
A Calibratable Model of Optimal CEO Incentives in

Market Equilibrium�

Alex Edmans

Wharton School, University of Pennsylvania

Xavier Gabaix

NYU Stern School of Business and NBER

Augustin Landier

NYU Stern School of Business

Comments welcome
July 24, 2007

Abstract
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a competitive assignment model, where managerial talent determines total wages and

the size of one�s �rm. This generates quantitative predictions for the optimal level of

CEO incentives and their scaling with �rm size. We empirically evaluate the model and

show that observed practices are close to our �rst-best benchmark. In particular, the

signi�cant negative relationship between the CEO�s e¤ective equity stake and �rm size

is fully consistent with optimal contracting, and need not re�ect rent extraction. While

various measures of wealth-performance sensitivity have been used by empiricists, our

model proposes that the most appropriate measure is the dollar change in wealth for a

percentage change in �rm value, scaled by annual pay. Both theory and evidence show that

it is independent of �rm size, in contrast to alternative measures, and thus comparable
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1 Introduction

This paper presents a neoclassical model of the CEO labor market, in which both total salary

and its incentive component are simultaneously determined by the market for scarce talent and

the magnitude of agency problems. Holding total pay constant, e¤ort considerations determine

its division into �xed and performance-sensitive components. To endogenize total pay, we build

on previous work (Gabaix and Landier (2008)) by embedding this result into a general equilib-

rium model of the competitive assignment of CEO talent. The most skilled CEOs are matched

with the largest �rms and earn the highest salaries, leading to a positive association between

total pay and �rm size. The absolute level of incentive compensation therefore also varies with

size. The model is tractable and calibratable, thus generating quantitative predictions for the

optimal level of CEO incentives and their scaling with �rm size in a frictionless world.

We explore three main applications of the model. The �rst is to understand theoretically why

wealth-performance sensitivity should optimally vary across �rms of di¤erent size. This issue

is important for at least two reasons. It has been widely documented that the CEO�s �e¤ective

equity stake� (the dollar change in wealth for a dollar change in �rm value) is signi�cantly

decreasing in �rm size (e.g. Jensen and Murphy (1990), Schaefer (1998)). Why is this? One

interpretation is that rent extraction is particularly pronounced in large �rms, thus allowing

incentives to be suboptimally low (e.g. Bebchuk and Fried (2004)). If this argument is correct,

the implications are profound. If the CEOs in charge of the largest companies have the weakest

incentives to exert e¤ort, then billions of dollars of value may be lost each year. This explanation

would also imply a pressing need for intervention: the current system of pay determination is

broken, and must be �xed. Our model can be used to evaluate this hypothesis as it provide

a quantitative benchmark for how incentives should scale with size under optimal contracting.

Unlike other determinants of incentives studied by the literature, size can be measured with little

error. This limits our �exibility in calibration, allowing the model to be subject to particularly

close empirical scrutiny, and its predictions to be rejectable. We predict that the e¤ective

equity stake should have a size elasticity of -2/3, very close to our empirical estimate of -0.58.

Therefore, the observed negative relationship between incentives and size need not be evidence

of ine¢ ciency �it is exactly what a frictionless model would predict. Similarly, our predicted size

elasticity for the dollar-log wealth-performance sensitivity of 1/3 is also empirically supported.

Understanding the scaling of incentive measures with �rm size is also important to evaluate

the various metrics available to empiricists. We demonstrate both theoretically and empirically

that �scaled wealth-performance sensitivity� (the dollar change in wealth for a percentage

change in �rm value, scaled by annual pay) is invariant to �rm size, unlike other commonly

used measures. This property may make it particularly attractive for empirical analysis. If

the level of incentives is the focus of the empirical study, size independence permits meaningful

comparisons across �rms or over time. In addition, it ensures that the explanatory power of
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the incentives measure does not simply arise because it proxies for size. If other relationships

are the focus of the study and incentives are instead used as a control variable, it is desirable

to use a �pure�measure of incentives that is not distorted by size.

A second application of the model is to evaluate the absolute level of CEO incentives, again

to determine whether they can be consistent with optimal contracting. Jensen and Murphy

(1990) �nd that CEO wealth falls by only $3.25 for every $1,000 loss in shareholder value. This

is frequently interpreted as evidence that CEOs are �paid like bureaucrats�and insu¢ ciently

punished for failure (see however Hall and Liebman (1998)).

The controversies surrounding incentive pay are centered around magnitudes, not direc-

tions. CEO wealth does indeed decline with poor performance; the debate is whether it

declines enough. Our model is particularly suited to shed light upon this issue as it gener-

ates a quantitative benchmark under optimal contracting. We �nd that the observed level of

wealth-performance sensitivity is not too low if CEO shirking increases his utility by a mone-

tary equivalent no greater than his annual wage. Since it appears plausible that the gains from

shirking fall below this upper bound, the level of incentives is also consistent with e¢ ciency.

The intuition behind the model�s explanatory power is as follows. The disutility cost of e¤ort

is proportional to the manager�s consumption and thus his wealth, but its bene�t is proportional

to �rm value. Since �rm value is extremely large compared to the manager�s wealth, the dollar

gains from e¤ort are substantial and so the manager only needs a small equity stake to achieve

incentive compatibility. This explains the observed level of CEO incentives. The multiplicative

e¤ect of e¤ort also helps to explain the negative relationship between dollar-dollar incentives

and size. Since e¤ort has a proportional impact on �rm value, the dollar gains from working

scale proportionately with size. While the CEO�s utility gain from shirking (in dollar terms)

also rises with wealth, wages (and thus wealth) only have a 1=3 elasticity with size. Therefore,

dollar-dollar incentives should have a size elasticity of �2=3, and so a smaller equity share is
su¢ cient to induce e¤ort among large companies.

Our use of multiplicative functional forms for the costs and bene�ts of e¤ort was motivated

by their particularly attractive properties documented in the macroeconomics literature. This

speci�cation, which contrasts with the additive forms typically modeled, turns out to be crucial

to the model�s explanatory power. While the level of incentives (a single number) can potentially

be explained by a number of di¤erent models, the requirement to quantitatively explain scalings

across �rms of di¤erent sizes implies a tight constraint on the speci�cations that can be assumed.

This result is potentially applicable to future calibratable models of corporate �nance. Our

model also departs from traditional frameworks by incorporating an upper bound on the level

of CEO e¤ort. This leads to the prediction of a positive relationship between wealth volatility

and �rm volatility, which we support with new empirical evidence.

We balance the above results by showing that incentive compensation is ine¤ective at solving

agency problems that are additive in �rm value, such as perks. Especially for large �rms, perk
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consumption has such a small percentage e¤ect on �rm value that the negative e¤ect on the

manager�s equity stake is insu¢ cient to induce value maximization. Hence perk consumption

has little explanatory power for incentive compensation, and is instead best avoided through

active corporate governance. This conclusion is consistent with empirical evidence that cor-

porate governance does a¤ect �rm value, over and above its e¤ect on the CEO compensation

contract.

A quite separate third application is to analyze further the determinants of CEO pay. In

Gabaix and Landier (2008), some of us examined the impact of scarcity of talent and �rm size.

Here we investigate the additional importance of disutility of e¤ort and risk. Cross-sectional

di¤erences in these parameters naturally lead to between-�rm variation in wages. However, we

show that market-wide changes in these variables have negligible impact on the pay of the most

talented CEOs. Since the pay of top CEOs is principally driven by �rm size and the scarcity of

CEO talent, it is little a¤ected by compensation for e¤ort or risk. Hence e¤ort and risk explain

pay di¤erences along the cross section, but do not a¤ect CEO pay in the aggregate.

By endogenizing both total pay and incentives together, our general equilibrium approach

generates results not achievable by simply combining the conclusions of separate models of pay

and incentives. In particular, it allows us to understand the factors that do not determine

CEO pay. For example, we show that the CEO�s incentives can be determined independently

of the level of his overall compensation �the latter is entirely driven by forces in the managerial

labor market. Therefore, high overall pay does not come from the requirement to give the

CEO strong incentives, but rather from the marginal productivity of CEO talent in market

equilibrium. Incentive considerations change the sensitivity of pay to performance, but not the

expected pay. More generally, a single model endogenizing both total pay and incentives may be

useful for further work in executive compensation. For empiricists, it constitutes a benchmark

against which to quantify ine¢ ciencies in either dimension of observed compensation. For

theorists, it is a simple equilibrium framework upon which future, more complex models can

potentially be built.

This paper builds on the empirical literature quantifying CEO incentives, and in particular

their relationship with �rm size. Jensen and Murphy�s (1990) seminal study showed that CEOs�

dollar-dollar wealth-performance sensitivity is economically very small, particularly for large

�rms. Schaefer (1998) later con�rmed this negative scaling. Hall and Liebman�s (1998) more

recent evidence illustrates that the recent rise in stock option compensation has signi�cantly

increased incentives since the Jensen and Murphy sample period. However, in the absence of

an e¢ cient benchmark, we cannot evaluate whether they are now �high enough.�

The most closely related theory papers are calibrations of the CEO incentive problem. While

the focus of our calibrations is the scaling of CEO incentives with size, Dittmann and Maug

(2007) and Armstrong, Larcker and Su (2007) explore the optimal structure of compensation,

in particular whether options are a feature of an e¢ cient remuneration package. Garicano and
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Hubbard (2005) also calibrate a high-talent labor market, the market for lawyers. Gayle and

Miller (2007) explore the contribution of moral hazard to the rise in CEO pay. Baker and Hall�s

(2004) calibrations estimate the relationship between CEO productivity and �rm size. They are

the �rst to recognize that this relationship a¤ects the relevant measure of wealth-performance

sensitivity for use in empirical analysis. An analysis of percentage equity holdings implicitly

assumes the e¤ect of a CEO�s actions is constant in dollar terms, but if the CEO�s impact is

linear in �rm size, the relevant variable is the manager�s dollar stake. However, neither measure

is stable across size, unlike our proposed metric. Their purpose is to estimate the scaling of

managerial productivity with size, not the e¤ect of size on incentives or the optimality of existing

practices.

Our paper di¤ers from the above papers owing to its contrasting objectives (the e¤ect of size

on incentives) and its modeling approach (general equilibrium with multiplicative functional

forms). The general equilibrium framework also di¤erentiates our paper from Haubrich (1994),

who identi�es the parameter values in the traditional principal-agent model that would be

consistent with the 0.325% e¤ective equity stake found by Jensen and Murphy (1990). He

notes that the large number of free variables makes it relatively easy to match one moment.

We evaluate the ability of a simple neoclassical model to explain the level of incentives, and

their scaling with �rm size and �rm volatility.

In contemporaneous work, Baranchuk, Macdonald and Yang (2007) and Falata and Kadyrzhanova

(2007) also model the equilibrium determination of both total pay and its incentive component.

The former study focuses on the e¤ect of product market conditions on CEO compensation;

the latter analyzes the e¤ect of industry dynamics (in particular the importance of industry

structure and a �rm�s position versus its industry peers.)

A separate literature to which this paper relates examines the optimality of CEO compen-

sation practices. Bebchuk and Fried (2004) argue that certain features of CEO pay re�ect rent

extraction; see Kuhnen and Zwiebel (2007) for a recent model of hidden pay. However, others

have argued that such features may in fact be e¢ cient. Examples include the level of total

pay (Gabaix and Landier (2008)), severance pay (Almazan and Suarez (2003), Manso (2006),

Inderst and Mueller (2006)), pensions (Edmans (2007)), and perks (Rajan and Wulf (2006)).

