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Abstract

The design of the New York City (NYC) High School match involved tradeoffs between

incentives and efficiency, because some schools are strategic players that rank students in

order of preference, while others order students based on large priority classes. Therefore

it is desirable for a mechanism to produce stable matchings (to avoid giving the strategic

players incentives to circumvent the match), but is also necessary to use tie-breaking for

schools whose capacity is sufficient to accommodate some but not all students of a given

priority class. We analyze a model that encompasses one-sided and two-sided matching

models. We first observe that breaking indifferences the same way at every school is

sufficient to produce the set of student optimal stable matchings. Our main theoretical

result is that a student-proposing deferred acceptance mechanism that breaks indifferences

the same way at every school is not dominated by any other mechanism that is strategy-

proof for students. Finally, using data from the recent redesign of the NYC High School

match, which places approximately 90,000 students per year, we document that the extent

of potential efficiency loss is substantial. Over 6,800 student applicants in the main round

of assignment could have improved their assignment in a (non strategy-proof) student

optimal mechanism, if the same student preferences would have been revealed.
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1 Introduction

In 2003-04, the authors of this paper assisted the New York City Department of Education

(NYCDOE) in redesigning the student assignment mechanism used to match over 90,000

entering students to public high schools each year (Abdulkadiroğlu, Pathak and Roth

2005). A largely decentralized and congested assignment process with counterproduc-

tive incentives was replaced with a more centralized, uncongested procedure, with more

straightforward incentives, based on a student-proposing deferred acceptance algorithm

adapted to satisfy various constraints of the NYCDOE.1

School choice in New York, and in other cities including Boston (in which a new design

was implemented in 2006, see Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005, 2006),

requires extensions of the standard models and results of matching theory found, for

example, in Roth and Sotomayor (1990). Some school choice environments are one-sided

in the sense that only the students are strategic players whose welfare and incentives

need to be considered (while the school places are simply objects to be allocated, cf.

Abdulkadiroğlu and Sönmez 2003). Other school choice environments are traditional

two-sided matching markets. The situation in New York City is a hybrid: some schools

are active strategic players that rank their students in terms of preferences, others have no

preferences, and others fall in between (see Appendix 1). There are incentive and welfare

considerations that affect schools as well as students.

In particular, student i and school s form a blocking pair if i prefers school s to the

school she is assigned, and school s ranks student i ahead of another student who is

assigned to school s. A matching without blocking pairs is a stable matching. When

schools actively rank students, if there is a blocking pair, the school has an incentive

to circumvent the match to enroll the students it would prefer. This was an important

feature of the old system in NYC, in which some schools concealed capacity in an effort

to be matched later with preferable students.2

Thus when schools actively rank students, it is important to obtain a stable matching,

i.e. a matching such that there are no blocking pairs.3 This was one of two principal

objectives of the NYC school match design. The second was that the school match

1As discussed in our 2005 paper, some of these constraints, like the one limiting each student to apply to no

more than 12 schools, interfered with the dominant strategy properties of the unconstrained mechanism for a

minority of students. In our present theoretical treatment, we will consider the design problem without these

idiosyncratic constraints.
2E.g. the Deputy Chancellor of Schools, quoted in the New York Times (11/19/04): “Before you might have

a situation where a school was going to take 100 new children for 9th grade, they might have declared only 40

seats, and then placed the other 60 outside the process.”
3Stable matchings may be relevant even when all schools are passive. In this case, stable matchings eliminate

“justified envy.” See Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu, Pathak, Roth and Sönmez (2006)

for discussion in the context of Boston’s new student assignment mechanism.
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process should be strategy-proof for students, i.e. that it should be a dominant strategy

for students to state their true preferences.

In two-sided matching problems with strict preferences, stable matchings are efficient,

and there is a unique stable matching that gives every student the best match she can get

at any stable matching. This stable matching is traditionally called the student-optimal

matching, and is the outcome produced by the student-proposing deferred acceptance

algorithm, which is strategy-proof for students. Thus, if all preferences were strict, there

is an off-the-shelf solution (already applied in other matching problems such as for medical

residents) that would achieve both objectives.4

However, a primary feature of school choice problems is that there are indifferences–

ties–in how students are ordered by at least some schools. When school preferences involve

indifferences, there is a non-empty set of stable matchings that are weakly Pareto optimal

for the students. It will be useful in what follows to call any member of this set a student

optimal stable matching.5

When many students are equivalent from the point of view of a school with limited

space, an assignment mechanism must include a tie-breaking procedure. Random tie

breaking (by assigning each student a lottery number to be compared when students are

otherwise tied) preserves the ex ante equivalence of the students, and also preserves the

strategy-proofness of the student proposing deferred acceptance algorithm. But random

tie breaking introduces artificial stability constraints (since, after random tie breaking,

schools appear to have strict preferences between students for whom they are indifferent),

and these constraints can harm student welfare.6 In other words, when the deferred

acceptance algorithm is applied to the strict preferences that result from tie breaking,

the outcome it produces may not in fact be a student optimal stable matching in terms

of the original preferences, i.e. there may be other stable matchings that weakly Pareto

dominate this outcome from the point of view of student welfare. That is, there may be

other stable matchings with respect to the original preferences at which some students

are better off, and no students are worse off.

Nevertheless, some forms of random tie breaking may be preferable to others. One of

the first design decisions we were confronted with was whether to assign lottery numbers

to each student at each school (multiple random tie breaking), or to conduct a single

4See Roth and Peranson (1998) on the current design of the medical resident match, and Gale and Shapley

(1962) and Roth (1982, 1985) on the basic optimality and incentive results. The NYCDOE initially contacted

us because they were familiar with the design of the medical match.
5See Milgrom (2006) for a similar new treatment of the core for auctions with non-transferable utility, and

its relation to matching.
6From this point on, we will mostly be concerned with student welfare and incentives, and we will speak

about Pareto efficiency and strategy-proofness with respect to students only. In the conclusion, we will revisit

the larger welfare and incentive issues that are implicitly also included when we deal with stable matchings.
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lottery among all students that would give each student a lottery number to be used for

tie breaking at every school (single random tie breaking). Computations with simulated

and then actual submitted preferences indicated that single tie breaking had superior

welfare properties.7 (The computations based on the revealed preferences will be discussed

in Section 5, and Table 1.) The first theorem in this paper provides some theoretical

insight into this difference. We show that for every student optimal stable matching

there exist single-tie-breaking rules from which that matching can be obtained by the

deferred acceptance algorithm, i.e. every student optimal stable matching can be obtained

with single tie breaking. Therefore none of the additional outcomes that are sometimes

produced by the deferred acceptance algorithm with multiple tie breaking (but not by

single tie breaking) are student-optimal.8

However, single tie breaking can also lead to a matching which is not student-optimal.

Thus there will sometimes be a potential opportunity to improve on the outcome of de-

ferred acceptance with single tie breaking. Theorem 2, our main theoretical result, shows

that there exists no strategy-proof mechanism (stable or not) that Pareto improves on the

deferred acceptance algorithm with single tie breaking (even when Pareto improvements

are with respect to students only).

