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Abstract

We present a general equilibrium model featuring a continuum of overlapping generations,

as in Blanchard (1985). In addition, we assume that agents have standard utilities exhibiting

constant relative risk aversion and can be born with differing risk aversions, discount factors, and

inclinations to work. Once we aggregate, we find that equilibrium asset prices are determined

as if the economy was populated by a single representative agent with time varying risk aversion

that follows a stationary process. Because of this, our model is observationally similar to the

model of Campbell and Cochrane (1999) and is therefore successful at addressing a number of

stylized facts about asset prices. The time variation in the risk aversion of the representative

agent arises endogenously as a result of aggregating standard life cycle consumption and portfolio

choice problems.
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1 Introduction

A significant body of research over the last two decades has focused on uncovering the link between

variations in asset prices and the fundamental macroeconomic risks to the economy. This has

proven to be a challenging task. The baseline textbook consumption-smoothing model predicts too

low equity premia, too high risk-free rates, and asset prices that are substantially less volatile than

in the data, to name just a few of the widely documented failures. This has led many researchers

to become pessimistic about the potential of rational consumption-based pricing models to explain

observed asset valuations.

In this paper we introduce some realistic variations to the standard textbook model of con-

sumption smoothing. With the extensions that we consider, we show that our model can account

reasonably well for many of the perceived failures of the consumption-based asset pricing model.

In particular, we take the following four main departures from the textbook model: a) Instead

of assuming that agents are infinitely lived, we acknowledge the fact that lives are finite and

generations may not be altruistically linked through gifts or bequests; b) agents age, and their

ability to work declines with age; c) agents need not have the same preferences, and d) consumption

and dividends are not equal: dividends are more volatile than consumption, but the two quantities

are cointegrated over the long run.

All four extensions appear realistic and plausible. Furthermore, despite the vast diversity in

the population that is introduced by the continuous arrival and departure of agents, their changing

age, and the differences in their preferences, we are able to obtain a fairly tractable model that

addresses several asset pricing puzzles.

The model is an extension of the perpetual youth model of Blanchard (1985). As in Blanchard

(1985), agents arrive and die according to independent Poisson processes with constant intensity.

In contrast to Blanchard (1985) however, agents endogenously choose the amount of hours that they

want to work, and are hired by a representative firm that is faced with a stochastic productivity

process obeying a random walk. Hence, in contrast to Blanchard (1985), our model is stochastic,

so that we can analyze equity premia.

An additional extension is that agents can have different risk aversions, discount factors, and

inclinations to work. These differences (especially the differences in risk aversion between agents)
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are important for producing time variation in the market price of risk: In the model, agents who are

more risk averse will hold fewer stocks and will be less exposed to aggregate productivity shocks.

By contrast, less risk-averse agents will be holding the majority of risk in the economy. Because of

this, the wealth of the latter group will increase (decline) proportionately more than the wealth of

the former group in response to positive (negative) economic shocks.

Since the economic importance of agents with high risk aversion increases in response to neg-

ative news, these agents will need to absorb a larger fraction of aggregate risk during bad times.

Because of their high risk aversion, they will require a large compensation for absorbing that risk.

Accordingly, the market price of risk (Sharpe ratio) will increase. The opposite will happen in

response to good news. Hence the model produces countercyclical variation in the price of risk.

This basic mechanism is simple, transparent and has been studied in models with infinitely

lived agents by Dumas (1989) and Wang (1996). The new feature of our paper is that the birth

and death of agents in the absence of intergenerational gifts and bequests will imply a stationary

wealth distribution, price to dividend ratio, interest rate, etc. This is unlike the earlier papers of

Dumas (1989) and Wang (1996) where these quantities could be non-stationary. The important

benefit of stationarity is that we can compare the model’s quantitative performance to the data

and examine whether it can explain asset-pricing puzzles.

Furthermore, the assumption of overlapping generations helps address the risk-free rate puzzle,

despite the fact that agents have standard expected-utility preferences. The reason is similar to

the insight of the Blanchard (1985) model: Since agents are faced with declining labor income over

their life cycle, there is a constant pressure to save when agents are young. This increases savings

and reduces the real rate. This simple and intuitive mechanism is absent in models where agents

are infinitely lived because of the absence of life-cycle motivations for savings.

