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Abstract

This paper considers the role that information heterogeneity can play in generating wealth

inequality. We compute a model of uninsurable idiosyncratic risk and aggregate shocks to

TFP under different assumptions about the information set of the households. Information has

two effects in our economy. The first effect is direct: information changes the distribution

of future states an agent expects tomorrow; this effect is standard in models of asymmetric

information. But an additional indirect effect arises in our model: information heterogeneity

alters the shape of the value function, leading to heterogeneity in the marginal value of wealth. A

better-informed agent receives more utility from an additional unit of saving. In our calibrated

economy we find that the second effect is far more important and is a potential mechanism

to induce wealth concentration; for our particular calibration it turns out to be insufficiently

strong quantitatively to dramatically increase the Gini coefficient on wealth. We find that

the assumption of information heterogeneity has a non-trivial effect on the cost of aggregate

fluctuations; the cost of business cycles is 4.5 times as large for poorly-informed agents and

marginal gains from smoothing the cycle are large and decreasing for the poorly-informed.
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1. Introduction

Inequality is a fact of life in modern economies, but its origins have been difficult to uncover. The

extreme wealth inequality observed in US cross-sectional data has been particularly difficult to

understand, despite a number of papers dedicated to this issue. The literature on inequality in

general equilibrium has typically found that measured shocks to labor earnings are quantitatively

insufficient to generate wealth concentration anywhere close to what we observe in the data; for

example, the Gini coefficient for wealth in the US is around 0.8, while Aiyagari (1994) finds that

measured labor earnings shocks only produce a Gini coefficient of 0.4. Three responses have

emerged as a result. One response, argued in Castañeda, Dı́az-Giménez, and Ŕıos-Rull (2004),

is to note that labor earnings measurements are fraught with measurement error; the very rich

do not appear in the surveys used to estimate the dynamics of earnings, but they do appear in

the cross-sectional surveys used to measure wealth inequality.1 The authors therefore assume

that labor earnings shocks are whatever is needed to match wealth inequality with the context of

a particular model; the direct measurement of earnings is abandoned. A second response is to

modify preferences, generating classes of agents with strong desires to save – for example, Krusell

and Smith (1998) show that discount factor heterogeneity can generate large inequities in wealth.

A third approach models the differential return across occupations, noting that much of the wealth

is held by individuals who are self-employed (Cagetti and De Nardi 2006); wealth concentration is

then generated by high average returns to entrepreneurs.2

This paper takes a different approach. What we are interested in studying is the role of

information in a dynamic economy, particularly related to its contribution to inequality. We

consider agents who observe only prices and individual state variables (everything that appears in

their budget sets) but not aggregates. Some agents know the structural equations of the model; we

show these agents can infer the relevant aggregate states, so we refer to them as ’fully-informed’ or

’FI’ agents. Other agents do not know the structural equations of the model. Since they cannot

evaluate the laws of motion for aggregate states, their forecasts of future prices must be computed

using only current prices; we assume that this forecasting takes the form of an unrestricted VAR run

1The Panel Study of Income Dynamics (PSID) is commonly used to estimate earnings dynamics and the Survey
of Consumer Finances (SCF) to estimate the distribution of wealth. The SCF oversamples the very wealthy and
therefore gets a more complete picture of the economy, while the PSID misses important fractions of income and
wealth by failing to have the wealthy in the sample.

2Guvenen (2005) shows how the combination of heterogeneity in the intertemporal elasticity of substitution and
asymmetric access to asset markets can generate wealth concentration, combining some aspects of the latter two
modifications.
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on a large sample of past prices.3 Because these agents have less information than the FI agents,

we label them ’partially-informed’ or ’PI.’ We do not model the reasons why some households

know more than others; we simply want to know whether it matters.4

We ask four questions of our model. First, we want to know whether economies populated only

by PI agents behave similarly to those populated only by FI agents. The information assumptions

implicit in dynamic general equilibrium models are often quite strong, requiring the individual

households to know more about the structure of the economy than we economists do and to observe

aggregate states (like capital) we ourselves do not.5 Our model in particular has a state variable

– the distribution of wealth – that would seem completely unavailable to real households over the

frequency needed for it to guide consumption-savings decisions, making it reasonable to ask how

agents would do without knowledge of this object. Thus, while we study both types of agents here,

we believe that the ’real world’ is populated by PI agents; the FI agents are used as a benchmark

because their behavior is well-understood. We find that the aggregate behavior of the model

economy is invariant to the measure of PI agents present in the economy in terms of the usual

second moments studied in the business cycle literature; the one difference that emerges is that

the total capital stock is a little larger in an economy populated entirely by FI agents than in one

populated by PI agents.

Our second question asks how the different information sets affect individual behavior. We

simulate the behavior of one FI and one PI agent who live together in an economy where the

measures of both agents are equal. Each individual receives the same sequence of idiosyncratic

shocks and the same initial wealth, but their accumulated wealth diverges over time due to differ-

ential savings rates. Specifically, the FI agent saves more than the PI agent. Our results show

that the saving divergence is not primarily the result of different perceptions about tomorrow’s

states of the economy; instead, a more important indirect effect is that different information sets

induce a different shape of indirect utility. In our setting FI agents have a higher marginal value

3The VAR is not implied by the structure of the model, which is nonlinear; one could call these agents ’rule-of-
thumb’ forecasters. Our agents differ from those in Bomfim (2001a) in that ours derive optimal forecasts given the
information they observe, while Bomfim (2001a) endows his rule-of-thumb agents with biased forecasts. Our results
are similar to his in the absence of strategic complementarity; we have serious reservations about the assumption
that the goods produced by FI and PI agents are not perfect substitutes.

4Our approach differs from many models of asymmetric information in that some of our agents do not observe the
model, while typically it is assumed only that some agents do not observe relevant state variables. The one paper
that has a similar approach is Bomfim (2001a), which we discussed in the previous footnote.

5At least, not without a significant amount of error. An (2006) compares the empirical capital stock series to
one constructed using a DSGE model that treats the capital stock as an unobserved state. The two series diverge,
despite the model fitting the observed series quite well.
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over wealth, leading to higher asset levels. This effect seems not to have been emphasized in the

current literature. We point out here that more savings by FI agents is not a trivial implication

because their information advantage would seem to reduce their demand for precautionary savings;

since all savings in our model is precautionary (the average return is smaller than the time rate of

preference), FI agents could have been poorer.6

Our third question asks whether economies populated by nontrivial fractions of PI and FI agents

feature more wealth inequality than standard models (all FI agents) predict. We find only a small

increase in wealth Gini coefficients when the measure of PI agents is 0.5, with only minor differences

across types (the FI group has a slightly lower Gini coefficient). But there is a split in the wealth

distribution between the PI and FI populations: wealthy agents are disproportionately FI agents,

a consequence of the differential savings behavior noted above. In our calibrated model we find

that 60 percent of the bottom 10 percent of the wealth distribution are PI agents while 72 percent

of the top 1 percent are FI agents; if information heterogeneity did not play a role in inequality

we would see these fractions equal to 50 percent. Information heterogeneity is a mechanism for

generating inequality, although some features of our model limit its quantitative significance; in

particular, we believe that the introduction of a risk-free asset would exacerbate the differences for

reasons we discuss in the conclusion.

Given our finding that the economy’s aggregate behavior is robust to the information assump-

tion, the last question we ask is how much the cost of aggregate fluctuations would change under

different assumptions about information. The existing literature on the costs of fluctuations is very

large, but to our knowledge no one has studied an economy where households have only limited

information about the state of economy. Our model shows that the cost of fluctuations in an

economy populated with PI agents is 4.5 times larger than the equivalent one populated by FI

agents, although it is still small. Modifications that raise the average welfare cost of cycles – such

as the alternative preference structures used in Dolmas (1998) or Tallarini (2000) – could lead to

nontrivial costs for uninformed agents, weakening the case that stabilization is a suboptimal policy

goal. Furthermore, the marginal gain from reducing fluctuations is very large and declining for PI

agents but essentially constant for FI agents; thus, policies that eliminate only a small fraction of

the business cycle may be welfare-enhancing in a PI world.

6Chamberlain and Wilson (2000) prove that the average return is smaller than the homogeneous time rate of
preference for this class of models. Aiyagari (1994) proves the analogous result for economies without aggregate
shocks.
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2. Model

The model economy is populated by a continuum of households and a continuum of firms, both

with unit measure. The production sector is represented by a stand-in firm that operates a Cobb-

Douglas production technology,

Yt = exp (zt)Kα
t H1−α

t , (2.1)

where Kt and Ht are aggregate capital and labor inputs in the economy and α ∈ (0, 1) is capital’s

share of income. The aggregate shock in the economy is the technology shock zt, which evolves as

zt+1 = ρzzt + et+1; et ∼ iid N
(
0, σ2

e

)
; (2.2)

we assume |ρz| < 1. With competitive factor markets the factor prices would satisfy

log (rt + δ) = log (α) + (1 − α) log (Ht) + zt + (α − 1) log (Kt) (2.3)

log (wt) = log (1 − α) − α log (Ht) + zt + α log (Kt) ;

these expressions are simply the logarithms of the marginal products of capital and labor, respec-

tively. δ ∈ [0, 1] is a fixed depreciation rate.

The other sector of the economy is represented by a continuum of infinitely-lived households

with total measure 1. These agents are heterogeneous ex post along three dimensions: their

uninsurable idiosyncratic shock ǫi
t, their accumulated cash on hand mi

t, and their information sets

Ωi
t. ǫi

t evolves according to an exogenous AR(1) process

ǫi
t+1 = ρǫǫ

i
t + νi

t+1; νi
t ∼ iid N

(
0, σ2

ν

)
(2.4)

E
(
νi

teτ

)
= 0 ∀ t and τ .

We assume that |ρǫ| < 1. Note that we have assumed the distribution of the idiosyncratic shock is

independent of the aggregate shock.7 Since we will also assume inelastic labor supply by households,

Ht will be a constant (denoted H).8

7This assumption is for computational reasons, as it simplifies the estimation procedure of the PI agents. We
intend to relax it in the future.

8We experimented with a model that permitted elastic labor supply and found the results were similar. For clarity
of presentation we concentrate on the inelastic labor case. We also looked at versions of the model with shocks to
depreciation because these shocks reduce the excessive correlation between r and w; our empirical measure of these
shocks turned out to be small. Even when we made the depreciation shocks large they did not affect our answers.
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2.1. Information structure

The study focuses on an economy populated by two types of households: fully-informed agents (FI)

and partially-informed agents (PI). These two types of agents are identical except their information

sets; in particular, we assume that they face the same process for the idiosyncratic shock.