This theorem has as corollaries two known results. The first (due to Erdil and Ergin,

forthcoming) is that, contrary to the case when all preferences are strict, no strategy-proof

mechanism exists that always produces a student optimal stable matching. The second

is that neither serial dictatorship nor top trading cycles dominates deferred acceptance

with tie breaking (since they are both strategy-proof), although neither one is dominated

by deferred acceptance, since both are Pareto efficient for students. Thus, there is a

tradeoff between strategy-proofness and efficiency, a tradeoff that hinges on stability.

Deferred acceptance with tie breaking, a stable mechanism, is on the efficient frontier of

all strategy-proof mechanisms.

This theorem does not speak to the magnitude of the tradeoff to expect in real school

choice plans. We take a step towards investigating this question using data on student

preferences from 2003-04 in New York City. Using the algorithm recently developed by

Ergin and Erdil (forthcoming) to find student optimal matchings (starting from true pref-

erences and the outcome of the deferred acceptance algorithm with single tie breaking),

we find that the apparent efficiency loss is considerable in New York. More than 6,800

7Tayfun Sönmez also played an important role in some of the early discussions of this.
8That the manner of tie breaking has important consequences for the outcome of deferred acceptance algo-

rithms (when stability is an issue) contrasts in a surprising way with the case of one-sided matching. Pathak

(2006) shows the strategy-proof top trading cycles mechanism that produces efficient (but not stable) match-

ings is unaffected by the choice of multiple versus single tie breaking, when all schools are indifferent between

students.
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students could be matched to schools they prefer to their assignment from deferred accep-

tance, without harming any others, if the same preference information could be elicited.

This contrasts with the similar exercise on data from Boston’s new assignment system in

2005-06 (Abdulkadiroğlu, Pathak, Roth and Sönmez 2006), in which no Pareto improve-

ments at all could be made for students. This raises a number of new questions that we

discuss in the conclusion concerning when potential efficiency gains exist, and whether

they can be realized.

The present paper thus has three goals. It presents some new models and theory,

suitable to the kinds of hybrid matching problems that arise in school choice, in which

indifferences are ubiquitous. It presents some new empirical results concerning the mag-

nitudes of the tradeoffs we discover. And it tells an aspect of a design story that, as

economists gain experience in design, has become increasingly familiar, namely that the

solution to design problems often requires extensions of existing theory (cf Roth 2002).

The next section describes how the design of a school matching mechanism is different

from closely related matching models and results that have been usefully applied to as-

pects of the design of related matching markets. Section 3 introduces the matching model

with active and passive schools and reviews some basic properties of stable matchings in

this domain. Section 4 presents the two theoretical results. In Section 5 we empirically

compare the outcome from deferred acceptance with single tie breaking to deferred accep-

tance with multiple tie breaking, and to a student optimal matching, using preference data

from New York City’s high school match, and compare this to the similar computation

for Boston.

2 Related literature

The school choice problem, studied as a mechanism design problem by Abdulkadiroğlu

and Sönmez (2003), is closely related to two-sided matching and one-sided matching. In

the models we will consider, matching is many-to-one, since schools match with many

students, but students only match with one school.

In two-sided matching models (Gale and Shapley 1962), there are two disjoint sets of

agents, and every agent is an active strategic player with preferences over the agents in

the other set.9 A matching of agents on one side to agents on the other (that respects the

relevant capacity constraints) is stable if it is individually rational and there is no pair

of agents who each prefer to be assigned to one another than to their allocation in the

9Gale and Shapley (1962) phrased their discussion in a school choice context as a “college admissions”

problem and studied the set of stable matchings. Balinski and Sönmez (1999) developed the theory of two-

sided matching in relation to college admissions where ordering of students at colleges are determined via

students’ scores at an entrance exam.
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matching. Stable matchings are Pareto optimal with respect to the set of all agents, and

in the core of the market whose rules are that any pair of agents on opposite sides of the

market may be matched (subject to capacity constraints) if and only if they both agree

(Roth and Sotomayor 1990). Empirical observation suggests that centralized matching

mechanisms in labor markets are most often successful if they produce stable matchings

(Roth 1984, 1990, 1991; Roth and Xing 1994; Roth and Rothblum 1999).

When preferences are strict, Gale and Shapley (1962) showed that a class of deferred

acceptance algorithms identify a stable match that is optimal for one or the other sides of

the market, in the sense that every agent on one side of the market does at least as well at

their optimal stable matching as at any other stable matching. Roth (1982a, 1985) showed

that there does not exist any stable mechanisms that are strategy-proof for all agents (and

in particular, none are strategy-proof for schools matched to more than one student), but

the mechanism that produces the student optimal stable matching is strategy-proof for

the students, in the sense that it is a dominant strategy for each student to state his

true preferences. When preferences are not strict, there will not in general exist a unique

stable match that is weakly Pareto optimal for each side of the market, rather there will

a non-empty set of stable matches that are weakly Pareto optimal for agents on that side

of the market.

In contrast, one-sided matching problems consist of a set of agents and a set of objects

to be matched with agents (Shapley and Scarf 1974, Hylland and Zeckhauser 1979). Pareto

efficient mechanisms have been developed and analyzed by numerous authors (Roth and

Postlewaite 1977, Roth 1982b, Ma 1994, Abdulkadiroğlu and Sönmez 1999, Papai 2000).

For these kinds of problems, the top trading cycles mechanism introduced in Shapley and

Scarf (1974, and attributed to David Gale) is strategy-proof as a direct mechanism (Roth

1982b).10

As in other areas of practical market design (cf. Roth 2002) the design of actual

school choice systems raises new theoretical questions. Several papers have been written

about Boston’s school choice system in which all schools are passive: see Abdulkadiroğlu,

Pathak, Roth and Sönmez (2005, 2006), Abdulkadiroğlu and Yasuda (2006), Chen and

Sönmez (2006), Ergin and Sönmez (2006) and Pathak and Sönmez (2006). New York City

motivates the study of a different set of issues related to the fact that some schools are

active strategic agents, and some are passive.

This paper is most closely related to Erdil and Ergin (forthcoming), who, in an im-

portant contribution that is complementary and contemporaneous to ours, also analyze

indifferences in school choice problems.11 They present a polynomial-time algorithm,

10Top trading cycles played a prominent initial role in the proposal for designing clearinghouses for kidney

exchange, see Roth, Sönmez and Ünver (2004). Subsequent theoretical developments were necessitated by some

of the practical constraints of kidney exchange, see Roth, Sönmez and Ünver (2005a, 2005b, forthcoming).
11Much of the attention in the prior literature to indifferences has been in the computer science literature, with
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stable-improvement cycles, for the computation of a student-optimal matching when pri-

orities are weak orders. The idea is, starting from a stable matching, to improve it through

a sequence of trades among students and schools such that after each trade in the sequence,

the resulting matching is still stable. We will revisit their proposal in section 5. They also

present an impossibility theorem which demonstrates in an economy with four or more

students and at least three schools, there is no strategy-proof mechanism which always

selects a student optimal stable matching. In this context, our main theoretical result

implies that student proposing deferred acceptance with tie breaking is optimal within

the class of stable and strategy-proof mechanisms. Finally, Erdil and Ergin (2006) analyze

a two-sided matching model with indifferences on both sides of the market and extend the

algorithm in Erdil and Ergin (forthcoming) to construct Pareto efficient matchings with

respect to both sides.

