignment of workers to jobs in an economy with coordination
frictions,” Journal of Political Economy 113, 996-1025.

[30] Stevens, M., 2004, “Wage-tenure contracts in a frictional labour market: firms’ strate-
gies for recruitment and retention,” Review of Economic Studies 71, 535-551.

[31] van den Berg, G. and G. Ridder, 1998, “An empirical equilibrium search model of the
labor market,” Econometrica 66, 1183-1221.

41