2.1.1. FI agent

An FI agent knows the model structure and observes all the relevant state variables. We therefore

define their information set as

ΩFI
t ≡

{
mi

t, ǫ
i
t, Γt (m, ǫ, θ) , zt, rt, wt,Q

}
,

mi
t is the sum of total wealth and current income and Γ is the distribution over cash on hand m,

individual shock ǫ, and type of agents θ ∈ {’PI’,’FI’}. Denote Λ =
∫
θi=PI

Γt (m, ǫ, θ), the exogenous

proportion of PI agents in the economy.9 An FI agent also knows equations (2.2), (2.3) and the

values of the parameters; we denote this information by Q. The FI agent’s recursive problem is

V FI (m, ǫ,Γ, z) = max
k′∈[0,m]

{
u
(
m − k′

)
+ βE

[
V FI

(
m′, ǫ′, Γ′, z′

)
|ΩFI

]}
(2.5)

subject to the budget constraint and law of motion for Γ

m′ = k′
(
1 + r′

)
+ w′ exp

(
ǫ′
)
h

Γ′ = F
(
Γ, z, z′

)

and the shock processes (2.2), (2.4). k′ is individual savings in capital. E [·|ΩFI ] is the expectation

operator conditioned on information set ΩFI . The last equation is the law of motion for the

distribution. Following the approximate aggregation results in Krusell and Smith (1998) and

Young (2006) the only relevant aggregate variables are Kt and zt; other moments of Γt do not

contribute to forecasting future prices.10 It is obvious that any FI agent who knows (rt, wt) can

compute (Kt, zt) by using (2.3); thus prices fully reveal the relevant state variables in our setting. It

9In Krusell and Smith (1998) every household is fully-informed; their equilibrium can be approximated by allowing
households to use only information in current period. We also show here that in an economy where not all households
are fully-informed, knowledge of current period values is sufficient for an FI agent to accurately forecast the evolution
of aggregate capital.

10This result is due to the near-linearity of the optimal saving function k′ with respect to m combined with the
fact that changes in the aggregate states linearly displace the savings function.
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is also true that Kt+1 is ΩFI
t -measurable (since it is a deterministic function of individuals’ current

saving). Following Krusell and Smith (1998), we parameterize the law of motion for Kt+1 as

log (Kt+1) = a0 + a1zt + a2 log (Kt) ; (2.6)

this assumption is based on results in Young (2006) that show more flexible functional forms do

not change the implied law of motion.

To make comparisons across agents simple and relatively free of numerical error, we rewrite the

FI agent problem using (r, w) as state variables rather than (K, z). The recursive problem of an

FI agent is therefore

V FI (m, ǫ, r, w) = max
k′∈[0,m]





u
(
m − k′

)
+ β

∑

ǫ′|ǫ

π
(
ǫ′|ǫ
)


∫

r′,w′

V FI
(
m′, ǫ′, r′, w′

)
dF
(
r′, w′|r, w

)







(2.7)

subject to

m′ = k′
(
1 + r′

)
+ w′ exp

(
ǫ′
)
h (2.8)

log(r′ + δ) = A0 + A1 log (r + δ) + A2 log (w) + e′

log(w′) = A3 + A4 log (r + δ) + A5 log (w) + e′.

Appendix A shows that dynamic equations of r and w shown above can be derived from equations

(2.3), (2.2), and (2.6), where the coefficients {A0, A1, A2, A3, A4, A5} will be determined endoge-

nously in equilibrium. Independence between ǫt and (rt, wt) comes from independence between ǫt

and et; note that the error in (2.8) is the innovation in the technology shock process.

2.1.2. PI agent

PI agent i’s information set in period t is defined by

ΩPI
t =

{
mi

t, ǫ
i
t, rt, wt

}
⊂ ΩFI

t .

We restrict ΩPI
t to contain only current variables; our focus is on Markov recursive equilibria

consistent with this restriction. By observing ǫ
j
t a PI agent can infer the true individual shock

process (2.4). However, PI agents do not know the structure of the model economy; specifically
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equations (2.2) and (2.3) are not known. PI agents also do not observe the aggregate variables

(Kt, zt).
11 As a result, it is impossible for a PI agent to derive the true dynamic equation for rt

and wt that the FI agent obtains.12 In this case, the dynamic problem of PI agent can be written

as

V PI (m, ǫ, r, w) = max
k′∈[0,m]





u
(
m − k′

)
+ β

∑

ǫ′|ǫ

π
(
ǫ′|ǫ
)


∫

r′,w′

V PI
(
m′, ǫ′, r′, w′

)
dG
(
r′, w′|r, w

)







(2.9)

subject to the budget constraint and a stochastic price process G (r, w) defined as

log
(
r′
)

= b0 + b1 log (r) + b2 log (w) + ε′r (2.10)

log
(
w′
)

= b3 + b4 log (r) + b5 log (w) + ε′w

ε =


εr

εw


 ∼ iid N




0

0


 ;


 σ2

r σ2
rw

σ2
rw σ2

w




 .

PI agents use VAR(1) representations to forecast price movements. We believe that this

restriction is reasonable, given that VARs are standard tools in the applied forecasting literature

and the PI agent does not know anything about the structure of the model that would suggest

an alternative. The assumption that only one lag is used in the VAR may be restrictive, but

adding more lagged terms drastically increase the computational cost.13 Note that the PI agent’s

forecast is based on statistical estimation while the FI agent’s forecast is derived directly from the

model structure; thus the FI agent has no estimation error. PI agents know their forecasts have

error – they take ε′ into account and integrate over it when forming expectations.14 Finally, the

distribution of ε is endogenous; we verify that it is approximately iid normal in the simulations,

consistent with the endowed beliefs.15

11Although irrelevant, we also assume they do not observe any other moments of Γt (m, ǫ, θ).
12Note that the PI agent only sees the net return rt = MPK−δ; MPK and δ cannot be identified separately from

the mean of rt under the information assumptions. Thus not knowing MPK, a PI agent cannot solve for K and z.
13Technically, we should permit PI agents to use their individual cash-on-hand m to forecast future prices as well,

since it is correlated with them. In such a world, beliefs about future prices would be naturally heterogeneous; agents
with high m would infer something different about the direction of the economy than would agents with low m. We
found that this extension was computationally very burdensome and the resulting coefficients were quantitatively
unimportant. We will comment more on this extension in the conclusion.

14Here the PI agents discard the coefficients’ estimation errors. Since in our equilibrium PI agents use a very long
time series of observations in their estimation, these errors are negligible.

15The approximation does not hold in the tails of the distribution, but these events are too rare to matter
quantitatively.
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The sequential form of the PI agents’ problem is nonstandard. Information for the PI agent

does not evolve as a filtration because we do not permit them to condition forecasts on information

dated t − 1 or earlier. Thus, the recursive problem cannot be iterated to obtain the standard

representation

E0

[
∞∑

t=0

βtu (ct)

∣∣∣∣∣Ω0

]
. (2.11)

Instead, the sequential problem takes the form

∞∑

t=0

βtẼ0 [u (ct)|Ω0] (2.12)

where

Ẽt (xt+1) = Et [xt+1|Ωt]

Ẽt (xt+2) = Et [Et+1 [xt+2|Ωt+1] |Ωt]

and so on. The law of iterated expectations does not apply to the PI agent so these expressions do

not collapse; that is, the conditional distribution of {rτ}τ≥t+2 is not ΩPI
t -measurable. However, it

may be true that the expressions are approximately equal if past information is not independently

useful for the forecasts of future prices, so that a VAR(p) does not forecast quantitatively better

than the VAR(1). As noted above, the burden of even a VAR(2) is tremendous, so we leave this

extension for future work.

We present the formal definition of the recursive equilibrium for the economy in Appendix D.

PI agents are not learning in our model; because we assume that this VAR is estimated over the

infinite past sequence of prices, any learning that could be done must already have taken place.

Obviously this assumption limits the extent to which information can play a role in generating

inequality, so we view our results as establishing a lower bound. Computational considerations do

not permit us to consider a full Bayesian procedure in which households update their estimates of

the coefficients in the VAR period-by-period, unfortunately.16

16There would be two nontrivial problems associated with that model. First, the state space would include an
economic model, so each parameter would be a state variable; the size of this space would be very large. Second,
the Bayesian estimation of nonlinear models is very time-consuming, making computational time very long.

8



2.2. Calibration

We assume one model period corresponds to one quarter. The felicity function u(c) is chosen to be

log(c), so that relative risk aversion equals one. The chosen parameters of the model are β = 0.99,

α = 0.36, δ = 0.0217, and h = 0.3271; these values yield aggregate outcomes generally consistent

with US data on capital/output and investment/output ratios and capital’s share of income. The

log of technology shock zt is estimated from the annual series of GDP and capital stock from

the National Income and Product Accounts and then converted into a quarterly process, yielding

ρz = 0.96429 and σ2
e = 0.00712. We approximate the AR(1) process for ǫi

t with a Markov chain

with 7 states.17

Appendix C presents an extensive discussion of our solution method, which is based on Young

(2006). We use Gauss-Hermite quadrature and product rule methods to compute the integrals over

the continuous random variables and cubic spline interpolation combined with linear interpolation

to evaluate the value functions.18

3. Results

In the first subsection we compare two extreme economies at the aggregate level. The first economy

is populated by a full measure of FI agents, called the FI economy (Λ = 0.0). The second economy

is populated by a full measure of PI agents, called the PI economy (Λ = 1.0). In the second

subsection we examine the behavior of one FI agent and one PI agent who live in a mixed economy

(Λ = 0.5); the results in this subsection also extend to other economies with different mixtures of

PI and FI agents.19 In our simulation the two agents receive the same idiosyncratic shock each

period. Since they make different decisions, their endogenous states diverge over time, but this

divergence is entirely driven by information heterogeneity and not luck. In the third subsection,

we use the mixed economy to explore the consequences of information heterogeneity for inequality.

In the final subsection we estimate the cost of aggregate fluctuations in the PI economy relative to

the FI economy.

17See Appendix B.
18Fortran code to solve the model is available upon request. Typically the code takes several days to converge and

may be unstable for poor initial guesses.
19The choice of Λ = 0.5 helps us to see the effect of information heterogeneity on the wealth distribution. Specifi-

cally, if information plays no role, the wealth distributions of both types of agents would be identical.
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3.1. Aggregate Fluctuations

Table 1 presents the standard set of aggregate first and second moments used to assess business

cycle models; it is clear that the two economies display essentially the same fluctuations, since

none of the statistics are quantitatively different. This similarity also holds for the mixed economy

where Λ = 0.5. Krusell and Smith (1998) demonstrates that the implications of representative agent

models regarding the response of the economy to technology shocks were robust to the introduction

of idiosyncratic risk. The results in their paper extend to our models in which agents are not fully

informed about the economic model they inhabit; information heterogeneity (at least as modelled

here) does not undermine the lessons learned from the vast real business cycle literature.