This paper is organized as follows. In Section 2 we present a parsimonious model of wages

and incentives in general equilibrium where the CEO is risk-neutral. In Section 3 we present

empirical evidence that quantitatively supports the model�s main predictions, in particular the

stability of the scaled wealth-performance sensitivity across �rm size. Section 4 studies the op-

timal contract for a risk-averse CEO. Section 5 illustrates the necessity of certain features of our

model to generate empirically consistent predictions, as well as considering further extensions,

and Section 6 concludes.
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2 The Basic Model

Section 2.1 derives the optimal division of CEO compensation into stock and cash salary, in

a partial equilibrium analysis that takes total compensation as given. Section 2.2 embeds

this analysis into a general equilibrium where total pay is endogenously determined, and the

implications for pay-performance sensitivity are presented in Section 2.3. Section 2.4 illustrates

that these results naturally extend to measures of wealth-performance sensitivity, where CEO

incentives are principally provided by existing security holdings, rather than �ow compensation.

Since our objective is to provide calibratable predictions, all of the above results are derived

with a deliberately parsimonious model where the CEO is risk-neutral, the e¤ort decision is

binary, and the contract is restricted to comprise cash and shares. A second reason for starting

with risk neutrality is that it gives us one fewer degree of freedom in calibration. Since risk

aversion is di¢ cult to measure accurately, a wide range of inputs can be used, thus making it

easier to explain the data. We wish to see the extent to which a neoclassical model can match

the data without assuming risk aversion. Section 4 will later show that our predictions are

robust to relaxing these assumptions.

2.1 Incentive Pay in Partial Equilibrium

The CEO�s objective function is:

U = E [c � g (e)] ; (1)

where c is the CEO�s monetary compensation and e 2 f�1; 0g denotes CEO e¤ort. We nor-

malize g (0) = 1 and set g (�1) = 1= (1� �), where � 2 [0; 1) parameterizes the disutility of
e¤ort. The CEO is subject to limited liability (c � 0) and has a reservation utility of w, the

wage available in alternative employment. This is endogenized in Section 2.2.

Equation (1) is generalizable to other multiplicative forms, such as E [(cg (e))�]. In macro-

economics, multiplicative functional forms (such as u = (cg (hours worked))�) calibrate par-

ticularly well across di¤erent levels of wealth.1 This motivates our speci�cation choice here.

In Section 5.1 we show that the additive functional forms more commonly used in corporate

�nance, such as E [c�]� g (e), are less suited for calibration.
The initial stock price is P , and the end-of-period stock price is given by

P1 = P (1 + Le+ �) ; (2)

where � is stochastic noise with mean 0. Low e¤ort (e = �1) reduces �rm value by a fraction

1For example, consider the labor supply l of a worker living for one period, with a wage w, consumption
c = wl, and utility v (c; l). He solves maxl v (wl; l). If utility is v (c; l) = � (cg (l)), then the problem is
maxl � (wl g (l)), and the optimal labor supply l is independent of w. This is a desirable property so that the
model does not predict labor supply having diverging trends over time.
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L. We assume that SL > w�, where S is the �rm�s market capitalization2: the �rm value gains

from high e¤ort exceed the manager�s disutility, and so it is optimal to elicit e¤ort.3

This paper de�nes e¤ort broadly, to apply to any decision that increases �rm value but

involves a non-pecuniary cost to the manager. In the literal interpretation, e = 0 represents

�working� and e = �1 is �shirking�. A second interpretation is project or strategy choice,

where e = 0 is the �rst best project and e = �1 yields the CEO �private bene�ts�(e.g. Aghion
and Bolton (1992)). The e¤ects of e¤ort or project choice are plausibly multiplicative in �rm

value, explaining the formulation in equation (2). However, the e¤ect of �perks�, such as a

corporate jet or �vanity expenditures�such as sponsorship of a sporting event, is �xed in dollar

terms and thus additive to �rm value. We consider such actions in Section 5.3.

The CEO�s compensation c is composed of a �xed cash salary f � 0, and � shares:4

c = f + �P1: (3)

The optimal contract elicits high e¤ort (e = 0) and pays the CEO his reservation wage,

i.e. E [c] = w. Since the manager is risk neutral (for c > 0), many compensation packages are

optimal. In Proposition 1 below, we derive the contract that minimizes the number of shares

given to the manager, since this would be optimal if the CEO had vanishingly small but positive

risk aversion.

Proposition 1 (CEO incentive pay in partial equilibrium). Fix the manager�s expected pay at
w and assume L > � (the cost of e¤ort is not too strong). The optimal contract comprises a

�xed base salary, f �, and ��P worth of shares, with:

��P = w
�

L
; (4)

f � = w

�
1� �

L

�
; (5)

where L is the percentage decrease in �rm value if the manager shirks, and � is the manager�s

disutility of e¤ort. The manager�s realized compensation is:

c = w

�
1 +

�

L
(r � E [r])

�
; (6)

2For simplicity, we assume an all-equity �rm. If the �rm is levered, S represents the aggregate value of the
assets of the �rm (debt plus equity) and P denotes the aggregate value per share.

3The proof is as follows. If the manager works, he is paid w and �rm value (net of wages) is S � w, leading
to total surplus of S. If the manager shirks, he is paid w(1 � �) (to keep his utility at w). Firm value (net of
wages) is S(1�L)�w(1��) and total surplus is S(1�L) +w�. Hence total surplus is higher if the manager
works if and only if SL > w�.

4Section 4 extends the model to general contracts under risk aversion. In the online appendix (Appendix D)
we show the results are unchanged by generalizing to other instruments, such as options, while retaining risk
neutrality.
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where r = P1=P � 1 is the �rm�s stock market return.

In the optimal contract described by Proposition 1, realized CEO compensation is not

indexed to the market and CEOs are rewarded for luck. Therefore, the empirical observation of

these practices (e.g. Bertrand and Mullainathan (2001)) need not be inconsistent with optimal

compensation. This result stems from the assumption that the CEO is risk neutral and so the

informativeness principle of Holmstrom (1979) does not apply. In reality, CEOs likely exhibit

some degree of risk aversion, providing a motive for indexation. This is counterbalanced by the

costs of additional complexity in writing indexed contracts. Reality likely re�ects a trade-o¤

between these two factors.

2.2 Incentive Pay in Market Equilibrium

We now embed the previous analysis into a market equilibrium where the equilibrium wage

w is endogenously determined. We directly import the model of Gabaix and Landier (2008)

(�GL�), the essentials of which we review in the Appendix. There is a continuum of �rms of

di¤erent size and managers with di¤erent talent. Since talented CEOs are more valuable in

larger �rms, the nth most talented manager is matched with the nth largest �rm in competitive

equilibrium, and earns the following competitive equilibrium pay:

w (n) = D (n�)S(n�)
�=�S (n)��=� ; (7)

where S (n) is the size of �rm n, n� is the index of a reference �rm (e.g. the median �rm in

the economy), S (n�) is the size of that reference �rm, and D (n�) is a constant independent of

�rm size. In particular, CEOs at large �rms earn more as they are the most talented, with a

pay-�rm size elasticity of � =  � �=� that GL calibrate to 1=3:
GL only specify the total compensation that the CEO must be paid in market equilibrium.

We now seamlessly incorporate the incentive results of Section 2.1 to determine the form of

compensation. We allow L and � to di¤er across �rms, and so index them Ln and �n. We do

not need to make any assumptions on how Ln or �n vary with n: as long as Ln > �n for each

�rm, e¤ort can be induced by the incentive contract. Since there is no shirking, the �baseline�

�rm value remains at S, as in GL. The equilibrium incentive pay is analogous to Proposition 1:

Proposition 2 (CEO incentive pay in market equilibrium). Assume 8 n; Ln > �n (the cost
of e¤ort is not too strong). Let n� denote the index of a reference �rm. In equilibrium, the

manager of index n runs a �rm of size S (n), and is paid an expected wage:

w (n) = D (n�)S(n�)
�=�S (n)��=� ; (8)

where S(n�) is the size of the reference �rm and D (n�) = �n�T 0 (n�) = (� � �) is a constant
independent of �rm size. The optimal contract pays manager n a �xed base salary, f �n, and

8



��nPn worth of shares, with:

��nPn = w (n)
�n
Ln
;

f �n = w (n)

�
1� �n

Ln

�
;

where Ln is the percentage decrease in �rm value if the manager shirks, and �n is the manager�s

disutility of e¤ort. The manager�s realized compensation is:

c (n) = w (n)

�
1 +

�n
Ln
(r (n)� E [r (n)])

�
;

where r (n) = P1n=Pn � 1 is the �rm�s stock market return during the period.

To our knowledge, the above Proposition yields the �rst closed-form solution for a market

equilibrium determination of optimal CEO incentives, in a model where CEOs have di¤erent

talents. The most similar antecedent is Himmelberg and Hubbard (2000), which does not have

closed forms.

Note that the total level of pay w(n) is determined entirely by the CEO�s marginal product,

and is independent of incentive considerations. The latter only a¤ects the division of total

pay into cash and stock components. Hence high pay is not �justi�ed�by the need to reward

CEOs for good performance, or to compensate them for the risk associated with incentive

compensation: CEOs are risk-neutral in our model. As in GL, high levels of pay are entirely

justi�ed by scarcity in the market for talent, not by incentive considerations. Simply put, total

compensation is driven by �pay-for-talent�, not �pay-for-performance�. Empirically observing

high pay despite poor �rm performance need not automatically imply ine¢ ciency, since in a

competitive market, high pay may have been necessary to attract a skilled manager.5 As long

as pay would have been even higher had the manager delivered stronger performance, it can be

consistent with optimal contracting.

2.3 Pay-Performance Sensitivities in Market Equilibrium

The empirical literature uses a variety of measures for pay-performance sensitivity. These are

de�ned below (we suppress the dependence on �rm n for brevity).

De�nition 1 Let c denote realized compensation, w the expected pay, S the market value of

5For example, the large severance package given to Robert Nardelli of Home Depot appears ex post ine¢ cient,
but it may have been necessary ex ante to attract a manager of his talent.
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the �rm, and r the �rm�s return. We de�ne the following pay-performance sensitivities:

bI =
@c

@r

1

w
=
� lnCompensation
� lnFirm Value

(9)

bII =
@c

@r

1

S
=
�$Compensation
�$Firm Value

(10)

bIII =
@c

@r
=
�$Compensation
� lnFirm Value

: (11)

bI is used (or advocated) by Murphy (1985) and Rosen (1992); bII by Demsetz and Lehn

(1985), Yermack (1995) and Schaefer (1998); and bIII by Holmstrom (1992). The next Propo-

sition derives predictions for these quantities, in the case where �n = � and Ln = L across all

�rms.6

Proposition 3 (Pay-performance sensitivities). Equilibrium pay-performance sensitivities are
given by:

bI =
�

L
(12)

bII =
�

L

w

S
(13)

bIII =
�

L
w; (14)

where w is given by (7).

Share-based compensation can be implemented in a number of forms, such as stock grants,

bonuses and reputational concerns. If the incentive component is implemented purely using

shares, these sensitivities have natural interpretations. bI represents the dollar value of the

CEO�s shares as a proportion of the CEO�s total pay, bII is the percentage of shares outstanding

held by the CEO, and bIII represents the dollar value of the CEO�s shares. If the incentive

component is implemented using other methods, the above coe¢ cients constitute the �e¤ective�

share ownership.

Proposition 4 (Scaling of pay-performance sensitivities with �rm size). Let � denote the cross-
sectional elasticity of expected pay to �rm size: w / S�. For instance, in GL, � =  � �=�.
The pay-performance sensitivities scale in the following way:

1. In the cross-section, bI is independent of �rm size:

bI / S0:
6We make this assumption to maintain the simplicity of our model and limit our degrees of freedom in

calibration. The model can be extended to allow the e¤ort parameters to vary across �rms, as in Baker and
Hall (2004).

