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Abstract

Recurrent intervals of inattention to the stock market are optimal if it is costly to

observe the value of the stock market. At times that consumers observe the value of

the stock market, they decide whether to transfer funds between a transactions account

from which consumption must be financed and an investment portfolio of equity and

riskless bonds. Any transfers of funds are subject to a proportional transactions cost,

so the consumer may choose not to transfer any funds on a particular observation date.

In general, the optimal adjustment rule–including the size and direction of transfers,

and the time of the next observation–is state-dependent. Surprisingly, we find that

eventually the consumer’s optimal behavior evolves to a situation with a purely time-

dependent rule, with a constant interval of time between observations. This interval of

time can be substantial even with tiny observation costs.

∗We thank seminar participants at Princeton University and the Penn Macro Lunch Group for helpful
comments and discussion.
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A pervasive finding in studies of microeconomic choice is that adjustment to economic

news tends to be sluggish and infrequent. Individuals rebalance their portfolios and revisit

their spending behavior at discrete and sometimes long intervals of time. During these

intervals of time, inaction is the rule. Similar sorts of inaction also characterize the financing,

investment, and pricing decisions of firms.

These observations have led economists to formulate models that are consistent with

this microeconomic behavior. One question of particular interest is whether, and to what

extent, infrequent adjustment at the micro level can help account for certain macroeconomic

outcomes. For instance, if firms adjust their prices infrequently, then monetary policy could

have important short-run real effects. Similarly, if individuals take several months or even

years to adjust their portfolios and their spending plans, the standard predictions of the

consumption smoothing and portfolio choice theories might fail.

Formal models of infrequent adjustment are often described as either time-dependent

or state-dependent. In models with time-dependent adjustment, adjustment is triggered

simply by calendar time and is independent of the state of the economy. In models with

state-dependent adjustment, adjustment takes place only when the state of the economy

reaches some trigger value, so the timing of adjustments is endogenous. A classic type

of state-dependent adjustment is the (S,s) model. The difference between time-dependent

and state-dependent models can have crucial implications for important economic questions.

For instance, monetary policy has substantial real effects that persist for several quarters if

firms change their prices according to a time-dependent rule. However, if firms adjust their

prices according to a state-dependent rule, then monetary policy may have little or no effect

on the real economy. (See e.g. Caplin and Spulber (1987) and Golosov and Lucas (2007).)

In this paper we develop and analyze an optimizing model that can generate both time-

dependent adjustment and state-dependent adjustment. The economic context is an infinite-

horizon continuous-time model of consumption and portfolio choice that builds on the frame-

work of Merton (1971). We augment Merton’s model by requiring that consumption can be

purchased only with a liquid asset and by introducing two sorts of costs—a cost of observing

the price of equity and a cost of transferring assets between the investment portfolio consist-

ing of risky equity and riskless bonds and a transactions account consisting of liquid assets.

Because it is costly for the consumer to observe the value of risky equity, the consumer will

choose to observe this value only at discretely-spaced points in time. At these observation

times, the consumer will choose when next to observe the value of equity, and will also ex-

ecute any transfers between the investment portfolio and the transactions account, as well
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as choose the path of consumption until the next observation date. In general, the timing

of asset transfers will be state-dependent. The relevant state of the consumer’s balance

sheet is captured by xt, defined as the ratio of the balance in the transactions account to

the contemporaneous value of the investment portfolio. On any given observation date, the

consumer chooses the date of the next observation, but, depending on the value of xt that is

realized on the next observation date, the consumer may or may not transfer assets between

the investment portfolio and the transactions account on that date. Because the timing of

asset transfers depends on the value of xt, we describe these transfers as state-dependent.

A surprising result of our analysis, however, is that eventually the consumer’s holdings in

the investment portfolio and the transactions account will evolve to a situation in which the

optimal timing of asset transfers is purely time-dependent. Indeed, when the asset holdings

get to this stage, the optimal time between successive asset transfers is constant.

We will show that optimal behavior can be described by three intervals for the value

of xt. When xt on an observation date has a high value, so that the consumer’s balance

sheet is relatively heavy in the transactions account, the consumer will find it optimal to use

some of the transactions account to purchase additional assets in the investment portfolio.

Alternatively, when xt has an intermediate value on an observation date, the consumer will

not find it worthwhile to pay the transactions costs associated with either transferring assets

into the investment portfolio or transferring assets out of the investment portfolio. This

is the inaction situation that makes the timing of asset transfers state-dependent. Finally,

when xt is low on an observation date, the consumer will sell some assets from the investment

portfolio to replenish the transactions account in order to finance consumption until the next

observation date.

We show that eventually, though not necessarily immediately, optimal behavior will lead

to a low value of xt on an observation date. Once a low value of xt is realized on an

observation date, the consumer will not transfer more assets to the transactions account

than are needed to finance consumption until the next observation date. The reason is that

it is both costly to transfer assets and the liquid asset in the transactions account earns

a lower riskless rate of return than the riskless bond in the investment portfolio. In this

case, the consumer will plan to hold a zero balance in the transactions account on the next

observation date, so that xt will equal zero on the next observation date. Thus, on the

next observation date, xt will have a low value and the situation repeats itself: xt will

equal zero on every subsequent observation date and the optimal interval between successive

observations will be constant, which is a purely time-dependent rule.
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This paper relates to two strands of the literature. The first strand is the large literature

on transactions costs. In the models by Baumol (1952) and Tobin (1956), which are the

forerunners of the cash-in-advance model used in macroeconomics, consumers can hold two

riskless assets that pay different rates of return—money, which pays zero interest, and a

riskless bond that pays a positive rate of interest. Consumers are willing to hold money,

despite the fact that its rate of return is dominated by the rate of return on riskless bonds

because goods have to be purchased with money. That is, money offers liquidity services.

In our model, the liquid asset could pay a zero rate of return (as is the case for currency

when the rate of inflation is zero, so the real return on currency is zero) or it could pay a

positive rate of return as is the case for some liquid deposits in M1 and M2. But, as in

the Baumol-Tobin literature, the rate of return on the liquid asset is lower than the rate of

return on riskless bonds in the investment portfolio.

A more recent literature on portfolio transactions costs, including Constantinides (1986)

and Davis and Norman (1990) models the costs of transferring assets between stocks and

bonds in the investment portfolio as proportional to the size of the transfers. Here we also

model transactions costs as proportional to the size of the transactions, but the transactions

cost apply only to transfers between the liquid asset in the transactions account on the one

hand and the investment portfolio of stocks and bonds on the other. We do not model

the costs of reallocating stocks and bonds within the investment portfolio. For a retired

consumer who finances consumption by withdrawing assets from a tax-deferred retirement

account, the transactions cost of withdrawing the assets includes the taxes paid at the time

of withdrawal. The marginal tax rate for most consumers in this situation, which is part of

the transactions cost of transferring assets from the investment portfolio to the transactions

account, is likely to be far greater than any transactions costs associated with reallocating

the stocks and bonds within the investment portfolio.

A second strand of the literature, which includes Abel, Eberly, and Panageas (2007),

Duffie and Sun (1990) and Gabaix and Laibson (2002) analyzes infrequent adjustment of

portfolios that arises because it is costly to process information.1 If these costs are propor-

tional to the value of the entire investment portfolio, then in a continuous-time framework,

the consumer will choose not to observe the value of the investment portfolio continuously.

The two closest antecedents to our current paper are Duffie and Sun (1990) and Abel, Eberly,

1Reis (2006) develops and analyzes a model of optimal inattention for a consumer who faces a cost of
observing additive income, such as labor income. In this case, the consumer will adjust consumption to
changes in income only at discretely-spaced points in time. In this model, the consumer can hold only a
single riskless asset so there is no portfolio allocation problem.

4



and Panageas (2007). In our current paper, we show that the consumer’s behavior differs

in three different intervals of the state variable xt. In particular, we show that when xt

is low, the consumer will plan to arrive at the next observation date with a zero balance

in the transactions account, and that the length of time between subsequent observations

is constant. Duffie and Sun derive this result, but they implicitly confined attention to

low values of xt. Here we show that behavior is potentially different for intermediate and

high values of xt, which are situations not considered by Duffie and Sun. But we go on to

show that eventually xt will indeed become low on an observation date and then will remain

low on all subsequent observation dates. In this sense, Duffie and Sun confine attention

to the long run and we consider the transition path to the long run as well as the long

run. Importantly, the consideration of behavior outside of the long-run situation allows

the model to incorporate state-dependent adjustment as well as purely time-dependent ad-

justment. A second contribution of this paper relative to Duffie and Sun is that we offer

an assessment of the length of the interval of time between consecutive observations in the

long run. This assessment includes an analytic component and a quantitative component

based on a quadratic approximation. Finally, relative to our own earlier paper, this paper

explicitly allows separate consideration of observation costs and transactions costs. In ad-

dition, our earlier paper assumes that the investment portfolio is continuously re-balanced

by a portfolio manager who charges a fee proportional to the size of the portfolio (and thus

the fee is not separately identifiable from an observation cost that is proportional to the size

of the portfolio) whereas the current paper does not allow re-balancing of the investment

portfolio between observation dates. We will see that whether the portfolio is re-balanced

continuously or not can affect the optimal interval between observations by a factor of about

two.

We set up the consumer’s decision problem in Section 1. The consumer lives in con-

tinuous time but observes the value of the investment portfolio and makes decisions—about

consumption, transfers between the investment portfolio and the transactions account, the

share of the investment portfolio to hold in risky equity, and the next date at which to ob-

serve the value of the investment portfolio—at discretely spaced points in time. In Section

2, we analyze the optimal path of consumption over the discrete interval of time until the

next observation date. Then we analyze the optimal transfers between the investment port-

folio and the transactions account in Section 3. To analyze these optimal transfers will we

also develop properties of the value function. Next, in Section 4, we derive conditions that

characterize the optimal allocation of the investment portfolio, and we exploit these condi-
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tions in Section 5 to determine when the consumer will have exhausted the liquid assets in

the transactions account when arriving at an observation date. These results serve as the

basis for the graphical illustration of the dynamic behavior of the transaction account and

the investment portfolio in Section 6. Then in Section 7 we show that once the consumer

arrives at an observation date with a zero balance in the transactions account, she will arrive

at all subsequent observation dates with zero liquid assets. In formal terms, the amount

of liquid assets held when arriving at an observation date is a stochastic process, and zero

is an absorbing state for this process. We show in Section 7 that the absorbing state is

reached in finite time. Of course, the consumer does not continuously hold zero liquid as-

sets in the absorbing state. On each observation date, the consumer will sell assets from the

investment portfolio to replenish the liquid assets in the transactions account, and then will

gradually but completely deplete the transaction account to finance consumption until the

next observation date. In the absorbing state, the time interval between observation dates

is constant and we analyze this length of this interval in Section 8.

1 Consumer’s Decision Problem

Consider an infinitely-lived consumer whose objective at time t is to maximize

Et

½Z ∞

0

1

1− α
c1−αt+s e

−ρsds
¾
, (1)

where the coefficient of relative risk aversion is 0 < α 6= 1 and the rate of time preference
is ρ > 0. The consumer does not earn any labor income but has wealth that consists of

risky equity, riskless bonds, and a liquid asset used for transactions. Risky equity and

riskless bonds are held in an investment portfolio and cannot be used directly to purchase

consumption. Consumption must be purchased with the liquid asset, which the consumer

holds in a transactions account.