To see this more clearly, Table 2 reports the forecast rules of FI and PI agents in the two

extreme economies. It shows that Kt and zt are sufficient statistics for Kt+1 in both economies.

The evolution equation of K is deterministic; in both economies, the R2 of this equation is virtually

one. This result strengthens the approximate aggregation results in Krusell and Smith (1998) and

Young (2006); approximate aggregation obtains in economies where some measure of agents observe

only equilibrium prices. This near-equivalence may be of interest to researchers studying more

elaborate extensions of Krusell and Smith (1998), particularly those where aggregate prices are

unknown functions of the state of the world. If accurate representation of those economies is

difficult using constituent moments from the distribution, one may be able to approximate the

aggregate dynamics simply using prices instead; if there are not many prices this approach will be

less computationally demanding.20 Because the behavior of individuals in these economies can be

different, whether the approximation is good will depend critically on the question being explored.

Figure F.1 compares the time-series of aggregate variables in the two economies. Panel (a)

shows that aggregate capital in the FI economy is a little higher than in the PI economy. We

discuss in the next subsection why FI agents tend to save more than PI agents.

3.2. Individual Savings Behavior

In Figure F.2, panels (a) and (b) compare simulated individual savings of an FI agent and a PI agent

in the mixed economy (Λ = 0.5). The FI agent accumulates more wealth than the PI agent. Table

3 shows some statistics at individual level. The FI agent’s average wealth is almost 24 percent

20We are not the first researchers to use prices as state variables. Ŕıos-Rull and Sanchez-Marcos (2006) use prices
as state variables in a model of house price fluctuations. Telmer and Zin (2002) show that the pricing kernel in a
particular incomplete market model can be approximated accurately using only prices.
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higher than PI agent’s. Consequently, the aggregate capital accumulated by the FI population is

on average 26.5 percent higher than the aggregate capital of PI population. The FI agent also

has higher average consumption, although the difference is much smaller. This resulting pattern

is robust to other economies with different measures of PI and FI agents. For example, in the

PI economy the FI agent’s average wealth is 26.8 percent higher while in the FI economy the FI

agent’s average wealth is 21.5 percent higher.21

Panels (a) and (b) of Figure F.3 show that the saving functions of both agents are nearly linear,

with the exception of very low levels of m where they become noticeably convex. Panel (c) of Figure

F.3 and panels (a)-(d) of Figure F.4 compare the saving functions of PI and FI agents for various

different values of (r, w, ǫ), confirming that FI agents’ savings rates are higher than PI agents’.22

Though FI agents’ current-period savings is only a little higher than PI agents, accumulation over

time generates large wealth gaps as shown in Figure F.2. To see why the saving rates of the two

agents are different, we analyze the agent’s problem as a standard two-period saving problem:

V i(m, ǫ) = max
k′∈[0,m]

{
u
(
m − k′

)
+ βE

[
V i
((

1 + r′
)
k′ + w′ exp

(
ǫ′
)
h, ǫ′

)
|Ωi
]}

. (3.1)

Since both agents have the same (r, w), we omit these state variables to simplify the expressions.23

Today’s return function is the underlying preference over consumption while the second-period

return function is the indirect utility function over m. Since the FI and PI agents are different

only in their forecast functions, due to different information sets, this difference can affect the

savings decision through two channels. First, the different forecast directly causes the two agents

perceive tomorrow’s returns and risks differently: the conditional distributions of (r′, w′) are

different.24 The second effect is indirect: the different forecasts induce different shapes in the

indirect utility functions V i. We refer to the first effect as ’forecast heterogeneity’ and the second

as ’value heterogeneity’; we are interested in assessing the quantitative importance of each factor.

21In the FI (PI) economies we introduce one PI (FI) agent; since this agent is measure zero the equilibrium is
not affected. We can therefore simulate the behavior of this single agent along the equilibrium path of an economy
populated entirely by the other type.

22In panel b of Figure F.4, there is a small range of low values for m where a PI agent saves more than an FI
agent. This reversal occurs when r is very low while w is very high. Since r and w have a positive correlation, the
savings reversal rarely occurs. In our simulation of 99, 000 periods, we find a positive measure of PI agents who save
more than FI agents in only 47 periods. Conditioned on these periods, the average measure of PI and FI agents who
exhibit this saving reversal is only 0.015. All of them are among the very poor; a model which captures better the
distribution of wealth and income may produce more such reversed agents.

23V i (·) is the same as Vi (·) for an infinitely-lived agent.
24The conditional distribution of ǫ′ is the same by assumption, both across agents and over time.
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3.2.1. Direct effect: Forecast Heterogeneity

Figure F.5 shows the distribution of forecast errors of the mixed economy; the same picture emerges

for the PI and FI economy. A normal density fits the distribution of forecast errors very closely.

Table 2 also shows that the autocorrelation of the VAR error is almost zero. As a result, our

assumption that the PI agent believes the error in his forecast rule is white noise normal is consistent

with the equilibrium outcome.

Table 2 reports R2 of both agents’ forecasts; they are practically the same, implying that the

VAR(1) does a very good job producing accurate one-period forecasts. However, the PI agent’s

VAR(1) forecasts are just a close approximation of the true price processes, namely the FI agent’s

forecasts. Since these forecasts are just approximations, both agents do not have to agree on the

distribution of the future prices; while both agents observe the same time series of prices, their

inferences are different. Figure F.6 compares the conditional expectation and standard deviation

of both agents’ one-period forecasts.25 In panels (a) and (b), the disagreement in the expected r′

is less than 0.25 percent while the disagreement in the expected w′ is less than 0.05 percent. Note

that there is no systematic mistake in PI agent’s forecast; the average of this disagreement is zero.

Panels (c) and (d) show that the PI agent does not always perceive higher variance in r but always

perceives higher variance in w.26

To gauge the effect of forecast heterogeneity on the savings decision, we ask how much the

PI agent would save if endowed with FI’s forecast for the current period only. The difference

between the original PI agent’s problem and this one is that integration over (r′, w′) is based on

FI’s conditional distribution. More explicitly, in this experiment and in Subsection (3.2.2), we

substitute the equilibrium value functions obtained earlier in the RHS of the two-period problem

(3.1) and solve for the policy functions associated with the new one-period forecast rule. Figure

25Conditional expectation and variance are calculated from

E
PI
t rt+1 = exp

„
µr +

σ2
r

2

«
; V

PI
t (rt+1) =

“
E

PI
t rt+1

”2 `
exp(σ2

r) − 1
´
,

E
PI
t wt+1 = exp

„
µw +

σ2
w

2

«
; V

PI
t (wt+1) =

“
E

PI
t wt+1

”2 `
exp(σ2

w) − 1
´
,

E
FI
t rt+1 = exp

„
bµr +

σ2
e

2

«
− δ; V

FI
t (rt+1) =

“
E

FI
t rt+1 + δ

”2 `
exp(σ2

e) − 1
´
,

E
FI
t wt+1 = exp

„
bµw +

σ2
e

2

«
; V

PI
t (wt+1) =

“
E

FI
t wt+1

”2 `
exp(σ2

e) − 1
´
,

where
`
bµr, bµw, σ2

e

´
and

`
µr, µw, σ2

r, σ
2
w

´
are calculated from (2.8) and (2.10) respectively.

26Because prices follow a lognormal distribution, the disagreement in expectation translates into a difference in
variance.
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F.7 plots the simulated saving of a PI agent who is endowed with FI agent’s forecast, together

with the original PI and FI agents. The lower panel shows that the new ’informed’ PI agent does

not change his optimal saving by a significant amount; that is, forecast heterogeneity is not the

main contributor to savings heterogeneity in this model. We get the same result in the PI and FI

economy.

3.2.2. Indirect effect: Value Heterogeneity

Since different forecasts cannot account for the large savings divergence, it must come from differ-

ences in the shape of the indirect utility functions. Figures F.8 and F.9 plot the value functions of

PI and FI agents together with their differences at various r and w. The value functions of both

agents are concave (panels (a) and (b) of Figure F.8). Notice that despite information inferiority,

PI agents are not always worse off. Figure F.6 shows that the PI agent is too ’optimistic’ for some

combinations of r and w; his forecasts have higher expectation or lower variance. Consequently,

his ex ante indirect utility is higher than an FI agent’s, conditional on these states of the world.

However, these states are relatively rare, leading to overall lower utility for the PI agents.

We want to examine what characteristic of their indirect utility accounts for the savings di-

vergence. The difference in the shape of V i will result in different responses to risks. For the

two-period model (3.1) there are two risks: return risk from saving and background risk from

income, and these random variables are positively correlated. First we control for the risks by

endowing both agents with the same one-period forecast, say FI agent’s forecast.27 To quantify

the response to the saving risk we endow both agents with w′ and ǫ′ before they make their savings

decision; these agents do not face background risk. Given V i as the value function for a given

type, we solve the PI and FI agents’ new problems to get their savings decision in the absence

of background risk. Then we use the new policy function to simulate a time series of savings to

compare with the equilibrium decisions. We conduct similar experiments by eliminating the saving

risk (agents know r′ but not w′ or ǫ′), and no risk (agents know r′, w′, and ǫ′). We will discuss the

no-risk case explicitly since it turns out that the other experiments are qualitatively similar but of

smaller magnitudes.

Figure F.10 plots the time series in the case of no risk. Panel (a) shows that even though both

agents know with certainty the value of (r′, w′, ǫ′) before making their decision, the divergence in

27The following results are not different when the PI agent’s forecast is used instead.
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saving is still large. Panel (b) shows the difference between the no-risk case and the equilibrium

behavior: risks do not play much of a role in the saving divergence.28 Thus the divergence has to

be from heterogeneity in the marginal value of wealth. Under certainty, the first-order condition

of problem (3.1) is

−u′
(
m − k′

)
+ β

∂V

∂m

(
k′
(
1 + r′

)
+ w′ exp

(
ǫ′
)
h
)

= 0. (3.2)

If the FI agent saves more for a given m, his marginal value over wealth has to be higher. Figure

F.11 compares the marginal value of the PI and the FI agent for various r and w values; the FI

agent’s marginal value over wealth is greater than the PI agent’s. The pattern of the difference is

similar to the pattern observed in savings shown in Figure F.3. Thus the saving heterogeneity is

mainly due to heterogeneity in the marginal value of wealth. Our quantitative model shows that

better information increases the marginal value over wealth, leading to the FI agent saving more.

