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Abstract

Public school choice plans across the United States use lotteries to make assignments.

Motivated by design issues in the New York City High School match, this paper compares

lotteries in the allocation of school seats. The first mechanism, random serial dictatorship,

is based on a single lottery: it selects an ordering from a given distribution and assigns the

first student her top choice, the second student his top choice among available schools, and

so on. The second mechanism, top trading cycles with random priority, is based on lotteries

for each school: it selects an ordering from a given distribution and sets that order as the

priority for the first school, selects another ordering from the same distribution and sets it

as the priority for the second school, and so on. Then the mechanism finds an assignment in

the induced market with these priorities using top trading cycles, where cycles form when

each student points to the school she desires the most among available schools and each

school points to the student in the market who receives the highest priority at that school.

This paper shows that a random serial dictatorship is equivalent to top trading cycles with

random priority.
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1 Introduction

Current reforms in public education focus on increasing student choice. A central element

of school choice is a student assignment plan, a set of rules and procedures used to assign

students to the various schools in the choice plan. Recently, the mechanism design literature

on the allocation of indivisible goods has influenced the redesign of choice plans in two large

school districts. In 2003, New York City’s Department of Education (NYC DOE) adopted a

new student assignment mechanism to place eighth and ninth graders to public high school

(Abdulkadiroğlu, Pathak, and Roth (2005)) and in 2005, the School Committee of Boston

Public Schools approved the Superintendent’s proposal to change the assignment mechanism

used to allocate students to public elementary, middle, and high schools and implemented

a new mechanism for the 2005-06 school year (Abdulkadiroğlu, Pathak, Roth, and Sönmez

(2006)).1 To date, more than 300,000 students have been assigned to public school through

these new student assignment mechanisms.

The design and implementation of these assignment mechanisms have inspired questions

which require refining our theoretical knowledge about matching mechanisms. In school

choice problems, one aspect that has been highlighted is the role of indifferences in the

orderings of students at schools. In many school districts, students are ordered based on

priority classes at schools. In Boston, for instance, students who have siblings that attend

the school and who live in a neighborhood walk zone surrounding the school are in the top

priority class for the school. Students who only have a sibling at the school are in the next

priority class, followed by students who only live in the neighborhood walk zone, and finally

the remaining students. Within a priority class, students are ordered based on the outcome

of a lottery. Nearly every school district with an open enrollment or controlled choice plan

employs lotteries to convert priority classes into a strict ordering of students.2

In the design of the New York City High School match, a theoretical issue arose involving

the role of lotteries. In formal models of matching markets following Gale and Shapley

1See Abdulkadiroğlu, Pathak, and Roth (2006) for research inspired by the New York City experience, and

Abdulkadiroğlu and Sönmez (2003), Pathak and Sönmez (2006), and Abdulkadiroğlu, Pathak, Roth, and Sönmez

(2005) for research related to Boston.
2A partial list of school districts with choice plans where lotteries are used includes Albany NY, Anchorage AK,

Berkeley CA, Boston MA, Brockton MA, Cambridge MA, Champaign IL, Charlotte-Mecklensburg NC, Clarke

County GA, Columbus OH, Denver CO, Durham NC, Escambia County FL, Eugene OR, Framingham MA, Irvine

CA, Jackson County FL, Lee County FL, Los Banos CA, Malden MA, Miami-Dade FL, New Haven CN, Palo Alto

CA, Palm Beach FL, Portland OR, Rochester NY, San Diego CA, San Francisco CA, Seattle WA, St. Lucie FL,

Tacoma WA, Tampa-St. Petersburg FL (Hillsborough and Pinellas Counties), Upper Marlboro MD, White Plains

NY, Wilmington DE, and Wyandotte WA.
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(1962), participants usually submit a rank order list and receive an assignment. When a

student is unassigned, it is because she is less preferred by each program she ranked than

all of the students who obtained that program. In school choice plans, however, all students

have the right to attend school, and unassigned students must be assigned to a school place.

In New York City, the number of students who are unassigned after the main round is over

8,000 students, or almost 10% of the entire applicant pool. These unassigned students are

asked to submit a new rank order list for the supplementary round. In this round, any high

school program with extra capacity may participate, but no program ranks students. This

paper analyzes a model which directly corresponds to this assignment problem.

In the supplementary round, without any school priorities, there are many ways to order

students via lotteries. Two natural methods are: 1) use one lottery to order each student,

or 2) for each school, use a lottery to order each student. During the design phase of the

mechanism, officials from the NYC DOE believed that a single lottery is less equitable than

using lotteries at each school. In e-mail correspondence, one official stated:

I believe that the equitable approach is for a child to have a new chance with

each [...] program. If we use only one random number, and I had the bad luck to

be the last student in line this would be repeated 12 times and I would never get

a chance.3 I do not know how we could explain this to a parent.

After community forums to discuss changes in the new assignment process in December

2003, another DOE official stated:

Although students might not get their first choices, they were considered sepa-

rately for each program. There was a rank order established and each student

had an equal chance to be selected. One random run creates the same type [as

the ordering of Specialized High Schools based on test scores] of line but it is

based on the luck of the draw, not a test. If we want to give each child a shot at

each program, the only way to accomplish this is to run a new random.

... I cannot see how the children at the end of the line are not disenfranchised

totally if only one run takes place. I believe that one line will not be acceptable

to parents. When I answered questions about this at training sessions, (it did

come up!) people reacted that the only fair approach was to do multiple runs.

This paper formally investigate this issue by examining two competing mechanisms for

student placement. The first mechanism, random serial dictatorship, selects an ordering

3In the supplementary round, students are asked to submit a rank order list of up to 12 schools.
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from a given distribution and assigns the first student her top choice, the second student his

top choice among available schools, and so on. The second mechanism, top trading cycles

with random priority, selects an ordering from a given distribution and sets that order as the

priority for the first school, selects another ordering from the same distribution and sets it

as the priority for the second school, and so on. Then the mechanism finds an assignment in

the market with these priorities using top trading cycles.4 The main result of this paper is

that random serial dictatorship is equivalent to top trading cycles with random priority. For

any student preference profile, the distribution of student assignments is exactly the same

whether there is a single lottery or a lottery at each school, followed by top trading cycles.

The rest of this paper focuses on two other mechanisms, student proposing deferred

acceptance mechanism (DA) and probabilistic serial mechanism. DA finds a stable matching

for the economy when school priorities are strict. A stable matching is one where there is

no student and school pair, where a student prefers the school over her assignment, and the

school gives the student a higher priority than a student who is assigned to the school. When

there are no school priorities, using a single lottery to order students, and then using this

ordering to define school preferences for each school is equivalent to a serial dictatorship for

this ordering. Using a lottery for each school to define school preferences is not equivalent to

a serial dictatorship, since DA may select a matching which is stable with respect to these

school priorities, but is not efficient while a serial dictatorship always selects an efficient

matching. When I compare these two lottery methods under DA based on a student’s

likelihood of receiving her top k choices for all k, there is no relationship between single

lotteries and multiple lotteries under DA for all student preference profiles. To investigate

the differences between single and multiple lotteries under DA, I use data on stated choices

from the supplementary round in 2003-04. With these stated preferences, I show that the

efficiency costs are significant. While 60.6% of students receive their top choice under a single

lottery, only 47.2% of students receive their top choice under multiple lotteries. Moreover,

for the stated preferences, the cumulative likelihood of receiving the top k choices for all k

is higher under a single lottery than multiple lotteries.

Both top trading cycles with random priority and deferred acceptance with any lottery

to order students are strategy-proof mechanisms, where a student can do no worse than

4Top trading cycles is a procedure that has been usually defined for the housing market (Shapley and Scarf

(1974)), where each agent is endowed with a house. In school choice problems, when schools have priorities, cycles

form when each student points to her favorite school among those available, and each school points to the student

in the market who has the highest priority at the school. The next section precisely defines top trading cycles for

the school choice problem.
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submitting her true ordinal preferences to the mechanism regardless of what other students

do. However, when students are endowed with von-Neumann Morgenstern utility functions,

neither mechanism is ex ante efficient. Since there is no strategy-proof, anonymous, ex ante

efficient mechanism (Zhou (1990)), if a school district is willing to consider a mechanism that

is not strategy-proof, the district may be able to improve upon the efficiency of a random

serial dictatorship. The probabilistic serial mechanism described in Bogomolnaia and Moulin

(2001) finds an ordinally efficient matching, one that is not stochastically dominated by any

other matching. Using stated preferences from the supplementary round in NYC in 2003-04,

50% of participants in the supplementary round would receive a distribution of assignments

under probabilistic serial which stochastically dominates the distribution from a random

serial dictatorship, while only 6% of participants receive a distribution from a random serial

dictatorship which stochastically dominates probabilistic serial. For the majority of students,

however, the magnitude of the difference between probabilistic serial and random serial

dictatorship is negligible.

Related literature

The canonical model of indivisible goods allocation is the housing market model of Shapley

and Scarf (1974), where every student in the market occupies a house. Shapley and Scarf

describe the top trading cycles procedure (attributed to Gale) to find the core of this mar-

ket. For this model, Roth and Postlewaite (1977) show that the unique core allocation is

equivalent to the competitive equilibrium, and Roth (1982) shows that the core, as a direct

mechanism, is strategy-proof. Ma (1994) further demonstrates that the core based mecha-

nism is the only mechanism that is Pareto efficient, individually rational, and strategy-proof.

When all houses are objects to be assigned, with no existing property rights, the model

is known as the house allocation problem (Hylland and Zeckhauser (1979)). Svensson (1999)

shows that the only mechanism that is strategy-proof, non-bossy, and neutral is a serial dicta-

torship. There are other characterizations of serial dictatorships as well. The class of lottery

mechanisms which are known as random serial dictatorship or random priority is studied

by Zhou (1990) and Abdulkadiroğlu and Sönmez (1998). Zhou (1990), proving a conjecture

of Gale, shows that there is no anonymous, strategy-proof, and ex ante efficient mechanism

for this domain. Bogomolnaia and Moulin (2001) show how the distribution of matchings

from a random serial dictatorship can be stochastically dominated by another distribution of

matchings, and describe an algorithm to compute an ordinally efficient matching, one that

is not stochastically dominated by any other matching, for a stated preference profile.

This paper is most closely related to Abdulkadiroğlu and Sönmez (1998), who establish
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the equivalence between random serial dictatorship and the core from random endowments in

house allocation problems. Since top trading cycles with random priority and the core from

random endowments are different mechanisms, their result and the result of this paper are

distinct. The main result of this paper implies that the following mechanisms are equivalent:

1) top trading cycles with random priority, 2) random serial dictatorship and 3) core from

random endowments. In the core-based mechanism with random endowments, if there are n

students, then each student is endowed with only one school and will only exit the market in

a cycle involving this school. Under this interpretation, schools do not point to any students

and students only directly point to one another. When priorities are drawn randomly for

each school, however, the same student can obtain the highest priority at multiple schools,

and only one of these schools will be part of the cycle in which this student leaves the market.

When this student leaves the market, the schools who had been pointing to this student in

the previous step will point to the next highest priority student left in the market. When

each student who receives the top priority for a school is different, then it is as if each student

is endowed with a particular school as in the core-based mechanism. However, under random

priorities, there are many other possible priority orderings to consider. While there are n!

potential endowments, there are (n!)n possible priorities for the schools in the market, which

introduces considerable complications.5

More generally, this paper is connected to a recent market design literature where expe-

rience in the field designing mechanisms poses new theoretical puzzles and motivates work

towards their resolution. Milgrom (2006), Roth (2002), and Wilson (2002) contain surveys of

parts of the market design literature. Abdulkadiroğlu and Sönmez (2003) formally introduce

the school choice problem, and Boston and New York City are the first two school districts

to employ mechanisms described in their paper. Both of these districts employ mechanisms

which are variants of the student proposing deferred acceptance mechanism which has im-

portant antecedents in the literature on labor market clearinghouses described in Roth and

Sotomayor (1990).