10



2. In the cross-section, bII scales as S��1:

bII / S��1:

3. In the cross-section, bIII scales as S�:

bIII / S�:

In particular, in the calibration � = 1=3 used in GL,

bI / S0, bII / S�2=3, and bIII / S1=3: (15)

Proposition 5 (Dependence of pay-performance sensitivities on the size of the reference �rm).
Let n� denote the index of a reference �rm and S(n�) its size. The pay-performance sensitivities

scale with S(n�) in the following way:

bI / S0S (n�)
0

bII / S�(1��)S (n�)
��

bIII / S�S (n�)
�� :

where  is the elasticity of CEO impact in GL (equation (40)). In particular, in the calibration

� = 1=3;  = 1, used in GL,

bI / S0S (n�)0 , bII / S�2=3S (n�)2=3 , and bIII / S1=3S (n�)2=3 :

Table 1 summarizes our results for the di¤erent measures of pay-performance sensitivity.

Insert Table 1 about here

Propositions 4 and 5 imply that the log-log measure of pay-performance sensitivity is in-

dependent of both �rm size and the size of reference �rms. The intuition is as follows. In

our model, e¤ort has a percentage e¤ect on both �rm value and the CEO�s utility. Since this

percentage is constant across �rms, the required %-% (or log-log) incentives to achieve incentive

compatibility should be constant across size.

This result suggests that bI is the most appropriate measure of CEO incentives to use when

comparing between �rms or di¤erent time periods. Note that this proposal stems from our

assumption that e¤ort has multiplicative costs and bene�ts. Baker and Hall (2004) show that,

under di¤erent assumptions, bII or bIII may be appropriate. Which assumptions are closest to
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reality is therefore an empirical question. Section 3 presents evidence that supports the model�s

prediction that bI is stable and that other measures are size-dependent.

Proposition 4 also predicts that bII should decline with �rm size, a relationship widely

documented empirically. Since bII = bI w
S
and the wage w in market equilibrium only scales with

S1=3, bII is predicted to scale with S�2=3. Existing interpretations of this stylized fact are greater

managerial entrenchment and ine¢ ciency in large �rms (Bebchuk and Fried (2004)), stronger

political constraints on high pay in large, visible �rms (Jensen and Murphy (1990)), greater

volatility thus imposing higher risk on the CEO (Schaefer (1998)), and wealth constraints

limiting the percentage of a large �rm that a CEO can hold (Demsetz and Lehn (1985)). Our

explanation does not rely on any of these constraints; bII optimally falls with size because

managerial e¤ort is multiplicative in �rm value and thus substantially increases the dollar

value of a large �rm. Therefore, a smaller percentage equity holding is required to induce

e¤ort: applied to a large dollar value change, this creates a su¢ cient incentive to work. It is

e¢ cient for CEOs of large �rms to be �paid like bureaucrats�, as found by Jensen and Murphy

(1990). This point has been previously noted by Hall and Liebman (1998) and modeled by

Baker and Hall (2004); we form a quantitative prediction for this scaling in market equilibrium.

Finally, bIII is the e¤ective dollar equity stake. Section 2.1 shows that this should be

proportional to total pay. However, since total pay is less than proportional to �rm size (it

scales with S1=3), dollar equity holdings should also be less than proportional to �rm size.

2.4 Wealth-Performance Sensitivities in Market Equilibrium

Thus far, we have assumed the CEO�s incentives stem purely from his �ow compensation.

However, for many CEOs, the vast majority of incentives stem from changes in the value of

existing holdings of stock and options (see Hall and Liebman (1998), Core, Guay and Verrecchia

(2003) among others). Appendix C.1 presents a full model that extends the previous results to

a multiperiod setting. The key results are summarized here.

Replacing �ow compensation in the numerator of De�nition 1 with the overall change in

wealth yields the following de�nitions of wealth-performance sensitivity:

De�nition 2 Let W denote total CEO wealth (including NPV of future consumption), w the

expected �ow pay, S the market value of the �rm, and r the �rm�s return. We suppress the

dependence on �rm n for brevity and de�ne the following wealth-performance sensitivities:

BI =
@Wt

@rt

1

wt
=

�$Wealth
� lnFirm Value

1

$Wage
(16)

BII =
@Wt

@rt

1

St
=

�$Wealth
�$Firm Value

(17)

BIII =
@Wt

@rt
=

�$Wealth
� lnFirm Value

: (18)
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BII is used by Jensen and Murphy (1990). Hall and Liebman (1998) report both BII and

BIII , as well as a variant of BI where the denominator is �ow compensation wt plus the median

return applied to the CEO�s existing portfolio of shares and options.7

Multiplying the pay-performance sensitivities in Proposition 5 by W
w
gives the following

magnitudes for wealth-performance sensitivities:

Proposition 6 (Wealth-performance sensitivities). Let W denote total CEO wealth (including

NPV of future consumption) and w the expected �ow pay. Then:

BI =
�

L

Wt

wt
(19)

BII =
�

L

Wt

St
(20)

BIII =
�

L
Wt: (21)

The scalings with �rm size S and the size of the reference �rm S� are as in Propositions 4 and

5.

Proposition 6 predicts that all three measures of wealth-performance sensitivity are higher

for wealthier CEOs. This has been empirically con�rmed by Becker (2006) for BII and BIII

(he does not investigate BI). Becker�s explanation is that risk aversion declines with wealth,

therefore rendering incentive pay less costly. Our model o¤ers a di¤erent explanation that

does not rely on risk aversion. The multiplicative utility function means that shirking and

consuming are complementary goods, which is realistic since free time is required to enjoy

consumption. Higher wealth raises current consumption and thus the utility gains from shirking.

Pay-performance sensitivity must therefore rise to continue to induce e¤ort.

3 Empirical Evaluation

This section calculates empirical measures of wealth-performance sensitivity and assesses the

extent to which current practices are consistent with our neoclassical benchmark. Section 3.1

shows that the data is quantitatively consistent with the model�s predictions for the scalings of

incentives with �rm size. In particular, BI is independent of size and we therefore propose it

as the preferred empirical measure of incentives. Section 3.2 calibrates the level of incentives

and show that they can be fully consistent with e¢ ciency.

7Note that we scale BI by the wage, not by wealth which may seem more intuitive. The reason is data
limitations: in the U.S., the only wealth data we have is on the CEO�s security holdings in his own �rm.
Therefore, measured wealth will mechanically have a (close to) constant �rm value elasticity �for example, if
he holds stock and no options, @Wt

@rt
1
Wt

would equal 1.
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3.1 CEO Incentives and Firm Size

Proposition 5 summarized the model�s predictions for the cross-sectional scaling of incentive

pay with �rm size. Our model predicts that the dollar-dollar wealth-performance sensitivity,

BII , should optimally decline with �rm size. This directional association has been consistently

documented by a number of existing studies, such as Demsetz and Lehn (1985), Jensen and

Murphy (1990), Gibbons and Murphy (1992), Schaefer (1998), Hall and Liebman (1998) and

Baker and Hall (2004). Moreover, our calibratable framework allows us to derive quantitative

predictions of the elasticity of bII with respect to size. Speci�cally,  � �=� = 1=3 (as found
by GL) implies an elasticity of �2=3. Consistent with our model, Schaefer �nds BII � S��,

with � ' 0:68.8 Existing research is also consistent with the model�s prediction that BI is

independent of size (Gibbons and Murphy (1992), Murphy (1999)). We do not know of any

studies that investigate the link between BIII and size.

However, prior �ndings cannot be interpreted as conclusive support of the model. Some of

the above studies focus on the compensation �ows (salary, bonus and new grants of stock and

options) but do not have full data on the CEO�s stock of shares and options which provide the

vast majority of CEO incentives.

We therefore conduct our own empirical tests of the model, using measures of wealth-

performance sensitivity. We merge Compustat with ExecuComp (1992-2005) and select the

largest 500 �rms in aggregate value (debt plus equity) in each year.9 We calculate the wealth-

performance sensitivities as follows:

BI =
1

wt

�
Value of stock + Number of options� @V

@P
� P

�
(22)

BII =
1

St

�
Value of stock + Number of options� @V

@P
� P

�
(23)

BIII =

�
Value of stock + Number of options� @V

@P
� P

�
(24)

We use the Core and Guay (2002a) methodology to estimate the option deltas. (Appendix

A describes our calculations in further detail.) Controlling for year and industry �xed e¤ects,

and clustering standard errors at the �rm level, we estimate the following elasticities:

ln(BIi;t) = �+ � � ln(Si;t)
ln(BIIi;t ) = �+ � � ln(Si;t)
ln(BIIIi;t ) = �+ � � ln(Si;t):

8This � is taken from Table 4 of Schaefer (1998), and is equal to 1�2 (�� ) using his notation. We average
over his four estimates of �. Note that Schaefer estimates a non-linear model that is closely related to ours, but
not identical, so his �ndings only constitute weak support.

9Our results are very similar if we use sales as a measure of �rm size, and if we select the top 1000 or 200
�rms.
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Table 2 illustrates the results, which are consistent with the predictions of equation (15).

Speci�cally, BI is independent of �rm size: the coe¢ cient of 0.06 is slightly less than its standard

deviation. BII (BIII) have size elasticities of �0:58 (0.42), statistically indistinguishable from
the model�s prediction of �2=3 (1/3). Our model can therefore quantitatively explain the size
elasticities of all three measures of wealth-performance sensitivity.

In unreported results, adding the Gompers, Ishii and Metrick (2003) governance index as

an explanatory variable yields a coe¢ cient of �0:057, statistically signi�cant at just greater
than the 1% level. The standard deviation of the governance index is 2.7, implying that a

one standard deviation rise in the index (i.e. a worsening of governance) is associated with BI

falling by 15%.

Insert Table 2 about here

The empirical literature has used a wide variety of measures of CEO incentives, but there

has been limited theoretical guidance over which measure is appropriate. A notable exception

is Baker and Hall (2004), who show that the optimal measure depends on the scaling of CEO

productivity with �rm size. If productivity is constant in dollar terms regardless of �rm size, bII

(or BII) is appropriate as it is size-invariant; if it is linear in �rm size, bIII (or BIII) is the correct

measure as it becomes size-invariant. However, their calibrations estimate the size-elasticity of

CEO productivity of 0.4, in between the two extremes, suggesting that both measures may be

problematic.

Our model predicts that BI is independent of �rm size. While this stemmed from our

assumption that e¤ort has multiplicative costs and bene�ts, Table 2 empirically con�rms its

size invariance (thus supporting our modeling assumptions) as well as the size dependence of

BII and BIII . This property may render BI an attractive measure of CEO incentives in a

number of empirical applications. If the level of incentives is the focus of the empirical study,

size independence permits meaningful comparisons across �rms or over time. In addition, it

ensures that the explanatory power of the incentives measure does not simply arise because it

proxies for size. If other relationships are the focus of the study and incentives are instead used

as a control variable, it is desirable to use a �pure�measure of incentives undistorted by size.

3.2 The Level of CEO Incentives

We now use our model to assess whether currently observed levels of wealth-performance sen-

sitivity are consistent with e¢ ciency. Our primary measure is the log-log pay-for-performance

sensitivity; the other measures are mechanical transformations. The model predicts BI = �
L
W
w

(equation (49)). The median BI for 2003-5 is 11 and it is stable over this period.10

10Hall and Liebman (1998, Table VIII) estimate BI = 3:9. Their denominator includes not only �ow com-
pensation but also the expected appreciation of the CEO�s stock and options.
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Unfortunately, L and particularly � are di¢ cult to measure precisely. Our aim is to identify

reasonable combinations of � and L implied by BI ' 11. By seeing whether these values appear
plausible, we can assess whether the empirically observed pay-for-performance sensitivity is

necessarily suboptimal. An analogy is the equity premium puzzle of Mehra and Prescott (1985).

Risk aversion is di¢ cult to measure precisely, so the authors posit an �admissible region�of

plausible values. Their calibrated level of risk aversion falls outside this region, giving rise to

the puzzle.

L is the percentage amount by which �rm value decreases if the CEO shirks. A natural

starting point is the average takeover premium of 30%. However, the takeover premium can be

motivated by factors other than managerial misbehavior, such as synergies or undervaluation.