3 Model

We consider a model in which a school may have a strict order of students, be indifferent

among all students, or partition students into indifference classes, with each class holding

one or more students. Stability continues to be a key notion, with blocking pairs always

involving strict preferences for both parties.

A matching problem consists of a finite set of students (individuals) I and a finite

set of schools S. The number of available seats, i.e. the capacity at s ∈ S is qs and

q = (qs)s∈S is the list of capacities. Every student i ∈ I has a strict preference relation

Pi over S ∪ {i}. Let sRis
′ if sPis

′ or s = s′. Every school s has a weak preference relation

Rs over I ∪ {s}. Let ≻s and ∼s represent the asymmetric and symmetric parts of Rs,

respectively. To simplify the analysis, we assume that either i ≻s s or s ≻s i but not

i ∼s s. The preference relation of a school s over subsets of students is responsive to Rs,

i.e. a school’s preferences over groups of students is such that, for any group of students

T with |T | < qs, the school prefers T ∪ i to T ∪ j if and only if i ≻s j, and prefers T ∪ i to

T if and only if i ≻s s (Roth 1985). Let PI′ = (Pi)i∈I′⊂I and P−I′ = (Pi)i∈I−I′ . We define

RS′ and R−S′ similarly. We fix I, S and q throughout the paper. Therefore a problem or

preference profile is given by (PI , RS).

When school preferences are strict, this model reduces to the college admissions model

(Gale and Shapley 1962, Roth 1985); when every school is indifferent among all students,

it reduces to the house allocation model where there are potentially multiple places in

each house (Hylland and Zeckhauser 1979). More importantly, the model allows both

types of schools, as well as schools with several indifference classes simultaneously.

the conclusion that many issues that are computationally simple with strict preferences become computationally

complex in the presence of indifferences (see, for instance, Irving (1994)).
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We say s ∈ S is acceptable for i ∈ I if sPii. Remaining unmatched is also acceptable

for i. Similarly i ∈ I is acceptable for s ∈ S if i ≻s s. If x is not acceptable for y, then

x is unacceptable for y.

A matching is a correspondence µ : S ∪ I → S ∪ I such that

i) |µ(i)| = 1 and µ(i) ⊂ S ∪ {i} for each i ∈ I;

ii) |µ(s)| ≤ qs and µ(s) ⊂ I for each s ∈ S;

iii) µ(i) = s if and only if i ∈ µ(s).

If µ(i) = i, i remains unmatched. If |µ(s)| < qs, some seats at s remain unfilled. For

some X ⊂ I, let µ(X) = {s ∈ S|µ(s) ∈ X}.

A matching µ is individually rational if it matches every x ∈ I ∪ S with agent(s)

that is(are) acceptable for x. A matching µ is blocked by (i, s) if i and s are not matched

to each other by µ, but both prefer to be, that is µ(i) 6= s, sPiµ(i), and either (|µ(s)| < qs

and i ≻s s) or (i ≻s i
′ for some i′ ∈ µ(s)). µ is stable if µ is individually rational and

not blocked by any student-school pair (i, s).

A stable matching µ is student-optimal if there is no other stable matching υ such

that υ(i)Riµ(i) for all i ∈ I and υ(i)Piµ(i) for some i ∈ I.12

A strict preference relation Ps (resulting from tie breaking) is consistent with a weak

preference relation Rs if iPsj implies iRsj, iPss implies i ≻s s and sPsi implies s ≻s i.

A profile of strict preferences PS is consistent with a profile of weak preferences RS if Ps

is consistent with Rs for every s ∈ S. A tie-breaking rule τ breaks indifferences/ties at

schools for each problem (PI , RS) and produces PS that is consistent with RS. We use

the terms indifference and ties interchangeably throughout the paper.

For a given profile of strict preferences, the unique student-optimal stable matching

is obtained by the following student-proposing deferred acceptance algorithm (Gale

and Shapley 1962):

Step 1: Each student proposes to her most preferred school. Each school tentatively

assigns its seats to its proposers one at a time in the order of its preference. When all of

its seats are tentatively assigned, it rejects all the proposers who remain unassigned.

In general, at

Step k : Each student who was rejected in the previous step proposes to her next preferred

school. Each school considers the set of students it has been holding and its new proposers.

It tentatively assigns its seats to these students one at a time in the order of its preference.

12Recall from the introduction that in the model we develop here, with indifferences, the student-optimal

stable matchings defined in this way are not unique, but that the set of stable matchings, and hence the set of

student optimal stable matchings, is non-empty.
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When all of its seats are tentatively assigned, it rejects all the proposers who remain

unassigned.

The algorithm terminates when no student proposal is rejected. Then each student

is assigned to the school she proposed to last and has not been rejected. This matching

is stable (since any student who prefers to be matched to a different school has already

proposed to and been rejected by that school).

Note that the deferred acceptance algorithm can be adapted to our economy with

indifferences, by using any fixed tie breaking procedure to convert the preferences into

strict preferences, and then applying the algorithm above. Of course the particular tie

breaking rules will affect the outcome of the algorithm, which we will refer to as the

deferred acceptance algorithm with a tie breaking rule.

When preferences are strict, there exists a unique student-optimal stable matching

that every student likes as well as any other stable matching, and a school-optimal stable

matching that every school likes as well as any other matching (Roth 1985). However,

as the example below demonstrates, when there are indifferences, there may be multiple

student-optimal stable matchings.

Example 1 (There can be multiple student-optimal stable matchings) There is one school

s with one seat and two students {i, j}. Both i and j are acceptable for s, and s is indif-

ferent between i and j. Both i and j prefer s to being unmatched. There are two stable

matchings, µ1(i) = s, µ1(j) = j and µ2(i) = i, µ2(j) = s. Neither stable matching is

dominated by the other.

When preferences are strict, there is no individually rational matching (stable or not)

that is preferred to the unique student-optimal stable matching by every student, but even

when preferences are strict, there may be unstable matchings at which some students do

better than the student-optimal stable match and no student does worse (Roth 1982). In

our model, as Example 1 demonstrates, there may be multiple student-optimal matchings.

This weak Pareto optimality result generalizes for every student-optimal matching.

Proposition 1 If µ is a student-optimal matching, there is no individually rational

matching υ (stable or not) such that υ(i)Piµ(i) for all i ∈ I.

Proof. Suppose that µ is a student-optimal matching for the profile (PI , RS). Then

construct PS that is consistent with RS as follows: For every i, j such that µ(i) 6= µ(j) and

i ∼µ(i) j, let iPµ(i)j. The tie breaking among other students can be done arbitrarily. Then

the student proposing deferred acceptance algorithm produces µ for (PI , PS). That is, µ

is the unique student-optimal matching for some (PI , PS) such that PS is consistent with
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RS . Then, from Roth (1982), there is no matching ν (stable or not) that is individually

rational under (PI , PS) and ν(i)Piµ(i) for all i ∈ I.