Another important feature of the model is that risk-less rates have low volatility. This is espe-

cially true when we calibrate the model in such a way that agents exhibit similar saving behavior,

despite their differing attitudes to risk. In this case, the variation in the relative importance of the

different types of agents will not affect aggregate savings and hence the real rate, but it will affect

the market price of risk and the risk premia in the market.

By introducing an explicit labor choice and a production function with non-constant dividend

and labor shares, we can reproduce the fact that dividends are more volatile than consumption,
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even though they are cointegrated over the long run. The higher volatility of dividends compared

to consumption, along with the countercyclical variation in discount rates due to changing risk

aversion, makes the volatility of the stock market high, which helps us obtain a reasonably high

equity premium. Furthermore, because of the time-varying price of risk, the model can produce

substantial predictability of excess returns.

In summary, the model is able to reproduce a number of the stylized facts about asset prices.

Importantly, these facts emerge in a framework where the economic mechanisms are transparent

and the model assumptions seem standard and natural. Furthermore, despite the richness of the

setup, we can construct an equilibrium that is characterized by a single state variable, and is

therefore simple to analyze and compute.

The paper is related to various strands of the literature.

There exists a vast literature on asset pricing that explains some of the stylized asset-pricing

facts by utilizing habit formation. Constantinides (1990) and Abel (1990) were early contributions

in this literature. Campbell and Cochrane (1999), in a highly influential paper, pursued the idea

of external habit formation further. They succeeded in engineering a utility function exhibiting

external habit formation that addresses several asset-pricing puzzles simultaneously.

Despite the success of external habit formation in addressing asset pricing puzzles, it appears

that the degree of “envy” for other people’s consumption that is required by such models is strong.

To give a few examples, Ljungqvist and Uhlig (1998) show that in an economy populated by agents

with Campbell and Cochrane (1999) preferences, it might be optimal to produce business cycles,

instead of trying to avoid them. Furthermore, agents should welcome labor taxes as high as 50%.

These implications seem at odds with the observed reluctance of most citizens to vote for high

taxes, and the multitude of economic institutions whose mandate is to promote growth and avoid

fluctuations. Hence, even though external habit formation is an appealing idea, the extent of “envy”

required to explain asset prices seems strong when viewed against the broader implications of these

preferences, beyond asset pricing.

In the model that we propose, the state variable that governs time variation in asset prices

resembles in many ways the “surplus” ratio of Campbell and Cochrane (1999). Hence, we are

able to obtain a model that is observationally similar to Campbell and Cochrane (1999), but

whose economic mechanisms and justification are different. Additionally, in our model dividends
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and consumption are different, yet co-integrated, so that the model can provide a laboratory to

investigate the net present values of consumption, dividends and labor income as separate quantities.

These distinctions have attracted the attention of recent empirical literature in asset pricing1.

We also relate to Chan and Kogan (2002). Chan and Kogan (2002) presents an interesting

approach to obtain a stationary wealth distribution in the presence of heterogeneity. An advantage

of their approach is that they can allow for a continuum of risk aversions. However, their approach

requires that agents only care about their consumption relative to some exogenous habit level that

is co-integrated with aggregate consumption. Agents with such preferences should accordingly be

indifferent between high and low aggregate growth rates, an implication that seems strong, since

citizens typically vote for policies that promote aggregate growth. At a more practical level, the

framework of Chan and Kogan (2002) produces substantial variability in interest rates, in contrast

to our approach.

Several papers utilize variations in the cross-sectional wealth distribution due to some incom-

pleteness to obtain implications for asset prices. This literature is vast and we do not attempt to

summarize it. The papers that relate more closely to ours include Basak and Cuoco (1998), Guve-

nen (2005), Storesletten, Telmer, and Yaron (2007), and Michaelides and Gomes (2007). The first

two of these papers assume infinitely lived agents, and the presence of limited participation allows

the time variation of the wealth distribution to affect returns. A common implication of models

with infinitely lived agents is that wealth eventually concentrates in the hands of agents who par-

ticipate in markets. Even though ours is not a model of limited stock market participation, the

presence of differing risk aversions has observationally similar implications. More importantly, the

assumption of overlapping generations implies that all agents start and end life with zero wealth,

so that the equity premium will not asymptotically reflect only the risk aversion of one group2.

Furthermore, an improvement over Guvenen (2005) is that our interest-rate volatility is very low

and our consumption process is practically unpredictable. Storesletten, Telmer, and Yaron (2007)

and Michaelides and Gomes (2007) study overlapping generations models and introduce frictions.