Since a high input for L makes it easier to match the BI found in the data, we conservatively

set L ' 10%: We therefore calibrate

� =
BI � L
W
w

=
11 � 0:1

W
w

= 1:1
w

W
:

Shirking increases the CEO�s utility by a fraction � = 1:1 w
W
of his wealth, i.e. $1:1w in

dollar terms. Rounding down to be conservative, the �private bene�ts of shirking�can increase

the CEO�s utility by an amount no greater than his annual salary.

To turn this into numerical amounts, the median pay of the 500 CEOs in our sample averaged

$5.7 million for 2003-5. The utility from shirking can therefore be no higher than $5.7 million.

Since this is a high upper bound, it is likely that the actual utility from shirking falls within

the �admissible region�and so we cannot conclude that current practices are ine¢ cient. Note

that the above calibration does not require an estimation of W=w, since it cancels out. The

only degree of freedom we have in our calibration is the input L.

To calibrate � as a percentage, we would need to estimate W=w. Unfortunately, there is no

data available on the wealth W of CEOs.11 However, ExecuComp provides data on a CEO�s

�nancial wealth in his own �rm. For 2003-5, we estimate a median value of (Financial wealth

in the �rm) / (Pay) equal to 12. We assume that the CEO�s wealth in his own �rm is half his

total �nancial wealth, and that his human wealth (NPV of future wages) approximately equals

his entire �nancial wealth. This leads to an estimate of W=w of 48. We therefore have

� = 1:1
w

W
' 1:1

48
= 0:023:

This means that, if the CEO shirks, his utility increases by an amount equivalent to 2.3% of

his wealth. Section 4 uses the quantity �=L, which we calibrate to be approximately 1=4.

Since BII and BIII are mathematically linked to BI , our ability to explain BI means that

the model can also match the measures of wealth-performance sensitivity more commonly used

11We thank David Yermack for discussions on this point.
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by empiricists. For example, BII = BI w
S
. The median size of the top 500 �rms, averaged across

2003-5, is $15.2 billion. BI = 11 is therefore consistent with a Jensen-Murphy semi-elasticity of

BII = 11 � ($5:7 million) = ($15:2 billion). This represents a wealth rise of $4.12 for a $1; 000
increase in �rm value, close to our �gure of $3.68.12

4 ExtendedModel with Risk Aversion and Optimal Con-

tracts

We have thus far assumed a risk-neutral CEO, a binary e¤ort decision, and limited our instru-

ments to cash and shares. This was to maximize the model�s tractability and thus calibratability.

This section introduces risk aversion and multiple e¤ort levels into a continuous time setup, and

derives the optimal contract without restricting the contracting space. In addition to testing

the robustness of our predictions, the extended model also allows us to analyze the e¤ect of

risk on compensation. Section 4.1 considers the extended model in partial equilibrium, and in

Section 4.2 we embed it in market equilibrium.

4.1 Partial Equilibrium

We use a continuous time framework because, as known since Holmstrom and Milgrom (1987),

this leads to contracts that are simpler and more robust than those that come from a discrete

time analysis.

We consider a period of length T . At each date t within this period, the CEO exerts e¤ort et,

where et 2 [e; e]. The stock price evolves according to: dPt=Pt = (rf + � + L (et � e)) dt+�dzt.
The CEO�s utility function is given by:

U = E

�
u

�
cT exp

�
��

Z T

0

etdt

���
; (25)

with cT is the consumption at T , u (c) = c1��= (1� �) for � � 0, � 6= 1, u (c) = ln c for � = 1.
The above utility function (25) preserves and generalizes (1) in a number of ways. First,

� > 0 measures the CEO�s relative risk aversion. Second, e¤ort and consumption continue

to a¤ect each other multiplicatively rather than additively. Third, we incorporate multiple

periods and allow the CEO to choose a di¤erent e¤ort et in each period, where et depends on

the information available up to time t (i.e. is an adapted process). In addition, et is no longer

a binary variable.

We assume that the maximum level of e¤ort, et = e, maximizes total surplus. As before,

this is optimal because the �rm (and thus the bene�t from e¤ort) is very large compared to the

12This �gure is smaller than the $5.29 reported by Hall and Liebman because we are considering only the top
500 �rms. Across the whole sample, the average median for 2003-5 is $8.92.

17



CEO (and thus the cost of e¤ort). The cost of e¤ort now comprises both the direct disutility

as well as the ine¢ cient risk sharing that results from incentivizing the manager to exert e¤ort.

The CEO has a reservation utility u (w) given by the competitive market, and we seek the

optimal (unrestricted) contract that implements et = e 8 t, solves the participation constraint
U � u (w), and has the minimum cost E[cT ] to the �rm.13 The solution is derived in Appendix
B and stated below.

Proposition 7 (Optimal contract in the extended model, partial equilibrium). Let u (w) denote
the CEO�s reservation utility. The optimal unrestricted contract is as follows. At t = 0 the

CEO is given wealth W0 = waT , where aT is given by (43) . It is invested in a continuously

rebalanced account, where a fraction � = �=L is invested in the �rm at all times, and the

remainder is in the riskless asset. The CEO�s terminal wealth is:

ln
WT

W0

= � ln
PT
P0
+ bT : (26)

where bT is given in (44).

Furthermore, for other � > �=L, any contract of the above type is incentive compatible and

satis�es the CEO�s participation constraint, but it costlier to the �rm.

The link with the optimal contract in Section 2 is as follows. In discrete time, changes in log

CEOwealth must be proportional to changes in log �rm value, with a constant of proportionality

of at least � = �=L: In continuous time, the same applies at every instant. Hence, at the end of

the period, the log change in CEO wealth is proportional to the log change in �rm value, with a

sensitivity �.14 Equation (26) means that �nal compensation is proportional to the stock price

to the power �. (In the special case where � = L, � = 1 and the CEO is compensated entirely

in stock.)

4.2 Market Equilibrium

4.2.1 Firms Identical Except For Size

We now work out the market equilibrium with risk averse CEOs, using the optimal contract of

the previous section. The CEO�s terminal utility is:

U = u
�
W0e

(rf+����e���2�2=2)T
�

(27)

For simplicity, we now take the interest rate rf and risk premia to be 0, i.e., rf = � = 0,

and the period length to be T = 1. Let w denote W0 for ease of notation. The CEO�s utility
13More precisely, the �rm minimizes the market value of the compensation, i.e. EQcT , where Q is the

risk-neutral probability. This leads to the same solution.
14The terms proportional to T in equation (26) simply re�ect an adjustment for time value and risk aversion,

and are of little interest.
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U from (27) is:

U = u (w exp (��)) (28)

where

� = �e+
��2�2

2L2
(29)

denotes the �equivalent variation�, i.e. the utility loss su¤ered by the manager by exerting

e¤ort (the �e term) and bearing risk (the ��2�2

2L2
term). The latter arises because a fraction

� = �=L is invested in the �rm, which has volatility �.

We revisit Section 2.2. The least talented CEO (number N) has a reservation wage wN . To

compensate for the above utility loss, he must be paid wNe
�. Hence the pay of CEO n is the

following variant of equation (41):

w (n) = �
Z N

n

CS (u) T 0 (u) du+ wNe
� (30)

and scales according to

w (n) = D (n�)S(n�)
�=�
�
S (n)��=� � S (N)��=�

�
+ wNe

� � D (n�)S(n�)�=�S (n)��=�

Changes in � have very little e¤ect on the the pay of top CEOs. Equation (30) shows that

the pay of CEO n is composed of the rent to talent (the �rst term) and the wage of the least

talented CEO (the second term). An increase in � a¤ects only the wage of the least talented

CEO, and does not a¤ect the rent to talent. Since the �rst term is much larger, particularly

for highly talented CEOs, the overall wage is barely a¤ected.

Proposition 8 (Optimal contract in the extended model, general equilibrium). Let n� denote
the index of a reference �rm. In equilibrium, the manager of rank n runs a �rm of rank n, and

receives an expected pay: w = D (n�)CS(n�)�=�S��=�, where D (n�) = �n�T 0 (n�) = (� � �).
The wealth-performance sensitivity of a �rm is as before, � = @ lnW=@r = �=L, and the scaling

with size are the same as in the basic model of Section 2.

4.2.2 Firms Di¤er in Parameters Besides Size

We now study the case of heterogeneity in the �rm�s cost of e¤ort, scope of e¤ort and volatility.15

Let

�n = �nen +
��2n�

2
n

2L2n
(31)

15Cross-sectional variation in en re�ects the fact that there is greater scope to add value through e¤ort in
certain companies and industries (e.g. those intensive in human capital).
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denote the equivalent variation associated with �rm n. If a CEO is hired by �rm n for a

nominal wage w, after adjustment for the cost of e¤ort and risk aversion, the �e¤ective�wage

is � = wne
��n. Assume that in market equilibrium, a CEO of talent m receives an e¤ective

wage v (m). If �rm n wishes to hire manager m, it must pay him a net wage v (m), and a dollar

wage v (n) e�m. So its program is: maxmCS (n)
 T (m)� v (n) e�n, i.e.

max
m
Cne

��nS (n) T (m)� v (n)

Firm n behaves like a �rm with �e¤ective size�(Cne��n)
1=
S (n). We next apply Gabaix and

Landier (2008, Proposition 3), and assume that the �rms���s are drawn independently of �rm

size. We obtain the following.

Proposition 9 (Optimal contract in the extended model, general equilibrium, heterogeneous
�rms. Let n� denote the index of a reference �rm. In equilibrium, the manager of rank n runs

a �rm whose �e¤ective size� (Cie��i)
1=
S is ranked n, and receives an expected pay:

w = D (n�)CS(n�)
�=�S��=� exp

�
�

�
(�� �)

�
; (32)

where D (n�) = �n�T 0 (n�) = (� � �) and � is the following average over the �rms�equivalent
variations e�:

e�� = E
�
e�e�=(�)�� : (33)

The wealth-performance sensitivity of �rm i is as before, �i = @ lnW=@ri = �i=Li, and the

scaling with size are the same as in the basic model of section 2.

To interpret the Proposition, �rst note that the equivalent variation (31) �n increases in the

cost of e¤ort required by the �rm (�nen), the risk of the �rm (�n), and the required sensitivity

of incentives (�n=Ln). A �rm with higher equivalent variation � will, ceteris paribus, choose

a lower quality manager (since its e¤ective size is Se��=), but with a higher pay. This is

because the e¤ective size Se��= leads to a net wage v _
�
Se��=

���=�
, and a full wage

w = ve� _ S��=�e��=�, which is increasing in �.
Hence in the cross-section, �rms with high equivalent variations pay more. However, in the

aggregate, there is no such e¤ect: if the equivalent variation of all �rms increases by the same

amount �, the wages do not change. This was demonstrated in the previous subsection, and

here arises because both � and � increase by �, which creates no change in wage in (32).

5 Extensions and Alternative Speci�cations

This section considers extensions and other speci�cations of the one-period model. Section 5.1

shows that the multiplicative functional forms we used are necessary and su¢ cient to explain
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the size-independence of BI found in the data, since additive speci�cations do not generate the

same prediction. Section 5.2 examines a second feature of traditional models, the assumption of

an unbounded e¤ort domain. Our model features bounded e¤ort and has di¤erent predictions

for the relationship between �rm volatility and wealth volatility, which we support empirically.

Section 5.3 considers actions that are additive in �rm value, such as perk consumption. Section

5.4 reconciles our results with the empirical results of Baker and Hall (2004).

5.1 The Requirement for Multiplicative Preferences

With (1) we used preferences that are multiplicative in consumption and (a function of) e¤ort:

E [cg (e)]. Preferences such as E [� (cg (e))] would work the same way. This is a su¢ cient

condition for bI to be independent of w, which we have shown empirically. We now demonstrate

the necessity of multiplicative preferences for generating this prediction.