To the contrary, suppose that there is a matching ν that is individually rational under

(PI , RS) and ν(i)Piµ(i) for all i ∈ I. Since PS is consistent with RS , ν is individually

rational under (PI , PS) as well. Then ν(i)Piµ(i) for all i ∈ I contradicts with µ being the

student-optimal matching for (PI , PS). ⋄

4 Incentives and Optimality

4.1 Preliminaries

A direct mechanism ϕ is a function that maps every (PI , RS) to a matching. For x ∈ I∪S,

let ϕx(PI ;RS) denote x’s match under ϕ, given (PI , RS).

A mechanism ϕ is dominant strategy incentive compatible (DSIC) for i ∈ I if

for every (PI , RS) and every P ′

i ,

ϕi(PI ;RS)Riϕi(P
′

i , P−i;RS).

Similarly, ϕ is DSIC for s ∈ S if for every (PI , RS) and every R′

s,

ϕs(PI ;RS)Rsϕs(PI ;R−s, R
′

s).

A mechanism is DSIC for A ⊂ I ∪ S if it is dominant strategy incentive compatible for

every agent in A. A mechanism is DSIC if it is DSIC for all a ∈ I ∪ S. We will use the

term strategy-proof and DSIC for all students interchangeably.

When preferences are strict, there is no DSIC mechanism (Roth 1982), and there is

no mechanism that is DSIC for schools (Roth 1985).13 These negative results generalize

directly to our model.

When preferences are strict, the student proposing deferred acceptance algorithm is

DSIC for every student (Dubins and Freedman (1981), Roth (1982)). It is straightfor-

ward to see how this result extends to our model. In particular, consider an arbitrary

tie-breaking rule τ = (τs)s∈S which is a collection of |S| functions which map each

school’s preference ordering Rs to a strict preference ordering Ps that is consistent with

Rs: τs(Rs) = Ps.
14 For a fixed tie-breaking rule τ , let the mechanism DAτ be the student-

proposing deferred acceptance algorithm acting on the preferences (PI , PS) to produce the

13Kojima and Pathak (2006) show that, as markets get large with bounded preference lists, the ability of

schools to manipulate either through misstating their preferences or their capacities gets small. (See also

Immorlica and Mahdian (2005) for the case of one-to-one matching in large markets, and the empirical results

of Roth and Peranson (1999) for the medical labor matching market.)
14It is possible to define a tie-breaking rule more generally to allow how ties are broken at a school to depend

on the profile of school preferences at every school.
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unique student-optimal matching with respect to (PI , PS). Then dominant strategy in-

centive compatibility of the student proposing deferred acceptance mechanism for every

student implies that DAτ is strategy-proof.

For the rest of the paper we will fix RS , and refer to a problem as PI . We define the

following notion of optimality: ϕ dominates ψ if

for all PI : ϕi(PI ;RS)Riψi(PI ;RS) for all i ∈ I, and

for some PI :ϕi(PI ;RS)Piψi(PI ;RS) for some i ∈ I.

A mechanism is optimal if there is no other mechanism that dominates it.

We focus on single tie-breaking (STB) rules: Let r : I → N be an ordering of

students such that r(i) = r(j) ⇒ i = j. For every s ∈ S, associate with Rs a strict

preference relation Ps as follows: iPsj ⇔ [(i ≻s j) or (i ∼s j and r(i) < r(j))].

4.2 Motivating Examples

In this section, we develop the main ideas via several examples.

Example 2 (Tie-breaking is consequential.) Consider an economy with three students

i1, i2, i3 and three schools s1, s2, s3, each with one seat. Student preferences, P , are as

follows:

i1 : s2 − s1 − s3

i2 : s1 − s2 − s3

i3 : s1 − s2 − s3.

If schools are indifferent among students, the student-optimal matchings are the following:
(

i1 i2 i3

s2 s1 s3

)

,

(

i1 i2 i3

s2 s3 s1

)

(

i1 i2 i3

s3 s1 s2

)

,

(

i1 i2 i3

s3 s2 s1

)

.

These matching are produced when the ties are broken as i1 − i2 − i3 or i2 − i1 − i3,

i1 − i3 − i2 or i3 − i1 − i2, i2 − i3 − i1 and i3 − i2 − i1, respectively. Indeed, when the

ties at every school are broken the same way, DA reduces to a serial dictatorship, which

is Pareto optimal.

Example 3 (Multiple tie breaking can be inefficient) Breaking ties at every school in the

same way is not required for optimality. For example, when schools are indifferent as

above, if the ties are broken as follows

s1 : i2 − i3 − i1

s2 : i2 − i1 − i3

s3 : i3 − i1 − i2,

11



then DA produces the first matching in Example 2. Yet, arbitrary tie breaking may cause

inefficiency due to artificial stability constraints that result.15 For example, consider the

following tie-breaking

s1 : i1 − i3 − i2

s2 : i2 − i1 − i3

s3 : i3 − i1 − i2.

DA produces the following matching

µ1 =

(

i1 i2 i3

s1 s2 s3

)

,

which is dominated by

µ2 =

(

i1 i2 i3

s2 s1 s3

)

.

However, for every student optimal matching, we can find a way of breaking ties such that

DA results in that matching.

Example 4 (Single tie-breaking does not always yield student-optimal stable matchings.)

As Example 3 demonstrates, tie-breaking has important welfare consequences. These wel-

fare consequences are present even with single tie-breaking. Suppose schools s2 and s3

have the following strict preferences:

s2 : i2 − i1 − i3

s3 : i3 − i1 − i2.

School s1 does not rank students, i.e. s1 is indifferent among students. The stable match-

ings are the following:

µ1 =

(

i1 i2 i3

s1 s2 s3

)

, µ2 =

(

i1 i2 i3

s2 s1 s3

)

, µ3 =

(

i1 i2 i3

s3 s2 s1

)

.

Note that µ1, µ2 and µ3 are produced by the student proposing deferred acceptance

algorithm when the indiffence in s1’s preferences is broken as s1 : i1−i3−i2, s1 : i2−ix−iy
and s1 : i3 − ix − iy, respectively. However, µ2 dominates µ1 despite µ1 being stable. That

is, DA need not produce a student-optimal stable matching even if ties at schools are

broken the same way.

15This point was first suggested in footnote 13 by Abdulkadiroğlu and Sönmez (2003).
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Example 5 (Welfare enhancement involves losing strategy-proofness.) Consider Exam-

ple 4 and the student proposing deferred acceptance mechanism when the ties at s1 are

broken as s1 : i1 − i3 − i2. We will refer to that mechanism as DA. When the students’

preference profile is P, DA produces µ1. Suppose that there is a strategy proof mechanism

ϕ that dominates DA, and in particular produces µ2 under P . Now consider the following

preference profile P ′, which we obtain by changing i1’s preferences in P :

i1 : s2
i2 : s1 − s2 − s3

i3 : s1 − s2 − s3.

Under P ′, DA produces

µ′ =

(

i1 i2 i3

i1 s2 s1

)

.

Since ϕ dominates DA, ϕ must also produce µ′ under (P ′;RS). Note that i1 remains

unmatched at µ′. But then i1 can manipulate ϕ under P ′ by misrepresenting her prefer-

ences as Pi1 , because then she is matched with s2P
′

i1
i1. Therefore no such strategy-proof

mechanism exists for this problem which dominates DA.