Before ending this subsection, we present a discussion of the indirect effect of information on

savings. Specifically, we show how different information sets induce a wedge in the marginal value

of wealth. Our argument can be developed using a simple three-period model. We add another

period to (3.1):

V i(m0) = max
si
1
∈[0,m0]



u

(
m0 − si

1

)
+ β

∫

r1,w1

V i
(
si
1 (1 + r1) + w1

)
dF i (r1, w1)



 (3.3)

V i (m1) = max
si
2
∈[0,m1]



u

(
m1 − si

2

)
+ β

∫

r2,w2

u
(
si
2 (1 + r2) + w2

)
dF i (r2, w2)



 .

Since the role of ǫ is the same as w, generating background risk, it is removed to simplify the

expression. For expository purposes, assume that
{
ri
1, r

i
2, w

i
1, w

i
2

}
are iid. Both PI and FI agents

have the same period utility function u (c), an increasing concave function. By applying the

envelope theorem to the second period problem, the marginal value over wealth in the second

period can be written as
∂V i (m1)

∂m
= u′ (m1 − s∗2 (m1)) ,

where s∗2 (m1) is the optimal savings function; the factors that determine the size of the wedge are

28The small role that risk plays here could be due to two features: risks are relatively small or the value function
Vi is close to linear. Since the background risk is not small – in particular, ǫ has a large standard deviation relative
to aggregate income – the near-linearity of the indirect utility V is likely to be the culprit.
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therefore the slope of the period utility function and factors that affect the shape of the savings

function s∗2 (m1). If sFI
2 (m1) > sPI

2 (m1), we have ∂VFI(m1)
∂m

>
∂VPI(m1)

∂m
; the FI agent’s marginal

utility of future wealth is higher than the PI agent’s. This effect feeds into the first-period problem

and magnifies the wedge in s∗1, consequently increasing the wedge in the first-period marginal

value over wealth. For a long-lived agent, this feedback will continue to accumulate, generating a

potentially large difference in current savings. Note that this effect happens even when the agent

perceives no risk in (r1, w1), as in the no-risk case in the previous section.

The propositions below illustrate how the distribution of
(
ri
2, w

i
2

)
affects si

2 (m1).
29 In the

propositions, we consider only the case when si
2 (m1) > 0 for i ∈ {PI, FI}.

Proposition 1. If rFI
2 ≻FOSD rPI

2 and u (c) = log(c), then sFI
2 (m1) > sPI

2 (m1).

Proposition 2. If rFI
2 ≻SOSD rPI

2 and u (c) = log(c), then sFI
2 (m1) > sPI

2 (m1).

Proposition 3. If wFI
2 ≻FOSD wPI

2 , then sFI
2 (m1) > sPI

2 (m1).

Proposition 4. If wFI
2 ≻SOSD wPI

2 and u(c) is CRRA, then sFI
2 (m1) > sPI

2 (m1).

The proofs of the above propositions can be found in Appendix E; interpretation of these

propositions is straightforward and can be found in Gollier (2001). If the information sets of the

two agents imply one of the conditions in the above propositions, the FI agent’s marginal value

over wealth will be higher. Unfortunately, our quantitative model does not always satisfy these

conditions; for example, FI and PI agents disagree about both the conditional expectation and

the variance of (r′, w′), but the direction of the disagreement is not constant over time. As a

result, these propositions serve to highlight mechanisms at work in our model only; ultimately, the

quantitative results resolve the issue in favor of higher savings by FI agents. Note that while this

result may seem obvious, it need not hold in general because better information could translate

into a decreased demand for precautionary savings. In our model, the proof in Chamberlain and

Wilson (2000) can be used to show that

r <
1 − β

β

29x ≻FOSD y denotes x first-order stochastically dominates y. Likewise, x ≻SOSD y denotes x second-order
stochastically dominates y. Our definitions of FOSD and SOSD are taken from Hadar and Russell (1969).
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where r is the average return on savings, so that in the absence of risk households would all have

zero assets.30 Thus, in a sense all savings is precautionary, so anything that reduces the demand

for precautionary savings will lead to less asset accumulation; that is, the FI agents could have

been poorer.

It is important to note that it is the effect of permanent information that significantly changes

the saving rate. This can be seen in Figure F.7, where the PI agent is endowed with the FI forecasts

before making their savings decision. Since information in this experiment is temporary, the savings

decision is a trade-off between the marginal utility of consumption today and the marginal value

of saving without this information in the future. The effect of temporary information on savings

is very small compared with the effect of permanent information (that is, the difference between

knowing what an FI agent knows today and actually being an FI agent). This result suggests

that the PI agent might not gain much from temporary information. In other words, the PI agent

is willing to pay a little to get rid of risks in the near future but much more to get rid of risks

permanently. The implication of this result is that the welfare cost of business cycles could be

larger in an economy populated by PI agents, since elimination of business cycle risk renders all

agents equally informed. We examine the size of this effect below.

3.3. Information and Inequality

As mentioned in the introduction, the existing literature has resorted to several different mech-

anisms to account for the extreme wealth concentration evident in the data. One mechanism

in particular generates inequality by differential access to high-return assets, such as risky stocks

(Guvenen 2005) or business capital (Cagetti and De Nardi 2006). In our model all households

can freely access to the same asset markets but they are differently informed about the return

distribution. In the previous section, we showed that FI agent has an incentive to save more, so in

an economy where both FI and PI agents live together, we would expect to see more FI agents in

the top deciles of the wealth distribution and more PI agents in the bottom. We are interested in

assessing the quantitative strength of this effect: does information heterogeneity play an important

role in producing inequality?

Figure F.13 displays the wealth distribution of the mixed economy (Λ = 0.5). The plot shows

the wealth distribution of each three groups: the entire population, the PI agents only, and the

30In a partial equilibrium sense; obviously if all agents hold zero assets the rental rate of capital would rise until
positive amounts of capital are held.
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FI agents only. Table 4 shows that almost 60 percent of the bottom 10 percent of the wealth

distribution are PI agents while 72 percent of the top 1 percent are FI agents; PI agents are

concentrated among the poor and FI agents are concentrated among the rich. If information

heterogeneity played no role in determining the wealth distribution, the share of households would

be 50 percent independent of the wealth percentage.31

Figure F.14 shows the Lorenz curves for the total population, the PI fraction only, and the FI

fraction only. While FI agents are generally wealthier than PI agents, the distribution of wealth

within each group is not significantly different from the population as a whole. In addition, the

wealth distribution is not highly concentrated as observed in the US data. The Gini coefficient of

wealth distribution in the U.S. is around 0.8, while the Gini coefficients for the total population is

0.43 and those of the PI and FI populations are 0.437 and 0.418, respectively.32 For comparison,

we note that the extreme economies do not produce very different results from the mixed economy:

the Gini coefficient in the FI economy is 0.424 while in the PI economy it is 0.431. Our model

suggests only a modest role for information heterogeneity in the generation of inequality; we will

have some comments regarding this result in the conclusion.

We examine the underlying mechanisms in our model by studying another mixed economy

(Λ = 0.5) where PI agents use the same forecast function as FI agents but their forecasts are

exogenously different. We compute four cases: i) EPI
t rt+1 is biased downward; ii) V PI

t rt+1

is arbitrarily larger; iii) EPI
t wt+1 is biased downward; and iv) V PI

t wt+1 is arbitrarily larger.33

The purpose of these exercises is to isolate the effect of each mechanism on wealth distribution,

particularly the disagreement in expectations and variances. Figures F.15 and F.16 report the

results. In summary, lower EPI
t rt+1 or higher V PI

t rt+1 causes PI agents to receive less utility

value from saving, generating low wealth for this group. On the contrary, lower EPI
t wt+1 or higher

V PI
t wt+1 induces PI agents to receive more value from saving due to an increased precautionary

motive, thus saving more and becoming relatively wealthy.

Finally, to demonstrate the potential role of information as a source of wealth concentration

we compute an economy where Λ = 0.8 and PI agents have a downward biased EPI
t rt+1. In

31Our economy with homogeneous information satisfies the mixing conditions in Aiyagari and Alvarez (2001), so all
agents have the same long-run probability of entering any interval [m1, m2]. Since they also face the same process for
the idiosyncratic shock, all agents have the same unconditional distribution of individual states. Any deviation from
these independence is due to the small sample properties of z, the aggregate shock, which we minimize by exploiting
a very long data series.

32The empirical value is taken from Budŕıa Rodŕıguez et al. (2001).
33Appendix F explains how we formulate the forecasts of PI agents.
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this experiment, we assume that EPI
t rt+1 ≃ 0.952EFI

t rt+1, or EPI
t rt+1 is around 4.8 percent lower

than EFI
t rt+1.

34 Table 5 reports the results comparing with the US data. In terms of wealth

concentration, there is a dramatic improvement when we assume downward biased EPI
t rt+1. The

wealth Gini coefficient increases from 0.42 in the FI economy to 0.73 in the biased economy. The

top 20 percent richest holds almost 82 percent of total wealth (all of them FI agents), while the

bottom 40 percent are mostly PI agents and own only 3.38 percent; these numbers are very close

to US data.35 However, the model still fails to generate very rich households: the top one percent

richest in the model owns only 9.5 percent of total wealth while in the data they own 32 percent.36

Figures F.17 and F.18 show the wealth distribution and the Lorenz curve.37

We can explain the large effect of a small bias in EPI
t rt+1 using Figure 1 from Aiyagari and

McGrattan (1998). In the class of models we consider here, average asset supply is upward-sloping

in the long run, ranging from the borrowing constraint to ∞ as r approaches its upper bound

β−1−1. In a complete market economy r = β−1−1, so the deviation between the average interest

rate and the time rate of preference measures the extent to which efficient risk-sharing fails; it is

known that this class of models one asset does a good job of providing self-insurance, leading to a

small gap. Thus the economy’s average interest rate lies on the very elastic portion of the asset

supply curve, leading to large changes in holdings when expected returns vary. It is interesting

that the bias generated endogenously in our model is so small that agents with different information

endowments still end up close together.

3.4. Information and the Costs of Fluctuations

To examine the effect of information on the cost of business cycles, we compute another economy

where there is only an idiosyncratic shock, as in Aiyagari (1994).38 Then we compare the ag-

34Note that this bias is much larger than the one observed in the equilibrium with endogenous PI forecasts, which
was just under 0.25 percent.