Equity is a non-dividend-paying stock with a price Pt that evolves according to a geo-

metric Brownian motion
dPt

Pt
= µdt+ σdz, (2)

where µ > 0 is the mean rate of return and σ is the instantaneous standard deviation. The

riskless bond has a constant instantaneous rate of return rf that is positive and less than the

mean rate of return on equity, so 0 < rf < µ. The total value of the investment portfolio,
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consisting of equity and riskless bonds, is St at time t.

At time t, the consumer holds Xt in the liquid asset, which pays a riskless instantaneous

rate of return rL, where 0 ≤ rL < rf . The rate of return on the liquid asset, rL, is lower than

the rate of return on the riskless bond in the investment portfolio, rf , because the liquid

asset provides transactions services not provided by the bond in the investment portfolio.

We introduce two types of costs into the consumer’s intertemporal decision problem: a

cost to observe the value of the investment portfolio and a cost to transfer assets between the

investment portfolio and the transactions account. The investment portfolio comprises the

consumer’s holding of equity and riskless bonds. The value of the riskless bonds is known to

the consumer because its value evolves deterministically. However, the consumer can observe

the value of risky equity held in his portfolio only by paying a fraction θ, 0 < θ < 1, of the

contemporaneous value of the equity. As a result of this observation cost, the consumer

will choose not to observe the value of the investment portfolio continuously. Instead, the

consumer will optimally choose discretely-spaced points in time, tj, j = 0, 1, 2, ..., at which

to observe the value of equity and hence St; during the periods of time between consecutive

observation dates, the consumer will be inattentive to the value of equity and St.

Suppose the consumer observes the value of the investment portfolio at time tj and next

observes its value at time tj+1 = tj + τ j. Immediately upon observing the value of Stj ,

the consumer may transfer assets between the investment portfolio and the liquid asset in

the transactions account (at a cost described below) so that at time t+j the value of the

investment portfolio is St+j . The consumer chooses to hold a fraction φj of St+j as risky

equity and fraction 1− φj in riskless bonds and does not rebalance the investment portfolio

before the next observation date.2 When the consumer next observes the value of the

investment portfolio, at time tj + τ j, its value, after paying the observation cost, is

Stj+τj = (1− θ)φj
Ptj+τj

Ptj

St+j +
¡
1− φj

¢ ¡
Rf
¢τj

St+j , (3)

where Rf ≡ er is the gross rate of return on the riskless bond per unit of time. Since

rf > rL, we have Rf > RL ≡ erL, which is the gross rate of return on the liquid asset per

unit of time.3

2The consumer does not learn any new information between time t+j and time tj+1 and hence cannot
adjust the portfolio in response to any news that arrives during this interval of inattention. It is possible
that the consumer could decide at time t+j to exchange equity for bonds at some time(s) before tj+1, but we
do not consider this possibility in this paper.

3We have assumed that the consumer can costlessly observe the values of the riskless bond in the invest-
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Define

R (tj, tj + τ j) ≡ (1− θ)φj
Ptj+τj

Ptj

+
¡
1− φj

¢ ¡
Rf
¢τj (4)

and observe that

Stj+τj = R (tj , tj + τ j)St+j . (5)

Thus, R (tj, tj + τ j) is the gross rate of return on the investment portfolio from time t+j to

time tj + τ j, net of the observation cost at time tj + τ j.

The second cost is a transaction cost that the consumer must pay whenever transferring

assets between the investment portfolio and the liquid asset. When the consumer uses some

of the liquid asset to purchase additional assets in the investment portfolio, the transaction

cost is ψb∆S ≥ 0, where ∆S ≥ 0 is the increase in the size of the investment portfolio and
ψb ≥ 0 is a proportional transactions cost. When the consumer sells some of the investment
portfolio to increase the amount held in the liquid asset, the transaction cost is −ψs∆S ≥ 0,
where −∆S ≥ 0 is the size of the decrease in the investment portfolio and 0 ≤ ψs < 1 is

a proportional transactions cost. We allow, but do not require, ψs and ψb to be equal.

Perhaps the most obvious interpretation of the proportional transactions costs, ψs and ψb,

is that they represent brokerage fees. Another interpretation presents itself if we consider

the investment portfolio to be a tax-deferred account such as a 401k account. In this case,

the consumer must pay a tax on withdrawals from the investment portfolio, and ψs would

be the consumer’s income tax rate, which would be substantially higher than a brokerage

fee.4

Suppose that we are at time 0 and the consumer has just observed the value of the

investment portfolio, S0. The next observation of the investment portfolio will be at date

ment portfolio and the riskless liquid asset in the transactions account. However, we can allow for a cost
of θf per unit value of the riskless bond to observe its value and a cost of θL per unit value of the liquid
asset to observe its value. We can incorporate these observation costs by defining

¡
Rf
¢τ ≡ (1− θf ) e

rfτ

and
¡
RL
¢τ ≡ (1− θL) e

rLτ , provided that
¡
Rf
¢τ

>
¡
RL
¢τ
, which would be true, for example, if θf = θL.

Including these observation costs allows one to model the observation cost as being proportional to total
wealth simply by setting θf = θL = θ. A rationale for this formulation is that the cost is a leisure cost, which
is proportional to total wealth. For instance, if the instantaneous utility function is u (c, l) = 1

1−αc
1−αf (l),

where l is leisure, then the marginal value of leisure is ul (c, l) = 1
1−αc

1−αf 0 (l). Thus, for a given level of
leisure, the cost of a unit of foregone leisure to observe the value of assets is proportional to c1−α, in utility
terms, which is proportional to c in terms of real goods, which is proportional to wealth in terms of real
goods.

4This interpretation of ψs as a tax rate is most plausible if the consumer only withdraws money from
the investment portfolio and never transfers assets into the investment portfolio. As we will see in Section
7, the long-run is characterized by precisely this situation in which the consumer never transfers funds into
the investment portfolio.
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τ . The length of time between adjacent observations need not be constant over time. In

general, the optimal length of time until the next observation date is a function of the state

variables, X and S. For an observation date, tj, the optimal value of the next observation

date is tj + bτ ¡Xtj , Stj
¢
.

Immediately after observing X0 and S0 at time 0, the consumer transfers assets between

the transactions account and the investment portfolio. If the consumer liquidates some

assets in the investment portfolio, thereby reducing the size of the investment portfolio to

S0+ from S0, the balance in the transactions account increases to X0+ from X0. Taking

account of the transactions cost ψs, we have

X0+ = X0 + (1− ψs) (S0 − S0+) , if S0 ≥ S0+ . (6)

If the consumer uses some of the liquid asset to increase the size of the investment portfolio

to S0+ from S0, the holding of the liquid asset falls to X0+ from X0. Taking account of the

transactions cost ψb, we have

X0+ = X0 + (1 + ψb) (S0 − S0+) , if S0 ≤ S0+ . (7)

2 Consumption until the Next Observation Date

Let C be the present value, discounted at the rate rL, of the flow of consumption over the

interval of time from 0+ to τ . Specifically

C =

Z τ

0

cse
−rLsds, (8)

where the path of consumption cs, 0+ < cs ≤ τ , is chosen to maximize the discounted value

of utility over the interval from 0+ to τ . Let

U (C; τ) = max
{cs}τs=0+

Z τ

0

1

1− α
c1−αs e−ρsds (9)

subject to a given value of C in equation (8). Since the consumer does not learn any new

information between time 0+ and time τ , the maximization in equation (9) is a standard

intertemporal optimization under certainty. The optimal values of consumption during this

interval of time satisfy the condition that the product of the intertemporal marginal rate
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of substitution between times 0+ and s,
³

cs
c0+

´−α
e−ρs, and the gross rate of return between

those times, erLs, equals one, so that

cs = e−
ρ−rL
α

sc0+, for 0+ ≤ s ≤ τ . (10)

Substituting cs from equation (10) into equation (8) yields

C = h (τ) c0+ (11)

where

h (τ) ≡
Z τ

0

e−ωsds =
1− e−ωτ

ω
(12)

and we assume that

ω ≡ ρ− (1− α) rL
α

> 0. (13)

Equations (10) and (11) imply that

cs = [h (τ)]
−1 e−

ρ−rL
α

sC, for 0 < s ≤ τ . (14)

Substituting equation (14) into equation (9), and using the definition of h (τ) in equation

(12) yields

U (C; τ) =
1

1− α
[h (τ)]αC1−α. (15)

Since all of the consumption during the interval of time from 0+ to τ is financed from the

liquid asset in the transactions account, which earns an instantaneous riskless rate of return

rL, we have

Xτ = (X0+ − C)
¡
RL
¢τ
. (16)

3 The Value Function and Its Properties

The value function V
¡
Xtj , Stj

¢
is the maximized value of the consumer’s utility from the

observation date tj onward, with the consumer choosing the optimal length of time until

the next observation date τ j ≡ bτ ¡Xtj , Stj
¢
, the optimal present value of the stream of

consumption until the next observation date, C, the optimal values of Xt+j
and St+j and the
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share of the investment portfolio held in risky equity at time tj, φj. Therefore,

V
¡
Xtj , Stj

¢
= max

C,X
t+
j
,
S
t+
j
,φj ,τj

1

1− α
[h (τ 0)]

αC1−α + βτE0
©
V
¡
Xtj+τj , Stj+τj

¢ª
. (17)

The value function defined in equation (17) is homogeneous of degree 1− α in Xtj and Stj
so that

V
¡
Xtj , Stj

¢
=

1

1− α
S1−αtj

v
¡
xtj
¢

(18)

where

xt ≡ Xt

St
. (19)

The maximization on the right hand side of equation (17) involves the choice of five

variables at time t+j : C,Xt+j ,
St+j , φj, and τ j. Our strategy for analyzing this maximization

is to begin by finding the optimal values of some of these five variables given arbitrary values

of the remaining variables. To implement this strategy we introduce two constructs that we

define formally in this section: the restricted value function F (X0, S0; τ) and the conditional

value function bV ¡Xtj , Stj ; τ j
¢
.

3.1 The Restricted Value Function F (X0, S0; τ)

Suppose that time 0 is an observation date and define the restricted value function F (X0, S0; τ)

as the maximized expected present value of the consumer’s infinite-horizon utility from date 0

onward given that the consumer will not transfer any assets between the investment portfolio

and the transactions account until time τ (so that X0+ = X0 and S0+ = S0). Specifically

F (X0, S0; τ) = max
C,φ0

U (C; τ) + e−ρτE {V (Xτ , Sτ)} (20)

where

Xτ = (X0 − C)
¡
RL
¢τ

(21)

and

Sτ = R (0, τ)S0. (22)

F (X0, S0; τ) is strictly increasing in X0 and S0 and is homogeneous of degree 1 − α in X0

and S0. It is straightforward to show that the weak concavity of V
¡
Xtj , Stj

¢
and the strong

concavity of U (C) imply that F (X0, S0; τ) is strictly concave in X0 and S0.
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Lemma 1 : V (X,S) is concave, and F (X0, S0; τ) is strictly concave in X0 and S0.