Many previous theories of CEO pay (Haubrich (1994), Schaefer (1998), Baker and Hall

(2004)) are based on the classical �additive�model of Holmstrom and Milgrom (1987), of the

form E [c]� g (e). We explore the implications of this speci�cation while maintaining the same
contract structure (equation (3)). We normalize the expected return to 0, and call b the fraction

of w invested in stock, so that c = w (1 + br). We note that b is also bI � E [@c=@r] =E [c].

With the utility function E [c]�g (e), the optimal bI is given by bI = g(�1)�g(0)
Lw

, which implies:16

bI / w�1 (34)

The additive form therefore predicts that bI decreases with the wage. This contrasts with

the multiplicative form (1), which predicts that bI is independent of the wage and is thus

consistent with the data.

Another popular utility function is E [c�=�]� g (e), with � 2 (0; 1]. This leads to bI / w��

for large w, and thus also predicts that bI declines with �rm size. The reason is that, for

su¢ ciently high consumption, e¤ort has a very small e¤ect on the agent�s utility and so fewer

incentives are required to ensure compatibility.

While the above considered two speci�c functional forms, we now demonstrate a general

result: that multiplicative preferences are necessary to generate a size-independent bI . To keep

the analysis streamlined, we consider only a highly simpli�ed setup. Consider a general utility

function is E[u (c; e)], with e 2 f�1; 0g. Assume the �rm�s return is r = Le and that incentive
compensation is implemented with shares, so the �rm selects expected pay c and slope b so that:

c = c (1 + br). The optimal contract minimizes c and b while granting the CEO his reservation

utility of u and eliciting e = 0.17 The next Proposition states that multiplicative preferences
16The proof is as follows. The optimal bI is the smallest b such that E [c� g (0) j e = 0] �

E [c� g (�1) j e = �1], and so satis�es E [c� g (0) j e = 0] = E [c� g (�1) j e = �1]. Since c = w (1 + br) =

w (1 + b (Le+ �)), the conditions read: w � g (0) = w (1� bL)� g (�1), i.e. b = g(�1)�g(0)
Lw .

17More fully, v = E [v (c; e) j e = 0] � E [v (c; e) j e = �1].
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are required for the optimal b = E [@c=@r] =E [c] to be independent of v (and thus E[c]).

Proposition 10 (Necessity and su¢ ciency of multiplicative preferences to generate a size-
independent bI). Assume the CEO�s utility function is u (c; e), with c consumption and e e¤ort,

and the �rm�s return is r = Le. Suppose the optimal a¢ ne contract involves a pay scaled pay-

performance sensitivity bI = E [@c=@r] =E [c] that is is independent of E [c]. Then, the utility

function is multiplicative in consumption and e¤ort, i.e. can be written:

u (c; e) = � (c � g (e)) (35)

for some functions � and g.

Conversely, if preferences are of the type (35), then the optimal contract has a slope b that

is independent of E [c].

We note that the above Proposition was proven in a restrictive context, with no noise and

restricting the contract to consist of cash and shares, although we considered a general utility

function. We suspect that the results extend to more general settings, but such an investigation

is beyond the central objective of this paper.18

5.2 Bounded E¤ort and the Link Between Wealth Volatility and

Firm Volatility

A second feature of the traditional additive model is that it features unbounded e¤ort. We

show that this assumption leads to a predicted negative association between pay volatility and

�rm volatility. This contrasts both our model and the data.

Under the additive (exponential-normal) model, the CEO has utility u = E[c]� a
2
var (c)�

1
2
e2, where a denotes absolute risk aversion and e 2 [0;1). His reservation utility is u. Firm
value next period is S1 = S (1 + �+ Le+ �), where L measures the CEO�s productivity, and �

is stochastic noise with mean 0 and variance �2r. � accounts for the �rm�s expected returns in

equilibrium. The �rm maximizes S (1 + �+ Le) � E [c], its expected value next period net of
CEO pay. As before, compensation comprises �xed pay f , plus � shares.

The solution is standard.19 The CEO�s dollar-dollar-pay-performance sensitivity is bII =

@c=@S1 = L= (L
2 + a�2r), and thus is decreasing in �rm volatility. This well-known prediction

stems from the fact that there is always an interior solution to the optimal e¤ort level, and

so it re�ects a trade-o¤ between risk and incentives at the margin. As �r rises, the trade-o¤

18For instance, with noise, we suspect that to keep b constant across expected utilities, the function � must
actually be: � (c) = A ln c +B or Ac1��= (1� �) +B.
19Normalizing the initial share price to P = 1, the CEO�s realized pay is c = f + � (1 + Le+ �). The CEO

chooses e to maximize his utility, U = f + � (1 + Le)� a
2�

2
r�
2 � 1

2e
2, and selects e = �L. The �rm chooses � to

maximize its net value, S
�
1 + �L2

�
� a

2�
2
r�
2 � �2L2

2 , and selects � = SL2=
�
L2 + a�2r

�
. The CEO�s total pay is

therefore c = f + S1L=
�
L2 + a�2r

�
.
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leads to optimal incentives being lower. By contrast, our model predicts that pay-performance

sensitivity is independent of �rm size (see Section 2). The evidence from Prendergast (2002)

�nds little evidence of a negative relationship between incentives and �rm volatility.

In addition, models with bounded e¤ort predict a negative relationship between pay volatil-

ity and �rm volatility. Since pay volatility is stdev (c) = ��r = �rSL= (L2 + a�2r), its sensitivity

to �rm volatility is given by @stdev (c) =@�r = �S
�
1� 2bII

�
bII . Since empirical studies �nd

that bII is substantially less than 1=2, these models predict

@stdev (c) =@�r < 0:

By contrast, in our model there is a corner solution to e¤ort and so the number of shares � is

independent of volatility. Hence stdev (c) = ��r is increasing in volatility. Indeed, we predict

that the CEO�s wealth volatility is proportional to �rm volatility, i.e.

stdev(Wt+1 �Wt) = B
III�r / S��r; (36)

where �r is the volatility of the �rm�s returns and � = 1=3 is the elasticity of pay with respect

to size (see Proposition 4).

We now evaluate these contrasting predictions using the same dataset as before.20 As

discussed more fully in Appendix A, there are two main ways to estimate wealth volatility,

stdev(Wt+1 �Wt). The �rst is the ex ante measure used in Section 3, i.e. stdev(Wt+1 �Wt) =

BIIIt �r.21 The second uses ex post realized volatility, i.e. stdev(Wt+1 �Wt) = ln jWt+1 �Wtj.
In both cases, the model predicts that regressing stdev(Wt+1 �Wt) = �S lnS + �S ln�r, will

yield �S = 1=3 and �� = 1.

We can also scale the dependent variable. Scaling by the wage leads toBIt �r or ln (jWt+1 �Wtj =wt)
and the model predicts �S = 0 and �� = 1. Scaling by size yields B

II
t �r or ln (jWt+1 �Wtj =St),

with a prediction of �S = �2=3 and �� = 1.
The results are shown in Table 3. In all six speci�cations we �nd that wealth volatility

is signi�cantly positively linked to �rm volatility. In three speci�cations, we cannot reject

the hypothesis that �� = 1. (The low �� = 0:64 when ln (jWt+1 �Wtj =wt) is the dependent
variable is because of the strong positive association between wt and �r.) In addition, in

all six speci�cations, the 95% con�dence intervals for �S contain the predicted values. In

unreported regressions we �nd that these results are unchanged when adding �rm �xed e¤ects

and identifying purely on within-�rm changes in volatility.

Insert Table 3 about here
20The linear-quadratic model is expressed in terms of terminal consumption, but its general meaning is in

terms of terminal wealth. The key variable is the NPV of the CEO�s future utilities in the second period, which
is also linear in wealth in the linear-quadratic model.
21Indeed, for small time intervals, Wt+1 �Wt =W

0
t (r) rt = B

IIIrt, so stdev(Wt+1 �Wt) = B
IIIstdev (rt) =

BIII�r.
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5.3 Perks

In the basic model, where the contract consists of cash and shares, the analysis assumed that

L > �, and thus incentive problems were solvable through the contract speci�ed in Proposition

1. However, if the assumption is violated, the manager�s disutility from working is so high

that a large equity stake is needed to induce the correct action. If expected pay is kept at w,

this necessitates a negative �xed component f , which violates limited liability. One important

agency problem for which L < � might apply is CEO entrenchment. Since resigning adversely

impacts the CEO in future periods, the total loss in utility is likely far greater than from

exerting greater e¤ort or forgoing an empire-building merger. Since incentive pay is ine¤ective

at inducing underperforming CEOs to leave, this issue must instead be addressed by corporate

governance, such as active boards. (This solution is also not unproblematic since boards may

be endogenously chosen by the CEO, as modeled by Hermalin and Weisbach (1998)).

Moreover, the necessary condition for incentive pay to be e¤ective is substantially stronger

if the e¤ort decision is additive in �rm value. This is likely the case for perks, such as corporate

jets: the value loss from perk consumption is relatively independent of �rm size.

Proposition 11 (Impossibility of deterring perk consumption through incentive pay). Assume
e = �1 reduces �rm value by $L, i.e. L = SL in the prior analysis. Let L > w�, so that e = 0

maximizes total surplus. It is impossible to elicit high e¤ort while keeping expected pay �xed at

w if S > L=�, i.e. the �rm is su¢ ciently large.

Hence if w� < L < S�, perk consumption is ine¢ cient but cannot be prevented. Since the

perk is �xed in absolute terms, the stock price of a large �rm is relatively insensitive to perk

consumption. Therefore, the CEO�s equity stake does not decline su¢ ciently in dollar terms

to outweigh the utility gain of perk consumption. Note that perks cannot be prevented even if

the �rm is willing to pay the CEO rents, i.e. a pay in excess of w(n), by awarding him a large

number of shares. Raising the CEO�s pay augments his utility from perk consumption (as this

equals w
�
1� 1

�

�
) so incentive compatibility is still not achieved. The only possible solution

would be to give the CEO a large equity stake and reduce his �xed salary, to keep his total pay

constant, but this is not possible as f � 0.
While seemingly intuitive, this result is contrary to the viewmodeled by Jensen andMeckling

(1976) and implied by empirical papers such as Jensen and Murphy (1990), that agency costs

can (and should) be addressed by incentive pay. Equity compensation is primarily e¤ective in

addressing agency costs that are a proportion of �rm value, such as e¤ort or M&A.22 However,

perks are typically independent of �rm value, and thus have very little explanatory power

for observe incentives. As with the entrenchment issue, perks should be controlled by active

corporate governance. For example, the board could intensely scrutinize the purchase of a

22For example, Morck, Shleifer and Vishny (1990) �nd that higher managerial equity stakes are associated
with greater value creation in mergers.
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corporate jet or a large investment project. Empirical evidence linking governance to �rm

performance (e.g. Gompers, Ishii and Metrick (2003) and Yermack (2006)) can be interpreted

as consistent with this result. If all agency costs could be solved by incentive compensation,

governance would not matter (except for ensuring that the CEO is given the optimal contract).

Since incentive compensation is not universally e¤ective, there remains a substantial incremental

role for governance.

Compensation continues to be ine¤ective at deterring perk consumption even when allowing

for more general incentive contracts. The intuition remains the same: since perks have a very

small e¤ect on the return of a large �rm, incentive compatibility requires extremely high wealth-

performance sensitivity. Even if this can be achieved by a general contract (e.g. an option),

the risk it imposes on the CEO would outweigh the gains from deterring the perk. Appendix

C.2 formalizes this point.

5.4 Explaining Baker-Hall

Finally, we illustrate how our model can explain Baker and Hall�s (2004) empirical results on

the negative relationship between BII and �rm size. They assume an additive model, which

requires L to be size-dependent in order to predict that BII scales with size. They therefore

use their results to calibrate the scaling of L with size. We show that their �ndings are also

consistent with our model, in which L is constant and size-dependence is instead generated by

the multiplicative functional form.