Two related papers in school choice are in the spirit of this research program. Using

historical data from Boston Public Schools, Abdulkadiroğlu, Pathak, Roth, and Sönmez

(2006) identify at least two types of players in the old Boston mechanism: those who made

the mistake of ranking two overdemanded schools, and those who avoided this mistake or

5One direction this type of result has been extended is to a house allocation model with existing tenants. In this

model, Sönmez and Ünver (2005) examine lottery mechanisms and establish the equivalence between a core-based

mechanism where newcomers are randomly endowed vacant houses, and a version of top trading cycles known as

You-Request-My-House-I-Get-Your-Turn (Abdulkadiroğlu and Sönmez (1999)).
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belonged to parent groups who met to trade advice on strategic behavior. Motivated by

this empirical evidence and the comments of Boston Superintendent Thomas Payzant that

a strategy-proof mechanism “levels the playing field,” Pathak and Sönmez (2006) analyze

the preference revelation game induced by the Boston mechanism when there are sincere

(who report their preferences truthfully) and sophisticated (who best respond) players and

compare it to the outcome under Boston’s new mechanism, based on the student proposing

deferred acceptance mechanism. Their paper shows that sophisticated players will weakly

prefer the Pareto dominant Nash equilibrium of the preference revelation game induced by

the Boston mechanism over their outcome from student proposing deferred acceptance.

The design environment in New York City leads to a different set of theoretical challenges.

In NYC, since a large fraction of high schools do not actively rank students, and instead

employ a lottery to order students, the student proposing deferred acceptance mechanism

does not necessarily produce a student optimal stable matching. The mechanism produces

a stable matching with respect to the ordering of students induced by the lottery, and this

may have an efficiency consequence. Abdulkadiroğlu, Pathak, and Roth (2006) analyze a

matching model corresponding to this environment, and establish that a student-proposing

deferred acceptance mechanism using a single tie breaking order is not dominated by any

other strategy-proof mechanism. This result justifies the use of student proposing deferred

acceptance mechanism with a single tie breaking rule if the school district desires a strategy-

proof and stable matching. This mechanism is the minimal compromise of efficiency which

preserves strategyproofness among stable mechanisms. The topic of indifferences in deferred

acceptance is also analyzed by Erdil and Ergin (2005), who identify a polynomial time

algorithm to compute the student optimal matching when there are indifferences.

2 Model

2.1 School choice problem

Abdulkadiroğlu and Sönmez (2003) define a school choice problem as one where there

are a number of students each of whom should be assigned a seat at one of a number of

schools. Each student has a strict preference ordering over all schools and each school has a

strict priority ranking of all students. Each school has a maximum capacity but there is no

shortage of the total number of seats.

Formally, a school choice problem consists of:

1. a set of students I = {i1, ..., in},
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2. a set of schools S = {s1, ..., sm},
3. a capacity vector q = (qs1 , ..., qsm),

4. a list of strict student preferences PI = (Pi1 , ..., Pin), and

5. a list of strict school priorities π = (πs1 , ..., πsm).

Here sPis
′ means that student i strictly prefers school s to school s′. I will assume that

every student prefers a school s to being unassigned. qs denotes the capacity of school s

where
∑

s∈S qs ≥ |I|, and πs denotes the strict priority ordering of students at school s. If

πs(i) < πs(j) for some i, j ∈ I, then student i receives higher priority than student j at

school s. For the rest of this paper, I will hold the q vector fixed, so I do not need to carry

along additional notation. I will also focus on a problem where the school district places no

restriction on the ordering of students and uses lotteries to determine strict school priorities

π, as in the Supplementary Round in New York City.

The outcome of a school choice problem is a matching µ : I → S, a function from the

set of students to the set of schools such that no school is assigned to more students than

its capacity. Let µ(i) denote the assignment of student i under matching µ.

A student assignment mechanism is a systematic procedure that selects a matching

for each school choice problem. A student assignment mechanism is a direct mechanism if

it requires students to reveal their preferences over schools and selects a matching based

on these submitted preferences and student priorities. Formally, a direct mechanism is a

function ϕ which associates a matching with each problem (PI , πS). For i ∈ I, let ϕi(PI , πS)

denote student i’s match under ϕ given (PI , πS).

A mechanism is strategy-proof (dominant-strategy incentive compatible) if for every

(PI , πS) pair, ∀i, ∀P̂i, and ∀Q−i, ϕi((Pi, Q−i), πS)Riϕi((P̂i, Q−i), πS) where Ri is the weak

preference ordering consistent with Pi.

A matching is Pareto efficient if there is no other matching which assigns each student

a weakly better school and at least one student a strictly better school. A mechanism is

Pareto efficient if for every school choice problem, it selects a Pareto efficient matching.

Let M be the set of all matchings. A stochastic mechanism maps (P, π) to a probability

distribution on M. A stochastic mechanism is strategy-proof if it is dominant-strategy

incentive compatible when students submit their ordinal ranking over schools. A stochastic

mechanism is Pareto efficient if it places positive probability only on matchings that are

Pareto efficient for all (P, π).

Abdulkadiroğlu and Sönmez (2003) proposed two competing mechanisms for school

choice problems: the top trading cycles mechanism and the student optimal deferred ac-
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ceptance mechanism. I will begin by discussing top trading cycles, and then discuss the

student optimal deferred acceptance mechanism in section 4.

2.2 Top Trading Cycles Mechanism

Before defining the top trading cycles mechanism, I briefly mention where the mechanism

has been either used or thoroughly considered by a school district for use. In May 2006,

for the first time ever, top trading cycles was employed to assign over 400 students in the

after-market in New York City’s High School match. The after-market involved over 5,000

students who appealed their assignment. Each of these students submitted a rank order list

of up to three schools they would prefer to attend, and top trading cycles played a role in

assigning a subset of these students.6

Top trading cycles also played a role in the policy discussion in Boston about student

assignment. First, a student task force in charge of making recommendations to the Boston

Public Schools committee, in their September 2004 report, strongly recommended that

Boston change their assignment mechanism to top trading cycles immediately.7 Second,

during school committee deliberation over the student assignment mechanism, top trading

cycles was one of two mechanisms discussed in public hearings. The school committee even-

tually adopted a mechanism based on deferred acceptance, based on a concern that sibling

priority should not be used as a tradable priority for students as in top trading cycles. For

more details on the empirical case against Boston Public School’s old student assignment

mechanism, their decision to change their assignment mechanism, and the school commit-

tee’s view on top trading cycles, see Abdulkadiroğlu, Pathak, Roth, and Sönmez (2006).

In a school choice problem, top trading cycles must be defined to account for the fact

that schools have a collection of seats, and are not simply houses with only one occupant.

Abdulkadiroğlu and Sönmez (2003) introduce counters in their description of top trading

cycles, and define top trading cycles for the school choice problem as follows:

Step 1: Assign a counter for each school which keeps track of how many seats are still avail-

able at the school. Initially set the counters equal to the capacities of the schools.

6The use of top trading cycles in this assignment problem is part of ongoing design work in New York City

which will be described in future work.
7For the complete report from the student task force, see http://boston.k12.ma.us/assignment/TFreport.pdf.

The recommendation of the task force in favor of top trading cycles appears on page 15.
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Each student points to her favorite school under her announced preferences. Each

school points to the student who has the highest priority for the school. Since the

number of students and schools is finite, there is at least one cycle. (A cycle is an

ordered list of distinct schools and distinct students (s1, i1, s2, ..., sk, ik) where s1

points to i1, i1 points to s2, ..., sk points to ik, ik points to s1.) Moreover, each

school can be part of at most one cycle. Similarly, each student can be part of at

most cycle. Every student in a cycle is assigned a seat at the school she points to

and is removed. The counter of each school in a cycle is reduced by one and if it

reduced to zero, the school is also removed. Counters of the other schools are not

changed.

In general, at

Step t: Each remaining student points to her favorite school among the remaining schools

and each remaining school points to the student with highest priority among the

remaining students. There is at least one cycle. Every student in a cycle is as-

signed a seat at the school that she points to and is removed. The counter of

each school in a cycle is reduced by one and if it reduces to zero the school is also

removed. Counters of all other schools are not changed.

The algorithm terminates when all students are assigned a seat.

Abdulkadiroğlu and Sönmez (2003) show that this version of top trading cycles is both

strategyproof and Pareto efficient. I will refer to this definition of the mechanism as AS-TTC.

For the school choice problems in this paper, I will define another version of top trading

cycles which is outcome equivalent to the version I have just described. This will simplify

the analysis to focus on a market where each school has one seat. When I refer to school

specific randomization in this market, it actually refers to school-seat specific randomization

in the original market.

For each school s ∈ S, without loss of generality, index seats so that there is a first seat,

second seat, and so on.

Step 0: (Initialization) For each school sk ∈ S, define si
k to be the ith seat at school sk,

where i = 1, ..., qsk
. Set πsk

to be the priority ordering for each school seat si
k.

For each student i ∈ I, adjust the announced preference list Pi so that every

occurrence of school sk is replaced by {s1
k, ..., s

qsk
k } in that order. Each school seat

can be assigned to at most one student.
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Step 1: (Algorithm) Each student points to her favorite school seat under her modified

preferences. Each school seat points to the student who has the highest priority.

Since the number of students and school seats is finite, there is at least one cycle.

Moreover, each school seat at school s will point to the same student under πs, so

each school is part of at most one cycle. Similarly, each student can be part of at

most one cycle. Every student in a cycle is assigned the school seat she points to

and she and the school seat are both removed.

In general, at

Step t: Each remaining student points to her favorite school seat among the remaining

school seats and each remaining school seat points to the student with highest

priority among the remaining students. There is at least one cycle. Every student

in a cycle is assigned the school seat that she points to and is removed.

The algorithm terminates when all students are assigned a seat.

I will focus on this definition of the mechanism and refer to it as TTC.

Remark 1 For any economy (PI , πS), the outcome of AS-TTC is the same as TTC.

This remark implies that TTC inherits the properties of AS-TTC, and thus is also

strategy-proof and efficient. It is important to note that the priorities considered under

multiple lotteries in TTC or in AS-TTC are not equivalent. If there are n students, using

counters and AS-TTC means that a school with k seats has n! possible orderings, while un-

der TTC there are (n!)k orderings. I leave the examination of multiple lotteries in AS-TTC

for future work and focus on a problem where each school in the market has unit capacity

of 1.8

To avoid introducing new notation, I refer to S as the set of school seats, each seat has

a corresponding priority order πs, and PI as the preferences for students modified to rank

school seats. There are n students in the economy and n school seats.

8The equivalence of multiple lotteries under AS-TTC and a random serial dictatorship appears to also be true

based on extensive simulations.
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3 Equivalence for the School Choice Problem

3.1 Definitions

The choice Chi(S′) of an student i ∈ I from a set of schools S′ ⊆ S is the best school among

S′. That is,

Chi(S′) = s′ ⇔ s′ ∈ S′ and s′Pis for all s ∈ S′\s′.

Let f : {1, 2, ..., n} → I be a bijection and F be the class of all such bijections. Note that

|F| = n!. Each bijection is an ordering of the students. For any f ∈ F, student f(1) is first,

student f(2) is second, and so on. For any f , f−1(a) = i if and only if f(i) = a.

Given any ordering f ∈ F of students, define the serial dictatorship induced by f , ψf

as:

ψf (f(1)) = Chf(1)(S),

ψf (f(2)) = Chf(2)(S\{ψf (f(1))}),
...