Proof. See Appendix.
The function F (X,S; τ) is homogeneous of degree 1− α in X and S, and hence can be

written as

F (X,S; τ) =
1

1− α
S1−αf (x; τ) . (23)

Define the function

mf (x; τ) ≡ (1− α)
f (x; τ)

f 0 (x; τ)
− x. (24)

It can be shown that5

mf (x; τ) =
FS (X,S; τ)

FX (X,S; τ)
> 0. (25)

Thus, mf (x; τ) is the (negative of the) slope of the level set F (X,S; τ) = F , i.e., it is

−dX
dS
|F (X,S;τ)=F and can be interpreted as the marginal rate of substitution between X and

S. The strict concavity of F (X,S; τ) implies that m0
f (x; τ) > 0.

6

5Differentiate F (X,S; τ) with respect toX and S, respectively, and use the fact that F (X,S; τ) is strictly

increasing to obtain FX (X,S; τ) = 1
1−αS

−αf 0 (x; τ) > 0 and FS (X,S; τ) =
h
f (x; τ)− 1

1−αxf
0 (x; τ)

i
S−α >

0. Divide the expression for FS (X,S; τ) by the expression for FX (X,S; τ) to obtain equation (25) in the
text.

6Differentiating the expressions for FX (X,S; τ)and FX (X,S; τ) in footnote 5 with respect to X and S
yields

FXX (X,S; τ) =
1

1− α
S−α−1f 00 (x; τ) (F1)

FXS (X,S; τ) = − [αf 0 (x; τ) + xf 00 (x; τ)]
1

1− α
S−α−1. (F2)

and
FSS (X,S; τ) =

£
2αxf 0 (x; τ) + x2f 00 (x; τ)− α (1− α) f (x; τ)

¤ 1

1− α
S−α−1. (F3)

Define
H (X,S; τ) ≡ [FXX (X,S; τ)] [FSS (X,S; τ)]− [FXS (X,S; τ)]2 . (F4)

Substitute equations (F1), (F2), and (F3) into equation (F4) and simplify to obtain

H (X,S; τ) =

Ã
− (1− α)

f (x; τ) f 00 (x; τ)
[f 0 (x; τ)]2

− α

!µ
1

1− α

¶2µ
1

f 0 (x; τ)

¶2
αS−2(α+1). (F5)

Differentiate the expression for the marginal rate of substitution, mf (x; τ), in equation (24) to obtain

m0
f (x; τ) = −α− (1− α)

f (x; τ) f 00 (x; τ)
[f 0 (x; τ)]2

. (F6)
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3.2 The Conditional Value Function bV (X0, S0; τ)

Suppose that time 0 is an observation date and define the conditional value function bV ¡Xtj , Stj ; τ j
¢

as the maximized value of the consumer’s expected present value of lifetime utility from ob-

servation date 0 onward, for an arbitrary given value of τ , the next observation date, and

the optimal values all subsequent observation. Thus, at observation date 0,

bV (X0, S0; τ) = max
C,X0+,S0+ ,φ0

1

1− α
[h (τ 0)]

αC1−α + βτE0 {V (Xτ , Sτ)} (26)

and

V (X0, S0) = max
τ0

bV (X0, S0; τ 0) = bV (X0, S0;bτ 0 (X0, S0)) . (27)

Since bV ¡Xtj , Stj ; τ j
¢
is homogenous of degree 1− α in

¡
Xtj , Stj

¢
we have

bV ¡Xtj , Stj ; τ j
¢
=

1

1− α
S1−αtj

bv ¡xtj ; τ j¢ , (28)

and bv ¡xtj ; τ j¢ ≡ bV ¡xtj , 1; τ j¢ (29)

where xt ≡ Xt

St
.

Use the definition of F (X0, S0; τ) in equation (20) and the definition of bV (X0, S0; τ) in

equation (26) to obtain

bV (X0, S0; τ) = max
X0+ ,S0+

F (X0+ , S0+ ; τ) (30)

subject to equations (6) and (7). Substituting equations (6) and (7) into equation (30)

Use equation (F6) to rewrite equation (F5) as

H (X,S; τ) =

µ
1

1− α

¶2µ
1

f 0 (x; τ)

¶2
αS−2(α+1)m0

f (x; τ) (F7)

Strict concavity of F (X,S; τ) implies that H (X,S; τ) > 0, so equation (F7) implies that

m0
f (x; τ) > 0 (F8)
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yields

bV (X0, S0; τ) = max

"
maxS0+≤S0 F (X0 + (1− ψs) (S0 − S0+) , S0+ ; τ) ,

maxS0+≥S0 F (X0 + (1 + ψb) (S0 − S0+) , S0+ ; τ)

#
(31)

The right hand side of equation (31) contains two maximization problems. The first-order

conditions for the first maximization problem are

FS (X0+ , S0+ ; τ)

FX (X0+ , S0+; τ)
− (1− ψs) ≥ 0 (32)

and ∙
FS (X0+ , S0+)

FX (X0+ , S0+)
− (1− ψs)

¸
[S0 − S0+ ] = 0. (33)

Use equation (25) to rewrite equation (32) as

mf (x0+; τ) ≥ 1− ψs. (34)

Define π1 (τ) as the unique positive value of x that satisfies

mf (π1 (τ) ; τ) = 1− ψs. (35)

If, and only if, S0+ < S0, the consumer sells some assets in the investment portfolio at time

0 and uses the proceeds, net of transactions cost, to increase the transactions account, so

X0+ > X0. Therefore, S0+ < S0 if and only if x0+ ≡ X0+

S0+
> X0

S0
≡ x0, so equation (33) can

be rewritten as

[mf (x0+ ; τ)− (1− ψs)] [x0 − x0+ ] = 0. (36)

Equations (34), (35), and (36) imply7 that if x0 < π1 (τ), then x0+ = π1 (τ), so that at time

0+ the consumer sells some assets in the investment portfolio and increases the holding of

liquid assets in the transactions account. If x0 ≥ π1 (τ), then the investor does not sell any

assets from the investment portfolio.

Now consider the second maximization problem on the right hand side of equation (31),

maxS0+≥S0 F (X0 + (1 + ψb) (S0 − S0+) , S0+; τ). The first-order conditions for this maxi-

7If x0 < π1 (τ), then mf (x0; τ) < mf (π1 (τ) ; τ) = 1 − ψs ≤ mf (x0+ ; τ), so x0 < x0+ . Therefore,
equation (36) implies that mf (x0+ ; τ) = 1− ψs = mf (π1 (τ) ; τ), which implies that x0+ = π1 (τ) .
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mization problem are

mf (x0+ ; τ) ≤ (1 + ψb) (37)

and

[mf (x0+ ; τ)− (1 + ψs)] [S0 − S0+] = 0. (38)

Define π2 (τ) ≥ π1 (τ) as the unique positive value of x that satisfies

mf (π2 (τ) ; τ) = 1 + ψb. (39)

If, and only if, S0+ > S0, the consumer buys some assets for the investment portfolio at time

0+ by using some liquid assets and thereby reducing the size of the transactions account so

X0+ < X0. Therefore, S0+ > S0 if and only if x0+ ≡ X0+

S0+
< X0

S0
≡ x0, so equation (38) can

be rewritten as

[mf (x0+ ; τ)− (1 + ψb)] [x0 − x0+ ] = 0. (40)

Equations (37), (39), and (40) imply8 that if x0 > π2 (τ), then x0+ = π2 (τ), so the consumer

uses some of the liquid asset in the transactions account to buy assets in the investment

portfolio. If x0 ≤ π2 (τ), then the investor does not transfer any assets into the investment

portfolio.

We can easily summarize the transactions between the investment portfolio and the

transactions account at time 0+ as follows: If x0 < π1 (τ), the consumer sells enough assets

from the investment portfolio to increase x0+ to π1 (τ). If π1 (τ) ≤ x0 ≤ π2 (τ), then the

consumer does not transfer any assets between the investment portfolio and the transactions

account at time 0+. If x0 > π2 (τ), the consumer buys enough assets at time 0+ to add to

the investment portfolio to decrease x0+ to π2 (τ).

To describe the indifference curves of the conditional value function bV (X0, S0; τ), it will

be useful to define

mv (x; τ) ≡ (1− α)
bv (x; τ)bv0 (x; τ) − x, (41)

which is the analog of mf (x; τ) defined in equation (24). Just as mf (x; τ) is the (negative

of the) slope of the level set F (X,S; τ) = F , mv (x; τ) is the (negative of the) slope of the

level set bV (X,S; τ) = V . Thus, mv (x; τ) is the marginal rate of substitution between X

8If x0 > π2, then mf (x0; τ) > mf (π2; τ) = 1 + ψb ≥ mf (x0+ ; τ), so x0 > x0+ . Therefore, equation (40)
implies that mf (x0+ ; τ) = 1 + ψb = mf (π2; τ), which implies that x0+ = π2.
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Figure 1:

and S for the value function bV (X,S; τ), that is

mv (x; τ) =
bVS (xS, S; τ)bVX (xS, S; τ) . (42)

Since the value function is weakly concave, rather than strictly concave, in X and S,

m0
v (x; τ) ≥ 0. As we will show, there are some intervals of x for which m0

v (x; τ) ≡ 0

and there is an interval of x for which m0
v (x; τ) > 0.

3.2.1 Conditional Value Function for π1 (τ) ≤ x0 ≤ π2 (τ)

We have shown that if π1 (τ) ≤ x0 ≤ π2 (τ), the consumer does not transfer any assets

between the investment portfolio and the transactions account at time 0+. Therefore, the

optimal value of X0+ is X0 and the optimal value of S0+ is S0, so equation (30) implies thatbV (X0, S0; τ) ≡ F (X0, S0; τ) for all (X0, S0) for which π1 (τ) ≤ x0 ≡ X0

S0
≤ π2 (τ). Hence, if
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π1 (τ) ≤ x0 ≤ π2 (τ), then bv (x; τ) ≡ f (x; τ) andmv (x; τ) ≡ mf (x; τ). Therefore, equations

(35) and (39), together with the fact that mv (x; τ) ≡ mf (x; τ) is strictly increasing in x,

imply that

1 + ψb > mv (x; τ) > 1− ψs, if π1 (τ) < x < π2 (τ) . (43)

Figure 1 shows indifference curves of the conditional value function bV (X0, S0; τ) and the

restricted value function F (X0, S0; τ). The half-lines through the origin with slopes π1 (τ)

and π2 (τ), respectively, separate the positive quadrant in Figure 1 into three regions: I, II,

and III. The value of x at any point in the positive quadrant equals the slope of the line

through that point and the origin. Thus, Region II, which is the cone bounded by the two

half-lines with slopes π1 (τ) and π2 (τ), respectively, contains the combinations of X and S

for which π1 (τ) ≤ x0 ≤ π2 (τ). In Region II, the indifference curves of the conditional value

function bV (X0, S0; τ) and the restricted value function F (X0, S0; τ) are identical to each

other and are strictly convex.

3.2.2 Conditional Value Function for x0 < π1 (τ)

Suppose that the consumer observes the value of the investment portfolio at time 0 and that

the state variables take on values X0 and S0 such that x0 ≡ X0

S0
< π1 (τ). Since the ratio of

the transactions account to the investment portfolio is "too small", the consumer will want

to transfer assets from the investment portfolio to the transactions account to increase x0+

to π1 (τ) . That is, the consumer will want to transfer assets to the transactions account to

achieve

X0+ = π1 (τ (τ))S0+. (44)

Substituting equation (44) into equation (6) and solving for S0+ yields

S0+ =
X0 + (1− ψs)S0
1− ψs + π1 (τ)

, (45)

which, along with the definition of x0 ≡ X0

S0
, implies

S0+ =
1− ψs + x0
1− ψs + π1 (τ)

S0 < S0. (46)
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Since the consumer can instantaneously change his overall holdings of assets from (X0, S0)

to (X0+ , S0+) = (π1 (τ)S0+ , S0+) at time 0+, we have

bV (X0, S0; τ) = bV (π1 (τ)S0+ , S0+ ; τ) , if x0 ≤ π1 (τ) , (47)

which is the value-matching condition.