Using our notation, Baker and Hall estimate a functional form for L(e; S). They derive an

equation for CEO productivity as a function of �rm size: IBH =
q

2bIIa
1�bII �rS (their equation

(3)), where a is the coe¢ cient of absolute risk aversion.23 They assume constant relative risk

aversion, and so a is inversely proportional to the CEO�s wealth.

They then make one of three assumptions for the scaling of the CEO�s wealth, which leads

to three di¤erent speci�cations. In their speci�cation (1), they assume wealth is proportional

to the CEO�s wage, and so a / w�1. In our model, w / S� and so a / 1=w / S��. In

addition, bII / w=S / S��1 and 1� bII / S0, since bII � 1. Assuming stock price volatility is

independent of �rm size (as in the geometric random growth model),24 the standard deviation

of the dollar value of a �rm is �r / S1. We therefore predict: IBH1 / S(��1��)=2+1 = S1=2. Our
predicted elasticity of 1

2
is consistent with Baker and Hall�s empirical �nding of 0.4.

In their speci�cation (3), they assume the CEO�s wealth is independent of size, and therefore

a / S0. In our model, this would lead to: IBH3 / S(��1)=2+1 = S(1+�)=2 = S2=3, using � = 1=3,
23Baker and Hall (2004) use � to denote absolute risk aversion; we are using a to avoid confusion with our

�, which denotes the elasticity of total pay with respect to �rm size. Also, we use � to note the �percentage�
volatility of the �rm.
24Regressing log volatility on log aggregate value, year dummies and industry dummies yields an insigni�cant

coe¢ cient of -0.0024 (standard error of 0.0119).
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and thus a predicted elasticity of 0.67. Baker and Hall �nd an elasticity of 0.62. We therefore

conclude that the Baker and Hall results can also be explained quantitatively by our framework.

6 Conclusion

The primary contribution of this paper is to develop a calibratable equilibrium model of both

the total level and incentive component of CEO compensation. The model can be used to

evaluate a number of ongoing debates on the e¢ ciency of compensation practices. Since Jensen

and Murphy (1990), a number of researchers have documented a strong negative relationship

between dollar-dollar incentives and size. One common interpretation is that contracts are

especially suboptimal in large �rms, perhaps resulting from the CEO�s excessive in�uence on

his own pay.

This paper has a di¤erent conclusion. The predictions generated by our neoclassical bench-

mark closely match the data, implying that the widely documented empirical scalings are fully

consistent with optimal contracting. It is indeed e¢ cient for e¤ective equity stakes to be par-

ticularly low in large �rms, and for dollar holdings to rise less than proportionately with �rm

size. Similarly, the model is able to explain the level of CEO incentives without appealing to

rent extraction.

We discuss a number of other applications of the model. We demonstrate, both theoretically

and empirically, that scaled wealth-performance sensitivity (the dollar change in CEO wealth

for a percentage change in �rm value, divided by annual pay) is stable across �rm size. This

property renders it particularly attractive in a number of empirical applications, and is not

shared by other measures of incentives previously used.

A further application is to understand additional determinants of compensation, over and

above the factors considered in Gabaix and Landier (2008), generating predictions that could

be investigated in future empirical research. The model suggests that cross-sectional di¤erences

in risk and e¤ort lead to variation in wages between �rms, but aggregate-level increases in these

variables have negligible e¤ect. (This is potentially testable between �rms, between industries

or between countries). In addition, total salary should be independent of wealth-performance

sensitivity: the former is determined by �pay-for-talent�, not �pay-for-performance�. There are

additional empirical predictions from the core model that have not been tested in the paper.

Are our scalings empirically consistent in other countries, or are there large discrepancies that

may be potential evidence of ine¢ ciencies? Are CEO incentives increasing in wealth?25 How

much of the time series variation in incentives, documented by Frydman and Saks (2007) and

Jensen and Murphy (2004), can be explained by our model?

25Given data limitations in the U.S., the only wealth data available is on the CEO�s stock and options holdings
in his own �rm, and so there is a mechanical link between incentives and measured wealth. However, full wealth
data may be available in other countries (see Becker (2006) for an example).
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Over and above these applications, the model itself may be of use for future researchers

in executive compensation. It is a simple, market equilibrium framework that matches the

following �trilogy of scalings�, a potential criterion for the empirical accuracy of future mod-

els: the 1/3 elasticity of pay with respect to �rm size, the independence of %-% incentives

to size, and the proportionality between wealth volatility and �rm volatility. As such, it may

form a building block upon which more complex models can be built. In particular, there are

a large number of additional complexities in the real world upon which the model is silent,

and it would be interesting to quantify their equilibrium implications and investigate whether

they can explain other observed features of compensation. Examples include accounting perfor-

mance measures (which may explain bonuses), entrenchment and turnover (which may explain

severance pay), stockholder-bondholder con�icts (which may explain inside debt compensation,

such as pensions), and renegotiation.

Our conclusions should be tempered by a number of observations. First, our model�s pre-

diction that BI is size invariant stemmed from our assumed functional forms, and other spec-

i�cations would have di¤erent predictions. We used the quantitative empirical consistency of

our model to justify our assumptions and thus our advocacy of BI as an empirical measure.

However, using real-world data to evaluate a frictionless model implicitly assumes that real-

world practices are also reasonably close to frictionless. It could be that an alternative model,

with di¤erent speci�cations to ours and predicting the size invariance of a di¤erent measure,

represents the �true�frictionless benchmark, and that this alternative model is empirically re-

jected because there are indeed ine¢ ciencies in reality. Perhaps under the hypothetical �true�

speci�cation, BI should optimally increase with �rm size, and we only observe that it is con-

stant because ine¢ ciencies are greater in large �rms. Further research is needed to evaluate

this hypothesis. In particular, the strongest support for the rent extraction view may come

not from observing that a particular practice is inconsistent with a frictionless model, but from

deriving a model that explicitly incorporates frictions and generates quantitative predictions

on their e¤ects on compensation that closely match the data. Our empirical results suggest

that, if the �true� speci�cation predicts that BI increases with �rm size, ine¢ ciencies would

have to scale with �rm size in such a way as to exactly counterbalance the optimal scaling and

explain the size invariance of BI that we �nd. For now, our neoclassical benchmark shows that

ine¢ ciencies do not need to be assumed to be able to match various features of the data.

Second, in our model, incentive compensation can induce the CEO to take the �rst-best

action. However, certain agency problems cannot be solved through pay: perks (if the �rm is

large), entrenchment, and e¤ort decisions where the CEO�s disutility is su¢ ciently high. This

leads to an ongoing role for corporate governance, over and above the selection of the optimal

contract.
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A Detailed Calculation of BI

We merge Compustat with ExecuComp (1992-2005) and each year select the 500 largest �rms

by aggregate value (equity plus debt). To calculate aggregate value, we �rst multiply the end-

of-year share price (data199) with the number of shares outstanding (data25) to obtain market

equity. To this we add the value of the �rm�s debt, calculated as total assets (data) minus total

common equity (data60) and minus balance sheet deferred taxes (data74). We call this variable

aggval, and it is in millions of dollars.

The CEO�s incentives are calculated at the end of each �scal year, and stem from his stock

and option holdings. The number of shares held by the CEO is given by ExecuComp variable

shrown. Obviously, each share has a delta of 1; the delta of an option is given by the Black-

Scholes formula:

e�dTN

0@ ln � SX �+
�
r � d+ �2

2

�
T

�
p
T

1A :
d is the continuously compounded expected dividend yield, given by bs_yield. If this is

missing, we assume it is zero. We also winsorize it at the 95th percentile for each year.

� is the expected volatility of the stock return, given by bs_volat. If it is missing, we replace

it with the mean volatility for that year, given by http://mi.compustat.com/docs-mi/help/

blk_schol.htm. We also winsorize � at the 5th and 95th percentile for each year.

r is the continuously compounded risk-free rate, available from http://mi.compustat.com/

docs-mi/help/blk_schol.htm.

S is the stock price at the end of the �scal year, given by prccf.

X is the strike price of the option.

T is the maturity of the option.

The option holdings come in three categories: new grants, existing unexercisable grants, and

existing exercisable grants. The �rst four variables in the Black-Scholes formula are available

for all categories. For new grants, X and T are also available. X is given by expric, and T

can be calculated using the option�s maturity date, exdate. If exdate is unavailable, we assume

maturity of 10 years. A CEO may receive multiple new grants in each year. We calculate

the delta of each option grant, multiply it by the number of options in the grant (numsecur)

and sum across grants to calculate �totaldeltanew�, the dollar change in the CEO�s newly

granted options for a $1 increase in the stock price. Similarly, we sum numsecur across grants

to calculate �numnewop�, the total number of newly granted options. While ExecuComp has a

variable (soptgrnt) for the number of newly granted options, it is sometimes di¤erent from the

number obtained by summing across grants. As will become clear later, using the �bottom-up�

number numnewop is more internally consistent since we are calculating the intrinsic value of
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new grants on a �bottom-up�basis.

X and T are not directly available for previously granted options, so we use the methodology

of Core and Guay (2002a). Here we summarize the Core and Guay method while stating the

additional assumptions made when data issues were encountered. Since new grants are nearly

always unexercisable, Core and Guay recommend calculating the strike price of unexercisable

options as

prccf -
inmonun - ivnew

uexnumun - numnewop
:

inmonun is the intrinsic value of the unexercisable options held at the end of the year, some

of which stem from newly granted options.

ivnew is the intrinsic value of the newly granted options. This is not directly available from

ExecuComp, but obtained by calculating max(0,(prccf-expric)) * numsecur for each new grant

and summing across new grants.

uexnumun is the number of unexercisable options held at the end of the year.

Again because new grants are nearly always unexercisable, Core and Guay recommend

calculating the strike price of exercisable options as

prccf -
inmonex
uexnumex

:

inmonex is the intrinsic value of the exercisable options held at the end of the year.

uexnumex is the number of exercisable options held at the end of the year.

In some cases, numnewop > uexnumun, i.e. the number of newly granted options exceeds

the number of unexercisable options at year end. We interpret these cases as part of the new

grant (numnewop - uexnumun) being exercisable. We therefore calculate the strike price of

exercisable options as

In a subset of these cases, numnewop > uexnumun + uexnumex, i.e. the number of newly

granted options exceeds the number of total options at year end. In such cases, we assume

that the options held at year end entirely stem from new grants and there were no previously

granted options.

In some cases, ivnew> inmonun, i.e. the intrinsic value of the newly granted options exceeds

the number of unexercisable options. In a subset of these cases, uexnumun > numnewop, i.e.

there are some previously granted unexercisable options, and their deltas need to be taken into

account. We assume that such options are at the money. If ivnew > inmonun and numnewop

> uexnumun, we interpret this as part of the new grant being exercisable and having intrinsic

value. In such cases, we calculate the strike price of exercisable options as

prccf �
inmonex - (ivnew - inmonun)

uexnumex - (numnewop - uexnumun)
:
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If ivnew > inmonex + inmonun but uexnumex > numnewop - uexnumun, i.e. there are

some previously granted exercisable options, and their deltas need to be taken into account, we

assume that these options are at the money.

For the option maturities, Core and Guay recommend assuming a maturity for previously

granted, unexercisable options of one year less than the maturity of newly granted options, if

there were new grants in the �scal year. (Where there were multiple grants, we take the longest

maturity option). If there were no grants, Core and Guay recommend a maturity of 9 years.

The maturity of exercisable options is assumed to be 3 years less than for unexercisable options.

If this leads to a negative maturity, we assume a maturity of 1 day. As in Core, Guay and

Verrecchia (2003), we then multiply the maturities of all options by 70%, to capture the fact

that CEOs typically exercise options prior to maturity.