35Biased expectations function similarly to heterogeneity in discount factors. Tsyrennikov (2006) shows an exact
correspondence in a complete market economy.

36Because we calibrate the earnings process using the PSID, it is not surprising that we fail to generate very wealthy
households – these households are not present in the sample, as we noted in the Introduction.

37We also examined the effect of bias on the wealth distribution when both FI and PI agents are more risk averse.
For the case that V PI

t rt+1 is arbitrarily larger (ii) and the coefficient of relative risk aversion is 2, the Gini coefficient
falls to 0.394, compared with 0.425 under logarithmic utility. The fact that higher risk aversion tends to lead to less
wealth inequality has been noted before; see Dı́az, Pijoan-Mas, and Ŕıos-Rull (2003) for a discussion.

38These calculations are ’behind the veil of ignorance’ as they do not condition on current states. Our calculation
therefore ignores the welfare cost during the transition, which can be significant. In addition, since in our model zt

is independent of ǫt, removing business cycles does not affect the process generating ǫt. Krusell and Smith (2002)
discusses the issue of how to remove aggregate risk when idiosyncratic risk is correlated with it.
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gregate welfare averaged over business cycles of the two extreme economies to average welfare in

the economy without aggregate shocks. Not surprisingly, the aggregate welfare when there is no

aggregate risk is highest at −6.87640, followed by the average welfare in FI economy at −6.92037.

The average welfare in PI economy is lowest at −7.07462.

To meaningfully measure the cost of fluctuations, we compute the fraction of consumption x

agents are willing to give up in each period if allowed to live in the new economy where there is

no aggregate shock. V
i

is the average welfare of agents living in PI (FI) economy and W is the

aggregate welfare of agents living in the economy without aggregate shocks. We can solve for x as

x = 1 − exp
(
(1 − β)

(
V

i
− W

))
.

The fraction of consumption agents in the PI economy are willing to give up is 0.1982 percent while

the fraction in the FI economy is 0.044 percent. While both numbers are small, the PI cost is 450

percent of the FI cost.39 Above we noted that there are states of the world where PI agents are too

’optimistic;’ it turns out that their expected lifetime utility is higher than FI agents’ lifetime utility

conditioned on being in one of those states currently. But these states are extremely rare, so that

integrating over the stationary distribution does not assign them much weight. Of course, with a

different information structure the results could be different, although we do not find it likely that

the cost of fluctuations would ever be higher for FI agents than PI agents.40

Despite the small numbers obtained here, we think our results regarding the relative cost of

fluctuations has some importance. Alternative preference structures can generate much larger

welfare costs for cycles – Dolmas (1998) and Tallarini (2000) are two prominent examples. In our

economy, these preferences could generate very large costs for PI agents; one example in Dolmas

(1998) suggests a cost on the order of 1 percent of consumption for an FI agent, meaning that

4 percent of consumption would be in the ballpark for PI agents. The small aggregate numbers

do not tell the entire story, either. If we look at ’marginal gains’ for business cycles – meaning

the gain in consumption equivalents generated by reducing the variance of the aggregate shock

incrementally to zero – we find additional heterogeneity across the two types. As seen in Table 6,

39Small aggregate costs of fluctuations in this class of models are also found in Krusell and Smith (1999,2002)
and Mukoyama and Şahin (2006). We stress that none of these models are calibrated to match the behavior of the
cross-sectional distribution of consumption, so small costs may be an indication of excessively-smooth consumption,
a common problem in business cycle models. Since those papers concentrate on the relative cost of cycles across the
wealth distribution this criticism does not diminish their contributions.

40Because the allocation is not constrained-efficient, PI agents could have higher welfare than FI agents despite
their information disadvantage.
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the marginal gain for FI agents is essentially constant.41 For PI agents, the marginal gain function

is decreasing: removing one quarter of the variance in the aggregate shock generates a welfare gain

of nearly 0.08 percent, 40 percent of the total gain of 0.1982 percent. Thus, even small reductions

in business cycle volatility could have important welfare consequences; we think is premature to

dismiss the potential of stabilization policy given our results. The explicit study of policies that

reduce business cycles is a topic for future work, however, as this paper is already lengthy.

4. Conclusion

Our paper is a study of the role of information in wealth inequality. While we find only modest

implications in the calibrated model, we have demonstrated the potential role of information to

generate wealth concentration. Our next step is to construct a more elaborate information structure

which allows information to have more impact on agents’ decisions. We would like to introduce more

sophisticated behavior by PI agents by permitting them to fit more elaborate time series models

to the artificial data; ideally, we would define the observable aggregates and let the households

learn as much as they can about the underlying economy from these observables using filtering

methods. It also seems important to permit learning – agents estimate models and update them

period-by-period – since information would play a more important role in its presence. While

the computational burden of that economy exceeds anything feasible currently, it may not in the

future.

Another feature which we plan to relax is the assumption of only one asset. The results in

Krusell and Smith (1997) show that extreme portfolios typically result in an FI economy: the poor

hold bonds and the rich hold stocks. Poor agents have little incentive to hold stocks because the

return is highly correlated with their background risk, making it a poor vehicle for insurance; as a

result they tend save in the form of bonds. In contrast, rich agents feel ’well-insured’ and therefore

hold stocks to claim the equity premium. Our mixed economy has the potential to increase the

incentive of the rich FI agents to take extreme portfolio positions as they become wealthier (in a

relative sense) in the presence of PI agents. Conversely, the poor PI agents will do the opposite;

even a small equity premium might eventually generate significant wealth concentration among

41Alvarez and Jermann (2004) discuss the theoretical calculation of the marginal cost function for business cycle
uncertainty. The total cost number is the value of reducing the business cycle volatility from σe to the number in
the first column, while the marginal cost is the value of reducing it to the number in the first column from the next
higher value.
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the informed.42 Furthermore, the increased sensitivity to business cycles displayed by the PI

agents would act to drive up the equity premium. A similar effect may play an important role in

generating the home bias puzzle observed in international financial markets.43

We also believe that information plays a role in the nature of the idiosyncratic risk faced by

households – the FI and PI agents would choose to face different idiosyncratic risk. In particular,

information heterogeneity may play an important role in determining the occupational choices of

households; for example, given the high risk faced by entrepreneurial activities (some of which is

aggregate risk, as shown by the high volatility of proprietor’s share of income), FI agents would

seem to be more likely to engage in them. Furthermore, this environment may help explain the

absence of a significant private equity premium. It would also play a role in the decision to

participate in costly labor market or product market search; poorly-informed agents may be at a

serious disadvantage and end up with lower wages or higher costs, magnifying the wealth gap.

Another line of extension we have planned is to use the model to study an equilibrium with

heterogeneous beliefs by introducing m into the forecasting equation for (r, w). While m is id-

iosyncratic it is correlated with K; during periods in which aggregate capital is high, individual

capital will tend to be high as well. As a result, PI agents will gain forecasting accuracy by

conditioning on their individual cash-on-hand level. The upshot of that change is that ’beliefs’ –

probability distributions over future events – are now heterogeneous; each individual will have a

distinct distribution of future returns. As mentioned above, because the wealth distribution and

K are not cyclically volatile we found that this change made little difference in our current model;

in models with state variables that fluctuate more over time, heterogeneity of beliefs may play a

more important role.44 A similar effect could be achieved by allowing correlation between ǫ and

z, although in that case the heterogeneity of beliefs would be exogenous; this method would be

considerably less computationally burdensome and we are currently pursuing it.

Finally, our study also offers another perspective on policies related to business cycles. Our

result shows that the cost of aggregate fluctuations is larger when the population is poorly informed.

If the policies that completely remove business cycles are too costly, a cheaper alternative may be

a policy that moves the partially-informed economy towards the fully-informed one; this policy

42Guvenen (2005) generates a wide disparity in wealth levels by proscribing stockholding for some households.
43Ahearne, Griever, and Warnock (2004) find evidence that information plays an important role in determining

the share of foreign assets in domestic portfolios.
44Heterogeneity in beliefs could help account for the puzzlingly-high volume of trade in risky asset markets docu-

mented by DeJong and Espino (2006), particularly at high frequencies.
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emphasizes the important role of institutions that provide timely public information and reflects

the relatively large gain experienced by PI agents from the partial elimination of cycles.45 We

show that there is only a small gain if agents do not believe that the institution can always provide

short-term accurate forecasts on a timely schedule; that situation would approximate the case of PI

agents who are endowed with FI agents’ one-period forecasts. Larger effects are generated if the

PI agent actually becomes fully-informed (that is, actually has the information set of the FI agent

forever), meaning that the institution is reliably providing information. A model with endogenous

and costly acquisition of information, such as Veldkamp (2006), would be needed to develop this

idea further.

45Two papers that investigate information provision and business cycles are Bomfim (2001b) and Aruoba (2004).
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A. Appendix A

In this appendix we show how to derive the price process for r and w used by an FI agent. Given

competitive factor markets we can solve for z and log (K) by equating factor prices to marginal

products:

r + δ = α exp (z) Kα−1H
1−α

w = (1 − α) exp (z) KαH
−α

implies

log

(
K

H

)
= log (w) − log (r + δ) + log

(
α

1 − α

)

z = log (r + δ) − log (α) + (1 − α) log

(
K

H

)
.

Now substitute these expressions into the dynamic equation (2.6) to obtain

log

(
K ′

H

)
= a0 + a1 log

(
α

1 − α

)
+ (a1 − 1) log

(
H
)

+ a1 log (w) − a1 log (r + δ) + a2z.

Now we substitute the above result and the technology shock process (2.2) into the expressions for

r′ and w′ to obtain

log
(
r′ + δ

)
= log (α) + (α − 1)

(
a0 + a1 log

(
α

1 − α

)
+ (a1 − 1) log

(
H
))

+ (α − 1) a1 log (w) −

(α − 1) a1 log (r + δ) + ((α − 1) a2 + ρ) z + e′

log
(
w′
)

= log(1 − α) + α

(
a0 + a1 log

(
α

1 − α

)
+ (a1 − 1) log

(
H
))

− αa1 log (r + δ) +

αa1 log (w) + (ρ + αa2) z + e′.
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Then substitute out the expressions for log (K) and z to obtain (r′, w′) as functions of (r, w):

log
(
r′ + δ

)
= log (α) + (α − 1)

(
a0 + a1 log

(
α

1 − α

)
+ (a1 − 1) log

(
H
))

+ (α − 1) a1 log (w) −

(α − 1) a1 log (r + δ) + ((α − 1) a2 + ρ) +

(1 − α)

(
log (w) − log (r + δ) + log

(
α

1 − α

))

log
(
w′
)

= log(1 − α) + α

(
a0 + a1 log

(
α

1 − α

)
+ (a1 − 1) log

(
H
))

− αa1 log (r + δ) +

αa1 log (w) + (ρ + αa2)

(1 − α)

(
log (w) − log (r + δ) + log

(
α

1 − α

))
.