Since the conditional value function is homogeneous of degree 1 − α, we can rewrite

equation (47) as

S1−α0
bV (x0, 1; τ) = S1−α0+

bV (π1 (τ) , 1; τ) , if x0 ≤ π1 (τ) . (48)

Recall from equation (29) that bV (x0, 1; τ) = bv (x0; τ) and use equation (45) to rewrite
equation (48) as

bv (x0; τ) = ∙ 1− ψs + x0
1− ψs + π1 (τ)

¸1−α bv (π1 (τ) ; τ) , if x0 ≤ π1 (τ) . (49)

Note, in particular, that for x0 = 0 we have

bv (0; τ) = ∙ 1− ψs

1− ψs + π1 (τ)

¸1−α bv (π1 (τ) ; τ) . (50)

Differentiate bv (x0; τ) in equation (49) with respect to x0 to obtain
bv0 (x0; τ) = 1− α

1− ψs + x0
bv (x0; τ) , if x0 ≤ π1 (τ) . (51)

Substitute equation (51) into the definition of the marginal rate of substitution mv (x; τ) in

equation (41) to obtain

mv (x0; τ) = 1− ψs, if x0 ≤ π1 (τ) . (52)

Therefore, if x0 ≤ π1 (τ), the slope of the indifference curve of the value functionbV (X0, S0; τ) is constant and equal to − (1− ψs). In Figure 1, Region I, which is the

set of points in the positive quadrant on and below the half-line with slope π1 (τ), is the

set for which x0 ≤ π1 (τ). In Region I, the straight line with slope − (1− ψs) is an in-

difference curve of the conditional value function bV (X0, S0; τ), and the curved dashed line

is an indifference curve of the restricted value function F (X0, S0; τ). Note that these in-
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difference curves meet at the half-line with slope π1 (τ), which is the boundary between

Regions I and II, and the two indifference curves have equal slopes at this point. That is,

mf (π1 (τ) ; τ) = mv (π1 (τ) ; τ) = 1− ψs, which is the smooth-pasting condition.

When (X0, S0) is in Region I at an observation date, the optimal action is to sell some

assets from the investment portfolio and transfer the proceeds to the transactions account

instantly. Each dollar of assets sold from the investment portfolio increases the consumer’s

liquid assets by 1 − ψs dollars. That is, by decreasing S0+ by one dollar and moving one

dollar to the left in Figure 1, the consumer can increase X0+ by 1 − ψs dollars and thus

move upward by 1 − ψs dollars in Figure 1. Thus, the consumer can move leftward and

upward along a line with slope − (1− ψs). In fact, the consumer will sell enough assets from

the investment portfolio to increase the ratio xt to π1 and thus move to point A. Because

the consumer can instantly reach point A from any point on the line with slope − (1− ψs)

extending down and to the right from point A, the consumer’s expected present value of

lifetime utility at any such point is the same as at point A. Thus, all of these points lie on

the same indifference curve of the conditional value function bV (X0, S0; τ).

3.2.3 Conditional Value Function for x0 > π2

Suppose that the consumer observes the value of the investment portfolio at time 0 and

that the state variables X0 and S0 are such that x0 ≡ X0

S0
> π2 (τ). Since the ratio of the

transactions account to the investment portfolio is "too high", the consumer will want to

use some of the liquid asset in the transactions account to purchase additional assets in the

investment portfolio to reduce x0+ to π2 (τ) . That is, at time 0+ the consumer will transfer

assets from the transactions account to the investment portfolio to achieve

X0+ = π2 (τ)S0+. (53)

Substituting equation (53) into equation (7) and solving for S0+ yields

S0+ =
X0 + (1 + ψb)S0
1 + ψb + π2 (τ)

, (54)

which, along with x0 ≡ X0

S0
, implies

S0+ =
1 + ψb + x0
1 + ψb + π2 (τ)

S0 > S0. (55)
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Since the consumer can instantaneously re-allocate his holdings of assets from (X0, S0) to

(X0+ , S0+) = (π2 (τ)S0+ , S0+) at time 0+, we have

bV (X0, S0; τ) = bV (π2 (τ)S0+ , S0+ ; τ) , if x0 ≥ π2 (τ) , (56)

which is the value-matching condition.

Since the value function is homogeneous of degree 1−α, we can rewrite equation (56) as

S1−α0
bV (x0, 1; τ) = S1−α0+

bV (π2 (τ) , 1; τ) , if x0 ≥ π2 (τ) . (57)

Recall from equation (29) that bV (x0, 1; τ) = bv (x0; τ) and use equation (54) to rewrite
equation (57) as

bv (x0; τ) = ∙ 1 + ψb + x0
1 + ψb + π2 (τ)

¸1−α bv (π2 (τ) ; τ) , if x0 ≥ π2 (τ) . (58)

Differentiate bv (x0; τ) in equation (58) with respect to x0 to obtain
bv0 (x0; τ) = 1− α

1 + ψb + x0
bv (x0; τ) , if x0 ≥ π2 (τ) . (59)

Substitute equation (59) into the definition of mv (x; τ) in equation (41) to obtain

mv (x; τ) = 1 + ψb, if x0 ≥ π2 (τ) . (60)

Therefore, if x0 ≥ π2 (τ), the slope of the indifference curve of the conditional value

function bV (X0, S0; τ) is constant and equal to − (1 + ψb). In Figure 1, Region III, which

is the set of points in the positive quadrant on and above the half-line with slope π2 (τ), is

the set for which x0 ≥ π2 (τ). In Region III, the straight line with slope − (1 + ψb) is an

indifference of the conditional value function bV (X0, S0; τ) , and the curved dashed line is an

indifference curve of the restricted value function F (X0, S0; τ). These indifference curves

meet, and have equal slopes, at the half-line with slope π2 (τ). Thus, mf (π2 (τ) ; τ) =

mv (π2 (τ) ; τ) = 1 + ψb, which is the smooth-pasting condition.

When (X0, S0) is in Region III at an observation date, the optimal action is to use some

of the liquid assets in the transactions account to increase the investment portfolio. The

consumer must spend 1 + ψb of liquid assets from the transactions account to increase the

investment portfolio by one dollar. That is, in order to increase S0+ by one dollar and move
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one dollar to the right in Figure 1, the consumer can must decrease X0+ by 1+ψb dollars and

thus move downward by 1+ψb dollars in Figure 1. Thus, the consumer can move rightward

and downward along a line with slope − (1 + ψb). In fact, the consumer will sell enough

assets from the investment portfolio to decrease the ratio xt to π2 and thus move to point

B. Because the consumer can instantly reach point B from any point on the line with slope

− (1− ψs) extending up and to the left from point B, the consumer’s expected present value

of lifetime utility at any such point is the same as at point B. Thus, all of these points lie

on the same indifference curve of the conditional value function bV (X0, S0; τ).

3.3 Properties of the Value Function V (Xt, St)

Recall from equation (27) that the value function equals the conditional value function

evaluated at the optimal value of τ . That is, V (X0, S0) = bV (X0, S0;bτ 0 (X0, S0)). The

envelope theorem implies that VX (X0, S0) = bVX (X0, S0;bτ 0 (X0, S0)) and VS (X0, S0) =bVS (X0, S0;bτ 0 (X0, S0)) Thus, putting together the results from Regions I, II, and III, as

summarized in equations (43), (52), and (60), we have for any observation date tj

1 + ψb ≥
VS
¡
Xtj , Stj

¢
VX
¡
Xtj , Stj

¢ = mv (xτ ) ≥ 1− ψs (61)

where

mv (x) ≡ (1− α)
v (x)

v0 (x)
− x (62)

is the marginal rate of substitution between Xtj and Stj for the value function V
¡
Xtj , Stj

¢
and v (x) = V (x, 1).

Since VX
¡
Xtj , Sτ

¢
> 0, equation (61) implies that

(1 + ψb)VX
¡
Xtj , Stj

¢ ≥ VS
¡
Xtj , Stj

¢ ≥ (1− ψs)VX
¡
Xtj , Stj

¢
. (63)

4 Optimal Share of Equity in the Investment Portfolio

The gross rate of return on the investment portfolio from time 0+ to the next observation

date τ , net of the observation cost at date τ , is R (0, τ), which is given by equation (4). The
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excess rate of return on the investment portfolio, relative to a portfolio of riskless bonds, is

R (0, τ)− ¡Rf
¢τ
= φ0

∙
(1− θ)

Pτ

P0
− ¡Rf

¢τ¸
. (64)

The consumer chooses φ0 to maximize

E0 {V (Xτ , Sτ )} = E0

½
V

µ
Xτ ,

∙
φ0 (1− θ)

Pτ

P0
+ (1− φ0)

¡
Rf
¢τ¸

S0+

¶¾
(65)

by differentiating the right hand side with respect to φ0 and setting the derivative equal to

zero to obtain

E0

½
VS (Xτ , Sτ)

∙
(1− θ)

Pτ

P0
− ¡Rf

¢τ¸¾
= 0. (66)

Since φ0 is constant over the interval of time from 0+ to τ , equations (64) and (66) imply

that

E0
©
VS (Xτ , Sτ )

£
R (0, τ)− ¡Rf

¢τ¤ª
= 0, (67)

which implies

E0 {VS (Xτ , Sτ)R (0, τ)} = E0 {VS (Xτ , Sτ)}
¡
Rf
¢τ
. (68)

5 Does the Consumer Consume All Liquid Assets Be-

fore the Next Observation Date?

In this section, we consider whether the consumer spends all of the liquid assets in the

transactions account before the next observation date. As we will show in Section 7, this

question is crucial for determining the long-run behavior of the optimal value of xtj .

Define

G (τ) ≡ 1− ψs

1 + ψb

¡
Rf
¢τ − ¡RL

¢τ
(69)

as the net gain to the consumer from a round-trip transaction from the liquid asset in the

transactions account to the riskless asset in the investment portfolio, and then back to the

liquid asset in the transactions account on the next observation date. Specifically, the

consumer reduces the transactions account by one dollar and uses this dollar to buy 1
1+ψb

dollars of the riskless bond in the investment portfolio at time 0+. This amount will grow

to 1
1+ψb

¡
Rf
¢τ
dollars at time τ and can be converted to 1−ψs

1+ψb

¡
Rf
¢τ
dollars of liquid assets in

the transactions account at time τ . G (τ) is the excess return on this round-trip transaction
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compared to leaving the dollar in the transactions account from time 0+ to time τ and

growing to
¡
RL
¢τ
dollars. This excess return can be negative, zero, or positive depending

on the value of τ .

Define

τ ≡ 1

rf − rL
ln

µ
1 + ψb

1− ψs

¶
(70)

and observe that τ is positive provided that at least one of the transaction cost parameters,

ψb and ψs, is positive. It follows directly from the definition of G (τ) in equation (69) that

G (τ) Q 0 as τ Q τ . That is, for 0 ≤ τ < τ , the higher return on the riskless bond in the

investment portfolio would not accumulate for a long enough period of time to overcome

the transactions costs associated with a round-trip from the transactions account to the

investment portfolio and back. However, for τ > τ , the higher return on the investment

portfolio is earned for a long enough period of time to makeG (τ) > 0. Thus if G (τ) > 0, the

consumer will always benefit from transferring to the investment portfolio any liquid assets

in the transactions account in excess of the amount needed to finance consumption until the

next observation date. We will set up and analyze consumer’s constrained maximization as

a Lagrangian and will use this Lagrangian to analyze whether the consumer plans to hold

any assets in the transactions account when the next observation date arrives. As we will

show, the sign of G (τ) plays an important role in answering this question.

Suppose that time 0 is an observation date and that the next observation date τ is given.