ψf (f(i)) = Chf(i)(S\ ∪i−1
j=1 {ψf (f(j))}),

...

ψf (f(n)) = Chf(n)(S\ ∪n−1
j=1 {ψf (f(j))}).

Denote the matching corresponding to the outcome of the serial dictatorship for this ordering

of students as mψf
.

A random serial dictatorship is a stochastic mechanism ψrsd defined as:

ψrsd =
∑

f∈F

1
n!

mψf
.

Each serial dictatorship is selected with equal probability, or equivalently, an ordering is

randomly chosen with uniform distribution and the induced serial dictatorship is used.

Recall that π = {πk}n
k=1 is a collection of functions πk : I → {1, 2, ..., n} such that for

school k and students i, j ∈ I, πk(i) < πk(j) means that student i is given higher priority

than student j at school k. Let Π be the set of all collections of functions. Note that

|Π| = (n!)n. Denote the matching corresponding to the outcome of top trading cycles in a

market with priorities π as mϕπ
.

Remark 1. For any f , if for all schools s, πs is consistent with the same ordering as f

(i.e. πk(f(i)) = i,∀i, ∀k), then TTC yields the same matching as a serial dictatorship with
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ordering f .

Given any priority structure, TTC will produce a Pareto efficient allocation. Consider

the following stochastic mechanism TTC with random priority, ϕttc−rp, defined as:

ϕttc−rp =
∑

π∈Π

1
(n!)n

mϕπ
.

This mechanism selects each possible priority structure with equal probability and then

determines the outcome of TTC for the induced market.

I now state and prove the main result of the paper:

Theorem 1 For any set of student preferences PI , ϕttc−rp = ψrsd.

3.2 Overview

The plan of the proof is as follows: For each ordering of students f , I will construct a set of

priorities Π(f), such that

1) for any π ∈ Π(f),mψf
= mϕπ

,

2) for any f , |Π(f)| = (n!)n−1, and

3) ∀f1, f2 ∈ F, f1 6= f2 implies that Π(f1) ∩Π(f2) = ∅.
The first condition states that the matching which corresponds to the serial dictatorship for

the ordering f , mψf
, is the same matching as mϕπ

, the matching produced by top trading

cycles, for any priorities π ∈ Π(f). The second condition states that the frequency of the

matchings under the two mechanisms are consistent. Since |F| = n!, the condition will imply

that each ordering f induces a probability 1
n! on matching mψf

and since |Π| = (n!)n, each

f corresponds to a set of priorities Π(f) with (n!)n−1 elements, which induce a lottery with

probability (n!)n−1

(n!)n = 1
n! on matching mϕπ

, where mϕπ
= mψf

. The third condition states

that each f defines a unique set Π(f), so that there is no double counting. These three

conditions together will demonstrate that both mechanisms induce the same probability

distribution over matchings.

Since it is possible that for two distinct orderings, f1 6= f2, the matchings produced

by the serial dictatorships for these two orderings are the same, the main challenge in the

construction is to ensure that the set of priorities corresponding to f1 and f2 do not overlap.

Consider an example with 3 students, and student preferences as follows:
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Pi1 Pi2 Pi3

s1 s2 s1

s3 s1 s3

s2 s3 s2

If the ordering f1 of students is i1− i2− i3, then the matching corresponding to the serial

dictatorship ψf1 is

mψf1 =

(
i1 i2 i3

s1 s2 s3

)
.

One approach may be to take this matching, examine what schools are obtained by each

student, and define the set of priorities which yield the same matching in a way that respects

the ordering f1. This approach might suggest defining the set Π(f1) as follows:

πs1 πs2 πs3

i1 (i1) ·
· i2 ·
· · ·

At school s1, student i1 receives the highest priority and the ordering of students i2 and i3

is arbitrary. At school s2, the ordering is such that either i1 and i2 are given the top priority

in that order, or i2 is given the top priority followed by i1 and i3 ordered arbitrarily. Finally,

at s3, the ordering of students is arbitrary. In this example, there are 2 priority orderings

at s1, 3 priority orderings at s2, and 6 priority orderings at s3 yielding 2 · 3 · 6 = (3!)2 = 36

possible arrangements of priorities. Moreover, it is easy to see that for each π ∈ Π(f1), the

matching from top trading cycles with priorities π is the same as the matching from the

serial dictatorship ψf1 .

Now suppose the ordering is f2 = i2 − i1 − i3. The matching corresponding to the serial

dictatorship ψf2 is

mψf2 =

(
i1 i2 i3

s1 s2 s3

)
= mψf1

.

Define Π(f2) in a similar manner as before:

πs1 πs2 πs3

(i2) i2 ·
i1 · ·
· · ·
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At s1, either i1 is given the top priority and the remaining students are ordered arbitrarily,

or i2 is given the top priority immediately followed by i1, and i3 is given the last priority.

At s2, i2 receives the top priority, and the other students are ordered arbitrarily, and at s3

students are ordered arbitrarily. The set of priorities has the appropriate size: Π(f2) = 36

and for any π ∈ Π(f2), mϕπ
= mψf2 . However, it is not true that Π(f1) ∩ Π(f2) = ∅, since

both sets have the same elements (where i1 is given the top priority at s1 and i2 is given the

top priority at s2).9

The set of priorities Π(f) is constructed from the following steps:

1) (f → ∆): For each ordering f , define a set of priority skeletons ∆. I will refer

to an element δ of ∆ as a priority skeleton. Each priority skeleton can be further

broken down into components δi where δ = (δ1, ..., δn), and there is a component

for each of the n schools.

2) (∆ → α): For each priority skeleton δ in ∆, define a priority assignment α. A

priority assignment associates each component (δ1, ..., δn) of the priority skeleton

with a school (s1, ..., sn).

3) (α → Π): Given the priority skeleton in the previous step and priority assignment

for that priority skeleton, define the set of priorities for each school based on the

component of the priority skeleton assigned to that school.

4) Construct the entire set of priority structures Π(f) by repeating steps 2 and 3 for

each priority skeleton in the set of priority skeletons ∆.

Loosely speaking, a priority skeleton encodes the essential information used to define

the set of priorities for the schools. When I define a priority assignment for each priority

skeleton, I will be re-arranging the components of the priority skeleton to associate each

component with a school. Once I have associated each component of the priority skeleton

with a particular school, I use this assignment to define the set of priority orderings for the

school corresponding to this priority skeleton. For a particular f , there are multiple priority

skeletons in ∆, so this procedure is repeated for each element of ∆. Each priority skeleton

leads to a priority assignment and a set of priorities for the schools.

The requirement that mψf
= mϕπ

follows from how priorities are specified based on

the priority assignment for a priority skeleton. The condition that |Π(f)| = (n!)n−1 follows

9In this simple example, the set of priorities that I will define specifies that the set of priorities corresponding

to f2 either places i2 first at s1 and i1 first at s2 with the rest of the students ordered arbitrarily in the remaining

spots, or places i2 first at s1, i1 next at s1, and i2 first at i1, with the rest of the student ordered arbitrarily in

the remaining spots.
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from the structure of the set of priority skeletons. The condition that f1 6= f2 implies

Π(f1)∩Π(f2) = ∅ follows from assigning priorities so that it is possible can recover a unique

f based on executing top trading cycles in a particular way. Once the set Π(f) is defined,

I will demonstrate that there is no overlap by defining the inverse mapping g, and showing

that for any π ∈ Π(f), g(π) = f .

The construction of the set Π(f) is involved and description of the steps of the construc-

tion involves additional notation. To facilitate understanding of these steps, I present the

construction together with an example. The appendix also contains a list of symbols used

in the construction.

Example

Consider an economy with 8 students and 8 schools. The preferences of the students are

as follows:

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pi7 Pi8

s3 s1 s2 s1 s4 s3 s1 s3

· · · s5 · s6 s5 s8

· · · · · · s7 ·

While I work in markets where students have strict preferences, I do not specify what follows

the rank ordering when I have a · in the table because it is not important for the example.

For instance, student i1’s first choice is s3 and her second and third choice can be any other

school in any order. I will work with an ordering of students which places students in order

of their index: i1 is the first student, i2 is the second student, and so on.

3.3 Construction

For a given ordering f of students and the corresponding serial dictatorship ψf , I partition

students into sets as follows:

Step 1.) Starting with student f(1), process each student in order until it is the turn of

a student a for whom her assignment ψf (a) is worse than a school previously

assigned to a student. Terminate the first step right before this student. Next

proceed to step 2. If such a student does not exist, then f consists of a single step.

In general,

Step t.) Starting with the next student, process students one at a time until it is the turn

of a student a for whom her assignment ψf (a) is worse than a school previously
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assigned to a student in the current step t. Terminate step t before student a.

Next proceed to step t + 1. If such a student does not exist, then the partition

consists of t steps.

This procedure defines sets of students such that there is no conflict of interest within

a step: no student in a step desires the school assigned to another student who is part of

the same step. Moreover, the first student in any step t > 1, prefers a school assigned to a

student in step t− 1 over the school she receives in step t. Finally, the number of students

in each step is equal to the number of schools assigned in the step.

Suppose the ordering f leads to a serial dictatorship which consists of T steps. For each

t ≤ T , let St denote the schools assigned at step t and let At denote the set of students

(agents) assigned in step t. Let nt be the number of students assigned in step t. Define

Nt =
∑t

i=1 ni as the number of students who have been assigned up to and including step

t, where for notational convenience N0 = 0.

The purpose of breaking down the construction into steps is to simplify the description

of the procedure to go from priority skeletons to priority assignments to priorities for the

schools. With this partition, the set of priority skeletons ∆ can be broken down into a set of

priority skeletons ∆ = (∆1, ...,∆T ) where ∆t is the set of priority skeleton for the schools in

step t. Likewise, the priority assignment and the priorities for the schools will be specified

within a step first, and then the same procedure will be used for each step.

For t > 1, let A∗t be the set of students in step t who prefer a school in St−1 to their

assignment under ψf . These are students who are unsatiated at step t− 1. That is,

A∗t = {a ∈ At : sPaψ
f (a) for some school s ∈ St−1}.

The remaining students in At are satiated in step t− 1; each prefers the school she receives

from the serial dictatorship ψf to any school assigned in step t − 1. For each t > 1, A∗t is

non-empty by construction since each step after the first begins with an unsatiated student.

Example

In our example, the procedure will process students in step 1 until the fourth student i4.

Student i4 prefers s1 over her assignment, s1Pi4ψ
f (i4) = s5, so she begins a new step.

Students i5 and i6 will also belong to step 2. Student i7 prefers s5 to ψf (i7) = s8, so she

begins a new step. Student i8 is also part of this step. The sets are defined as

A1 = {i1, i2, i3} S1 = {s1, s2, s3}
A2 = {i4, i5, i6} A∗2 = {i4, i6} S2 = {s4, s5, s6}
A3 = {i7, i8} A∗3 = {i7} S3 = {s7, s8}
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The number of students in step 1, n1, is 3, the number of students in step 2, n2, is 3, and

in step 3, n3 = 2. The cumulative number of students in step 1, N1, is 3, the cumulative

number of students in step 2, N2, is 6, and in step 3, N3 = 8.

3.3.1 From f to ∆

I now construct the set of priority skeletons which correspond to f . Before doing so, it will

be helpful to define the following notation: P(a1, ..., ak) refers to the set of strings10 (ordered

lists without replacement) of students {a1, ..., ak} of length l where l = 0, ..., k. Examples of

elements of P(a1, ..., ak) are {a1, ak}, {a1, a2, ..., ak}, {ak, a2, ak−1}, as well as the empty set

(when l = 0).