Storesletten, Telmer, and Yaron (2007) study changes in the cross sectional variation of consump-

tion shocks as Constantinides and Duffie (1996). Michaelides and Gomes (2007) analyze a rich

1See, for instance, the work of Lettau and Ludvigson (2005).
2Guvenen (2005) avoids this problem by assuming a non-growing economy. Because of overlapping generations

we can allow growth and still obtain a stationary wealth distribution.
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setup (limited participation, heterogeneity in both preferences and income, etc.) and focus on un-

derstanding individual portfolio holdings in general equilibrium. However, both frameworks do not

assume an endowment economy, but instead a production economy with exogenous depreciation

shocks. Hence their setup resembles more Cox, Ingersoll, and Ross (1985) rather than Lucas (1978).

In such a framework, the volatility of the stock market is given exogenously. By contrast in an

endowment economy, the volatility of the stock market is determined endogenously. As Storeslet-

ten, Telmer, and Yaron (2007) admit, “solving the analogous endowment economy is substantially

more difficult”. Because volatility is both challenging and central for many other moments (such

as the equity premium, the predictability of returns etc.), we believe that our framework allows us

to address a broader set of asset pricing puzzles compared to previous literature.

We further relate to Santos and Veronesi (2006) and Menzly, Santos, and Veronesi (2004), since

both these papers produce a dividend process that is not identical to consumption in the short

run, but is cointegrated over the long run. The important difference is that in our paper this share

process arises endogenously and jointly with the time variation in discount rates. We do not have

to exogenously assume a structure for the joint dynamics of dividends and discount rates. Hence

our approach complements Santos and Veronesi (2006) and Menzly, Santos, and Veronesi (2004)

and lets the economic mechanisms of the model dictate this crucially important choice.

There is a vast literature on overlapping generations models. We do not attempt to summarize

this literature. A very partial listing of interesting applications of OLG frameworks to asset pricing

include Abel (2003), Constantinides, Donaldson, and Mehra (2002), and Heaton and Lucas (2000).

Most models in the OLG tradition share the feature that the minimal time periods of the model

correspond to decades. The advantage of using a Blanchard (1985) framework is that the model

produces implications for any time interval of interest. Given that most empirical regressions are

run with monthly, quarterly or yearly data, this makes it easier to relate the model to the empirical

asset-pricing literature.

Finally, an attractive feature of the model is that it is tractable, parsimonious, easy to analyze

and relate to existing leading asset-pricing models, and it matches asset-pricing data reasonably

well. Hence, it can form a departure point for more complex exercises (that we do not pursue

here), such as deriving the asset-pricing effects of changes in governmental policies that affect

intergenerational transfers, demographic transitions, etc.
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Section 2 describes the model. Section 3 presents the solution of the model. Section 4 presents

a qualitative discussion and section 5 contains quantitative implications. Section 6 concludes. All

proofs are contained in the appendix.

2 Model

2.1 Agents’ Lives and Preferences

There is a continuum of agents whose mass we will normalize to 1. Existing agents face a constant

hazard rate of death π > 0 throughout their lives. Furthermore newly born agents also arrive at a

rate of π per unit of time, so that the population remains constant. These demographic assumptions

are identical to Blanchard (1985) and are key for the tractability of all the aggregation results.

As is standard in the literature, we will furthermore assume that agents have constant relative

risk aversion and enjoy leisure. A key departure from prevailing representative-agent approaches

is that we will explicitly allow for the possibility that agents have heterogenous preferences. The

most parsimonious way to introduce heterogeneity is to follow Dumas (1989) and Wang (1996) and

assume the presence of two types of agents, which we will label as “type-A” and “type-B” agents.

In particular, normalizing the amount of hours that an agent can work at birth to π+χ
π , we will

assume that “type-A” agents have mass υ and preferences of the form

Es

Z ∞

s
e−(ρA+π)(t−s)

³¡
cAt,s
¢ψA ¡π+χ

π e−χ(t−s) − hAt,s
¢1−ψA´1−γA

ψA (1− γA)
dt, (1)

where ρA > 0 is a subjective discount rate and γA > 0 is the relative risk aversion for agents of type

A. As is well known in the literature, the agent’s effective discount rate is given by ρA+π, because

of the probability of death. Throughout we will keep the notational convention that hAt1,t2 denotes

the hours worked at time t1 by an agent of type A who was born at time t2 ≤ t1. cAt1,t2 is defined

similarly. The constant ψA ∈ (0, 1) controls the relative importance of leisure and consumption.
We follow Blanchard (1985) and assume that the agent’s endowment of hours declines expo-

nentially over the life-cycle at the rate χ. Blanchard (1985) argues that this simple assumption

captures the idea that agents retire, so that their income over the life cycle is downward-sloping.