The consumer chooses C, X0+, S0+ and φ0 to maximize U (C; τ) + βτE0 {V (Xτ , Sτ )} where
Xτ = (X0+ − C)

¡
RL
¢τ
and Sτ = R (0, τ)S0+. This maximization is subject to equations

(6) and (7) and the constraint that C ≤ X0+, which states that the consumer must pay

for consumption using the transactions account. To set up a Lagrangian expression to

allow us to determine if the constraint C ≤ X0+ is strictly binding, it is helpful to introduce

∆Sbuy ≡ max [S0+ − S0, 0] ≥ 0 as the increase in the investment portfolio when the consumer
uses some of the liquid assets in the transactions account to buy assets for the investment

portfolio at time 0+, and ∆Ssell ≡ min [S0+ − S0, 0] ≤ 0 as the (negative of the) decrease
in the investment portfolio when the consumer sells assets from the investment portfolio

and transfers the proceeds to the transactions account at time 0+. Taking account of the

transactions costs associated with transferring assets between the investment portfolio and

the transactions account, these definitions imply

X0+ = X0 − (1− ψs)∆Ssell − (1 + ψb)∆Sbuy. (71)
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The consumer’s conditional value function, given an arbitrary value of τ , is

bV (X0, S0; τ) = max
C,∆Ssell ,∆Sbuy ,φ0

U (C; τ) (72)

+βτE0
©
V
¡
(X0+ − C)

¡
RL
¢τ
, R (0, τ)S0+

¢ª
+λbuy∆Sbuy − λsell∆Ssell + η [X0+ − C] ,

where λbuy ≥ 0, λsell ≥ 0, and η ≥ 0 are Lagrange multipliers on the constraints ∆Sbuy ≥ 0,
∆Ssell ≤ 0, andX0+−C ≥ 0, respectively. Substitute equations (71) and (117) into equation
(72) to obtain

bV (X0, S0; τ) = max
C,∆Ssell ,∆Sbuy ,φ0

U (C; τ) (73)

+βτE0

(
V

Ã ¡
X0 − (1− ψs)∆Ssell − (1 + ψb)∆Sbuy − C

¢ ¡
RL
¢τ
,

R (0, τ)
¡
S0 +∆Ssell +∆Sbuy

¢ !)
+λbuy∆Sbuy − λsell∆Ssell

+η
£
X0 − (1− ψs)∆Ssell − (1 + ψb)∆Sbuy − C

¤
.

Differentiate the right hand side of equation (73) with respect to C, ∆Ssell, ∆Sbuy, respec-

tively, set the derivatives equal to zero, and use equation (68) to obtain

U 0 (C; τ) = βτE0 {VX (Xτ , Sτ)}
¡
RL
¢τ
+ η. (74)

λsell + (1− ψs) η (75)

= −βτE0 {VX (Xτ , Sτ)} (1− ψs)
¡
RL
¢τ
+ βτE0 {VS (Xτ , Sτ)}

¡
Rf
¢τ
.

and

−λbuy + (1 + ψb) η (76)

= − (1 + ψb)β
τE0 {VX (Xτ , Sτ)}

¡
RL
¢τ
+ βτE0 {VS (Xτ , Sτ)}

¡
Rf
¢τ
.

Lemma 2 If ψb + ψs > 0, then ∆Ssell = 0 or ∆Sbuy = 0.

Proof. Subtract equation (76) from equation (75) and use equation (74) to obtain

λsell + λbuy = (ψb + ψs)U
0 (C; τ) . Thus, that as long as at least one of the transactions
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cost parameters ψs and ψb is positive, the Lagrange multipliers λ
sell and λbuy must sum to a

positive number, so that at least one of the constraints ∆Ssell ≤ 0 or ∆Sbuy ≥ 0 must bind.

Thus, in the presence of transactions costs, the consumer will not simultaneously buy

and sell assets in the investment portfolio.

Lemma 3 If G (τ) > 0, then C = X0+ and hence Xτ = 0.

Proof. Multiply and divide the first term on the right hand side of equation (76) by

1−ψs and use VS (Xτ , Sτ ) ≥ (1− ψs)VX (Xτ , Sτ ) from equation (63) to obtain (1 + ψb) η ≥
βτE0 {VS (Xτ , Sτ)}

h¡
Rf
¢τ − 1+ψb

1−ψs
¡
RL
¢τi
+λbuy. Now use the definition of G (τ) in equation

(69) to rewrite this equation as η ≥ 1
1−ψsβ

τE0 {VS (Xτ , Sτ )}G (τ) + λbuy

1+ψb
. Since ψs < 1,

ψb ≥ 0, βτE0 {VS (Xτ , Sτ )} > 0, and λbuy ≥ 0, the assumption that G (τ) > 0 implies η > 0,
which implies C = X+

0 , which implies Xτ = 0.

The intuition underlying Lemma 3 is straightforward. As we have explained earlier,

if G (τ) > 0, the consumer can earn a positive riskless return from a round-trip transac-

tion from the riskless liquid asset in the transactions account to the riskless asset in the

investment portfolio, and then back to the liquid asset in the transactions account on the

next observation date. Because of this opportunity for a riskless gain by transferring assets

from the transactions account to the investment account, the consumer will transfer as many

liquid assets as possible from the transactions account, while leaving enough liquid assets

in the transactions account to finance consumption until the next observation date. Since

consumer will hold only enough liquid assets in the transactions account to finance until

the next observation date, the transactions account will be completely depleted on the next

observation date. Thus, if the next observation date is time τ , then Xτ will be zero.

Next we will show that it is not necessary for G (τ) > 0 in order for C = X0+ and hence

Xτ = 0.

Lemma 4 If x0 < π1 (τ), then C = X0+ and Xτ = 0.

Proof. If x0 < π1 (τ), then the consumer sells assets from the investment portfolio and

transfers the proceeds to the transactions account so that x0+ = π1 (τ). Since ∆Ssell > 0,

λsell = 0, so equation (75) implies (1− ψs) η = −βτE0 {VX (Xτ , Sτ)} (1− ψs)
¡
RL
¢τ
+

βτE0 {VS (Xτ , Sτ)}
¡
Rf
¢τ
. Use VS (Xτ , Sτ) ≥ (1− ψs)VX (Xτ , Sτ) from equation 63) to ob-

tain (1− ψs) η ≥ βτE0 {VS (Xτ , Sτ )}×
£¡
Rf
¢τ − ¡RL

¢τ¤
. Since βτE0 {VS (Xτ , Sτ)},

¡
Rf
¢τ

>
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¡
RL
¢τ
, and 1−ψs > 0, we have η > 0. Since η is the Lagrange multiplier on the constraint

X0+ − C ≥ 0, η > 0 implies C = X0+, which implies Xτ = 0.

The economic intuition underlying Lemma 4 is straightforward. Since x0 < π1 (τ), the

consumer transfers assets from the investment portfolio to the liquid asset in the transactions

account at time 0+. He will sell only enough of the investment portfolio to obtain enough

of the liquid asset to finance consumption, C. He will not want to acquire additional liquid

assets because he knows that he would arrive at time τ with a positive holding of the liquid

asset. Instead of paying a transaction cost to acquire an additional dollar of the liquid

asset and earn
¡
RL
¢τ
over the interval from time 0+ to time τ , the consumer could leave

the dollar in the investment portfolio and hold the dollar in riskless bonds earning
¡
Rf
¢τ

over the interval from 0+ to τ . Since Rf > RL, the consumer will choose not to acquire the

additional dollar of liquid asset at time 0+. That is, the consumer will acquire only enough

of the liquid asset at time 0 to finance C, the present value of the consumption stream from

0+ to τ . Note that this result holds regardless of the sign of G (τ).

Lemma 5 Suppose that x0 > π2 (τ). If G (τ) < 0, then C < X0+ and Xτ > 0.

Proof. We will use proof by contradiction. Suppose that C = X0+, so Xτ = 0, which

implies xτ = 0 < π1 (τ). Therefore, equations (42) and (52) imply that VS (Xτ , Sτ ) =

(1− ψs)VX (Xτ , Sτ), which along with equation (76) and the definition of G (τ) in equation

(69) implies η = 1
1−ψsβ

τE0 {VS (Xτ , Sτ)}G (τ)+ λbuy

1+ψb
. Since x0 > π2 (τ), the consumer uses

some of the liquid asset in the transactions account to buy some assets for the investment

portfolio. Therefore, ∆Sbuy > 0 which implies λbuy = 0. Since, 1 + ψb > 0, 1 − ψs > 0,

βτE0 {VS (Xτ , Sτ)} > 0, λbuy = 0 and G (τ) < 0, we have η < 0, which is a contradiction.

6 Dynamic Behavior of (Xt, St): A Graphical Illustra-

tion

In this section we illustrate graphically the dynamic behavior implied by Lemmas 3 - 5.

Suppose that time 0 is an observation date and that τ is the next observation date. We

begin by considering various cases in which G (τ) < 0.

First, consider the case in which x0 ≡ X0

S0
> π2, so that (X0, S0) is in Region III. As shown

in Figure 2, the consumer will instantaneously use some of the liquid assets in the transactions

account to buy additional assets in the investment portfolio, reducing X0+ by 1+ψb dollars
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for every dollar that S0+ is increased. That is, the consumer moves instantaneously from the

point labeled "time 0" to the point labeled "time 0+", which lines on the half-line with slope

equal to π2. The liquid assets in the transactions account earn a known rate of return and

since the consumer knows the entire consumption path from time 0+ to time τ , the consumer

at time 0 knows the value of the transactions account at time τ , Xτ . Since the value of Xτ

is known at time 0, we know at time 0 that at time τ , (Xτ , Sτ) will lie somewhere along the

horizontal dashed in line in Figure 2. If the stock market performs very poorly between

time 0 and time τ , so that Sτ is small, then (Xτ , Sτ) will be at a point such as that labeled

"III" in Figure 2. That is, if the stock market performs poorly, (Xτ , Sτ) will be in Region

III. Alternatively, if the stock market performs moderately well between time 0 and time

τ , then (Xτ , Sτ) will be represented by a point such as that labeled "II" in Figure 2, which

is in Region II. Finally, if the stock market performs very well between time 0 and time τ ,

then (Xτ , Sτ) will be represented by a point such as that labeled "I" in Figure 2, which is in

Region I. To summarize, if G (τ) < 0, then starting in Region III at time 0, the combination

(Xτ , Sτ ) can be in Region I, II, or III at the next observation date, time τ . If (Xτ , Sτ ) is

in Region III, then Figure 2 applies again. Figures 3 and 4 illustrate what happens if the

consumer finds that (Xt, St) is in Regions II or I, respectively, on an observation date.