Denote the students in step t as aNt−1+1, aNt−1+2, ..., aNt−1+nt , where ai is the ith

student in ordering f . To define the set of priority skeletons for f , I begin by defining the

components of the priority skeleton corresponding to step t. These components are from the

set ∆t, a collection of nt strings defined as:

∆t =
[
(aNt−1+1),

(P(aNt−1+1), aNt−1+2),

(P(aNt−1+1, aNt−1+2), aNt−1+3),
...

(P(aNt−1+1, aNt−1+2, ..., aNt−1+nt−2), aNt−1+nt−1),

(P(aNt−1+1, aNt−1+2, ..., aNt−1+nt−1), aNt−1+nt)
]
.

The set of priority skeletons ∆ is the collection of the set of priority skeletons for each

step: (∆1, ...,∆t, ...,∆T ). Write (δNt−1+1, δNt−1+2, ..., δNt−1+nt) ∈ ∆t to be the components

of a particular priority skeleton δ corresponding to step t. For step t, there are nt compo-

nents of the priority skeleton, where the first component is δNt−1+1 = (aNt−1+1), the second

component is either δNt−1+2 = (aNt−1+1, aNt−1+2) or δNt−1+2 = (aNt−1+2), the third compo-

nent is either δNt−1+3 = (aNt−1+1, aNt−1+2, aNt−1+3), δNt−1+3 = (aNt−1+2, aNt−1+1, aNt−1+3),

δNt−1+3 = (aNt−1+1, aNt−1+3), δNt−1+3 = (aNt−1+2, aNt−1+3) or δNt−1+3 = (aNt−1+3), and so

on. I will use δi(k) to refer to the kth position of δi.

10Strings are often defined as an ordered list of symbols, where any symbol can occur more than once. Throughout

this paper, whenever I use the term string, I will be referring to an ordered list where no symbol can be used more

than once.
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Let A(δi) be the set of students in δi. Finally, it will be convenient to define a`(δi) as

the last student in δi, student f(i).

Example

The set of priority skeletons for each of the steps is defined as follows:

∆1 =
[
(i1),

(P(i1), i2),

(P(i1, i2), i3)
]
,

∆2 =
[
(i4),

(P(i4), i5),

(P(i4, i5), i6)
]
,

∆3 =
[
(i7),

(P(i7), i8)
]
.

For the first step, consider the components of the priority skeleton (δ1, δ2, δ3) ∈ ∆1,

where δ1 = (i1), δ2 = (i1, i2), and δ3 = (i2, i3). In this case, A(δ1) = {i1}, A(δ2) = {i1, i2},
and A(δ3) = {i2, i3}. For the second step, consider (δ4, δ5, δ6) ∈ ∆2, where δ4 = (i4),

δ5 = (i4, i5), and δ6 = (i6). In this case, A(δ4) = {i4}, A(δ5) = {i4, i5}, and A(δ6) = {i6}.
For the third step, consider (δ7, δ8) ∈ ∆3, where δ7 = (i7) and δ8 = (i8). Then, A(δ7) = {i7}
and A(δ8) = {i8}.

3.3.2 From ∆ to α

The priority assignment phase takes place for each priority skeleton in ∆. I will focus on

the components of the priority skeleton for step t, (δNt−1+1, δNt−1+2, ..., δNt−1+nt) ∈ ∆t. I

will re-arrange the components and associate each school assigned in step t with one of the

components. The re-arrangement will have the property that once I define priorities based

on the particular skeleton, the last student in step t, aNt−1+nt , will not leave the market

under top trading cycles before aNt−1+nt−1, and so on. This will allow for the recovery of

the ordering of students f from the execution of top trading cycles in a particular way.

The priority assignment function α maps the set of schools S to the set {1, ..., n}. In

step t, I will specify the priority assignment of the schools assigned to students in step t, St.

For each school, this mapping will be used to construct a set of priorities for the school.
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Begin with the components of a particular priority skeleton in step t, (δNt−1+1, ..., δNt−1+nt) ∈
∆t. For this priority skeleton, partition the set of students At into subsets A1

t , A
2
t , ..., A

s
t , ...

such that

1) ∀i 6= j Ai
t ∩Aj

t = ∅,
2) the students in Ai

t are all adjacent to each other in the ordering f , and

3) ∀i < j, the students in Ai
t are ordered in f before the students in Aj

t .

There are two key features of the priority assignment. First, the schools assigned to

students in Ai
t are assigned before the schools assigned to students in Aj

t for i < j. The

other key feature needed to define the priority assignment is that each set Ai
t is split into two

subsets. The nature of these subsets differs for the first substep and subsequent substeps. In

the first substep, A1,+
t are the set of satiated students and A1

t \A1,+
t are the set of unsatiated

students. The separate treatment of satiated and unsatiated students in the first substep

ensures that there is a way to recover the steps. In particular, the priorities are defined such

that no satiated student in step t > 1 should leave the market under top trading cycles in

a cycle only involving other satiated students. If this happens, then it will be difficult to

determine whether the students belong to step t − 1 or step t, and thus difficult to recover

the ordering f . The priority assignment will ensure that if there is a satiated student in

the first substep, she must be a part of a cycle involving an unsatiated student in the first

substep. For subsequent substeps, Ai,+
t are the the students for whom there is no student

in Ai−1
t who appears earlier in the component of the priority skeleton for which the student

in Ai,+
t is the last member. Loosely speaking, these are the students who are on a higher

position in the priority skeleton than the other students in Ai
t. The separate treatment of

students in Ai,+
t ensures that there is a way to recover the ordering of students within a step.

If, for instance, I define priorities for students in Ai,+
t such that a student in Ai,+

t receives

the top priority among students in the step for the school she is eventually assigned, then

this student may leave the market under top trading cycles in a substep prior to substep i.

If this happens, then it will be difficult to determine the ordering of students within a step.

Substep 1.) Consider the set of students who are in the first position in a component of the

priority skeleton and such that there are no students after the student in the

priority skeleton:

{a ∈ At : δNt−1+i(1) = a and a = f(Nt−1 + i)}.

From this set of students, find the largest set of students who immediately follow

the first student in At in the ordering f . Suppose there are n1
t such students,
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aNt−1+1, ..., aNt−1+n1
t
. Place these students into A1

t . Place the remaining students

in the set above into H2
t (students at a higher position in the priority skeleton).

Let S1
t be the set of schools assigned to the students in A1

t . Formally,

S1
t = {s ∈ St s.t. ψf (a) = s for some a ∈ A1

t }.

Define A1,+
t = [At\A∗t ] ∩ A1

t . These are the satiated students who are in A1
t . The

unsatiated students are A1
t \A1,+

t . For the first step, each student in A1
t is satiated

by construction. Since the first student in each step t > 1 is unsatiated and the

first student must be a member of A1
t , A1

t \A1,+
t is non-empty.

Remark 2 If n1
t = nt, then the set of students in the first substep A1

t is equal to At.

Otherwise, A1
t ⊂ At and there is at least one student in A1

t who is in the first position

in two components of the priority skeleton (there exists at least one pair (δi, δj) such

that δi(1) = δj(1) = a for some a ∈ A1
t .)

In step 1, since there are no unsatiated students, the priority assignment is slightly

different than in step t > 1. For step 1, order the schools in S1
1 = {s1

1, s
2
1, ..., s

n1
1

1 }
from smallest index to largest index. For each student in A1

1, set α(s1
1) = 1, α(s2

1) =

2, and so on. The set of priorities that correspond to school s1
1 will be based on the

component of the priority skeleton δ1, the priorities which correspond to school s2
1

will be based on the component of the priority skeleton δ2, and so on.

In step t > 1, define priority assignments as follows:

i) Unsatiated students in A1
t

For each unsatiated student a ∈ A1
t \A1,+

t , find the school that is assigned to

the next student in f in A1
t . If such a student does not exist, find the school

that is assigned to the first student in f in A1
t . Place this school into the set

S1,∗
t . Repeat this for each student in A1

t \A1,+
t . Order the schools in S1,∗

t based

on their index. Order students in A1
t \A1,+

t based on their order in f . For the

first school in s ∈ S1,∗
t and first student a ∈ A1

t \A1,+
t , set α(s) = f−1(a).

For the second school in s′ ∈ S1,∗
t and second student a′ ∈ A1

t \A1,+
t , set

α(s′) = f−1(a′), and so on for every student in A1
t \A1,+

t .

ii) Satiated students in A1
t

Next, find the first satiated student in a ∈ A1,+
t according to f . If the student

is not the last student in A1
t , find the school s that is assigned to the next
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student in A1
t , and set α(s) = f−1(a). If a is the last student A1

t , then find the

school s assigned to the first student in A1
t and set α(s) = f−1(a). Continue

processing the students in A1,+
t in this way.

At this point, there will be a priority assignment corresponding to each school in

S1
t . Since there are n1

t schools, n1
t out of nt components of the priority skeleton

are processed.

The next step is to update the priority skeleton δ. For each student a ∈ A1
t , remove

the component of the priority skeleton δi where a`(δi) = a. Next, for the remaining

components of the priority skeleton, remove all students in A1
t . This leads to a

new priority skeleton δ2, where there are n1
t less components components, and in

step t the components are (δNt−1+n1
t +1, ..., δNt−1+nt).

For the remainder of substeps in step t, proceed as follows:

Substep s.) Consider the set of students who are in the first position in a component of the

updated priority skeleton δs such that there are no students after the student in

the component:

{a ∈ At : δi(1) = a and a = f(i) for some component δi of δs}

Take this set of students together with students in Hs
t , and find the largest set

of students who immediately follow the last student in As−1
t in the ordering f .

Suppose there are ns
t such students and place them into set As

t . Place the remaining

students into Hs+1
t .

If As
t is empty, then the procedure ends.

Otherwise, let Ss
t be the set of schools assigned to students in As

t . Define As,+
t =

As
t ∩Hs

t . The students in As,+
t are the subset of students in As

t who are on a higher

position in the priority skeleton than students in As
t\As,+

t .

For each a ∈ As
t\As,+

t , find the school that is assigned to the next student in f in

As
t . Place these schools into the set Ss,∗

t . For the first student a in As
t\As,+

t , find

the lowest indexed school s in Ss,∗
t , and set α(s) = f−1(a). Continue in this way

for the second student in As
t\As,+

t and so on.

For each a ∈ As,+
t if a is not the last student in As

t , find the school s assigned to

the next student in As
t and set α(s) = f−1(a). Otherwise, if the student is the

last student in As
t , find the school s assigned to the first student in As

t and set

α(s) = f−1(a).
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Update the priority skeleton to δs+1 by removing the components of the priority

skeleton corresponding to each a ∈ As
t . Next, for the remaining components of the

priority skeleton, remove all students in As
t . This leads to a new priority skeleton

δs+1 which has ns
t fewer components than δs.

Since at least one school is given a priority assignment via α at each substep and at

least one δi will be removed from the priority skeleton δ that the procedure operates on, the

procedure will terminate in a finite number of steps. At the completion of this process for step

t, there will be a priority assignment for each each s ∈ St to {Nt−1+1, Nt−1+2, ..., Nt−1+nt}.

Example

Consider the components of the priority skeleton for the first step: δ1 = (i1), δ2 = (i1, i2),

and δ3 = (i2, i3). Since A1
1 = {i1}, n1

1 = 1 and S1
1 = {s3}. Since there is only one school

in S1
1 , α(s3) = 1. Update the components of priority skeletons for the step by removing i1

and δ1, leaving (δ′2, δ
′
3) where δ′2 = (i2) and δ′3 = (i2, i3). Next move to substep 2. In this

substep, A2
1 = {i2}, S2

1 = {s1}, H2
1 = ∅. In this case, set α(s1) = 2. Update the components

of the priority skeleton in the step by removing δ′2 and every student in A2
1, yielding priority

skeleton component δ′′3 = (i3). Finally, in step 3, A3
1 = {i3}, and this implies that α(s2) = 3.