We use these estimated strike prices and maturities to calculate �deltaun�, the delta for

previously granted, unexercisable options, and �deltaex�, the delta for previously granted,

exercisable options.

Putting this all together, the dollar change (in millions) in the CEO�s wealth for a $1 change

in the stock price is given by

totaldelta = [ shrown + totaldeltanew + max(0,uexnumun-numnewop) � deltaun

+ max(0,(uexnumex-max(0,numnewop-uexnumun))) � deltaex]/1000.

We then calculate our measures of wealth-performance sensitivity:

BIII = totaldelta � prccf

BII =
BIII

aggval
� 1000

BI =
BIII

tdc1
� 1000:

Since tdc1 is very low (and sometimes zero) in a few observations, we replace such observa-

tions by the 2nd percentile for that year. The units for BII are the dollar increase in the CEO�s

wealth for a $1,000 dollar increase in shareholder value, as in Jensen and Murphy (1990).

Note that these �ex ante�measures slightly underestimate wealth-performance sensitivity,

since they omits changes in �ow compensation. However, this discrepancy is likely to be small:

Hall and Liebman (1998) and Core, Guay and Verrecchia (2003) �nd that the bulk of incentives

comes from changes in the value of a CEO�s existing portfolio. If the researcher has data on

the CEO�s entire wealth, BI can be estimated using ex post changes in wealth as follows:

Wt+1 �Wt

wt
= A+ cBI � rt+1 + C � rM;t+1 + Controls, (37)

30



where Wt+1 � Wt is the change in wealth and rM;t+1 is the market return (returns on other

factors could also be added).26 This compares with our chosen measure of:

BI;ex ante =
1

wt

�
Value of stock + Number of options� @V

@P
� P

�
; (38)

where V is the value of one option, @V
@P
is the option �delta�, and P is the stock price.

Even if full wealth data (which includes �ow compensation) is available, the ex ante measure

has a number of advantages. First, both data on overall wealth and a long time series are

required to estimate equation (37) accurately. Second, even if such data is available, ex post

measures inevitably assume that wealth-performance sensitivity is constant over the time period

used to calculate the measure. Since the ex ante statistic more accurately captures the CEO�s

incentives at a particular point in time, it is especially useful as a regressor since its time period

can be made consistent with the dependent variable. For example, in a regression of M&A

announcement returns on wealth-performance sensitivity (e.g. Morck, Shleifer and Vishny

(1990)), the CEO�s incentives can be measured in the same year in which the transaction

was announced. In a similar vein, the ex ante measure is more suited to measuring trends in

executive compensation over time.

Finally, if the researcher only has data on compensation �ows, rather than wealth, this typ-

ically signi�cantly understates wealth-performance sensitivity. However, if the CEO is known

to have limited shares and options, the pay-performance estimate bI will be a reasonable ap-

proximation:

lnwt+1 � lnwt = a+ bbI � rt+1 + Controls, (39)

where wt is �ow compensation and rt is the �rm�s return. Variations on the above speci�cation

are possible. For example, an alternative dependent variable is 2 (wt+1 � wt) = (wt+1 + wt),
which is more robust when wt is close to 0.

B Detailed Proofs

Proof of Proposition 1 The manager should earn his market wage: E [c j e = 0] = w.
We calculate:

E [c j e = 0] = f + �P = w

E [c j e = �1] = f + �P (1� L) = f + �P � �PL = w � �PL:
26rM;t+1 is added since the CEO may hold investments other than his own �rm�s securities, that move with

the market but not the �rm�s return. For example, consider a CEO whose wealth is entirely invested in the
market, with no sensitivity to �rm�s idiosyncratic return. If equation (37) did not contain the C � rM;t+1 term,

it would incorrectly �nd cBI > 0, whereas the true cBI is zero. Since rt+1 proxies for rM;t+1, there is an omitted
variables bias which leads to BI being overestimated.
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The manager chooses e = 0 if:

E [cg (0) j e = 0] � E [cg (�1) j e = �1] :

Since g (0) = 1 and g (�1) = 1
1�� , this implies

w � w � �PL
1� � , �P � ��P = w�

L
:

f � is chosen to ensure that expected pay is w: � = w � ��P = w
�
1� �

L

�
.

Proof of Proposition 2 We �rst de�ne some notation. A continuum of �rms and po-

tential managers are matched together. Firm n 2 [0; N ] has size S (n) and manager m 2 [0; N ]
has talent T (m). Low n denotes a larger �rm and low m a more talented manager: S 0 (n) < 0,

T 0 (m) < 0. n (m) can be thought of as the rank of the manager (�rm), or a number proportional

to it, such as its quantile of rank.

We consider the problem faced by one particular �rm. The �rm has a �baseline�value of

S. At t = 0, it hires a manager of talent T for one period. The manager�s talent increases the

�rm�s value according to

S 0 = S + CTS; (40)

where C parameterizes the productivity of talent. If large �rms are more di¢ cult to change

than small �rms, then  < 1. If  = 1, the model exhibits constant returns to scale (CRS) with

respect to �rm size.

We now determine equilibrium wages, which requires us to allocate one CEO to each �rm.

Let w (m) denote the equilibrium compensation of a CEO with index m. Firm n, taking the

market compensation of CEOs as given, selects manager m to maximize its value net of wages:

max
m
CS (n) T (m)� w (m) :

The competitive equilibrium involves positive assortative matching, i.e. m = n, and so

w0 (n) = CS (n) T 0 (n). Let wN denote the reservation wage of the least talented CEO (n = N).

Hence we obtain the classic assignment equation (Sattinger (1993), Tervio (2007)):

w (n) = �
Z N

n

CS (u) T 0 (u) du+ wN : (41)

Speci�c functional forms are required to proceed further. We assume a Pareto �rm size

distribution with exponent 1=�: S (n) = An��. Using results from extreme value theory, GL

use the following asymptotic value for the spacings of the talent distribution: T 0 (n) = �Bn��1.
These functional forms give the wage equation in closed form, taking the limit as n=N ! 0:
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w (n) =

Z N

n

ABCu��+��1du+ w =
ABC

� � �
�
n�(���) �N�(���)�+ wN � ABC

� � �n
�(���):

(42)

To interpret equation (42), we consider a reference �rm, for instance �rm number 250 �the

median �rm in the universe of the top 500 �rms. Denote its index n�, and its size S(n�). We

obtain Proposition 2 from GL, which we repeat here. In equilibrium, manager n runs a �rm of

size S (n), and is paid according to the �dual scaling�equation:

w (n) = D (n�)S(n�)
�=�S (n)��=� ;

where S(n�) is the size of the reference �rm and D (n�) = �Cn�T 0 (n�) = (� � �) is a constant
independent of �rm size.27

Proof of Proposition 5 Take the de�nition of bII and use � =  � �=�:

bII =
�

L

w

S
=
�

L

D (n�)S(n�)
�=�S��=�

S (n)
/ S��=��1

S(n�)��=�
=

S��1

S(n�)��
= S�(1��)S (n�)

�� :

The expressions for bI and bIII are similarly obtained.

Proof of Proposition 7 We de�ne:

aT = exp
��
rf � �� + �e+ ��2�2=2

�
T
�

(43)

bT =

�
rf (1� �) +

�
� � �2

� �2
2

�
T: (44)

We follow the techniques of dynamic contract theory, as in Sannikov (2006) and He (forth.).

We normalize L = 1 and � = e = 0 in the proof. We de�ne the promised utility (1� �)Ut =
EPt

�
W 1��
T

�
> 0, under the probability induced by the policy P that the CEO always exerts the

maximum e¤ort, et = 0. To understand its behavior, let us �rst calculate it under the proposed

policy, noted �: Since, under this proposed policy, dWt

Wt
= � dPt

Pt
+ (1� �) rfdt, with � = �:

W �
T = W

�
t exp

�
�� (z (T )� z (t))� �2�2 (T � t) =2

�
27The derivation is as follows. Since S = An��, S(n�) = An��� , n�T 0 (n�) = �Bn�� , we can rewrite equation

(42) as follows:

(� � �)w (n) = ABCn�(���) = CBn�� �
�
An���

��=� � �An���(��=�)
= �Cn�T 0 (n�)S(n�)�=�S (n)��=� :
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we have

dU�t =U
�
t = (1� �)��dzt (45)

In general, the promised utility Ut is a martingale, so, by the martingale representation

theorem, it can be written: dUt = (1� �)Ut�t�dzt for some adapted process �t. Hence we
de�ne the promised utility process to be:

dUt = (1� �)Ut�t (dPt=Pt � rfdt) (46)

First, we examine the incentive compatibility condition. If the CEO chooses an e¤ort et,

then dPt=Pt � rfdt = etdt+ �dzt, and his full utility UT exp
�
� (1� �)�

R T
0
etdt

�
evolves as:

dUt � (1� �)Ut�etdt = (1� �)Ut (�t (dPt=Pt � rfdt)� �etdt)
= (1� �)Ut [(�t � �) etdt+ �t�dzt]

Incentive compatibility is achieved (i.e. CEO sets et at the maximum level) if and only if

�t � � � 0.
We now verify that the policy is cost-minimizing. For a promised utility process U�t under

the candidate optimal policy, de�ne

b (u; t) = E
h
((1� �)U�T )

1=(1��) j U�t = u
i
= ((1� �)u)1=(1��) exp

�
��2�2

2
(T � t)

�
.

Now, consider an alternative incentive compatible policy Ut. Individual rationality stipulates

U0 � u0 = U�0 . De�ne Gt = b (Ut; t). Since b (U�t ; t) is a martingale, and since by (45),

var (dU�t ) = U
�2
t ((1� �)��)

2 dt=2, we have: bt (t; u)+bUU (t; u)u2 ((1� �)��)2 =2 = 0 for any
u. Therefore, for the general Gt = b (Ut; t),

EtdGt = bt + bUUU
2 ((1� �) �t�)2 =2 = bUUU2 ((1� �)�)2 =2 �

�
�2t � �2

�
:

However, owing to the incentive compatibility condition, �t � �. Therefore, dGt has non-

negative drift, and has 0 drift if it is the candidate optimal policy. This implies:

E0 [b (UT ; T )] � b (U0; 0) � b (u0; 0) = b (U�0 ; 0) = E0 [b (U�T ; T )] :

Since b (UT ; T ) = ((1� �)UT )1=(1��) = cT , we have: E0 [cT ] = E0 [b (UT ; T )] � E0 [b (U�T ; T )] =
E0 [c

�
T ], which means any incentive compatible policy has an expected cost weakly greater than

the candidate optimal one. That means that the candidate optimal policy is indeed cost-

minimizing.

Finally, the various deterministic terms of the type exp (Ct) arise from Ito�s lemma. In par-

ticular, E0
�
W 1��
t

�1=(1��)
= W0 exp

�
r + �� � ��2�2=2

�
t, E0 [Wt] =W0e

(r+��)t, andE0
h
(Pt=P0)

�
i
=
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exp
�
r + �� +

�
�2 � �

�
�2=2

�
t.

Proof of Proposition 9 As in Gabaix and Landier (2008, Section V.A, equation (25)),

the �rm will pay a wage associated with its e¤ective size (Cne��n)
1=
S (n), namely: v =

D (n�) (e
��S(n�))

�=� �
Cne

��=S
���=�

. After the compensating di¤erential, the dollar wage is:

w = ve�, hence (32).

Proof of Proposition 10 De�ne � (c) = u (c; 0), g (0) = 1 and g (�1) = 1= (1� bL).
Call b = E [@c=@r] =E [c] the slope. Since b o¤ers the minimum slope, E [v (c; e) j e = 0] =
E [u (c; e) j e = �1], i.e.

u (c (1� bL) ;�1) = u (c; 0) = � (c)

and so

u (c;�1) = � (c= (1� bL)) = � (cg (�1))

Therefore, u (c; e) = � (cg (e)) for all c and e 2 f�1; 0g.
The converse of the proof is immediate, with b = (1� g (0) =g (�1)) =L.