4.3 Theoretical Results

We assume throughout this section that qs = 1 for each s ∈ S without loss of generality.16

When a single tie breaking rule is applied at the beginning of a student proposing deferred

acceptance algorithm, we will refer to the resulting algorithm as a DA-STB. A deferred

acceptance algorithm with multiple tie breaking rules, e.g. one for each school, will be

called a DA-MTB. We now focus on comparing DA-STB and DA-MTB and investigating

whether it is possible to improve on DA-STB without sacrificing strategy proofness.

Our first result states that every student-optimal stable matching can be produced by

some DA-STB.

Theorem 1 For every preference profile (PI , RS) and every student-optimal matching µ

for that preference profile, there is a single ordering of students r such that DAr(PI , RS) =

µ.

Proof. Suppose that µ is a student-optimal stable matching at some (PI , RS). For each

school s, consider the students who prefer s to their assignment in µ and are ranked

16For the many-to-one problem, we can construct a related problem where each school seat is a separate

object to be assigned, as in the construction used in Section 5.3 of Roth and Sotomayor (1990). Since we will

be considering incentives and welfare from the point of view of students (who each are matched to at most one

school in any case), our conclusions will carry over to the many-to-one model also.
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highest in Rs among such students,

B(s) = {i : sPiµ(i) and iRsj for every j such that sPjµ(j)}.

Let B(S) = ∪sB(s).

Let A be the set of students in B(S) who are assigned to a school under µ: A = {i ∈

B(S) : µ(i) ∈ S}. A stable improvement cycle consists of students {i1, ..., in} ⊂ A, n ≥ 2,

such that il ∈ B(µ(il+1)) and µ(il+1)Pilµ(il) for l = 1, ..., n where l + 1 is replaced by 1

when l = n (Erdil and Ergin, forthcoming). Since µ is student-optimal, there does not

exist any stable improvement cycle (Corollary 1, Erdil and Ergin, forthcoming).

Construct a directed graph with vertices (nodes) A and a directed edge from node i

to node j if µ(j)Piµ(i) and jRµ(j)i; that is, i envies j’s school place and the school j is

assigned to is indifferent between i and j. Since there is no stable improvement cycle, the

directed graph must be acyclic.

We will construct an ordering based on this directed graph utilizing two properties

of the graph. First, there is a node with no incoming edges. To see this, suppose that

every node has at least one incoming edge. Then since there are a finite number of nodes,

starting from any node we can always leave a node by an incoming edge until we return

to a visited node, which leads to a cycle, and a contradiction. Second, after removing a

node, we still have a directed acyclic graph, since if there is a cycle after removing a node,

then there must be a cycle in the original graph.

Construct an ordering ρ : A → {1, ..., |A|} as follows: find a node with no incoming

edges. Remove this node and all its outgoing edges. Set the value of ρ of this node to |A|.

By the two properties above, when we remove this node we still have a directed acyclic

graph and there will be a node with no incoming edges. From this graph, we iterate the

process and set the value of ρ of the next node to |A| − 1, and so on.17

Next, construct an ordering r : I → N of students as follows:18 For every j, k ∈ A, set

r(j) < r(k) if ρ(j) < ρ(k). For every i ∈ I −B(S) and j ∈ A, set r(i) < r(j). Finally, for

every student l ∈ B(S) −A, set r(j) < r(l) for all j ∈ A.

Let ν = DAr(PI , RS). We will show that ν = µ. Suppose to the contrary that there

exists j ∈ I such that µ(j) 6= ν(j). Since µ is student-optimal (and since students’ pref-

erences are strict), there exists some i ∈ I such that µ(i)Piν(i). Let C = {i : µ(i)Piν(i)}

be the set of students who prefer µ to ν. For any ik ∈ C, let ik+1 = ν(µ(ik)), or

ν(ik+1) = µ(ik). Since ν is stable, there is no blocking pair, so ik+1Rµ(ik)ik.

17Erdil and Ergin (2006) prove a closely related theorem (Theorem 4) in a two-sided matching model where

efficiency is defined relative to both sides of the market, and each school has one position. Since we are concerned

only with the welfare of students, we obtain a result that generalizes to a model in which schools have multiple

seats.
18Recall that lower numbers means a student is more preferred, i.e. r(i) = 1 means that student i is the most

preferred student.
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The proof by contradiction has three steps. First, we will show that for any ik ∈ C,

the student who is matched to µ(ik) under ν, ik+1, also prefers her assignment under µ

to ν and so is in C. Next, we will show that in the course of DAr(PI , RS), student i ∈ C

can only be displaced by some other student in C. Finally, we argue that ik could have

displaced ik+1, only if ik+1 were displaced herself. Therefore, no member of C can be

rejected first, and so C must be empty.

To show the first step, note that µ(ik+1) 6= ν(ik+1). Suppose that ν(ik+1) =

µ(ik)Pik+1
µ(ik+1). Then ikRµ(ik)ik+1 by stability of µ so that by construction ik+1 ∼µ(ik)

ik. But then ik+1 ∈ B(µ(ik)) so that r(ik) < r(ik+1). Then since ik ∈ C, µ(ik) =

ν(ik+1)Pikν(ik), which contradicts with stability of DAr(PI , RS) = ν. Therefore

µ(ik+1)Pik+1
ν(ik+1), so ik+1 ∈ C.

We prove the second step by contradiction. Suppose that there is some i ∈ C and

j ∈ I−C such that µ(i)Pjν(j) and jRµ(i)i. Since j ∈ I−C, we have ν(j)Rjµ(j) therefore

µ(i)Pjµ(j). Then stability of µ implies that j ∼µ(i) i, which in turn implies that j ∈

B(µ(i)) so that r(i) < r(j). Therefore, no i ∈ C is rejected by µ(i) in DAr(PI , RS) in

favor of any j ∈ I − C such that µ(i)Pjν(j). This implies that every i ∈ C is rejected by

µ(i) in DAr(PI , RS) in favor of some i′ ∈ C − {i}.

Finally, in the process of DAr(PI , RS), no ik ∈ C will be rejected by µ(ik) before

ik+1 = ν(µ(ik)) is rejected by µ(ik+1). Therefore, no i ∈ C will be rejected by µ(i) in

DAr(PI , RS), so that C = ∅, i.e. ν(i)Riµ(i). Then optimality of µ implies ν(i) = µ(i) for

all i ∈ I. ⋄

Corollary 1 For any (PI , RS), any matching that can be produced by some DA-MTB but

that cannot be produced by any DA-STB involves inefficiency.

This theorem provides some support for a single tie breaking rule, because any match-

ing produced by some DA-MTB that is not produced by some DA-STB cannot be student-

optimal. The result, however, only speaks on the size of the set of matchings, and says

nothing about the frequency of matchings.

For any student optimal matching, there exists a single tie-breaking rule r for which

DAr yields that matching. A natural question is if there is a smaller set of tie-breaking

rules that will yield any student-optimal matching.19 To see that there is not, consider a

problem in which all n students have the same set of preferences over all schools and all

schools are indifferent between students. There are n! student-optimal matchings, which

correspond exactly to the n! single tie-breaking rules. This shows that the set of single

tie breaking rules is the smallest such set.