Continue to assume that G (τ) < 0, so that Xτ > 0, and now suppose that (X0, S0) is

in Region II. In Region II, π1 < x0 < π2 so the consumer does not transfer any assets

between the transactions account and the investment portfolio at time 0. Thus, the point

labeled "time 0 and time 0+" in Figure 3 shows the values of the transactions account and

the investment portfolio at time 0 and time 0+. As in Figure n observation date. As we will

see, Figure 4 is strikingly different from Figures 2, since the value of Xτ is known at time 0,

we know at time 0 that at time τ , (Xτ , Sτ ) will lie somewhere along the horizontal dashed

in line in Figure 3. If the stock market performs very poorly between time 0 and time τ , so

that Sτ is small, then (Xτ , Sτ) will be at a point such as that labeled "III" in Figure 3, which

is in Region III. If the stock market performs moderately well between time 0 and time τ ,

then (Xτ , Sτ ) will be represented by a point such as that labeled "II" in Figure 3, which is

in Region II. Finally, if the stock market performs very well between time 0 and time τ ,

then (Xτ , Sτ) will be represented by a point such as that labeled "I" in Figure 3, which is in

Region I. Thus, just as in Figure 2 where consumer starts in Region III at time 0, Figure 3

illustrates that if G (τ) < 0, then starting in Region III at time 0, the combination (Xτ , Sτ)

can be in Region I, II, or III at the next observation date, time τ . If (Xτ , Sτ) is in Region

III, then Figure 2 applies again and if (Xτ , Sτ ) is in Region II, then Figure 3 applies again.
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S

X
Slope = π2(τ)

Slope = π1(τ)Slope = – (1 + ψb)

Region II

Region III

Region I

time 0

time 0+

Xτ

If and only if G(τ) < 0

III II I

Figure 2:

Figure 4 illustrates what happens when the consumer finds that (Xt, St) is in Regions I on

an observation date. As we will see, Figure 4 is strikingly different from Figures 2 and 3.

Now suppose that (X0, S0) is in Region I, where x0 < π1. Since x0 < π1, the consumer

instantaneously sells some the assets in the investment portfolio, and transfer the proceeds,

net of transactions costs, to the transactions portfolio. For each dollar of assets in the

investment portfolio that the consumer sells, the transactions account will increase by 1−ψs

dollar. Thus, the consumer moves instantaneously from the point labeled "time 0" to the

point labeled "time 0+", which lies along the half-line with slope equal to π1 in Figure 4.

Lemma 4 implies that since x0 < π1, the value of the transactions account at the next

observation date, Xτ , will be zero. Thus, (Xτ , Sτ) will lie somewhere along the horizontal

axis, regardless of the performance of the stock market.9 Figure 4 shows two possible

9This statement assumes that not more than 100% of the investment portfolio is held in risky equity. In
Region I, the consumer plans to arrive at the next observation date with a zero balance in the transactions
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S

X
Slope = π2(τ)

Slope = π1(τ)

Region II
Region III

Region I

time 0 and 0+

Xτ

Only if G(τ) < 0

III II I

Figure 3:

points along the horizontal axis—both labeled "time τ"—which correspond to weak or strong

performance of the stock market. Regardless of whether Sτ is relatively low or high, the

consumer will at time τ+ instantaneously sell assets from the investment portfolio and return

to the half-line with slope − (1− ψs) in Figure 4. Then the process repeats itself over, and

over again. Once the consumer is in Region I on observation date, the consumer will be

along the horizontal axis, with a zero balance in the transactions account, on all subsequent

observation dates.

So far, we have assumed that G (τ) < 0. If G (τ) > 0, then Lemma 3 implies that on the

next observation date, the transactions account will have a zero balance and the consumer

will be somewhere along the horizontal axis. From that time forward, Figure 4 applies and

account, so the consumer’s entire wealth will be in the investment portfolio. Since VS (0, S) approaches
infinity as S approaches 0 from above, the consumer will make sure to devote a non-negative portion of the
investment portfolio to riskless bonds to make sure that S does not fall to 0 or below.

29



S

X
Slope = π2(τ)

Slope = π1(τ)

Slope = – (1 – ψs)

Region II

Region III

Region I

time 0

time 0+

time τ time τ

time τ+

time τ+

Figure 4:

the consumer remains in Region I.

7 Long-Run Behavior

This section formalizes the dynamic behavior of the transactions account and the investment

portfolio, which were illustrated graphically in Section 6.

Proposition 1 (1) If xtj ≤ π1, then xtj+1 = 0. (2) If π1 ≤ xtj ≤ π2, and if G (τ) > 0,

then xtj+1 = 0. (3) If xtj > π2, then xtj+1 = 0 if G (τ) > 0, and xtj+1 > 0 if G (τ) < 0.

Proof. Lemma 4 implies statement (1). Lemma 3 implies statement (2). Lemmas 3

and 5 imply statement (3).

Corollary 1 If xtj ≤ π1, then xtj+i = 0. for all i = 1, 2, 3,....
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Corollary 2 If G (τ) > 0 at observation time tj, then xtj+i = 0 for all i = 1, 2, 3,....

Proposition 2 If xtj ≥ π2, and if G (τ j) < 0 at observation time tj, then Pr
©
xtj+1 ≤ π1

ª
<

1.

Proof. First, apply the envelope theorem to equation (17) to obtain: VS
¡
Xtj , Stj

¢
=

e−ρτjEtj

©
VS
¡
Xtj+1, Stj+1

¢ª ¡
Rf
¢τ
and VX

¡
Xtj , Stj

¢
= e−ρτjEtj

©
VX
¡
Xtj+1, Stj+1

¢ª ¡
RL
¢τ
and

then use equation (61) to obtain mv

¡
xtj
¢
=

VS(Xtj ,Stj)
VX(Xtj ,Stj)

=
Etj{VS(Xtj+1 ,Stj+1)}(Rf)

τ

Etj{VX(Xtj+1 ,Stj+1)}(RL)τ
. Now

rewrite this equation using the fact that VX
¡
Xtj+1, Stj+1

¢
= 1

mv xtj+1

VS
¡
Xtj+1, Stj+1

¢
to

obtain mv

¡
xtj
¢
Etj

½
1

mv xtj+1

VS(Xtj+1 ,Stj+1)
Etj{VS(Xtj+1 ,Stj+1)}

¾
=
³
Rf

RL

´τ
. Since xtj ≥ π2, we know

that mv

¡
xtj
¢
= 1 + ψb. Multiplying both sides of (??) by 1 − ψs, dividing both sides by

mv

¡
xtj
¢
= 1+ψb and rearranging yields Etj

½
1−ψs

mv xtj+1

VS(Xtj+1 ,Stj+1)
Etj{VS(Xtj+1 ,Stj+1)}

¾
= 1−ψs

1+ψb

³
Rf

RL

´τ
<

1. From this point on, the proof proceeds by contradiction. Suppose—counterfactually—that

Pr
©
xtj+1 ≤ π1

ª
= 1. In this casemv

¡
xtj+1

¢
= 1− ψs soEtj

½
1−ψs

mv xtj+1

VS(Xtj+1 ,Stj+1)
Etj{VS(Xtj+1 ,Stj+1)}

¾
=

1, which contradicts the previous statement that Etj

½
1−ψs

mv xtj+1

VS(Xtj+1 ,Stj+1)
Etj{VS(Xtj+1 ,Stj+1)}

¾
< 1.

Hence, it must be the case that Pr
©
xtj+1 ≤ π1

ª
< 1, as asserted.

Recall that the consumer observes the value of the investment portfolio at dates tj,

j = 0, 1, 2, .... Let xt+j be the value of x immediately after the consumer observes the value

of the investment portfolio at date tj and optimally transfers assets between the transactions

account and the investment portfolio. The sequence xt+j , j = 0, 1, 2, ..., is a stochastic process

that is confined to a closed interval [π1, π2].

Proposition 3 If xt+n = π1, then xt+j = π1 for all j > n.

Proof. If xt+n = π1, then xtn+1 = 0, which implies xt+n+1 = π1.

Proposition 3 states that π1 is an absorbing value for the stochastic process xt+j , which

is the value of xt immediately after observing the value of the investment portfolio and

optimally transferring assets between the investment portfolio and the transactions account.

The proof is straightforward: If the value of xtj is ever observed to be less than or equal to π1,

the consumer immediately sells some of the assets in the investment portfolio and increases

the transactions account so that xt+j = π1. When xt+j = π1, the consumer consumes the

entire transactions account over the interval of time until tj+1 and so arrives at time tj+1
with a zero balance in the transactions account. Thus, xtj+1 = 0 < π1, so at time tj+1
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the consumer sells assets from the investment portfolio to make xt+j+1 = π1, and the process

repeats itself.

Lemma 6 The distribution of Stj+1 conditional on φj and St+j is a translated lognormal

distribution with support
³¡
1− φj

¢ ¡
Rf
¢τj St+j ,∞´.

Proof. Equation (3) implies Stj+1 = (1− θ)φj
Ptj+1
Ptj

St+j +
¡
1− φj

¢ ¡
Rf
¢τj St+j . Since µ >

rf , the optimal value of φj is positive. Also, 1−θ > 0 and St+j > 0.
Ptj+1
Ptj

> 0 is conditionally

lognormal with support (0,∞), so (1− θ)φj
Ptj+1
Ptj

St+j is also conditionally lognormal with

support (0,∞), so (1− θ)φj
Ptj+1
Ptj

St+j . Conditional on φj and St+j ,
¡
1− φj

¢ ¡
Rf
¢τj St+j is a

constant.

Proposition 4 Let tn be the first time that xt+n = π1. Then Pr {tn <∞} = 1 and E(tn) <
∞.

Proof. Lemma 6 implies that δ (x) ≡ Pr
n
xtj+1 ≤ π1|xt+j = x

o
> 0 for any x in [π1, π2].

This probability satisfies δ (x) > 0 and is continuous in x for x ∈ [π1, π2].10 Since [π1, π2] is
closed and bounded (hence compact), there is a δ∗ > 0 such that δ (x) ≥ δ∗ for π1 ≤ x ≤ π2.

Suppose that xt+0 = x > π1. We will show that:

Pr (tn > tk) ≤ (1− δ∗)k for k = 1, 2, 3... (77)

To show (77) it is easiest to employ an induction argument. First, note that (77) holds for

k = 1, since Pr {tn > t1} = Pr
n
xt1 > π1|xt+0 = x

o
< 1 − δ∗. Second, as we show next, if

(77) holds for k, then it must also hold for k + 1. To see this, observe that

Pr (tn > tk+1) = Pr (tn > tk+1; tn > tk) , (78)

10We give only a sketch of the proof of these arguments. First note that the theorem of the maximum
(See e.g. Stokey and Lucas (1989)) along with strict concavity of Etk {V (Xtk+τ , Stk+τ )} implies that the
portfolio share φ∗0 is continuous in x. This implies that δ (x) is continuous in x. Second, it is straightforward
to show that φ0 6= 0. To see this, suppose otherwise. Then

E0

½
VS (Xτ , Sτ )

∙
(1− θ)

Pτ
P0
− ¡Rf

¢τ¸¾
= VS (Xτ , Sτ )E

∙
(1− θ)

Pτ
P0
− ¡Rf

¢τ¸
Since Sτ is deterministic. Assuming that E

h
(1− θ) PτP0 −

¡
Rf
¢τi

> 0, it follows that φ = 0 cannot be

optimal.
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because tn can only be larger than tk+1 if it is also larger than tk. Using (78) we have:

Pr (tn > tk+1) =
Pr (tn > tk+1; tn > tk)

Pr (tn > tk)
Pr (tn > tk)

= Pr
³
xtk+1 > π1|xt+k > π1

´
Pr (tn > tk)

≤ (1− δ∗) (1− δ∗)k = (1− δ∗)k+1 (79)

where the second line follows from Bayes Rule, while the third line follows from the con-

struction of δ∗ and the inductive assumption (77). In light of (79), equation (77) follows by

induction. Letting k →∞ in (77) we obtain Pr {tn <∞} = 1. Finally

E (tn) =
∞X
k=1

kPr(tn = tk)

= 1 +
∞X
k=1

Pr(tn > tk)

≤ 1 +
∞X
k=1

(1− δ∗)k =
1

δ∗
<∞

The second line follows by applying summation by parts11 and the last line by using (77).