Examine the components of the priority skeleton for the second step: δ4 = (i4), δ5 =

(i4, i5), and δ6 = (i6). Begin by identifying that i4 and i6 are both in the first position in a

component of the priority skeleton. Since i6 does not immediately follow i4 in the ordering,

A1
2 = {i4} and H2

2 = {i6}. The school assigned in the first substep of step 2 is S1
2 = {s5}.

Since there is only one school in S1
2 , set α(s5) = 4. Update the components of the priority

skeleton by removing i4 and δ4, leaving (δ′5, δ
′
6) where δ′5 = (i5) and δ′6 = (i6). In this step,

A2
2 = {i5, i6}. Moreover, H2

2 = {i6}. In this case, i6 is on a higher level than i5. For each

student in A2
2\A2,+

2 = {i5}, find the school that is assigned to the next student in f in A2
2.

The next student is i6 and the school she is assigned is s6. Set α(s6) = 5. For each student

in A2,+
2 = {i6}, i6 is the last student in A2

2, so find the school assigned to the first student

in A2
2. This student is i5 and the she receives school is s4. Therefore, α(s4) = 6.

Finally, examine the components of the priority skeleton for step 3: δ7 = (i7) and δ8 =

(i8). Notice that A1
3 = {i7, i8} and A1,+

3 = {i8}. First process students in A1
3\A1,+

3 = {i7}.
For this student, find the school that is assigned to the next student in A1

3. The next student

is i8 and the school she receives in s8, so set α(s8) = 7. Next, process students in A1,+
3 .

Since i8 is the last student in A1
3, find the first student in A1

3. This student is i7 and the

school she receives is s7. Thus, set α(s7) = 8.
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To summarize, the priority assignment for each element of the priority skeleton is defined

as: (
s1 s2 s3 s4 s5 s6 s7 s8

2 3 1 6 4 5 8 7

)
.

3.3.3 From α to Π

For step t, for the particular components of a priority skeleton in the step (δNt−1+1, ..., δNt−1+nt) ∈
∆t and the corresponding priority assignment α for the schools in the step, define a set of

priorities for the schools in step t as follows:

1) Let s = α−1(Nt−1 + 1) and define Πs, the set of priorities for school s, as follows:

Πs =
[
πs s.t. πs(f(Nt−1 + 1)) < πs(j), ∀j ∈ ∪T

i=tAi\f(Nt−1 + 1)
]
.

Any element of this set must have the property that the first student in the step

is ordered before any other student in the step (or subsequent steps) at school s.

The priority for this school is consistent with placing any student who belongs to

a step i < t anywhere in the ordering. Thus, there is no restriction for students in

∪t−1
i=1Ai. In the cycles which form in top trading cycles with this priority structure,

students in step i < t will have left the market before step t. Therefore, where

these students are ordered at schools in step t and afterwards will not change the

matching which results from top trading cycles.

In general,

k) Let s = α−1(Nt−1+k), and suppose there are l = |A(δNt−1+k)| non-empty elements

in δNt−1+k. The set of priority structures for school s is:

Πs =
[
πs s.t. πs(δNt−1+k(i)) < πs(δNt−1+k(i + 1)), for i = 1, .., l − 1

πs(a`(δNt−1+k)) < πs(j) ∀j ∈ ∪T
i=tAi\A(δNt−1+k)

]

This set is consistent with giving students in any previous step (those students in

∪t−1
s=1As) priority anywhere for the school. Students in subsequent steps ∪T

s=t+1As

together with the students in At\A(δNt−1+k) must receive priority after a`(δNt−1+k)

in the priority ordering.

Continue processing each school in St in this way.

Remark 3 For any (δNt−1+1, ..., δNt−1+nt), each student a ∈ At in step t receives a higher

priority than all of the students in subsequent steps for at least one school that is given a

priority assignment in the step.
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This remark ensures that no student in a subsequent step will obtain higher priority for

a school than all students in the current step. One key part of the procedure is to ensure

that no student in a subsequent step will be able to attain a school assigned in step t. The

only time a student in a subsequent step receives higher priority for a school than a student

in the step is when there is another student in the step who receives higher priority than

the student in the subsequent step for this school. The exact assignment of priorities for

this procedure depends on the priority skeleton (δ1, ..., δn) and the corresponding priority

assignment α.

At the conclusion of this process, I will have defined a set of priorities for each of the

schools involved in step t for a particular selection from ∆t. Next, construct the set of all

priority structures by selecting each element of ∆t and repeating the same procedure. This

will define the set of priority structures assigned to objects in step t which correspond to f .

Finally, to define the entire set Π(f), repeat the procedure for each step t.

The procedure to construct the set Π(f) must have two properties: 1) there is a way to

recover the partition of steps from the execution of top trading cycles and 2) there is a way

to determine the ordering of students within a step.

To determine what step students belong to, the procedure defines priority structures

such that every satiated student among those in A1
t must be assigned in a cycle involving an

unsatiated student. Under top trading cycles, the unsatiated student will point to a school

in step t−1 and this will prevent the satiated students in A1
t from leaving the market. Since

no student in a subsequent step will receive higher priority than the first student in step t,

the first student in step t will prevent any subsequent students from leaving the market.

To determine the ordering of students within a step, I define priorities such that under

top trading cycles, the students leave the market in order of f , where the only time multiple

students leave the market is if they are adjacent to each other in the ordering f . Top trading

cycles with any π ∈ Π(f) has the property that for step t, the last student in At according to

the ordering f will not be part of a cycle and receive a school prior to when the second-to-last

student in At is part of a cycle and receives a school under top trading cycles. If multiple

students leave the market in order of f I can recover the ordering of students based on which

school pointed to the student in the cycle in which she leaves the market and if any student

obtained priority above a student who has already left in the previous substep. This will be

the way to recover the ordering f .

Example

The priorities that correspond to the particular priority skeleton and priority assignment is:
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s1 s2 s3 s4 s5 s6 s7 s8

i1 i2 i1 (A1) (A1) (A1) (A1) (A1)

i2 i3 · i6 i4 i4 (A2) (A2)

· · · · · i5 i8 i7

· · · · · · ·

where the notation (A1) means any student in A1 can be ordered anywhere at the school.

For instance, at school s6, any students in A1 can either be ordered in any order above i4, in

between i4 and i5 or after i5. At school s7, students in A1 or A2 can be ordered anywhere.

In the set described, note the relationship between the priority skeleton and the set of

priorities. The example shows clearly that the set of priorities is defined by re-arranging the

components of the priority skeleton in each step.

The size of priorities which correspond to this priority skeleton is:

(6)!(6)!(7)!︸ ︷︷ ︸
step 1

· 8!
(5)

8!
(5)

8!
(5)(4)︸ ︷︷ ︸

step 2

· 8!
(2)

8!
(2)︸ ︷︷ ︸

step 3

This is the set of priorities defined for a particular priority skeleton in (∆1, ∆2,∆3) = ∆.

To construct the entire set Π(f), the procedure must be repeated for each possible priority

skeleton in ∆.

3.4 Properties of Π(f)

Given the construction of Π(f), I can establish two properties of this set.

Claim 1. For any π ∈ Π(f), mϕπ
= mψf

.

Proof. In step 1, each a ∈ A1 prefers ψf (a) to all other schools in ψf (A1). Since ψf is a

serial dictatorship, each a ∈ A1 must receive her top choice. Consider π restricted to the

schools in ψf (A1). Begin with the students who obtain the top priority for any school in

ψf (A1). By construction, a subset of these students who are immediately in order following

the first student each will receive the top priority at a school that another student in the

subset desires. Under ϕπ, each student in this subset points to the school they desire and

since there is no conflict of interest among these students, a set of cycles forms involving these

students. Once this cycle is removed, the top priority for the schools in ψf (A1) who have not

yet left the market will be given to students in A1 who have not yet been assigned. A subset

of these students, following the last student who left the market in a cycle in the previous

substep, will each point to the school for which another student among those remaining in
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A1 receives the top priority. Under ϕπ, a set of cycles will form involving these students as

each points to her top choice. Once the schools assigned in these cycles are removed, iterate

these arguments for the remaining schools in ψf (A1). By construction, the top priorities will

be given to students remaining in A1 who have not yet been assigned. When each points to

their top choice, a subset of these will form cycles and leave the economy until every student

in A1 has been assigned. Thus, for a ∈ A1, ψf (a) = ϕπ(a).

Since each student only receives school, once the assignments in ϕπ(a) for a ∈ A1 have

been finalized, the location of these students in the priorities for any subsequent schools

does not matter. In step 2, iterate the arguments from step 1. Every student in A2 must

prefer her assignment over any school remaining in the market. For the priorities π for the

schools in ψf (A2), when a cycle forms, the top priority for the remaining schools in the step

are given to students in the step who have not yet been assigned. This fact combined with

the fact that there is no conflict of interest among students in the step will ensure that each

student receives the same school under ψf as ϕπ.

Once ϕπ is fixed for any student in step 2, the argument can be iterated for students in

step 3 and so on. This will establish the claim. ¦

The next step is to count the number of priorities assigned for each f .

Claim 2. |Π(f)| = (n!)n−1 for all f ∈ F.

Proof. For any f , consider the set Π(f) and its restriction to the schools assigned in the first

step, Π1(f). For the components of the priority skeleton in the first step, (δ1, ..., δn1) ∈ ∆1,

the priority assignment for the schools in the step α is a bijection from the set of schools in

the first step to the set {1, ..., n1}. This bijection may be different for another member of

∆1. To note this dependence on δ and α, I subscript each school’s priority by πα, leaving

the dependence of α on δ implicit. The bijective property of α allows me to ignore the exact

school that is involved for counting purposes.

The entire set will take a form mimicking the priority skeleton for the step:

Π1(f) =
[
Π1 s.t. πα(f(1)) < πα(i) for any i ∈ [∪T

t=1At]\[f(1)], (1)

πα(f(2)) < πα(i) for any i ∈ [∪T
t=1At]\[∪2

j=1f(j)], (2)
...

πα(f(n1)) < πα(i) for any i ∈ [∪T
t=1At]\[∪n1

j=1f(j)]
]
, (3)

where which priority is assigned to what school depends α, which in turn depends on the

(δ1, ..., δn1).
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At step 1, consider the possible priorities of the form corresponding to (1). Restriction

(1) admits (n−1)! orderings of students, as it specifies only that f(1) receives the top priority

for the school. For the next student, restriction (2) admits (n − 1)! + (n − 2)! orderings,

corresponding to whether f(2) receives the top priority and the remaining (n− 1) students

are ordered arbitrarily or f(1) receives the top priority, f(2) receives the second priority,

and the remaining (n− 2) students are ordered arbitrarily, respectively. Consider student k

in step 1, where πα(f(k)) < πα(i) for any i ∈ [∪T
t=1At]\[∪k

j=1f(j)]. This restriction admits

(n−1)!+(k−1)(n−2)!+(k−1)(k−2)(n−3)!+ ...+(k−1)!(n−k)! =
∑k−1

l=1
(k−1)!
(k−l)! (n− l)! =

n!
n−(k−1) orderings. Thus, in step 1, I find that

|Π1(f)| =
[n!

n
· n!
n− 1

· · · · · n!
n− (n1 − 1)

]
=

n1−1∏

i1=0

n!
n− i1

.

Follow the same reasoning for steps 2,...,T . For general step t, I obtain:

|Πt(f)| =
[

n!
n−∑t−1

j=1 nj

· n!
n−∑t−1

j=1 nj − 1
·· · ·· n!

n−∑t−1
j=1 nj − nt − 1)

]
=

nt−1∏

it=0

n!
n−∑t−1

j=1 nj − it
.