Simplifying this expression yields

log
(
r′ + δ

)
= A0 + A1 log (r + δ) + A2 log (w) + ε′r

log
(
w′
)

= A3 + A4 log (r + δ) + A5 log (w) + ε′w

where

A0 = log (α) + (α − 1)

(
a0 + a1 log

(
α

1 − α

)
+ (a1 − 1) log

(
H
))

−

((α − 1) a2 + ρ) (α log (α) + (1 − α) log (1 − α))

A1 = (1 − α) a1 + α ((α − 1) a2 + ρ)

A2 = (α − 1) a1 + (1 − α) ((α − 1) a2 + ρ)

A3 = log(1 − α) + α

(
a0 + a1 log

(
α

1 − α

)
+ (a1 − 1) log

(
H
))

−

(αa2 + ρ) (α log (α) + (1 − α) log (1 − α))

A4 = −αa1 + α (αa2 + ρ)

A5 = αa1 + (1 − α) (αa2 + ρ) .

B. Appendix B

In this appendix we first discuss our estimation of the process for z and then the discretized

approximation for ǫ. For the technology shock, we use aggregate output, fixed assets and inventories,

and average weekly hours from BEA (1964-2000). Since the data of aggregate capital is annual,

we approximate the annual process first, then find a quarterly representation of this annual process
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using an Indirect Inference approach.

Given α = 0.36, we construct the annual series of za
t . In addition, we also construct an annual

series of depreciation rate δa
t . Our estimated AR(1) process of these annual series is

za
t+1 = ρa

zz
a
t + ηt+1 (B.1)

δa
t+1 = µa

δ + ρa
δδ

a
t + υt+1

with ρa
z = 0.8586, σ2

η = 0.01342, µa
δ = 0.0075, ρa

δ = 0.7854, σ2
υ = 0.00042, and the correlation

coefficient between ηt and υt is 0.4163. In the above expression we remove the linear time trends

and normalize mean of z to zero. We then approximate a quarterly process from this annual

process as follows. We can write the relationship between the quarter series and annual series as

za
t = z

q
t,4 (B.2)

1 − δa
t = (1 − δ

q
t.1)(1 − δ

q
t.2)(1 − δ

q
t.3)(1 − δ

q
t.4),

where x
q
t.j is a quarterly data in quarter j of year t. Our objective is to find a stationary quarterly

process that can generate an annual process close to the one represented by (B.1). We restrict the

class of approximated quarterly processes to be an AR(1).46

z
q
t+1 = ρq

zz
q
t + et+1 (B.3)

δ
q
t+1 = µ

q
δ + ρ

q
δδ

q
t + ςt+1

et

ςt


 ∼ N




0

0


 ,


σ2

e σ2
eς

σ2
eς σ2

ς




 .

To find the coefficients of this quarterly process, we perform the following steps.

1. Simulate two independent series of normal random variables of length 106.

2. Guess the parameters in the quarterly process (B.3).

3. Use the normal random variables from step 1 to simulate the quarterly series for (zq
t , δ

q
t ).

4. Use the relationship (B.2) to get the simulated annual series and estimate an AR(1) process

on this series.

46Notice that the relationship between the annual series and quarterly series is nonlinear. Even though the annual
process is AR(1), the quarterly process may not be.
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5. Calculate the weighted sum of differences between the estimated coefficients and the ones in

(B.1).47

6. Use a numerical minimization routine to find the coefficients of quarterly process.48

The result from our estimation is following: ρ
q
z = 0.964, σ2

e = 0.00712, µ
q
δ = 0.00087, ρ

q
δ =

0.9298, σ2
ς = 0.0000812, and the correlation coefficient between e and ς is 0.5326. Since the

variance of depreciation shock is very small, in our model we assume it to be a constant and have

only one aggregate shock zt.

For the idiosyncratic productivity shock, we use the AR(1) earning process from Storesletten,

Telmer, and Yaron (2004), yielding ρǫ = 0.9412 and σ2
ν = 0.09582. Then we approximate this

continuous process with a Markov chain that has 7 states; the transition matrix is given by

π
(
ǫ′|ǫ
)

=




0.8133 0.1866 0.0001 0.0 0.0 0.0 0.0

0.0366 0.8213 0.1421 0.0 0.0 0.0 0.0

0.0 0.0535 0.8410 0.1055 0.0 0.0 0.0

0.0 0.00005 0.0761 0.8477 0.0761 0.00005 0.0

0.0 0.0 0.0 0.1055 0.8410 0.0535 0.0

0.0 0.0 0.0 0.0 0.1421 0.8213 0.0366

0.0 0.0 0.0 0.0 0.0001 0.1866 0.8133




and the vector of realizations for exp (ǫ) is {0.447, 0.589, 0.749, 0.942, 1.185, 1.508, 1.986}.

C. Appendix C

Assume ΩFI
i =

{
mi, ǫi, Γ, z,Q

}
where Q is the collection of structural equations for the model,

z is the aggregate shock, and Γ is the distribution over (m, ǫ, θ) where θ denotes ’type’.49 Also,

ΩPI
i =

{
mi, ǫi, r, w

}
, where r is the current realization of the rental rate and w is the current

realization of the wage rate; the PI agent does not know (z, Γ,Q). Note that ΩPI ⊂ ΩFI . Define

f (X ) as the space of distributions over elements of the space X . Denote (E , T ,Z) as the spaces

of (ǫ, Γ, z) respectively. Also note that (m, r, w) is an element of R3
+.

47An alternative is to minimize the difference between the spectrum of the annual process (B.1) and the simulated
process.

48In another estimation where we assume the quarterly process is ARMA(1,1), the simulated annual process fits
the annual process (B.1) better. Because an ARMA(1,1) increases the state space of the model, the computational
cost is too large to consider currently.

49If agents know z and Γ, they can derive (r, w). Thus we drop (r, w) from ΩFI .
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A recursive competitive equilibrium for the economy is a value function V FI : R+×E×T ×Z →

R, a value function V PI : R+ ×E ×R2
++ → R, decision rules

(
gFI
k , gFI

c

)
: R+ ×E × T ×Z → R2

+,

decision rules
(
gPI
k , gPI

c

)
: R+ × E × R2

++ → R2
+, pricing functions (R, W ) : T × Z → R2

++, a

transition function F : T × Z × Z → T , and a stochastic transition function G : R2
++ → f

(
R2

++

)

such that

Definition 1. 1. Given (R, W, F ),
(
V FI , gFI

k , gFI
c

)
solve the FI agent problem (2.5) for all

(m, ǫ,Γ, z);

2. Given G,
(
V PI , gPI

k , gPI
c

)
solve the PI agent problem (2.9) for all (m, ǫ, r, w);

3. r = R (K, z) = MPK − δ and w = W (K, z) = MPH for all (K, z);

4. Markets clear:

H =
∑

ǫ

∑

θ=′PI′,′FI′

∫
ǫdΓ (m, ǫ, θ)

K =
∑

ǫ

∑

θ=′PI′,′FI′

∫
kdΓ (m, ǫ, θ)

exp (z)KαH
1−α

=
∑

ǫ

∑

θ=′PI′,′FI′

∫
cdΓ (m, ǫ, θ) +

∑

ǫ

∑

θ=′PI′,′FI′

∫
k′dΓ (m, ǫ, θ) − (1 − δ) K;

5. F is consistent with aggregation of
(
gFI
k , gFI

c , gPI
k , gPI

c

)
, individual shock process (2.4), and

the pricing functions (R, W );

6. G is consistent with (R, W, F ) and technology shock process (2.2).

The last two conditions require clarification. Condition (5 ) states that given z′, the evolution

of Γ is obtained by aggregating decision rules and the individual shock process (2.4). For example,

F must be consistent with

K ′ =
∑

ǫ

∑

θ=′PI′,′FI′

∫
k′dΓ (m, ǫ, θ) .

All other statistics must also be consistent. Condition (6 ) requires that the distribution of (r′, w′)

given (r, w) is consistent with the equilibrium pricing functions applied to F (Γ, z, z′) and technology

shock (2.2); that is, r′ = R (K ′, z′) and w′ = W (K ′, z′).
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D. Appendix D

This appendix explains the algorithm to compute the equilibrium of the model. Our algorithm for

solving the FI agent’s problem is modified from Krusell and Smith (1998) and Young (2006). The

objective of the algorithm is to approximate the value functions
(
V FI , V PI

)
, the law of motion

for aggregate capital (2.6), and the price process (2.10). We divide the algorithm into three main

parts. In summary, the first part is to solve for the value functions
(
V FI , V PI

)
over a finite grid

of (m, r, w) , given a law of motion (2.6) and a price process (2.10). The second part is to solve

for the policy functions k′ over a much finer grid of (m, r, w) using V FI and V PI from the first

part. The third part is to simulate the time series of (Kt, rt, wt) using the policy function from the

second part and update the law of motion (2.6) and the price process (2.10). Then iterate from

the first part using the updated law of motion and price process until their coefficients converge.

The following subsections explain the algorithm in detail.

D.1. Part 1: Solving for V FI (m, ǫ, r, w) and V PI (m, ǫ, r, w)

1. Discretize the space of m and denote this grid m1. Since the value functions have more

curvature where m is close to 0, we concentrate our grid points at low values of m. The total

number of points we use is 135.

2. Guess {aj}
2
j=0 in (2.6) and {bj}

5
j=0 and

{
σ2

r , σ
2
w , σ2

rw

}
in (2.10). Then compute {Aj}

5
j=0 as

shown in Appendix A.

3. Discretize the space of (r, w) and denote these grids (r1,w1). To keep the range of (r1,w1)

tight and consistent with the price process (2.10), we define the minimum and maximum

grid points of r1 and w1 as five times their unconditional standard deviation computed from

(2.10). The number of grid points in r1 and w1 is 4. In our model there is a little curvature

along the r and w dimensions, so we evenly-space our points.

4. Guess initial value function V FI
0 and V PI

0 on the discretized grids of (m1, ǫ, r1,w1).