The exponential nature of the decline facilitates aggregation3.
3We remark here that our results would be unchanged if we assumed that agents have a constant endowment of
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The second type of agents (“type-B agents”) have mass 1−υ and preferences of the same form

as (1), but with potentially different coefficients. Therefore, their expected utility is given by

Es

Z ∞

s
e−(ρB+π)(t−s)

³¡
cBt,s
¢ψB ¡π+χ

π e−χ(t−s) − hBt,s
¢1−ψB´1−γB

ψB (1− γB)
dt. (2)

2.2 Technology

The representative competitive firm owns a fixed capital stock that we will normalize to 1 and

produces a stochastic output

Yt = Ztf (Ht) , (3)

where Zt follows a geometric Brownian motion

dZt

Zt
= µZdt+ σZdBt

for two positive constants µZ and σZ . Ht denotes the aggregate hours worked at time t and is

given by

Ht ≡
Z t

−∞
πe−π(t−s)

¡
υhAt,s + (1− υ)hBt,s

¢
ds. (4)

Note that the expression in (4) accounts for the age distribution in the population though the

term πe−π(t−s) inside the integral.

The function f(Ht) in (3) is an increasing and concave function of the aggregate hours worked

(Ht) . In particular, we will assume that f (Ht) solves the following ordinary differential equation:

f 0(H) =
α(H)f(H)

H
, f(0) = 0 (5)

and that α(H) is a continuous function satisfying

α(H) ∈ (0, 1) , α0(H) ≤ 0. (6)

hours that they lose for ever at some random exponentially distributed time that arrives with intensity χ. One could

interpret such a situation as a health shock that leads to retirement. If we interpret the model in this way, we would

need to also assume the existence of “health insurance” markets, in order to preserve tractability. In those markets

agents would be able to enter contracts that deliver payoffs contingent on the arrival of the health shock.
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First note that f 0(H) > 0, given the above assumptions. Second, differentiating both sides of

(5) and using (6) shows that f 00(H) < 0. Furthermore, in the special case where α(H) is constant

and equal to α, the resulting solution to (5) is the familiar Cobb-Douglas production function

f(H) = Hα. When α(H) is chosen as α(H) = (1−b)H−ν
(1−b)H−ν+b for some ν > 0 and some 0 < b < 1,

then f(H) specializes to the CES production function. Later we show that allowing α(H) to vary

will make it possible to match the empirical fact that the labor share is counter-cyclical and that

dividends are more volatile than consumption.

2.3 Budget Constraints

An agent who supplies ht hours of labor at time t earns a labor income of wtht, where wt is the

prevailing wage. The agent can also trade in a risk-less bond and a stock. The rate of return on

bonds is given by rt. The stock is a claim that delivers a dividend flow given by

Dt ≡ Yt − wtHt.

It is reasonable to conjecture that the stock-price process follows a diffusion:

dSt = (µtSt −Dt)dt+ σtStdBt (7)

for some processes µt and σt. The processes for wt, rt, µt, and σt will be jointly determined later

so that markets clear. It will be convenient for future reference to define the stochastic discount

factor process as

dξt
ξt
= −rtdt− κtdBt, (8)

where κt is the Sharpe ratio in the market defined as

κt =
µt − rt
σt

. (9)

For now, we just note that the agent’s financial wealth evolves as

dKt,s = (Kt,s(rt + π)− ct,s + θt,s(µt − rt) + wtht,s) dt+ θt,sσtdBt, (10)

where Kt,s denotes the financial wealth at time t of an agent born at time s and θt,s denotes the

dollar investment in stocks. (Since this equation is the same for agents of both types, we drop the
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superscript A,B for simplicity). Equation (10) is a standard dynamic budget constraint. The term

πKt,s captures the fact that the agent has no bequest motive and hence will choose to annuitize her

entire wealth4. Furthermore, competition amongst competitive life insurers will drive the income

promised by each annuity contract towards the actuarially fair flow π. To keep the presentation

concise, we refer the reader to Blanchard (1985) who shows in detail that π is the market clearing

price of such a market. For the rest of the paper, we will be concerned with clearing the remaining

markets.