Finally, taking each step together, I obtain:

|Π(f)| =
n1−1∏

i1=0

n!
n− i1

·
n2−1∏

i2=0

n!
n− n1 − i2

· · · · ·
nt−1∏

it=0

n!
n−∑t−1

j=1 nj − it
= (n!)n−1,

which completes the proof of the claim.

When I assign priorities to schools within step t, I am essentially rearranging components

in the priority skeleton ∆t. This is the key to counting the number of elements in a simple

way.

3.5 Defining the Inverse Mapping

I now show how to construct an f for a given Π by constructing the inverse mapping. For

some f , and π ∈ Π(f), I execute top trading cycles in the following way:

Step 1) Simultaneously remove all cycles of students which form. Let C1
1 be the set of

these cycles and let G1
1 be the set of schools assigned in the cycles in set C1

1 . I will

refer to this as the first substep of step 1.

Next, simultaneously remove all cycles that do not involve a student who desires

a school assigned to a student in cycle C1
1 . Place these cycles into C2

1 and let G2
1

be the corresponding set of schools. Continue simultaneously removing all cycles
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that do not involve a student who desires a school assigned to a student in the

cycles that have taken place in the step.

Suppose there are k1 substeps of step 1. Define the set of cycles which form in

this step as: C1 = {C1
1 , C2

1 , ..., Ck1
1 }, where cycles in the set C1

1 form before cycles

in the set C2
1 form, and so on. Let G1 = {G1

1, G
2
1, ..., G

k1
1 } be the corresponding

set of schools assigned in these cycles. When each cycle that forms in the market

involves a student who prefers a school assigned to a student in G1, proceed to the

next step.

In general,

Step t) Simultaneously remove all cycles and place them into C1
t . Let G1

t be the set of

schools assigned in the cycles in C1
t . Next, simultaneously remove all cycles that

do not involve a student who prefers a school assigned to a student in C1
t over

what she receives in the cycle. Place these cycles into the set C2
t and define the

corresponding G2
t . Stop when all cycles involve at least one student who was

pointing to a school that was assigned in step t.

Suppose there are kt substeps of step t. Order the sets of cycles by the substep

in which they form: Ct = {C1
t , C2

t , ..., Ckt
t } and define the corresponding set of

schools Gt = {G1
t , G

2
t , ..., G

kt
t }. When each cycle that forms in the market involves

a student who prefers a school in Gt to what she receives in the cycle, proceed to

the next step.

This procedure stops when no more students remain. For each step t, let ACt be the set

of students involved in the collection of cycles Ct and let ACs
t

be the set of students involved

in the set of cycles in set Cs
t .

For each step t > 1 and substep s = 1, define A+
C1

t
as the subset of students in AC1

t
who

are satiated: they prefer their school assignment to any school assigned in Gt−1.

A+
C1

t
= {a ∈ AC1

t
s.t. ϕπ(a)Pah for all h ∈ Gt−1}.

Let G1,∗
t be the set of schools who point to students who are unsatiated: those in AC1

t
\A+

C1
t

who are pointed to by a school in a cycle in C1
t .

For each step t = 1, ..., T and substep s > 1, let ha be the school that points to student

a in the cycle where student leaves the market. Define the set of students A+
Cs

t
as those who

are on a higher position in the priority ordering for the school that points to them in the

cycle where they leave the market than the students in ACs−1
t

. More precisely,

A+
Cs

t
= {a ∈ ACs

t
s.t. 6 ∃a′ ∈ ACs−1

t
where πha(a′) < πha(a)}.
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Let Gs,∗
t be the set of schools who point to students in ACs

t
\A+

Cs
t

in cycles Cs
t . The role

of unsatiated students A1
t \A1,+

t in the first substep for steps t > 1 is analogous to the role

of students in As
t\As,+

t .

With these sets in hand, it is possible to define the inverse mapping g : Π → F. For any

π,

1.) Construct the sets {C1
t , C2

t , ..., Ckt
t } and {G1

t , G
2
t , ..., G

kt
t } and the corresponding

sets {Ct} and {Gt}. For t > 1 and s = 1, construct A+
C1

t
and G1,∗

t . For each

t = 1, ..., T and s > 1, construct A+
Cs

t
and Gs,∗

t .

2.) For any t, order the students in ACt before the students in ACt+1 .

3.) For any s and t > 1, order the students in ACs
t

before the students in ACs+1
t

.

4.) Order the students in AC1
t
. There is a different procedure for t = 1 and t > 1.

a.) Order the students in AC1
1

based on the index of the school seat which points

to them in the cycle in C1
1 . The student pointed to by the lowest indexed

school will be first, followed by the student pointed to by the second lowest

indexed school, and so on.

b.) For AC1
t
, look first at the unsatiated students in AC1

t
\A+

C1
t
. Order them based

on the index of the school which points to them in a cycle in C1
t . Without

loss of generality, write AC1
t
\A+

C1
t

= {ã1, ã2, ..., ã`} as the ordering of students.

To complete the ordering of students in A1,+
t , begin with ã2. Find the school

that ã2 points to, and the student a′ whom this school points to in a cycle

in C1
t . If a′ ∈ AC1

t
\A+

C1
t
, then this student has already been processed, and

move to ã3. Otherwise, place a′ immediately before ã2 and find which school

student a′ points to. Let a′′ be the student who this school points to. If

a′′ ∈ AC1
t
\A+

C1
t
, then this student has already been processed, and move to

ã3. Otherwise, place a′′ immediately before a′ in the sub-order. Proceed in a

similar way until encountering a student in AC1
t
\A+

C1
t
, at which point proceed

to ã3. Repeat this procedure for each of the students in ã3, ..., ã`.

Finally, consider student ã1 and find the cycle she belongs to. Find the

school that ã1 points to and the student a′ that this school points to. If

a′ ∈ AC1
t
\A+

C1
t
, then this student is already processed and the procedure

stops. If a′ ∈ A+
C1

t
, then order this student at the very end of the sub-order
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(that orders students in AC1
t
), and find the student a′′ who is pointed to by

the school that a′ points to in the cycle. If a′′ ∈ AC1
t
\A+

C1
t
, then this student is

already processed and terminate the procedure. If a′′ ∈ A+
C1

t
, order a′′ before

a′ and proceed in a similar way until encountering a student in AC1
t
\A+

C1
t
.

This student will already be handled, so terminate the procedure.

At the conclusion of this process, there will be a unique ordering of all students in

AC1
t

for all t.

5.) For s > 1, first order the students in ACs
t
\A+

Cs
t

based on the index of the school

which points to them in a cycle in Cs
t . Without loss of generality, write ACs

t
\A+

Cs
t

=

{ã1, ã2, ..., ã`} as the ordering of students.

To complete ordering of the remaining students in A+
Cs

t
begin with ã2. Find the

school that ã2 points to, and the student a′ whom this school points to in a cycle

in Cs
t . If a′ ∈ ACs

t
\A+

Cs
t
, then this student has already processed, and move to ã3.

Otherwise, place a′ immediately before ã2 and find which school student a′ points

to. Let a′′ be the student who this school points to. If a′′ ∈ ACs
t
\A+

Cs
t
, then this

student has already been processed, and move to ã3. Otherwise, place a′′ imme-

diately before a′ in the sub-order. Proceed in a similar way until encountering a

student in ACs
t
\A+

Cs
t
, at which point proceed to ã3. Repeat this procedure for each

of the students in ã3, ..., ã`.

Finally, consider student ã1 and find the cycle she belongs to. Find the school

that ã1 points to and the student a′ that this school points to. If a′ ∈ ACs
t
\A+

Cs
t
,

then this student is already processed and the process ends. If a′ ∈ A+
Cs

t
, then

order this student at the very end of the sub-order (that orders students in ACs
t
),

and find the student a′′ who is pointed to by the school that a′ points to in the

cycle. If a′′ ∈ ACs
t
\A+

Cs
t
, then this student is already processed and we terminate

the procedure. If a′′ ∈ A+
Cs

t
, order a′′ before a′ and proceed in a similar way until

encountering a student in ACs
t
\A+

Cs
t
. This student will already be handled, so ter-

minate the procedure.

This process orders the students in ACs
t

in a unique way for all s > 1.
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At the conclusion of this procedure, there will be an ordering f for a set of priorities π.

Next, I show that this procedure uniquely associates the same f for each π ∈ Π(f):

Lemma. For some f , π ∈ Π(f), f = g(π).

Proof. The proof proceeds by relating the steps involved in constructing Π(f) to the inverse

mapping. From Claim 1, mϕπ
= mψf

.

Claim. For all t and s, ACs
t

= As
t .

Proof. Under π, no student in ∪s>tACs leaves the market before any student in ACt . Under

π, the first student in At who is also the first student in A1
t receives the highest priority for a

school assigned in a cycle in C1
t among all students in A1

t . When t > 1, the first student A1
t

must be unsatiated. If there are multiple students who receive the top priority among the

schools assigned to students in A1
t , then the construction ensures that each cycle that forms

among these students must involve at least one unsatiated student. Therefore, these cycles

can be identified when the unsatiated student points to a school that had been assigned to

a student in the previous step. Moreover, every satiated student in C1
t will not be assigned

until the first student in the step has been assigned and this student is unsatiated. Thus, the

students in AC1
t

cannot be part of At−1 and must be part of A1
t . Next, since no student in

∪r>kACr
t

leaves the market before any student in ACk
t

and the students in ACs
t

for s > 1 each

prefer the school they receive under Cs
t to the schools assigned in some cycle in C1

t , ..., Cs−1
t ,

these students in ACs
t

must be part of As
t . ¦

This claim implies that ACt = AC1
t
∪AC2

t
∪ ... ∪A

C
kt
t

= ∪kt
r=1A

r
t = At.

Claim. For all t and s, Gs
t = Ss

t .

Proof. This follows from the fact that ϕπ = ψf , ACs
t

= As
t , and that there is no conflict of

interest among students within a step. ¦

This claim implies that Gt = G1
t ∪ G2

t ∪ ... ∪ Gkt
t = ∪kt

s=1S
s
t = St. Given ACs

t
= As

t and

Gs
t = Ss

t it is straightforward to see that the satiated students in the first substep are the

same for t > 1: A+
C1

t
= A1,+

t . Moreover, the set of students who receive higher priority at a

school than a student assigned in an cycle in an earlier substep is equal to the set of students

who are at a higher level in the substep: A+
Cs

t
= As,+

t . This also implies that S1,∗
t = G1,∗

t

and Ss,∗
t = Gs,∗

t .

This leaves us to establish the last claim:

Claim. g(π) = f

Proof. The proof follows by induction. Begin by examining step 1 and all of its substeps.

Suppose a ∈ A1 = AC1 is among the students who leave the market as part of a cycle in C1
1
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and that f(i) = a for some i. By construction of π, the school which points to a must be

the ith smallest indexed school in S1
1 . Since the mapping g places students in AC1

1
ahead of

students in AC2
1

and the order within AC1
1

is based on the index of the school which points

to the student, student a should be ordered ith by g(π). Continue this argument for each

student in AC1
1

to establish that g(π)(i) = f(i) for all i ∈ AC1
1
.

Next consider the students in AC2
1
. Start with the ordering of students who are not

on a higher level. Pick ãi ∈ A2
1\A2,+

1 and suppose that f orders ãi ith among students in

A2
1\A2,+

1 . Since S2,∗
1 = G2,∗

1 , the school in G2,∗
1 who points to ãi must be the ith smallest

indexed school in S2,∗
1 . Since g orders students in G2,∗

1 based on the index of the school

which points to them, if a is ith among A2
1\A2,+

1 according to f , it must be ith according to

g. Proceed to order each student in A2
1\A2,+

1 among themselves in this way. Next consider

the students in A2,+
1 . There are two cases to deal with: 1) i > 1 and 2) i = 1. In the first

case, consider ãi−1 ∈ A2
t \A2,+

t where ãi−1 is ordered (i − 1)th among students in A2
t \A2,+

1 .