19A special thanks to Fuhito Kojima for asking us this question.
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Corollary 2 The set of single tie breaking rules is a minimal set of tie breaking rules

which under DA yields a set of matchings that contains the set of student-optimal match-

ings.

Even though every student-optimal stable matching can be generated by some single

tie-breaking rule, every single tie-breaking rule can produce a stable matching which is

not student-optimal for some (PI , RS), which follows from example 4.

In case of a matching which is not student-optimal, one can easily imagine Pareto

improving the matching. Our next result states that such improvements harm incentives.

Therefore one can interpret the inefficiency associated with a single tie breaking rule as

the cost of providing straightforward incentives to students. The next theorem generalizes

the observation of example 5 and establishes that DA with some tie-breaking rule is not

dominated by any other strategy-proof mechanism.

Theorem 2 For any tie-breaking rule τ, there is no mechanism that is DSIC for every

student and that dominates DAτ .

Proof. We begin by establishing the following property of a matching that dominates a

stable matching.

Claim 1: Suppose that ν dominates µ = DAτ (PI ;RS) for a given tie-breaking rule τ .

Then the same set of students are matched in both ν and µ.

If there exists a student who is assigned under µ and unassigned under ν, then ν(i) =

iPiµ(i), which implies that µ is not individually rational, a contradiction. So every student

assigned under µ is also assigned under ν. Therefore |ν(S)| ≥ |µ(S)|. If |ν(S)| > |µ(S)|

then there exists some s ∈ S and i ∈ I such that |ν(s)| > |µ(s)| and ν(i) = s 6= µ(i).

This implies that there is a vacancy at s under µ and i is acceptable for s. Furthermore,

sPiµ(i) since ν dominates µ. These together imply that µ is not stable, a contradiction.

So |ν(S)| = |µ(S)|. Then the same set of students are matched in both ν and µ since

|ν(S)| = |µ(S)| and every student assigned under µ is also assigned under ν . ⋄

Fix RS . Suppose that there exists a strategy-proof mechanism ϕ and tie-breaking rule

r such that ϕ dominates DAτ . There exists a profile PI such that

ϕi(PI ;RS)RiDA
τ
i (PI ;RS) for all i ∈ I, and

ϕi(PI ;RS)PiDA
τ
i (PI ;RS) for some i ∈ I.

We will say that the matching ϕ(PI ;RS) dominates the matching DAτ (PI ;RS), where

DAτ (PI ;RS) denotes the student optimal stable matching for (PI ;P
τ
S ).
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Let si = DAτ
i (PI ;RS) and ŝi = ϕi(PI ;RS) denote i’s assignment under DAτ (PI ;RS)

and ϕ(PI ;RS), respectively. Let C be the set of students i ∈ I for whom ŝiPisi. For each

i ∈ C, define preference compression P̂i as the preference list: ŝiP̂isiP̂ii so that ŝi and si

are acceptable and all other schools are unacceptable for i under P̂i. For any set of agents

J , let P̂J = (P̂j)j∈J .

Claim 2: DAτ
i (P̂C , PI−C ;RS) = DAτ

i (PI ;RS) for all i ∈ C.

Proof of Claim 2:

Since the matching DAτ (PI ;RS) is stable in (P̂C , PI−C), it follows that no stu-

dent in C does worse under DAτ when preferences are (P̂C , PI−C), we know that (i)

DA(P̂C , PI−C ;RS) ∈ {ŝi, si} for all i ∈ C. Since DAτ is coalitionally strategy-proof (The-

orem 4.10, Roth and Sotomayor 1990, Dubins and Freedman 1981), (ii) there is some

i ∈ C such that DAτ
i (P̂C , PI−C ;RS) = DAτ

i (PI ;RS) = si. By assumption, (iii) qs = 1 for

all s ∈ S. Also, (iv) for every i ∈ C, there is j ∈ C such that ŝi = sj. Then (i), (ii), (iii)

and (iv) imply that DAτ
i (P̂C , PI−C ;RS) = DAτ

i (PI ;RS) for all i ∈ C. ⋄

Claim 3: If there exists PI such that the matching ϕ(PI ;RS) dominates the matching

DAτ (PI ;RS), then ϕ is not strategy-proof.

Proof of Claim 3:

Since ϕ dominates DAτ , there exists a profile PI where the matching ϕ(PI ;RS) dom-

inates the matching DAτ (PI ;RS). If C is the set of students who strictly prefer match-

ing ϕ(PI ;RS) to DAτ (PI ;RS), consider the economy (P̂C , PI−C). Claim 2 shows that

DAτ
i (P̂C , PI−C ;RS) = DAτ

i (PI ;RS). Dominance implies that:

ϕi(P̂C , PI−C ;RS)RiDA
τ
i (P̂C , PI−C ;RS) = DAτ

i (PI ;RS), ∀i ∈ C.

Therefore for each i ∈ C, ϕi(P̂C , PI−C ;RS) ∈ {si, ŝi}.

Pick an arbitrary student i ∈ C, and consider the following alternative preference

relation for i : ŝiP
′

i i, so that only ŝi is acceptable to i under P ′

i . Let P̂ ′

I = (P ′

i , P̂C−i, PI−C).

By strategy-proofness of DAτ , DAτ
i (P̂

′

I ;RS) = i. Also, dominance of ϕ over DAτ implies

that ϕi(P̂
′

I ;RS) ∈ {ŝi, i}.

If ϕi(P̂
′

I ;RS) = ŝi, then i is unmatched under DAτ but matched under ϕ, which

contradicts the first claim. Thus, ϕi(P̂
′

I ;RS) = i. In the profile P̂ ′

I , student i could benefit

from submitting the preference relation: ŝiP̂isiP̂ii, for she will receive ŝi and prefers it to

being unmatched and so ϕ is not strategy-proof. ⋄

In NYC, where strategy-proofness of the new system was a primary criterion (see the

discussion section), Theorem 2 helps justify the use of the deferred acceptance algorithm,

despite the fact that it does not always produce a student optimal stable match. And

Theorem 1 provides additional support for the choice of a single tie-breaking rule. Note
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that Theorem 2 implies that there is no strategy-proof mechanism (stable or not) which

Pareto dominates DAτ . The observations by Erdil and Ergin (forthcoming) and Kesten

(2004) that the efficiency enhancing algorithms they study are not strategy-proof follow

as a corollaries of Theorem 2.