8 BehaviorWhen the Transactions Balance Equals Zero

on an Observation Date

We have shown that in the long run, the transactions balance will be zero on all observation

dates, and the consumer will sell assets from the investment portfolio to increase the ratio

of the transactions account balance to the value of the investment portfolio to π1. In this

section, we focus on this long-run situation and derive an expression for the ratio π1 and

characterize the optimal interval of time between successive observations of the stock market.

It will be convenient to define

J (τ) ≡ βτE0
©
[R (tj, tj + τ)]1−α

ª
, (80)

11P∞
k=1 kPr(tn = tk) =

P∞
k=1

Pk
j=1 Pr(tn = tk) =

P∞
j=1

P∞
k=j Pr(tn = tk) =P∞

j=1

³
Pr(tn = tj) +

P∞
k=j+1 Pr(tn = tk)

´
=
P∞

j=1 (Pr(tn = tj) + Pr(tn > tj)) = 1 +
P∞

j=1 Pr(tn > tj).
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where tj is an observation date and τ is the length of time until the next observation date.

The definition of J (τ) holds only in Region I. Recall that once the consumer reaches Region

I on an observation date, the consumer will be in Region I at all future observation dates,

and will choose the same allocation of the investment portfolio and the same interval of

time until the next observation at all future observation dates. Thus, the distribution of

R (tj, tj + τ), and hence J (τ), is invariant to tj after the consumer has reached Region I.

We assume that J (τ) < 1, so that the value function is finite.

We first use this definition to obtain an expression for π1 as a function of τ .

Lemma 7 π1 (τ) =
³
1−ψs
v(0)

´ 1
α
h (τ) [J (τ)]−

1
α .

Proof. See Appendix.
Lemma 7 is not a complete solution for π1 (τ) because it depends on v (0). Nevertheless,

it will prove helpful in solving for τ ∗, the optimal value of τ , when the transactions account

balance is zero on an observation date, and for the value of π1 (τ ∗). As a step toward

calculating τ ∗, the following lemma presents an expression for the value conditional value

function evaluated at x = 0.

Lemma 8 bv (0; τ) = h1 + π1(τ)
1−ψs

iα
J (τ) v (0).

Proof. See Appendix.
Lemma 8 immediately allows us to calculate the value of the π1 (τ ∗) .

Proposition 5 π1 (τ
∗) = (1− ψs)

³
[J (τ ∗)]−

1
α − 1

´
.

Proof. Recall that τ ∗ = argmaxτ bv (0; τ) so v (0) = bv (0; τ ∗) = h1 + π1(τ∗)
1−ψs

iα
J (τ ∗) v (0).

Therefore, 1 =
h
1 + π1(τ∗)

1−ψs

iα
J (τ ∗), so 1 + π1(τ∗)

1−ψs = [J (τ ∗)]−
1
α , which implies π1 (τ

∗) =

(1− ψs)
³
[J (τ ∗)]−

1
α − 1

´
.

Proposition 5 expresses π1 (τ ∗) as in terms of J (τ ∗), but we still need to determine τ ∗.

The following proposition provides a nonlinear equation that τ ∗ must satisfy.

Proposition 6 If the transactions balance is zero on an observation date, the optimal time
until the next observation, τ ∗, satisfies h0(τ∗)

h(τ∗) =
1
α

1

1−[J(τ∗)]− 1
α

J 0(τ∗)
J(τ∗) .

Proof. See Appendix.
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τ AEP1 AEP2
Baseline 0.696 0.399
θ = 0.001 2.223 1.267
ρ = 0.02 0.662 0.383
α = 2 0.587 0.509
rL = 0 0.557 0.328
r = 0.03 0.541 0.279
µ = 0.07 0.584 0.381
σ = 0.20 0.796 0.341

Corollary 3 If the transactions balance is zero on an observation date, the optimal time
until the next observation, τ ∗, is invariant to the transactions cost parameters ψs and ψb.

Corollary 4 Suppose that the transactions balance is zero on observation date tj. Let

{ect}∞t=t+j be the path of optimal future consumption if ψs = ψb = 0. Then for arbitrary ψs

and ψb the path of optimal future consumption is {(1− ψs)ect}∞t=t+j .
Corollary 4 shows that once the consumer has reached a zero transactions balance on an

observation date, the transactions cost parameter ψs can be viewed as pure consumption tax

that does not affect the timing of observations nor the amount of the investment portfolio

that is sold on each observation date. However, an increase in ψs reduces amount by which

the transactions account balance increases as a result of any given sale of assets from the

investment portfolio.

8.1 Quadratic Approximation

In order to see how the optimal value of τ depends on the various parameters of the con-

sumer’s problem, we will approximate the nonlinear equation describing τ ∗ in Proposition 6.

As we will show, this equation is locally quadratic in τ around τ = 0. Therefore, instead of

a linear approximation, we will need a quadratic approximation.

Before proceeding to the quadratic approximation, we will define

χ ≡ (1− θ)
1−α
α . (81)

This transformation of the observation cost parameter will prove particular convenient when

we compare the results to those in AEP. Notice that when the observation cost, θ, is zero,

χ = 1. For 0 < θ < 1, χ < 1 if α < 1 and χ > 1 if α > 1.
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Define the function M (τ , χ) as

M (τ , χ) ≡
∙
1− 1

α
h (τ) [h0 (τ)]−1 [J (τ , χ)]−1 Jτ (τ , χ)

¸
[J (τ , χ)]

1
α , (82)

where the function J (τ) in equation (80) can be rewritten using the portfolio rate of return

in equation (4) and the definition of χ in equation (81) as

J (τ , χ) ≡ βτE0

(∙
χ

α
1−αφ0

Pτ

P0
+ (1− φ0)

¡
Rf
¢τ¸1−α)

. (83)

Observe that whenM (τ , χ) = 1 the nonlinear equation in Proposition 6 for the optimal value

of τ is satisfied. Our strategy is to approximate the functionM (τ , χ) around (τ , χ) = (0, 1).

The following functions evaluated at (τ , χ) = (0, 1) will be helpful:

h (0) = 0 (84)

h0 (0) = 1 (85)

h00 (0) = −ω (86)

J (0, 1) = 1 (87)

Equations (84) and (87) imply that

M (0, 1) = 1. (88)

Differentiate equation (82) with respect to τ to obtain

Mτ (τ , χ) = − 1
α

h (τ)

h0 (τ)

∙µ
1

α
− 1
¶
Jτ (τ , χ)

J (τ , χ)
− h00 (τ)

h0 (τ)
+

Jττ (τ , χ)

Jτ (τ , χ)

¸
[J (τ , χ)]

1
α
Jτ (τ , χ)

J (τ , χ)
. (89)

Evaluate equation (89) at τ = 0, and use the fact that h (0) = 0, to obtain

Mτ (0, χ) = 0. (90)

Differentiate equation (89) with respect to τ , and evaluate the expression at τ = 0 using
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the facts that h (0) = 0, h0 (0) = 1, and h00 (0) = −ω to obtain

Mττ (0, χ) = − 1
α

∙µ
1

α
− 1
¶
Jτ (0, χ)

J (0, χ)
+ ω +

Jττ (0, χ)

Jτ (0, χ)

¸
[J (0, χ)]

1
α
Jτ (0, χ)

J (0, χ)
(91)

Now evaluate equation (91) at χ = 1 and use the fact that J (0, 1) = 1 to obtain

Mττ (0, 1) = − 1
α

∙
ωJτ (0, 1) +

µ
1

α
− 1
¶
[Jτ (0, 1)]

2 + Jττ (0, 1)

¸
(92)

Now differentiate equation (82) with respect to χ to obtain

Mχ (τ , χ) =
1

α

µ
h (τ)

h0 (τ)

∙µ
1− 1

α

¶
Jχ (τ , χ)

J (τ , χ)

Jτ (τ , χ)

J (τ , χ)
− Jτχ (τ , χ)

J (τ , χ)

¸
+

Jχ (τ , χ)

J (τ , χ)

¶
[J (τ , χ)]

1
α

(93)

Evaluate equation (93) at τ = 0 using the fact that h (0) = 0 to obtain

Mχ (0, χ) =
1

α
Jχ (τ , χ) [J (τ , χ)]

1
α
−1 (94)

Evaluate equation (94) at χ = 1 using the fact that J (0, 1) = 1 to obtain

Mχ (0, χ) =
1

α
Jχ (0, 1) (95)

Differentiate equation (93) with respect to τ and evaluate the derivative at τ = 0 to

obtain

Mχτ (0, χ) = 0. (96)

Differentiate equation (93) with respect to χ and evaluate the derivative at τ = 0 to obtain

Mχχ (0, χ) =
1

α

"
Jχχ (0, χ)

J (0, χ)
+

µ
1

α
− 1
¶µ

Jχ (0, χ)

J (0, χ)

¶2#
[J (0, χ)]

1
α (97)

Evaluate equation (97) at χ = 1 using the fact that J (0, χ) = 1 to obtain

Mχχ (0, 1) =
1

α

∙
Jχχ (0, 1) +

µ
1

α
− 1
¶
[Jχ (0, 1)]

2

¸
(98)

Therefore, the second-order Taylor expansion ofM (τ , χ) around (τ , χ) = (0, 1) , denoted
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cM (τ , χ) , is

cM (τ) ≡ 1 +Mχ (0, 1) (χ− 1) + 1
2

¡
Mττ (0, 1) τ

2 +Mχχ (0, 1) (χ− 1)2
¢

(99)

Define bτ as cM (bτ) = 1 so
bτ =s−2Mχ (0, 1) (χ− 1) +Mχχ (0, 1) (χ− 1)2

Mττ (0, 1)
(100)
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9 Appendix

Proof of Lemma 1: We will first prove that if V (X,S) is concave, then F (X0, S0; τ) is

strictly concave for any τ . To prove this, let C∗ maximize the right hand side of equation (20)
for X0 = X∗ and S0 = S∗, which implies X∗

τ = er
Lτ (X∗ − C∗) and S∗τ = R (0, τ)S∗. Let

C∗∗ maximize the right hand side of equation (20) for X0 = X∗∗ and S0 = S∗∗, which im-
plies X∗∗

τ = er
Lτ (X∗∗ − C∗∗) and S∗∗τ = R (0, τ)S∗∗. Now consider X0 = X∗∗∗ ≡ aX∗ +

(1− a)X∗∗ and S0 = S∗∗∗ ≡ aS∗ + (1− a)S∗∗ for 0 < a < 1, and define C∗∗∗ = aC∗ +
(1− a)C∗∗, which implies X∗∗∗

τ = aX∗∗
τ + (1− a)X∗∗

τ and S∗∗∗τ = aS∗τ + (1− a)S∗∗τ . There-

fore, F (X∗∗∗, S∗∗∗; τ) ≥ U (C∗∗∗) + e−ρτE {V (X∗∗∗
τ , S∗∗∗τ )}. Now use the facts that U (C∗∗∗) >

aU (C∗∗∗) + (1− a)U (C∗∗) by the strict concavity of U (C) and V (X∗∗∗
τ , S∗∗∗τ ) ≥ aV (X∗

τ , S
∗
τ ) +

(1− a)V (X∗∗
τ , S∗∗τ ) by the weak concavity of V (X,S) to obtain F (X∗∗∗, S∗∗∗; τ) > aU (C∗∗∗) +

(1− a)U (C∗∗)+e−ρτ [aV (X∗
τ , S

∗
τ ) + (1− a)V (X∗∗

τ , S∗∗τ )] = aF (X∗, S∗; τ)+(1− a)F (X∗∗, S∗∗; τ).
Therefore, F (X0, S0; τ) is strictly concave in X0 and S0. [This not the end of the proof]