5. Given {Aj}
5
j=0 and V FI

0 , solve the FI agent’s problem (2.7) to get the policy function k′ and

use it to get V FI
1 . Iterate until V FI

n converges. Given {bj}
5
j=0,

{
σ2

r , σ
2
w , σ2

rw

}
, and V PI

0 , do

the same in PI agent’s problem.
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D.2. Part 2: Solving for the policy functions k′ = gi
k (m, ǫ, r, w)

1. Define finer grids (m2, r2,w2). We use 270 points for m2 and put more points near zero as

before. For r2 and w2, we use 15 points that are again equally-spaced.

2. Use the resulting value function from the first part in the RHS of problem (2.7) and (2.9) and

solve for the policy functions k′ for all points in the grids (m2, r2,w2).

D.3. Part 3: Update law of motion and price process

1. Discretize the distribution Γ (m, ǫ, θ) by defining a much finer grid along the m dimension,

called m3. We use 2000 points in m3.

2. Simulate a long time series of {zt}
T
t=1. We simulate T = 30, 000 periods.

3. Guess the initial distribution Γ1. Given z1 and Γ1, calculate {K1, r1, w1}.
50

4. Use policy function k′ from the second part, together with z2, to calculate the next period

distribution Γ2. Repeat the same calculation for {zt}
T
t=3 . Note that since m3 and (rt, wt)

will typically not lie on the grids (m2, r2,w2), we use three-dimensional linear interpolation

to approximate the policy function k′. We find that k′ is nearly linear along the m dimension

except when m is close to zero and there is little curvature along the r and w dimensions.

In addition, since the next period m′ will typically not lie on the grid m3, for each period

we use a weighted method to reallocate the mass of agents back to the grids (see Young 2006

for a complete description); because the grid points are densely packed this randomness does

not significantly alter the properties of the distribution.

5. Use OLS on the equilibrium time series of {Kt, rt, wt}
T
t=T0

to get a new value of {aj}
2
j=0 and

{bj}
5
j=0.

6. Update these coefficients using the updating rule: xupdate = λxnew + (1 − λ) xold and repeat

from step 3 in part 1 till all the coefficients {aj}
2
j=0, {bj}

5
j=0, and

{
σ2

r , σ
2
w , σ2

rw

}
converge.

(More sophisticated methods of solving the implicit nonlinear equation for x = (a, b, σ), such

as Broyden’s method, are not stable because the numerical derivatives are poorly behaved).

50Given
R

mdΓ0 = K0 (1 + r0) + w0ǫH and (2.3) and z0, we can solve for the unique K0 that solves this equation
using Brent’s method.
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In the remainder of this section we will discuss how we solve the recursive problems (2.7) and

(2.9) in step 5 of Part 1 and step 2 of Part 2. To compute the maximization on the RHS of the

Bellman equation we solve

0 ≥ −u′
(
m − k′

)
+ β

∑

ǫ

π
(
ǫ′|ǫ
) ∫

(r′,w′)

∂V

∂m

(
m′, ǫ′, r′, w′

) (
1 + r′

)
dF
(
r′, w′|r, w

)
,

m′ = k′
(
1 + r′

)
+ w′ǫ′h,

where F (·) is the distribution according to the corresponding forecast rule. We use bisection and

Newton-Raphson procedures to solve for the optimal k′, depending on whether we are close to the

borrowing limit. To calculate the above integral we use Gauss-Hermite quadrature, since the errors

are normal. Since (r′, w′) have errors which are perfectly correlated in the FI agent’s problem, this

integral is only one-dimensional, which we calculate using 20 nodes. For the PI agent’s problem,

we use Gauss-Hermite quadrature and the product rule to integrate over (r′, w′).51 In this case,

the number of nodes for each dimension is 13. Judd (1998) contains references for the algorithm

that produces the nodes and weights for the quadrature.

The last issue is how to approximate V and Vm. Since (m′, r′, w′) will be off the grids, we use

the following steps in the interpolation:

1. For every grid point of m1 (or m2), we use two-dimensional linear interpolation over the

(r,w) dimensions to obtain V (m1, ǫ, r′, w′).52

2. We then construct a cubic spline over the m1 dimension to obtain V (m′, ǫ′, r′, w′). We can

then evaluate ∂V
∂m

(m′, ǫ′, r′, w′) from the cubic spline; ∂V
∂m

is continuous and smooth in m′.

With a good initial guess V FI
0 , V PI

0 , {aj}
2
j=0,{bj}

5
j=0, we find that the value functions converge

monotonically and all coefficients converge nicely (although not always monotonically). The typical

51For any bivariate normally-distributed variable, y ∼N (y,Σ), we can approximate its integral by

Z ∞

−∞

Z ∞

−∞

f (y1, y2) dΦ (y1, y2) ≃ π
−1 |Σ|−1/2 |L|

N2X

j=1

N1X

i=1

f
`
y
∗
1,i, y

∗
2,j

´
ω

∗
1,iω

∗
2,j ;

»
y∗
1,i

y∗
2.j

–
=

√
2L

»
x∗

1,i

x∗
1,j

–
+

»
y1

y2

–
,

where
`
x∗

1,i, x
∗
2,j

´
and

`
ω∗

1,i, ω
∗
2,j

´
are nodes and weights for Gauss-Hermite quadrature and L is from LU decomposition

of Σ. For a discussion of Gauss-Hermite quadrature as an approximation for the expectation of functions of normal
variables, see Judd (1998).

52ǫ′ is always on the grid, so no interpolation is needed along this dimension.
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runtime is several days. We doubt that the algorithm would work well with arbitrary initial guesses;

our initial guess for the PI agent coefficients is taken from the FI economy.

E. Appendix E

This appendix proves Propositions (1)-(4). Consider the second period problem in (3.3). Omitting

the time subscript, the FOCs of the PI and FI agents are

−u′
(
m − si

)
+ β

∫
u′
(
si
(
1 + ri

)
+ wi

) (
1 + ri

)
dF i

(
ri, wi

)
= 0. (E.1)

We consider only the case when si > 0. Using the FOC of an FI agent, define

Φ (s) = −u′ (m − s) + β

∫
u′
(
s
(
1 + rFI

)
+ wFI

) (
1 + rFI

)
dFFI

(
rFI , wFI

)
.

Note that Φ (s) is strictly decreasing. If Φ
(
sPI
)

> 0, then we can conclude that sFI > sPI .

Subtracting the FOC of the PI agent from Φ
(
sPI
)
, we have Φ

(
sPI
)

> 0 if and only if

∫
u′
(
sPI

(
1 + rFI

)
+ wFI

) (
1 + rFI

)
dFFI

(
rFI , wFI

)

>

∫
u′
(
sPI

(
1 + rPI

)
+ wPI

) (
1 + rPI

)
dFPI

(
rPI , wPI

)
. (E.2)

Now we show that condition (E.2) is satisfied in each proposition.

Proposition 1. Given u (c) = log (c) and rFI ≻FOSD rPI , then sFI > sPI .

In this case the distribution of wFI and wPI are the same. Under the iid assumption, condition

(E.2) can be written as

∫
Ew

[
u′
(
sPI

(
1 + rFI

)
+ w

)] (
1 + rFI

)
dFFI

(
rFI
)

>

∫
Ew

[
u′
(
sPI

(
1 + rPI

)
+ w

)] (
1 + rPI

)
dFPI

(
rPI
)
. (E.3)
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Ew [·] is conditional expectation over w. Let x = SPI (1 + r) and define g (r) and write out its first

derivative as following

g (r) = Ew

[
u′ (x + w)

]
(1 + r)

g′ (r) = Ew

[
u′ (x + w) + u′′ (x + w)x

]

= Ew

[
u′ (x + w)

(
1 +

u′′ (x + w) (x + w)

u′ (x + w)

x

(x + w)

)]
.

Notice that if u (c) is logarithmic, g (r) is strictly monotone-increasing since w is always greater

than zero. Thus if rFI ≻FOSD rPI , condition (E.3) is satisfied.53

Proposition 2. Given u (c) = log (c) and rFI ≻SOSD rPI , then sFI > sPI .

Following the same steps in the proof of Proposition (1), we will get

g′′ (r) = sPIEw

[
2u′′ (x + w) + u′′′ (x + w)x

]

= sPIEw

[
u′′ (x + w)

(
2 +

u′′′ (x + w) (x + w)

u′′ (x + w)

x

x + w

)]
.

Notice that if u (c) is logarithmic, g (r) is a strictly concave function. Thus if rFI ≻SOSD rPI ,

condition (E.3) is satisfied.54

Proposition 3. Given wPI ≻FOSD wFI , then sFI > sPI .

In this case the distribution of rFI and rPI are the same. Under the iid assumption, condition

(E.2) can be written as

∫
Er

[
u′
(
sPI (1 + r) + wFI

)
(1 + r)

]
dFFI

(
wFI

)

>

∫
Er

[
u′
(
sPI (1 + r) + wPI

)
(1 + r)

]
dFPI

(
wPI

)
. (E.4)

Let x = SPI (1 + r) and define g (w) and write out its first derivative as

g (w) = Er

[
u′ (x + w) (1 + r)

]
,

g′ (w) = Er

[
u′′ (x + w) (1 + r)

]
.

53By definition, if ex1 ≻FOSD ex2, Eg (ex1) > Eg (ex2) for all strictly increasing functions g (x).
54By definition, if ex1 ≻SOSD ex2, Eg (ex1) > Eg (ex2) for all strictly concave function g (x).
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If u (c) is a concave function, g (w) is monotone-decreasing. Thus if wPI ≻FOSD wFI , condition

(E.4) is satisfied.

Proposition 4. Given u (c) is CRRA and wPI ≻SOSD wFI , then sFI > sPI .

Following the same steps in the proof of Proposition 3, we will get

g′′ (w) = Er

[
u′′′ (x + w) (1 + r)

]
.

If u (c) is a CRRA utility function, g (w) is a strictly convex function. Thus if wPI ≻SOSD wFI ,

condition (E.3) is satisfied.

F. Appendix F

This appendix explains how we set the PI agent’s forecast equations in the four cases: i) EPI
t rt+1

is downward biased, ii) V PI
t rt+1 is arbitrarily larger, iii) EPI

t wt+1 is downward biased, and iv)

V PI
t wt+1 is arbitrarily larger. Let x = rFI

t+1|t + δ and y = wFI
t+1|t. Then we have

x ∼ log N
(
µr, σ

2
e

)
; y ∼ log N

(
µw, σ2

e

)
,

where µr, µw and σ2
e are calculated according to FI agent’s forecast function (2.8). Assume that the

PI agent’s forecast functions have the form as (2.8) but with different coefficients. Let x̂ = rPI
t+1|t+δ

and ŷ = wPI
t+1|t, where

x̂ ∼ log N
(
µ̂r, σ

2
x

)
; ŷ ∼ log N

(
µ̂w, σ2

y

)

Our objective is to find µr, µw, σ2
x, and σ2

y for each of the four cases.