5 Empirical results from NYC

In this section, we investigate empirically the efficiency loss of DA-STB using data from

the main round of the 2003-04 NYC high school match. We work under the assumption

that the preferences we receive in the main round reflect the true preferences of students.20

The first question we address is the comparison between DA-STB and student propos-

ing deferred acceptance with school specific tie breaking. The first column of Table 1 shows

the number of students who submitted a preference list of a certain length. The table

shows that nearly 75% of students submit a rank order list shorter than the maximal 12

schools. This suggests, for these students, the limit on the length of the preference list did

not affect their preference submission strategy. The next two columns report the expected

distribution of student-proposing deferred acceptance with a single (uniform random) tie

breaker and multiple (school specific, independent) tie breaking . The table reports the

distribution for 250 draws of the tie breaker.21 The next column shows that under single

tie breaking approximately 24.82% of students receive their top choice, while under mul-

tiple tie breaking, 23.34% of students receive their top choice, an expected difference of

1,255 students. When we compare the number of students who receive their 6th choice or

higher, DA-STB outperforms school specific tie breaking, while if we compare the number

of students who receive their 7th choice or higher, school specific tie breaking outperforms

20As noted in our 2005 report, there is a minority of students for whom the NYC mechanism, as implemented,

may not make it a dominant strategy to state true preferences. These include the students who have ranked

12 choices, which is approximately 25% of the entire population. Since the length of the preference list was

capped at 12, this requires that if a student actually prefers more than 12 then she must select which 12 to

rank on her application form. The other type of incentive problem applies to the top 2 percent of students on

the grade 7 English Language Arts exam. These students are guaranteed a seat at certain schools only if they

rank that school as their first choice. Finally, since the students in New York had previously been assigned

through a multiple-offers mechanism where the preference revelation game was complex, it is possible that some

students were slow to react to the change in the mechanism, despite the NYCDOE’s efforts to communicate the

difference. Laboratory evidence in Kagel and Roth (2000) suggest that learning may require some repetitions,

and Chen and Sönmez (2006) experiments suggest that in one-shot versions, even in strategy-proof mechanisms,

not all students may report the truth.
21With 250 simulations, we find that the standard deviation in the fraction of students receiving a certain

choice from either DA-STB or DA-MTB is less than 0.07% (Table 1), while the standard deviation in the number

of students improving in a student optimal matching is less than 0.07% (Table 2). This suggests that even with

a limited number of simulations, the numbers we report in the table are not due to simulation variance.
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DA-STB. (Note in particular that neither distribution stochastically dominates the other.)

Table 2 shows the distribution of allocations resulting from a DA-STB followed by sta-

ble improvement cycles (SIC), the algorithm proposed by Erdil and Ergin (forthcoming).22

An expected 63,795 students are matched across 250 draws of the random tie-breaker.23

Only these students can improve their matching under stable improvement cycles, for the

unassigned students cannot be part of a cycle. We find that about 6,854, or 10.5% of

students assigned at this stage can improve their matching, with the largest difference in

the number of students who receive their top choice. Under student proposing deferred

acceptance with a single tie breaker, 24.82% receive their top choice, while in a student-

optimal matching, approximately 28.00% of students receive their top choice. The last

two columns of Table 2 report how much the students who receive a different assignment

under a student optimal matching improve relative to their assignment from DA-STB.

More than 30% of the students who improve (2,091 out of 6,854) receive a school that is

one position higher on their rank order list than the school they receive from DA-STB.

However a substantial number of students could move much further up their preference

lists, including about 50 who could move from their twelfth to their first choice.

In the Boston data, in contrast, preliminary simulations show that in 250 different

single lottery outcomes of student proposing deferred acceptance in Boston Public School’s

choice plan 2005-06, each matching is student optimal (Abdulkadiroğlu, Pathak, Roth and

Sönmez 2006). That is, there are no stable improvement cycles in each of the matchings for

250 different single lottery draws for grades K0, K1, K2, 01, 06, and 09. One reason for the

difference is that there is a significantly larger percentage of students who receive their top

choice in 2005-06 in Boston than New York, and while in Boston there are indifferences

within the priority classes (sibling-walk, sibling, walk and random), the magnitude of

indifferences is smaller than New York where many schools like the formerly zoned schools

are indifferent between all applicants.

6 Discussion and Conclusions

It is tempting to try to capture some of the efficiency loss we observe in the data from

New York. However it is not clear either how feasible this is, or how high would be the

costs from the loss of strategy proofness.

22The SIC procedure identifies cycles among students on the way to computing a student optimal matching,

but it does not specify which cycle to process when there are multiple cycles. At each step of the procedure,

our implementation arbitrarily selects a cycle when there are many cycles.
23This would correspond roughly to the “main round” of the NYC high school match. In NYC, students

left unmatched after the main round are informed of which schools still have places, and asked to submit new

preferences, which are used to match remaining schools to remaining students.
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On the feasibility front, the efficiency losses are only identifiable because we have

preferences that we can take as a reasonable approximation of true preferences, since they

were elicited from an algorithm that is strategy proof for the large majority of students. As

Theorem 2 makes clear, any algorithm that would improve on DA-STB from an efficiency

point of view would not be strategy-proof. Nothing is yet known about what kinds of

preferences one could expect to be strategically submitted to such a mechanism, or what

their welfare consequences would be.

On the cost front, strategy-proofness, which would be lost in any attempt to improve

efficiency, is important in its own right. Economists and social planners like it because it

yields valuable preference data. (And in New York City, schools revealed to be unpopular

have been closed.24) Market designers and school policy-makers like it because it allows

simple advice to be given to families about how to participate in the matching system.

For instance, NYC School Chancellor Joel Klein stated (NYT 10/24/03) that the

“changes are intended to reduce the strategizing parents have been doing to navigate

a system that has a shortage of good high schools.” Furthermore, Peter Kerr, another

NYCDOE official, wrote (NYT 11/3/03): “The new process is a vast improvement... For

example, for the first time, students will be able to list preferences as true preferences,

limiting the need to game the system. This means that students will be able to rank schools

without the risk that naming a competitive school as their first choice will adversely affect

their ability to get into the school they rank lower.” In every year since 2003-04, the High

School directory makes a point to advise families to express their preferences truthfully.

In Boston, too, strategy-proofness was a major factor in deciding to move to a new school

choice system (cf Abdulkadiroğlu, Pathak, Roth, and Sönmez 2006).

Consequently, there is room for more work on both these fronts, to further illuminate

the tradeoff between efficiency and strategy-proofness. In particular, for what kinds of

preferences will there be substantial efficiency loss with DA-STB (as in New York but

not in Boston)? Can these efficiency losses in fact be reduced by non-strategy-proof

mechanisms? To put it another way, how much of the potential efficiency gains can be

actually achieved by a non-strategy-proof mechanism, and how should we formulate the

issues associated with gauging “how much” strategy-proofness we can trade for how much

efficiency?25

We have concentrated here on the welfare considerations that arise in school choice

because of the fact that many students are regarded by schools as equivalent. This is

an issue of importance whether or not the schools are active strategic players, and we

24See e.g. Gootman (2006) for a report that cites demand data in the match as a reason for the closing of

South Shore high school.
25Erdil and Ergin (forthcoming) take some preliminary steps in this direction when they analyze strategic

behavior when students have symmetric beliefs in the manner of Roth and Rothblum (1999). Symmetric beliefs

are, however, a very strong assumption (cf. Ehlers 2006).
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have concentrated on the welfare and incentives for students. In the particular problem

confronting New York City, where some schools are active players, there are also welfare

and strategic considerations that apply to schools. While we have not emphasized it here,

some of these are addressed through the stability of the DA-STB mechanism adopted in

New York, and some are ameliorated by the size of the system (cf. Kojima and Pathak

2006).26

In summary, this paper fills in some of the new theory demanded by the design of

school choice mechanisms, and shows empirically that the efficiency costs of strategy-

proofness need not be small. As economists are more often asked to design practical

markets and allocation mechanisms, we will increasingly see two-way feedback between

theory and design. When we began the design of the NYC high school match in 2003,

we had a lot of highly relevant theory to draw on, but as we looked into the particular

requirements of the NYC school match, we found ourselves running into problems beyond

the available theory, and using simulations and examples to make design decisions for

which no reliable theory yet existed. In the present paper, we develop some of the theory

we would have liked to have in 2003, and provide support for some of the design decisions

made in a more timely way on the basis of those early simulations and examples. In doing

so, we raise some new theoretical questions, to which it would be helpful to have answers

before the next major design (or redesign) of school matching systems.