Find the student a ordered between ãi−1 and ãi immediately before ãi. By construction of

π, ãi wants the school that points to a and a ∈ A2,+
1 = A+

C2
1
, so g will order her right before

ãi. Next continue with the student a′ who is right before a in f . By construction of π, a

wants the school that points to a′ and a′ ∈ A2,+
1 = A+

C2
1
, so g will order her right before

a. Continue for each such student between ãi−1 and ãi to show that these students will be

ordered the same under f and g(π). In the second case, ãi is the first student. Suppose ã`

is the last student in A2
1\A2,+

1 . I will demonstrate that the students after ã` in f will be

ordered the same way under g. Let a be the last student in f in A2
1. By construction of π,

ã1 points to the school which points to a, and a ∈ A2,+
1 = A+

C2
1

implies that under g, this

student is also the last student in A2
1. Find the student a′ immediately before a and repeat

the same argument. This will demonstrate that the students in AC2
1

= A2
1 are ordered in the

same way under f and g(π). Proceed in the same way for each Cs
t for s > 2 to show that

each a ∈ As
1 is ordered the same way under f and g. This will establish our base case: the

students in A1 = AC1 are ordered the same way under f and g(π).

Next, suppose that for each step r ∈ 2, ..., t− 1, for any student a ∈ Ar, I have shown

that f and g(π) have same the order for a. I will show that each a ∈ At will have the

same ordering under f and g(π). The main issue is the distinction between satiated and

unsatiated students in cycles C1
t .

The next part follows in a similar way as for students in step 1. Consider the students

in AC1
t
. I will start with the ordering of students who are unsatiated. Pick ãi ∈ A1

t \A1,+
t

and suppose that f orders ãi ith among students in A1
t \A1,+

t . Since S1,∗
t = G1,∗

t , the school

in G1,∗
t who points to ãi must be the ith smallest indexed school in S1,∗

t . Since g orders
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students in G1,∗
t based on the index of the school which points to them, if a is ith among

A1
t \A1,+

t according to f , it must be ith according to g. Proceed to order each student in

A1
t \A1,+

t in this way. Next consider the students in A1,+
t . There are two cases to deal with:

1) i > 1 and 2) i = 1. In the first case, consider ãi−1 ∈ A1
t \A1,+

t where ãi−1 is ordered i−1th

among students in A1
t \A1,+

t . Find the student a ordered between ãi−1 and ãi immediately

before ãi. By construction of π, ãi wants the school that points to a and a ∈ A1
t \A1,+

t , so

g will order her right before ãi. Next continue with the student a′ who is right before a in

f . By construction of π, a wants the school that points to a′ and a′ ∈ A1
t \A1,+

t , so g will

order her right before a. Continue for each such student between ãi−1 and ãi to show that

these students will be ordered the same under f and g(π). In the second case, ãi is the first

student. Suppose ã` is the last student in A1
t \A1,+

t . I will demonstrate that the students

after ã` in f will be ordered the same way under g. Let a be the last student in f in A1
t . By

construction of π, ã1 points to the school which points to a, and a ∈ A1
t \A1,+

t implies that

under g, this student is also the last student in A1
t . Find the student a′ immediately before

a and repeat the same argument. This will demonstrate that the students in AC1
t

= A1
t are

ordered in the same way under f and g(π). Proceed in the same way for each Cs
t for s > 2 to

show that each a ∈ As
t is ordered the same way under f and g. This will cover all students

in At and show that they are ordered the same way under f and g(π). ¦

For any f1 6= f2, for all π ∈ Π(f1), g(π) = f1 and for all π ∈ Π(f2), g(π) = f2. There

is no π ∈ Π(f1) ∪ Π(f2) as this would imply that f1 = g(π) = f2, which is only true for

f1 = f2. Since Claim 1 showed that mϕπ
= mψf

for all π ∈ Π(f), Claim 2 showed that

|Π(f)| = (n!)n−1, and I have just shown that ∀f1 6= f2, Π(f1)∩Π(f2) = ∅, I have shown the

equivalence of random serial dictatorship and top trading cycles with random priority.

4 Lotteries with Deferred Acceptance

Another interpretation of the quote from policymakers at the NYC DOE is to conduct

multiple school specific lotteries for each school, use these lotteries to set school preferences,

and compute a matching using the student proposing deferred acceptance mechanism.

Before discussing this proposal, I first define deferred acceptance for any strict ordering

of students at schools:

Step 1) Each student proposes to her first choice. Each school tentatively assigns its seats

to its proposers one at a time following only their priority order. Any remaining

proposers are rejected.
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In general, at

Step k) Each student who was rejected in the previous step proposes to her next choice.

Each school considers the students it has been holding together with its new pro-

posers and tentatively assigns its seats to these students one at a time following

their priority order. Any remaining proposers are rejected.

The algorithm terminates when no student proposal is rejected and each student is

assigned her final tentative assignment.

For any ordering of students at schools, this mechanism is strategy-proof (Dubins and

Freedman (1981), Roth (1982)). I have already mentioned that when there is a single lottery

and this ordering is set as the preferences for each school, this is equivalent to a serial

dictatorship for that ordering. Let DA-STB (deferred acceptance algorithm with single tie

breaking) refer to the stochastic mechanism is induced by all possible orderings of students.

Remark 4 DA-STB = ψrsd

Let DA-MTB (deferred acceptance algorithm with multiple tie breaking) refer to the

mechanism where each school has an independent lottery which is used to set priorities, and

then student proposing deferred acceptance used to compute a matching.

It is straightforward to see that for all preference profiles, DA-MTB is not equivalent to

DA-STB. DA-MTB will lead to a stable matching with respect to the artificial priorities at

schools. Since there may be a tension between stability and efficiency in general, there may

be an efficiency consequence.

When two mechanisms are not equivalent, one way to compare mechanisms is by stochas-

tic dominance.11 Let pk
i be the probability that student i receives her kth choice. An alloca-

tion is a vector of probabilities pi = (p1
i , ..., p

n
i ) for each item on the rank order list Pi such

that
∑n

k=1 pk
i = 1. I say that an allocation pi stochastically dominates allocation p′i for

student i if for all m = 1, ..., n,
m∑

k=1

pk
i ≥

m∑

k=1

p
′k
i .

An allocation p = (pi)n
i=1 stochastically dominates allocation p′ = (p′i)

n
i=1 if pi stochastically

dominates p′i for all i.

Proposition 1 There is no stochastic dominance relationship between DA-STB and DA-

MTB.
11This notion is used by Bogomolnaia and Moulin (2001), for example.
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Proof. It suffices to find a preference profile where there is not stochastic dominance for

all students. Consider a market with three students i1, i2, i3 and three schools s1, s2, s3 each

with one seat. Suppose student preferences are:

i1 : s1 Â s2 Â s3

i2 : s3 Â s1 Â s2

i3 : s1 Â s3 Â s2.

DA-STB induces the following distribution over matchings:

1
3
·
(

i1 i2 i3

s1 s3 s2

)
+

1
2
·
(

i1 i2 i3

s2 s3 s1

)
+

1
6
·
(

i1 i2 i3

s1 s2 s3

)
,

while DA-MTB induces the following distribution over matchings:

1
4
·
(

i1 i2 i3

s1 s3 s2

)
+

1
2
·
(

i1 i2 i3

s2 s3 s1

)
+

1
6
·
(

i1 i2 i3

s1 s2 s3

)
+

1
12
·
(

i1 i2 i3

s2 s1 s3

)
.

The probability distribution on first choice, second choice, and third choice for student

i3 under DA-STB is
(

1
2

1
6

1
3

)
, while under DA-MTB it is:

(
1
2

1
4

1
4

)
. Since student i3

is more likely to receive either her first or second choice under DA-MTB than DA-STB,

DA-STB does not stochastically dominate DA-MTB. Comparisons of the distribution of

matchings for student i1 and i2 show that DA-MTB does not stochastically dominate DA-

STB. ¦

This observation motivates an empirical comparison of DA-STB to DA-MTB using data

from the 2003-04 supplementary round in New York City. Table 1 presents a comparison

of the distribution of choices for the 8,255 students who participated in the Supplementary

Round. In this year, there were 8,255 students who participated, and they submitted a rank

order list of up to 12 schools. Approximately 38% of students who participated this round

submitted 12 choices. Between 4-8% of students submitted k choices for k = 1, ..., 11. A

total of 108 different programs were available for students to rank.

The first three columns present the distribution of outcomes from a random serial dicta-

torship, which is equivalent to DA-STB, for a different number of iterations. Computational

constraints limit the feasibility of calculating all 8,255! orderings, so the first column corre-

sponds to 250,000 different draws from the lottery ordering, the second column corresponds

to 500,000 and the third column is 1,000,000 draws. The three columns show that there is

no significant difference in the distribution of overall rankings when the number of draws

is increased beyond 250,000, so this suggests I have a good approximation of the overall

distribution of rankings.
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The table shows that nearly 5,000 students or 60.6% of students receive their top choice

under a random serial dictatorship. In comparison, the fourth column shows the distribution

of rankings from 1,000 different simulations of multiple lotteries. The first row of the table

shows that the expected number of students who receive their top choice is 3894.30 or 47.2%

of students. The expected number of students who receive their second choice under a

random serial dictatorship is approximately 1,489 (18.0%) which is slightly fewer than under

multiple lotteries followed by student proposing deferred acceptance, where the expected

number is approximately 1,887 (22.9%). The total likelihood that a student receives their

top two choices under a random serial dictatorship is 78.6%, while under multiple lottery

deferred acceptance it is 70.0%. This relationship holds for a cumulative comparison of each

choice, and shows that for the preference profile in 2003-04 in the supplementary round,

the aggregate distribution of rankings from a random serial dictatorship does stochastically

dominate the aggregate distribution of rankings from multiple lottery deferred acceptance.

However, the distribution of rankings under a random serial dictatorship does not stochas-

tically dominate the distribution under DA-MTB for all students. For 1,349 (16.3%) of stu-

dents, the distribution of RSD stochastically dominates the distribution from DA-MTB. On

average, RSD gives students their top choice 13.4% more frequently than DA-MTB, while

RSD gives students one of their top two choices 8.6% more frequently than DA-MTB.

5 Ordinal efficiency

If a school district is willing to consider a mechanism that is not strategy-proof, they may be

able to improve upon efficiency. Bogomolnaia and Moulin (2001) introduced another notion

of efficiency, ordinal efficiency, which is stronger than ex-post efficiency and weaker than

ex-ante efficiency. An ordinally efficient matching is one where the probability distribution

over matchings is not stochastically dominated by any other matching.

Bogomolnaia and Moulin (2001) introduce an algorithm, probabilistic serial, which

computes an ordinally efficient matching. The algorithm is based on a “simultaneous-eating”

procedure, where for a fixed step size, each student begins by consuming the object that they

desire the most. Once enough students have consumed the object so that the consumption

shares add to 1, each student then starts consuming the object they prefer next. Once the

sum of consumption shares equals 1, students move to the next object that they prefer that

has not been fully consumed. The induced shares for each object represent the probability

distribution over allocations and this will be ordinally efficient. The probabilistic serial

mechanism is not strategy-proof.
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In this section, I compare the performance of probabilistic serial to random serial dic-

tatorship in the supplementary round of the New York City high school match in 2003-04.

The last column of Table 1 shows the expected distribution of rankings from probabilistic

serial.12 The column shows that probabilistic serial assigns a higher expected number of

students to their top choice than a random serial dictatorship. Almost 16 more students on

average will receive their top choice under probabilistic serial than a random serial dictator-

ship. Probabilistic serial also assigns a higher number of students to their 2nd, 3rd, ..., 12th

choice, and leaves fewer students unassigned.