Case i) EPI
t rt+1 is downward biased. In this case EPI

t rt+1 < EFI
t rt+1 while V PI

t rt+1 =

V FI
t rt+1. Let Ex̂ = γEx for 0 < γ < 1. Using the expressions for the expectation and variance

of a log normal random variable we obtain

exp

(
µ̂r +

σ2
x

2

)
= γ exp

(
µr +

σ2
e

2

)
,

(γEx)2
(
exp

(
σ2

x

)
− 1
)

= (Ex)2
(
exp

(
σ2

e

)
− 1
)
.
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Solve for σ2
x and µ̂r:

σ2
x = log

(
exp

(
σ2

e

)
− 1 + γ2

γ2

)
,

µ̂r = µr +
σ2

e − σ2
x

2
+ log γ.

Then given γ, we use the above formulas to transform an FI agent’s forecast into a PI agent’s

biased forecast. In our experiment, we set γ = 0.9975, so EPI
t (rt+1 + δ) = 0.9975EFI

t (rt+1 + δ);

approximately
EFI

t rt+1

EPI
t rt+1

≃ 0.992.

Case ii) V PI
t rt+1 is arbitrarily larger. In this case V PI

t rt+1 > V FI
t rt+1 but EPI

t rt+1 =

EFI
t rt+1. Let σx = γσe with γ > 1. In this case we have

exp

(
µ̂r +

γ2σ2
e

2

)
= exp

(
µr +

σ2
e

2

)
.

Solve for µ̂r as

µ̂r = µr +
σ2

e

2

(
1 − γ2

)
.

In our experiment, we set γ = 6.0, so
V PI

t rt+1

V FI
t rt+1

=
exp(γ2σ2

e−1)
exp(σ2

e−1)
= 1.00177.

Case iii) EPI
t wt+1 is downward biased. In this case EPI

t wt+1 < EFI
t wt+1 while V PI

t wt+1 =

V FI
t wt+1. Following the same steps in case i), we can get the same formulas for σ2

y and µ̂w. In

our experiment, we set γ = 0.9975 so that
EFI

t wt+1

EPI
t wt+1

= 0.9975.

Case ii) V PI
t wt+1 is arbitrarily larger. In this case V PI

t wt+1 > V FI
t wt+1 but EPI

t wt+1 =

EFI
t wt+1. Following the same steps in case ii), we can get the same formulas for µ̂w. In our

experiment, we set γ = 3.0 so that
V PI

t wt+1

V FI
t wt+1

= 1.0004.
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Table 1

Aggregate Implications

z log (Y ) log (K) log (C) log (I) r w

PI economy

Mean 0.000 0.242 2.692 −0.047 −1.140 0.0094 2.540

SD 0.026 0.035 0.035 0.028 0.068 0.0006 0.089

Relative SD 0.730 1.000 0.998 0.804 1.936 0.018 2.533

Corr with GDP 0.962 1.000 0.829 0.936 0.900 0.295 0.999

Autocorrelation 0.961 0.980 0.999 0.996 0.950 0.940 0.980

FI economy

Mean 0.000 0.245 2.701 −0.046 −1.131 0.0092 2.549

SD 0.026 0.035 0.035 0.028 0.067 0.0006 0.089

Relative SD 0.734 1.000 0.986 0.807 1.913 0.018 2.541

Corr with GDP 0.962 1.000 0.828 0.938 0.901 0.315 0.999

Autocorrelation 0.961 0.980 0.999 0.996 0.950 0.936 0.980
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Table 2

Forecast Rules55

PI agent (Λ = 0.5) Constant log (r) log (w) σε ρ (εt, εt−1) R2

log (r′) −0.1195 0.9532 −0.1066 0.02385 0.0037 0.8795

log (w′) 0.0311 0.0023 0.9780 0.00712 0.0038 0.9590

FI agent (Λ = 0.5)

log (r′ + δ) −0.1382 0.9524 −0.0292 0.00710 0.0 0.8796

log (w) 0.0413 0.0067 0.9807 0.00710 0.0 0.9590

55For an FI agent we compute a comparable R2 from 1 − σ2

e

σ2
y

, where σ2
y are variances of the dependent variable.
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Table 3

Individual Statistics

mi k′
i ci

Mixed economy (FI,PI)

Mean (16.42, 13.27) (15.46, 12.34) (0.960, 0.931)

SD (13.06, 11.37) (12.89, 11.21) (0.184, 0.178)

PI Economy (FI,PI)

Mean (18.68, 14.73) (17.70, 13.79) (0.980, 0.944)

SD (14.34, 12.34) (14.16, 12.17) (0.190, 0.182)

FI Economy (FI,PI)

Mean (14.93, 12.28) (13.98, 11.35) (0.946, 0.922)

SD (12.19, 10.70) (12.02, 10.54) (0.179, 0.175)
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Table 4

Wealth Distribution (Λ = 0.5)

Wealth Percentile % of Population Fraction of PI Fraction of FI

< 1% 0.0099 0.5857 0.4143

1% − 10% 0.0898 0.5823 0.4177

10% − 20% 0.0961 0.5661 0.4339

50% − 60% 0.0990 0.5041 0.4959

95% − 99% 0.0400 0.3498 0.6502

99% − 100% 0.0101 0.2828 0.7172
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Table 5

Wealth By Deciles

Wealth Wealth Deciles

Gini Top 1% Top 5% Top 10% Top 20% Bottom 40%

US data56 0.806 32.27% 57.45% 69.65% 82.62% 1.11%

FI economy (Λ = 0.0) 0.424 3.93% 15.47% 26.83% 45.15% 12.66%

Model with biased EPI
t rt+1 0.733 9.46% 35.9% 58.7% 81.60% 3.38%

Fraction of PI agents 0.0% 0.0% 0.0% 6.97% 99.60%

56Data is from the 2001 wave of the Survey of Consumer Finances.
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Table 6

Welfare Gains

FI Economy PI Economy

Volatility Total Gain Marginal Gain Total Gain Marginal Gain Ratio

0 0.0122% 0.0107% 0.0199% 0.0199% 1.639

1
4σe 0.0229% 0.0096% 0.0592% 0.0393% 2.586

1
2σe 0.0325% 0.0115% 0.1181% 0.0590% 3.635

3
4σe 0.0440% 0.0122% 0.1980% 0.0799% 4.505
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Table 2 Supplement

Forecast Rules57

PI agent (PI economy) Constant log (r) log (w) σε ρ (εt, εt−1) R2

log (r′) −0.1196 0.9531 −0.1067 0.02367 0.0037 0.8803

log (w′) 0.0310 0.0023 0.9781 0.00712 0.0038 0.9593

FI agent (PI economy) Constant log (r + δ) log (w) σe ρ (et, et−1) R2

log (r′ + δ) −0.1381 0.9522 −0.0294 0.00710 0.0 0.8804

log (w) 0.0412 0.0067 0.9808 0.00710 0.0 0.9593

PI agent (FI economy) Constant log (r) log (w) σε ρ (εt, εt−1) R2

log (r′) −0.1193 0.9533 −0.1066 0.02400 0.0037 0.8789

log (w′) 0.0311 0.0022 0.9779 0.00712 0.0038 0.9589

FI agent (FI economy) Constant log (r + δ) log (w) σe ρ (et, et−1) R2

log (r′ + δ) −0.1381 0.9524 −0.0290 0.00710 0.0 0.8790

log (w) 0.0412 0.0066 0.9806 0.00710 0.0 0.9589

PI agent (mixed economy) Constant log (r) log (w) σε ρ (εt, εt−1) R2

log (r′) −0.1195 0.9532 −0.1066 0.02385 0.0037 0.8795

log (w′) 0.0311 0.0023 0.9780 0.00712 0.0038 0.9590

FI agent (mixed economy) Constant log (r + δ) log (w) σe ρ (et, et−1) R2

log (r′ + δ) −0.1382 0.9524 −0.0292 0.00710 0.0 0.8796

log (w) 0.0413 0.0067 0.9807 0.00710 0.0 0.9590

57For an FI agent we compute a comparable R2 from 1 − σ2

e

σ2
y

, where σ2
y are variances of the dependent variable.
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Figure F.1: Comparison of Aggregates, PI and FI economies
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Figure F.2: Individual Saving (Mixed Economy)
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Figure F.3: Savings Functions (Mixed Economy)
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Figure F.4: Comparison of Savings Functions (Mixed Economy)
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Figure F.5: One period Forecast Error (Mixed Economy)
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Figure F.6: Expected r′ and w′ (Mixed Economy)
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Figure F.7: PI agent Endowed with FI Forecast (Mixed Economy)
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Figure F.8: Value Functions (Mixed Economy)
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Figure F.9: Comparison of Value Functions (Mixed Economy)

50 100 150

−0.5

0

0.5

a)  V
FI

−V
PI

 (mixed economy) at r
min

 and w
min

50 100 150
0

0.2

0.4

0.6

0.8

1

b)  V
FI

−V
PI

 (mixed economy) at r
min

 and w
max

50 100 150
−1

−0.8

−0.6

−0.4

−0.2

0

c)  V
FI

−V
PI

 (mixed economy) at r
max

 and w
min

cash on hand
50 100 150

0

0.2

0.4

0.6

0.8

1

d)  V
FI

−V
PI

 (mixed economy) at r
max

 and w
max

cash on hand

 

 

ε
min

ε
average

ε
max

53



Figure F.10: PI and FI agents, No One-Period Risk (Mixed Economy)
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Figure F.11: Marginal Value of m (Mixed Economy)
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Figure F.12: Comparison of Marginal Value of m (Mixed Economy)
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Figure F.13: Wealth Distribution (Mixed Economy)
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Figure F.14: Wealth Concentration (Mixed Economy)
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Figure F.15: Case 1: EPI
t rt+1 ≃ 0.992EFI

t rt+1 and Case 2: V PI(rt+1)
V FI(rt+1)

= 1.001766
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Figure F.16: Case 3: EPI
t wt+1 = 0.9975EFI

t wt+1 and Case 4: V PI(wt+1)
V FI(wt+1)

= 1.000403
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Figure F.17: Wealth Distribution with EPI
t rt+1 ≃ 0.952EFI

t rt+1 (Λ = 0.8)
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Figure F.18: Wealth Concentration with EPI
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