26Under the old NYC system, which produced unstable outcomes, schools had an incentive not to reveal their

full capacity so that they could match afterwards with preferred students. This motivation is addressed by the

stability of the current system, but no stable mechanism completely eliminates the possibility of manipulation

by withholding capacity (Sönmez 1997, 1999). However Kojima and Pathak (2006) show that these incentives

become small as the market becomes large in an appropriate way.
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Table 1— Tie-breaking in Student-Proposing

Deferred Acceptance in the Main Round

Number Single Multiple

Choice Ranking Tie-Breaking Tie-Breaking

(250 draws) (250 draws)

1 5,797 (6.7%) 21,038 (24.82%) 19,783 (23.34%)

2 4,315 (5.0%) 10,686 (12.61%) 10,831 (12.78%)

3 5,643 (6.6%) 8,031 (9.48%) 8,525 (10.06%)

4 6,158 (7.2%) 6,238 (7.36%) 6,633 (7.83%)

5 6,354 (7.4%) 4,857 (5.73%) 5,108 (6.03%)

6 6,068 (7.1%) 3,586 (4.23%) 3,861 (4.56%)

7 5,215 (6.1%) 2,721 (3.21%) 2,935 (3.46%)

8 4,971 (5.8%) 2,030 (2.40%) 2,141 (2.53%)

9 4,505 (5.2%) 1,550 (1.83%) 1,617 (1.91%)

10 5,736 (6.7%) 1,232 (1.45%) 1,253 (1.48%)

11 9,048 (10.5%) 1,016 (1.20%) 894 (1.05%)

12 22,239 (25.8%) 810 (0.96%) 372 (0.44%)

unassigned - 20,952 (24.72%) 20,795 (24.54%)

Notes: The table is based on data from the main round in 2003-04 provided by the New York

City Department of Education’s Office of High School Admissions. The column Number Ranking

reports the distribution of the length of student preference lists in the main round. The next two

columns report the expected distribution of choices from 250 draws of the single tie breaker and

multiple school-specific tie breakers, respectively.
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Table 2— Student Optimal Matchings in the Main Round

Choice Deferred Student Optimal Improvement Number of

received Acceptance Matching in Choice Students

(250 draws) (250 draws) (250 draws)

1 21,038 (24.82%) 23,729 (28.00%) +1 2,091

2 10,686 (12.61%) 11,352 (13.40%) +2 1,373

3 8,031 (9.48%) 8,005 (9.45%) +3 934

4 6,238 (7.36%) 5,917 (6.98%) +4 705

5 4,857 (5.73%) 4,378 (5.17%) +5 544

6 3,586 (4.23%) 3,151 (3.72%) +6 412

7 2,721 (3.21%) 2,271 (2.68%) +7 280

8 2,030 (2.40%) 1,647 (1.94%) +8 208

9 1,550 (1.83%) 1,170 (1.38%) +9 154

10 1,232 (1.45%) 905 (1.07%) +10 101

11 1,016 (1.20%) 723 (0.85%) +11 52

12 810 (0.96%) 548 (0.65%)

unassigned 20,952 (24.72%) 20,952 (24.72%) total 6,854

Notes: The table is based on author’s calculations using data from the main round in 2003-04

provided by the New York City Department of Education’s Office of High School Admissions.

The column Deferred Acceptance reports the expected distribution of choices from 250 different

single tie breakers in the main round, and the next column reports the expected distribution when

each of these matchings is improved to a student optimal matching using the procedure described

in Erdil and Ergin (forthcoming). The last column reports the expected improvement in choice

obtained by students in a student optimal matching.
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Appendix 1: NYC Schools

In New York City, there are three main types of high schools: 1) schools that are active

players who explicitly rank students in order of preference, 2) schools that are passive

players who order students based on priorities, which are set centrally by the Department

of Education, and 3) schools where a fraction of seats are determined by active ranking

and the remaining fraction are based on priorities. Table A summarizes the number of

schools in each group by borough and by capacity. The screened, audition, and special-

ized high schools are strategic players, who explicitly rank students in order of preference.

For example, Townsend Harris is a screened high school in Flushing, NY which evaluates

students based on their test scores, attendance and punctuality. At Towsend Harris, all

students are required to have a minimum 90th percentile on Math and Reading standard-

ized tests as well as a minimum grade point average of 90 in June of 7th grade when

being considered for a 9th grade seat. Various other criteria are used at screened and

audition schools. The unscreened schools are passive players, and use priorities based on

geographic location, current middle school, or other criteria. The academic comprehen-

sive program at Forest Hills High School in Queens, for instance, places students who

live in an attendance zone near the school in a higher priority class than students from

outside the priority zone. Finally, Educational option (Ed-opt) schools are permitted to

rank students for half of their positions, and are required to admit students according to

priorities for the other half. Table 1 shows that nearly half of all schools are Educational

option, and more than half of total district capacity is at schools who use priorities to

order students.

When priorities are used at unscreened and Educational option programs in New York

City, many students fall into the same priority class. For instance, at Forest Hills where

were 474 seats in 2003-04, 352 (10.7%) of student applicants are from the assignment zone

while the remaining 2,937 are from outside.
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Table A— Number and Capacities of Programs

Panel A: Number of Programs by Borough

Screened and Educational

Unscreened Auditioned Specialized Option Total

Brooklyn 21 49 1 70 141 (26.5%)

Bronx 36 33 2 45 116 (21.8%)

Manhattan 5 53 2 79 139 (26.1%)

Queens 19 47 1 52 119 (22.4%)

Staten Island 5 6 0 6 17 (3.2%)

Total 86 (16.2%) 188 (35.3%) 5 (1.1%) 252 (47.4%) 532

Panel B: Total Capacity by Borough

Screened and Educational

Unscreened Auditioned Specialized Option Total

Brooklyn 7,260 5,385 1,000 10,238 23,833 (27.1%)

Bronx 8,632 4,388 908 5,163 19,091 (21,6%)

Manhattan 1,410 7,400 888 6,859 16,557 (18.5%)

Queens 9,390 7,463 150 8,121 25,124 (28.5%)

Staten Island 2,860 526 0 185 3,571 (4.0%)

Total 29,552 (33.5%) 25,162 (28.5%) 2,946 (3.3%) 30,566 (34.5%) 88,226

Notes: Constructed from data provided by the New York City Department of Education Office
of High School Admissions.
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