Table 2 compares the performance of probabilistic serial to a random serial dictatorship

by comparing the allocation of students. The distribution of allocations from probabilistic

serial stochastically dominates a random serial dictatorship for 4,126 out of 8,255 students,

or 50% of all participants. The distribution of allocations from a random serial dictatorship

stochastically dominates the distribution of allocations from probabilistic serial for only 495

students, or 6% of participants. For the remaining, 44% of participants there is no stochastic

dominance relationship.

The second and third row of Table 2 present another measure of the differences in al-

location. The second row that under probabilistic serial, 67.6% of students have a higher

likelihood of obtaining their first choice, while the 28.6% of students have a higher likelihood

of obtaining their first choice under a random serial dictatorship. For the remaining 3.8% of

students, there is no difference in the likelihood of obtaining a first choice. The last row of

the table presents the comparison for likelihood of obtaining both first and second choice.

In this case, 58.7% of students have a higher likelihood of obtaining one of their top two

choices under probabilistic serial, while only 12.7% of students have a higher likelihood under

a random serial dictatorship. These last two rows shows that when attention is restricted to

either the top choice, or the top two choices, probabilistic serial may benefit an even larger

share of the population.

Finally, Figure 1 presents the difference in likelihood of obtaining first choice under prob-

abilistic serial and a random serial dictatorship (light gray) and the difference of obtaining

the first and second choice (dark gray). The figure shows that while there is stochastic dom-

inance for one half of the entire population, the size of the probability difference is small for

the majority of participants. Under probabilistic serial, the mean improvement in likelihood

of obtaining the first choice is 0.12%, the median is 0.03%, and the standard deviation is

0.24%. The figure shows that this distribution is highly skewed, with a small fraction of

12This was calculating via a simultaneous eating algorithm where the step size is 10−7. There was only a slight

difference between step size 10−6 and step size 10−7
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students near the maximum improving the likelihood of obtaining their top choice over 2%.

Similarly, when looking at the difference in likelihood of obtaining the first or second

choice, the mean difference is 0.40%, the median is 0.20%, and the standard deviation is

0.62%. This distribution is also highly skewed, with the 90th percentile improving their

odds by 1.18% and the maximal student improving their odds by 16.6%.

Implications for design

The fact that probabilistic serial produces a lottery over allocations which stochastically

dominates the lottery produced by random serial dictatorship for half of participants might

suggest that the NYC DOE should reconsider using a random serial dictatorship in the

supplementary round. There are at least two tradeoffs. Since 6% of students obtain an

allocation from a random serial dictatorship that stochastically dominates the probabilistic

serial, the NYC DOE would need to evaluate the welfare of these students in comparison to

the 50% of participants who benefit from probabilistic serial.

Another tradeoff involves the incentives of probabilistic serial, which is not strategy-

proof. From the experience implementing assignment mechanisms in school choice in the

field so far, it appears that policymakers value the ability to give clear advice to participants

on how to behave. With a mechanism that is not strategyproof, the school district will have

a much harder time describing how students should submit their rank ordering.

For instance, in New York, the policy pronouncement by school administrators during

the change suggest that being able to emphasize the incentive features of the matching

process was extremely important for both policymakers and the public. For instance, NYC

School Chancellor Joel Klein stated in the New York Times (10/24/03) that the “changes are

intended to reduce the strategizing parents have been doing to navigate a system that has a

shortage of good high schools.” Furthermore, Peter Kerr, another NYCDOE official, wrote

in the New York Times (11/3/03): “The new process is a vast improvement... For example,

for the first time, students will be able to list preferences as true preferences, limiting the

need to game the system. This means that students will be able to rank schools without the

risk that naming a competitive school as their first choice will adversely affect their ability

to get into the school they rank lower.” Perhaps more importantly, the NYC DOE can give

straightforward advice to families for the main round. In every year since 2003-04, the High

School directory makes a point to advise families to express their preferences truthfully. For

instance on page (ii) of the 2003-04 directory, for the main round, the advice given to parents

is “You must now rank schools very carefully, to reflect your true preferences,” while on page

(5), the directory advises students to “rank your twelve (12) selections in order of your true
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preferences.”13

6 Conclusion

The paper has studied the role of lotteries in resource allocation motivated by a design issue

in New York City’s High School Match. The problem corresponds to the supplementary

round of the NYC match, when schools do not express preferences over students and all

students are in the same priority class. For this problem, the intuition of the NYC DOE

was that multiple lotteries are more equitable than a single lottery. I show, however, using a

single lottery to order students followed by a serial dictatorship for that order is equivalent

to using multiple lotteries to construct priorities for each school, and using top trading cycles

to find a matching.

The analysis here leaves open many questions. The model assumes that every student is

in the same indifference class at each school. The next direction to pursue involves studying

the role of lotteries in a more general model with multiple indifference classes. In a problem

where there are some existing students who wish to transfer their assignments, and there

are some newcomers, simulation evidence suggests that using a single lottery and then the

You-Request-My-House-I-Get-Your-Turn (Abdulkadiroğlu and Sönmez (1999)) is equivalent

to a version of top trading cycles with school specific lotteries where each school with an

existing student gives the existing student the highest priority. I am pursuing this result in

the context of designing New York City’s appeals process, where existing students are those

who wish to retain the rights to their current school.

More generally, in Boston, there are four indifference classes: sibling-walk, sibling, walk,

and no priority. For the simplest version of this model, a single lottery is not equivalent to

school specific lotteries.14 Future work I am pursuing will try to identify whether there is a

relationship between lotteries for this more general domain.

Other questions motivated by this paper involve different version of top trading cycles.

13Policymakers in Boston made similar statements to the public. Superintendent Thomas Payzant in a memo to

the School Committee on May 25, 2005 wrote that “A strategy-proof mechanism adds ‘transparency’ and clarity

to the assignment process, by allowing for clear and straightforward advice to parents regarding how to rank

schools. More statements about the policy importance of strategy-proofness are presented in Abdulkadiroğlu,

Pathak, Roth, and Sönmez (2006).
14Consider three students and three schools. Suppose i1 : s1 Â s2 Â s3, i2 : s3 Â s1 Â s2, and i3 : s1 Â s3 Â s2,

and that students i1 and i3 are the in first priority class at s1 and at school s2, student i2 is the only student

in the highest priority class. It is easy to demonstrate that a single lottery will yield a different distribution on

matchings than school specific lotteries.
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It is possible to draw a distinct ordering for each school, rather than school seat, and employ

the version of top trading cycles with counters described in Abdulkadiroğlu and Sönmez

(2003). Kesten (2005) has suggested another version of top trading cycles which attempts

to minimize situations where a matching is not stable. It would be interesting to know if

there is any relationship between multiple lotteries in these mechanisms and random serial

dictatorship. Finally, for the student proposing deferred acceptance mechanism, there exist

characterizations of priority structures for which there is no conflict between stability and

efficiency (Ergin (2002), Kesten (2006)). Another mechanism worth considering is a lottery

mechanism which randomizes over priority structures in this class and then uses student

proposing deferred acceptance. This mechanism will produce an ex post efficient matching

for every preference profile, and may lead to a distribution over allocations which is different

than a random serial dictatorship.

The design components of this paper leave open a number of issues that are worth ex-

amining as we learn more about the institutional constraints and evolution of participant

behavior in New York City. In the supplementary round of the match, using stated prefer-

ences, one half of participants would receive a distribution over allocations from probabilistic

serial which stochastically dominates the distribution they receive from a random serial dic-

tatorship. Despite this difference, the selection of a random serial dictatorship for that round

can be justified on incentive grounds. This motivates a need to understand how easy we

expect probabilistic serial to be to manipulate theoretically and in practical applications.

One step in this direction is a recent paper by Kojima and Manea (2006).

As the matching system in New York City and other cities evolves, we will be able to

learn more about institutional constraints which shape the designs, develop better designs,

and improve our understanding of existing systems. In the meantime, we will hopefully

enrich the theory and our empirical understanding of these mechanisms, so that we will be

equipped to handle these new challenges.
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Summary of important notation:

π strict priority ordering for all schools (π = (π1, ..., πn))

πs strict priority ordering for school s

ψf serial dictatorship with ordering f

ϕπ top trading cycles when priorities are π

mψf
matching produced from serial dictatorship with ordering f

mϕπ
matching produced from top trading cycles when priorities are π

At set of students in step t

As
t set of students in step t, substep s

St set of schools assigned to students in At

Ss
t set of schools assigned to students in As

t

nt number of students in step t

ns
t number of students in step t, substep s

Nt total number of students from step 1 to step t

A∗t set of unsatiated students in step t

∆ set of priority skeletons

∆t restriction of the set of priority skeletons to step t

δ particular priority skeleton (element of ∆)

δi component of a particular priority skeleton

A(δi) set of students in component of priority skeleton δi

a`(δi) student in the last position in priority skeleton component δi

Π(f) set of priorities for schools

Πt(f) set of priorities for schools in step t

A1,+
t set of satiated students in A1

t

As,+
t set of students in a higher position the priority skeleton among As

t

Hs
t set of students not adjacent to last student in As−1

t

Ct set of cycles in step t

Cs
t set of cycles in step t, substep s

Gt set of schools assigned in cycles in Ct

Gs
t set of schools assigned in cycles in Cs

t

ACt set of students assigned in cycles Ct

ACs
t

set of students assigned in cycles Cs
t

A+
C1

t
set of satiated students in AC1

t

A+
Cs

t
set of students in a higher position in priority ordering among ACs

t
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Table 1— Comparing Mechanisms in the Supplementary Round in 2003-04a

Choice Random Serial Dictatorship Multiple Lottery Probabilistic

Received Student-Proposing Serial

Deferred Acceptance

1 4999.05 4999.07 4999.07 3894.30 5015.66

2 1489.42 1489.41 1489.39 1887.26 1501.98

3 604.32 604.36 604.36 916.43 612.64

4 363.82 363.79 363.79 447.80 367.60

5 248.58 248.58 248.58 223.21 251.27

6 129.17 129.15 129.15 103.27 131.17

7 60.90 60.88 60.89 45.00 60.97

8 44.18 44.18 44.18 24.58 44.64

9 32.33 32.34 32.34 12.77 32.38

10 26.82 26.83 26.83 9.08 27.46

11 20.01 20.01 20.01 5.72 20.30

12 17.90 17.89 17.90 3.10 18.52

Unassigned 218.50 218.51 218.51 682.48 170.51

Iterations 250,000 500,000 1,000,000 1,000 -

aConstructed from data provided by the New York City Department of Education Office of High School Admissions. There are 8,255
students. Probabilistic Serial is calculated with the simultaneous eating algorithm with step size of 10−7.



Table 2— Ordinal Efficiency versus Ex-Post Efficiency
in Supplementary Round (2003-04)a

Probabilistic Random Serial No

Serial Dictatorship relation

Stochastic 4,126 495 3,634

Dominance 50.0% 6.0% 44.0%

Likelihood of Receiving 67.6% 28.6%

Top Choice Is Greater Under

Likelihood of Receiving 58.7% 12.7%

Top Two Choices is Greater Under

aConstructed from data provided by the New York City Department of Education Office of High School Admissions. There are 8,255
students. Probabilistic Serial is calculated with the simultaneous eating algorithm with step size of 10−7. The distribution of matchings from
Random Serial Dictatorship (RSD) is approximated via a serial dictatorship with 1,000,000 different draws over the ordering of students. If
a school program has N seats, it is treated as N separate programs, and students ranking the program rank N programs in a pre-specified
order that is the same for all students.