To prove the concavity of V , let ϑ (Xt, St) be an arbitrary increasing, concave function that is

homogeneous of degree 1− α in Xt and St so that it can be written as

ϑ (Xt, St) =
S1−αt

1− α
ζ (xt) ,

where ζ (xt) > 0. Consider the optimization problem

bQ (X0, S0; τ0) ≡ max
C,X0+,S0+ ,φ0

1

1− α
[h (τ0)]

αC1−α + βτE0 {ζ (Xτ , Sτ )} . (101)

Using an identical argument to the one given above, shows that bQ (X0, S0; τ0) in equation (101) is

concave if ζ (Xt, St) is concave. Moreover, bQ is also homogenous of degree 1− α and hence can be

rewritten as: bQ (X0, S0; τ0) =
S1−αt

1− α
q (xt; τ0)

Next define

Q (X0, S0) = max
τ0

bQ (X0, S0; τ0) (102)

In order to show that the value function V (X0, S0) is concave it suffices to show that Q is concave,

by the argument in Stokey and Lucas (1989) (Corollary 1, page 52). Hence in the remainder

of the proof, we focus on showing that Q is concave. Using the envelope theorem, one obtains

QX (X0, S0) = bQX (X0, S0; τ
∗
0) and QS (X0, S0) = bQS (X0, S0; τ

∗
0) where τ

∗
0 is the value of τ0 that

maximizes (102).
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Furthermore:

QX (X0, S0) = bQX (X0, S0; τ
∗
0) =

S1−αt

1− α
qX (xt; τ

∗
0) =

S−αt

1− α
qx (xt; τ

∗
0) (103)

QS (X0, S0) = bQS (X0, S0; τ
∗
0) = S−αt

µ
q (xt; τ

∗
0)−

1

1− α
qx (xt; τ

∗
0)x

¶
. (104)

The second-order derivatives are

QXX = bQXX + bQXτ0

dτ∗0
dXt

(105)

QSS = bQSS + bQSτ0

dτ∗0
dSt

(106)

QSX = bQSX + bQSτ0

dτ∗0
dXt

= bQXS + bQXτ0

dτ∗0
dSt

(107)

Furthermore, the homogeneity of Q implies that τ∗0 is a function of xt only. Hence there will exist
some function y(xt) such that τ∗0 = y(xt). This implies that

dτ∗0
dXt

=
y0(xt)
St

and
dτ∗0
dSt

= −y
0(xt)
St

xt.

Hence
dτ∗0
dX
dτ∗0
dS

= − 1
xt
. (108)

Furthermore, since bQSX = bQXS and QSX = QXS we obtain

bQSτ0

dτ∗0
dXt

= bQXτ0

dτ∗0
dSt

. (109)

Combining (108) and (109) gives
dτ∗0
dXt

dτ∗0
dSt

=
bQXτ0bQSτ0

= − 1
xt

(110)

QXX , QSS

To establish that Q is concave, it suffices to show that QXXQSS −Q2SX < 0. Using (105)-(107)

leads to

QXXQSS −Q2SX =

µ bQXX + bQXτ0

dτ∗0
dXt

¶µbQSS + bQSτ0

dτ∗0
dSt

¶
−
µbQSX + bQSτ0

dτ∗0
dXt

¶2
(111)

The first term on the right hand side of (111) can be expressed as
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µ bQXX + bQXτ0

dτ∗0
dXt

¶µ bQSS + bQSτ0

dτ∗0
dSt

¶
=

= bQXX
bQSS + bQXX

bQSτ0

dτ∗0
dSt

+ bQXτ0

dτ∗0
dXt

bQSS +

µbQXτ0

dτ∗0
dXt

¶µbQSτ0

dτ∗0
dSt

¶
(112)

= bQXX
bQSS +

dτ∗0
dSt

∙ bQXX
bQSτ0 −

1

xt
bQXτ0

bQSS

¸
+
1

x2t

³ bQ2Sτ0´µdτ∗0dSt

¶2
= bQXX

bQSS +
dτ∗0
dSt

bQSτ0

∙ bQXX +
1

x2t
bQSS

¸
+
1

x2t

³ bQ2Sτ0´µdτ∗0dSt

¶2
where we have made repeated use of (110). The second term on the right hand side of (111)

can be rewritten asµ bQSX + bQSτ0

dτ∗0
dXt

¶2
= bQ2SX + 2 bQSX

bQSτ0

dτ∗0
dXt

+

µbQSτ0

dτ∗0
dXt

¶2
(113)

= bQ2SX − 2

xt
bQSX

bQSτ0

dτ∗0
dSt

+
1

x2t

³ bQ2Sτ0´µdτ∗0dSt

¶2
.

where once again we have used (110) to arrive from the first line to the second.

Combining (??) and (113) gives:

QXXQSS −Q2SX = bQXX
bQSS − bQ2SX (114)

+

µbQXX +
1

x2t
bQSS +

2

xt
bQSX

¶ bQSτ0

dτ∗0
dS

(115)

The term bQXX
bQSS − bQ2SX is non-positive by the concavity of bQ . To determine the sign of

the term bQSτ0
dτ∗0
dS , note that the first-order condition for τ

∗
0 is:

bQτ0 (S0,X0; τ
∗
0) = 0.

Differentiating this equation with respect to S0 gives:

bQτ0S (S0,X0; τ
∗
0) + bQτ0τ0 (S0,X0; τ

∗
0)

dτ∗0
dS

= 0

and therefore bQSτ0

dτ∗0
dS

= − bQτ0τ0 (S0,X0; τ
∗
0)

µ
dτ∗0
dS

¶2
≥ 0,

where the inequality follows from bQτ0τ0 (S0,X0; τ
∗
0) ≤ 0.

Hence to establish that Q is concave it suffices to show that bQXX + 1
x2t
bQSS +

2
xt
bQSX ≤
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0. Equations (104) and (103) imply after several simplifications

bQXS = −αS
−α−1
t

1− α
qx (xt; τ

∗
0)−

S−α−1t

1− α
xtqxx (xt; τ

∗
0) =

S−α−1t

1− α
qx (xt; τ

∗
0)

∙
−α− xtqxx (xt; τ

∗
0)

qx (xt; τ∗0)

¸
bQXX =

S−α−1t

1− α
qxx (xt; τ

∗
0)

bQSS = −αS−α−1t q (xt; τ
∗
0) + 2α

S−α−1t

1− α
xtqx (xt; τ

∗
0) +

S−α−1t

1− α
x2t qxx (xt; τ

∗
0)

Combining the above three equations gives:

bQXX +
1

x2t
bQSS +

2

xt
bQSX =

S−α−1t

1− α
qxx (xt; τ

∗
0)

+
1

x2t

µ
−αS−α−1t q (xt; τ

∗
0) + 2α

S−α−1t

1− α
qx (xt; τ

∗
0)xt +

S−α−1t

1− α
qxx (xt; τ

∗
0)x

2
t

¶
+
2

xt

µ
−αS

−α−1
t

1− α
qx (xt; τ

∗
0)−

S−α−1t

1− α
qxx (xt; τ

∗
0)xt

¶
= −αS

−α−1
t

x2t
q (xt; τ

∗
0) < 0.

This concludes the proof.

Proof of Lemma 7: Suppose that time tj is an observation date and that
¡
Xtj , Stj

¢
is in

Region I. Therefore, the transactions balance at the next observation date is Xtj+τ = 0. Use

the first-order conditions with respect to C and ∆Ssell in equations (74) and (75), respectively, to

obtain (1− ψs)U
0 (C; τ) = βτEtj

©
VS
¡
Xtj+τ , Stj+τ

¢ª ¡
Rf
¢τ − λsell. Rewrite this equation using

(1) C = Xt+j
= π1St+j

so equation (15) implies U 0 (C; τ) = [h (τ)]α
h
π1St+j

i−α
; (2) equation (18)

which implies that VS
¡
Xtj+τ , Stj+τ

¢
= VS

¡
0, Stj+τ

¢
= S−αtj+τ

v (0) =
³
R (tj , tj + τ)St+j

´−α
v (0)

so equation (68) implies Etj

©
VS
¡
Xtj+τ , Stj+τ

¢ª ¡
Rf
¢τ
= Etj

©
VS
¡
Xtj+τ , Stj+τ

¢
R (tj , tj + τ)

ª
=

Etj

½
[R (tj , tj + τ)]1−α S−α

t+j

¾
v (0); and (3) in Region I, ∆Ssell > 0, so λsell = 0 to obtain

(1− ψs) [h (τ)]
α [π1 (τ)]

−α = βτEtj

n
[R (tj , tj + τ)]1−α

o
v (0). Use the definition of J (τ) in equa-

tion (80) and rearrange this equation to obtain (1− ψs) [h (τ)]
α [π1 (τ)]

−α = J (τ) v (0), which

implies π1 (τ) =
³
1−ψs
v(0)

´ 1
α
h (τ) [J (τ)]−

1
α . q.e.d.

Proof of Lemma 8: Suppose that time tj is an observation date, and at time tj the

transactions account has a zero balance, so that xtj = 0. Then equation (46) implies that

St+j
= 1−ψs

1−ψs+π1(τ)Stj and equation (44) implies that Xt+j
= π1 (τ)St+j

. Lemma 4 implies that for

xtj = 0, C = Xt+j
= π1 (τ)St+j

. The next observation date is tj + τ , and on this observation date

Xtj+τ = 0 and Stj+τ = R (0, τ)St+j
. Therefore, the value function in equation (26) can be written
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as bV ¡0, Stj ; τ¢ = 1
1−α [h (τ)]

α
³
π1

1−ψs
1−ψs+π1(τ)Stj

´1−α
+ βτEtj

n
V
³
0, R (tj , tj + τ) 1−ψs

1−ψs+π1(τ)Stj
´o
.

Use equation (28) for bV ¡Xtj , Stj ; τ
¢
and equation (18) for V

¡
Xtj , Stj

¢
to rewrite the conditional

value function as bv (0; τ) = ³ 1−ψs
1−ψs+π1(τ)

´1−α h
[h (τ)]α [π1 (τ)]

1−α + βτEtj

n
[R (tj , tj + τ)]1−α

o
v (0)

i
.

Use the definition of J (τ) in equation (80) and use Lemma 7 to rewrite the conditional value func-

tion as bv (0; τ) = ³ 1−ψs
1−ψs+π1(τ)

´1−α h
1

1−ψsπ1 (τ) v (0)J (τ) + J (τ) v (0)
i
=
³

1−ψs
1−ψs+π1(τ)

´−α
J (τ) v (0) =³

1 + π1(τ)
1−ψs

´α
J (τ) v (0). q.e.d.

Proof of Proposition 6: To find the optimal value of τ , first differentiate the conditional

value function bv (0; τ) in Lemma 8 with respect to τ and set the derivative equal to zero to obtain
απ1(τ)
1−ψs

π01(τ)
π1(τ)

= −
³
1 + π1(τ)

1−ψs

´
J 0(τ)
J(τ) . Differentiate the expression for π1 (τ) in Lemma 7 with respect

to τ to obtain π01(τ)
π1(τ)

= h0(τ)
h(τ) − 1

α
J 0(τ)
J(τ) and substitute this expression for

π01(τ)
π1(τ)

into the preceding

expression to obtain π1(τ)
1−ψs

h0(τ)
h(τ) = − 1α J 0(τ)

J(τ) . Evaluate this equation at τ = τ∗ and use Proposition

5 to obtain π1(τ)
1−ψs

h0(τ)
h(τ) = − 1α 1

[J(τ∗)]−
1
α−1

J 0(τ)
J(τ) .
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