Proof of Proposition 11 If perk consumption occurs, P1 = P � P
S
L. For the manager

not to take perks, we require

f + �P >
f + �

�
P � P

S
L
�

1� � ;

and so f� < �P
�
L
S
� �

�
. Since f � 0, this cannot be satis�ed if S > L=�.

C Theory Complements

C.1 Multiperiod Model

This Appendix underpins Section 2.4, which extends the pay-performance sensitivity results

of Sections 2.1-2.3 to wealth-performance sensitivity in an intertemporal framework. We use

the setup of Kreps-Porteus (1978), Epstein-Zin (1990) and Weil (1989), so that we have risk

neutrality and smooth consumption over time.28 Let the value function Vt denote the discounted

utility of future consumption:

lnVt = (1� �) ln (ct) + � lnEt [Vt+1]� �et�t:
28As in the core model, risk neutrality signi�cantly enhances tractability (and thus calibratability). Without

smooth consumption, the model would be degenerate as the CEO consumes everything in a period in which he
shirks.
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For instance, if consumption and e¤ort are deterministic, lnVt =
P1

s=0 �
s ((1� �) ln ct+s � �et+s).29

For simplicity, we assume � = 1= (1 + rf ), where rf is the equilibrium riskless rate. Let

Wt denote the CEO�s wealth (�nancial wealth Ft plus the NPV of future pay). The optimal

consumption policy is ct = rfWt= (1 + rf ). The model is most suited for a continuous time

setup, but for expositional reasons, we proceed in discrete time and take the continuous time

limit where applicable.

The CEO has a fraction �t of his wealth in the �rm. The �rm�s return is rt+1 = rf+Let+�t+1,

where r is the risk-free rate and et 2 f�1; 0g. Wealth evolves according to:

Wt+1 = Wt

�
1 + rf + �tLet + �t�t+1

�
� ct+1: (47)

It is well-known that with a logarithmic utility function, the indirect utility of wealth is

lnVt = lnWt + k, where k is a constant independent of wealth.

We now address the incentive compatibility condition. If the CEO shirks at time t, he

increases his utility lnVt by ��t. On the other hand, his wealth at t + 1 is lower by: �Wt =

�Wr (t)L�t;where Wr = @W=@r. (In our example, Wr = W�.) Given that the utility is

lnVt = lnWt + k, shirking increases utility lnVt by:

� lnVt = ��t+ln (Wt +�Wt)�lnWt = ��t+ln

�
1� Wr (t) � L�t

Wt

�
= �t

�
�� Wr (t)L

Wt

�
+o (�t) :

We take the continuous time limit, �t! 0. The agent does not shirk if and only if: ��Wr(t)L
Wt

�
0, i.e.:

@W

@r
� �

L
W (48)

As in Section 2, we select the contract that minimizes the risk in the CEO�s pay. It is given by

@W

@r
=
�

L
W:

Using De�nition 2, the wealth-performance sensitivities in Proposition 6 can be easily de-

rived.

We can further analyze CEO wealth. Assume pay grows at a rate g, so that wt = w0e
gt,

and the CEO exits the labor market with Poisson probability �. Then, the NPV of future

pay is:
R1
0
e�rf se��swt+sds =

R1
0
e�(rf+�)swte

gsds = wt= (rf + �� g) and total wealth (NPV of
future wages, plus �nancial wealth) is Wt = wt= (rf + �� g) + Ft.

29This is still a multiplicative model, like (1). The non-log analog would be:

Vt =
h
(1� �) c1��t + � (Et [Vt+1])

1��
i1=(1��)

(1� �et�t)

as shirking for 1 period increases utility only by an amount proportional to ��t.
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Proposition 12 (Pay for performance sensitivities in the intertemporal model, more explicit
version). Let � denote the cost of e¤ort, L the impact on �rm value, g the expected growth rate

of pay, � the probability of the CEO exiting the labor market, Ft his �nancial wealth, and wt
his expected pay. Then the equilibrium wealth-performance sensitivities, de�ned in De�nition

2, are:

BI =
�

L

�
1

rf + �� g
+
Ft
wt

�
(49)

BII =
�

L

�
wt

rf + �� g
+ Ft

�
1

St
= BI

wt
St

BIII =
�

L

�
wt

rf + �� g
+ Ft

�
= BIwt.

The scalings with �rm size S and the size of the reference �rm S� are as in Proposition 5.

While equation (48) made predictions about the �stock�of incentives, we also wish to exam-

ine the �ow of incentives, i.e. the optimal composition of the CEO�s incremental compensation

next period. LetW� denote the increment in wealth brought by the new compensation. Assume

no consumption for simplicity, and that currently @W
@r
� �

L
W so that incentive compatibility is

achieved. The CEO�s new wealth is W 0 = W +W�. To maintain incentive compatibility, we

require @W�

@r
� �

L
W�., and so @W 0

@r
� �

L
W 0. The least risky contract satisfying this condition is

given by:
@W�

@r
=
�

L
W�: (50)

The one-period model of Section 2 predicted exactly (50). Hence, if one accepts the above

selection criterion, then the predictions we obtain for the incentive mix in the �ow of compen-

sation are exactly the same as in the one-period model of Section 2, in particular Propositions

3, 4, and 5.

C.2 Perks in the Extended Model

We consider the wealth-performance sensitivity required for the CEO to su¢ ciently su¤er from

the 0.1% negative return to deter perk consumption. Let the perk of $L be worth $�L to

the CEO. � parameterizes the ine¢ ciency of perk consumption, where 0 < � < 1 so that

perk consumption is ine¢ cient.30 We use the optimal incentive scheme of Proposition 7, which

derives a constant portfolio share in the �rm. Perk consumption increases the CEO�s utility by

�L and reduces the stock return by L=S, hence his wealth by W�L=S. He therefore avoids the

perk if and only if �L �W�L=S � 0, i.e. � � � S
W
. With � = 1=2, and W = $100 million, we

obtain a portfolio share � � 50. This implies that the CEO must invest 5,000% of his wealth

30� is related to our earlier variable by � = �W=L.
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in the �rm, borrowing to reach that amount (this is possible in continuous time, while always

maintaining positive wealth). This is clearly extreme, for any non-trivial level of risk aversion.

More precisely, we now use a total surplus perspective to explicitly account for the cost

of risk-bearing and show that it substantially outweighs the bene�t of perk prevention. Perk

consumption reduces �rm value by L per unit of time and increases the CEO�s utility by �L,

so the net loss is (1� �)L. If �rm chooses to deter perks with incentives (rather than direct

control), it needs to implement a portfolio share � = � S
W
, so the loss to total surplus calculated

from (27), is (per unit of time): W��2 �
2

2
= �2 S

2

W
��

2

2
. Total surplus rises with perk prevention

if and only if (1� �)L � �2 S2
W
��2

2
, i.e.

LW

S2
� �2

1� �
��2

2
:

With � = 1, �2 = 0:04 (an annual volatility of 20%) and � = 1=2, the right-hand side is

equal to 1%. The left-hand size is ($10 million)($100 million)/($104 million)2 = 10�5. Hence,

the losses from risk-bearing are several orders of magnitude higher than the gains from perk

prevention. As with the previous subsection, this implies that perks are best controlled through

active corporate governance. The exception is for very small �rms, where W is of a similar

magnitude to S.

We summarize this result in the next Proposition:

Proposition 13 (Perk prevention with general incentive contracts). Perks can be deterred with
general incentive contracts if the CEO receives a share:

� � � S
W
: (51)

It is ine¢ cient to deter perk consumption if and only if:

LW

S2
� �2

1� �
��2

2
: (52)
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Table 1: Comparing Di¤erent Measures of Pay-Performance Sensitivity.

bI bII bIII

Measures
� ln c

� lnS

�c

�S

�c

� lnS
Real variables $shares

total pay % shares $ shares

WPS analog
�$W

� lnS

1

w

�$W

�$S

�$W

� lnS
Used by Murphy (1985) Demsetz-Lehn (1985) Holmstrom (1992)

Rosen (1992) Jensen-Murphy (1990) Hall-Liebman (1998)
Boschen-Smith (1995) Yermack (1995)

Schaefer (1998)

This paper
�

L

�

L

w

S

�

L
w

Scaling with S bI / S0 bII / S��1 bIII / S�
bI / S0 bII / S�2=3 bIII / S1=3

Scaling with S(n�) bI / S0S(n�)0 bII / S�(1��)S (n�)�� bIII / S�S (n�)��

bI / S0S(n�)0 bII / S�2=3S (n�)2=3 bIII / S1=3S (n�)2=3

Explanation: This Table shows the 3 di¤erent measures of pay-performance sensitivity (WPS
denotes wealth-performance sensitivity). c is the realized compensation, w is the expected
compensation, S is the market value of the �rm, � is the disutility from e¤ort, L is the value
lost from shirking, and W is the wealth. We suppress the dependence on �rm n for brevity. �
is the cross-sectional elasticity of expected pay to �rm size (w / S�) and empirically is around
� = 1=3. The predictions in this table are from Propositions 3, 4 and 5. The symbol �/�
denotes �is proportional to�. For instance, bII / S�2=3 means that we predict that bII declines
with size S, with an elasticity of -2/3.

43



Table 2: Elasticities of Pay-Performance Sensitivity with Firm Size.

ln(BI) ln(BII) ln(BIII)
ln(Aggregate Value) 0.0648 -0.5778 0.4222

(0.0671) (0.0526) (0.0526)
Year Fixed E¤ects Yes Yes Yes
Industry Fixed E¤ects Yes Yes Yes
Firm Fixed E¤ects No No No
Observations 5,973 5,973 5,973
Adj. R-squared 0.1718 0.3453 0.3618

Explanation: We merge Compustat with ExecuComp (1992-2005) and select the 500 largest
�rms each year by aggregate value (debt plus equity). We use the Core and Guay (2002a)
methodology to estimate the delta of the CEO�s option holdings. BI , BII andBIII are estimated
using equations (22)-(24). See Appendix A for full details. The industries are the Fama-French
(1997) 48 sectors. Standard errors, displayed in parentheses, are clustered at the �rm level.
Based on the calibration of Gabaix and Landier (2008), the model predicts an elasticity of � = 0
for BI , � = �2=3 for BII , and � = 1=3 for BIII :
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Table 3: The Positive Relation between Compensation Volatility and Firm Volatility.

Ex ante measure of volatility Ex post measure of volatility

ln(BI�r) ln(BII�r) ln(BIII�r) ln
�
jWt+1�Wtj

wt

�
ln
�
jWt+1�Wtj

St

�
ln jWt+1 �Wtj

ln(return vol) 1.0882 1.3327 1.3327 0.6435 0.9659 0.9714
(0.1322) (0.1199) (0.1199) (0.1816) (0.1550) (0.1584)

ln(�rm size) 0.0705 -0.5564 0.4436 0.0346 -0.5679 0.4045
(0.0686) (0.0539) (0.0539) (0.0691) (0.0552) (0.0560)

Year FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Firm FE No No No No No No
Observations 5,973 5,973 5,973 4,035 4,035 4,035
Adj. R-squared 0.2586 0.4478 0.4508 0.1421 0.2916 0.2790

Explanation: We merge Compustat with ExecuComp (1992-2005) and select the 500 largest
�rms each year by aggregate value (debt plus equity). We use the Core and Guay (2002a)
methodology to estimate the delta of the CEO�s option holdings. BI , BII andBIII are estimated
using equations (22)-(24). See Appendix A for full details. The industries are the Fama-French
(1997) 48 sectors. Standard errors, displayed in parentheses, are clustered at the �rm level.
The theory predicts a positive coe¢ cient between wealth volatility and stock-return volatility,
contrary to additive models with unbounded e¤ort.
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