2.4 Markets and Equilibrium

There are four markets that must clear in equilibrium: 1) labor market; 2) current-consumption-

good market; 3) bond market, where a bond available in zero net supply is traded, and 4) a unit

positive supply market for trading a claim to dividends (the stock market).

The definition of equilibrium is standard:

Definition 1 An equilibrium is defined as a set of progressively measurable processes for each

agent’s consumption, labor, and portfolio cit,s, h
i
t,s, θ

i
t,s for i ∈ {A,B} and a set of progressively

measurable processes for the rate of return in the bond market (rt) , wages (wt) and an appropriate

stock market process of the form (7) with progressively measurable coefficients µt, σt such that:

1. Given the process for {rt, wt, µt, σt} and for any s and all t ≥ s, the processes cit,s, h
i
t,s, θ

i
t,s

for i = A,B maximize (1) (objective [1] respectively) subject to (10), the initial condition

Ki
t,t = 0 and the transversality condition limt→∞ e−πtξtKi

t,s = 0.

2. Given wt, firms choose hours H
opt
t so as to maximize profits:

Hopt
t = argmax

Ht

Dt (11)

4To be more specific, annuities work as follows in this context. The agent signs an instantaneous contract that

delivers competitive insurers a fraction ηt of her wealth upon death in exchange for an income of πtηtKt while the

agent is alive. Since the agent has no bequest motives, ηt = 1. For details see Blanchard (1985).
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3. Given cit,s, h
i
t,s, θ

i
t,s for i ∈ {A,B} all markets clear, i.e.,Z t

−∞
πe−π(t−s)

¡
υhAt,s + (1− υ)hBt,s

¢
ds = Hopt

t (12)Z t

−∞
πe−π(t−s)

¡
υcAt,s + (1− υ) cBt,s

¢
ds = Yt (13)Z t

−∞
πe−π(t−s)

¡
υθAt,s + (1− υ) θBt,s

¢
ds = St (14)Z t

−∞
πe−π(t−s)

¡
υ
¡
KA

t,s − θAt,s
¢
+ (1− υ)

¡
KB

t,s − θAt,s
¢¢
ds = 0. (15)

Equation (12) states that aggregate hours supplied by all agents of either type who are alive

at time t have to add up to the total hours demanded by firms. Equations (13), (14), and (15)

capture the analogous requirements for the goods market, the stock market, and the bond market.

3 Solution

In this section we construct an equilibrium. We start by letting Xt denote the consumption share

of type A agents, namely

Xt ≡
υ
R t
−∞ πe−π(t−s)cAt,sds

Yt
. (16)

Since the consumptions of both agents are non-negative, the goods-market clearing condition

(13) implies that Xt ∈ [0, 1]. In the remainder of the section we will construct an equilibrium
with the following properties: a) (Xt, Zt) are jointly Markovian, b) rt, µt, σt are functions of Xt

exclusively, whereas wt will have the form wt = Ztω (Xt) for an appropriate function ω that we

will determine explicitly. In practical terms, this implies that a single variable, namely (Xt) will be

sufficient to characterize the equilibrium interest rate, expected stock market returns and volatility,

despite the heterogeneity created by overlapping generations and differences in preferences.

3.1 Consumption, Labor, and Human Capital

To establish the claims above, we start by defining

u
¡
cit,s, h

i
t,s

¢
=

³¡
cit,s
¢ψi ¡π+χ

π e−χ(t−s) − hit,s
¢1−ψi´1−γi

ψi (1− γi)
for i ∈ {A,B} . (17)
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We adopt the notational convention that u1 denotes the first partial derivative of u with respect

to its first argument and u2 the first partial derivative with respect to the second argument. With

this convention, and assuming that there exists a stochastic discount factor ξt, an agent’s optimal

consumption and labor choice satisfy the first order conditions

e−(π+ρA)(t−s)
u1
¡
cit,s, h

i
t,s

¢
u1
¡
cis,s, h

i
s,s

¢ = e−π(t−s)
ξt
ξs

(18)

−u2
¡
cit,s, h

i
t,s

¢
u1
¡
cit,s, h

i
t,s

¢ = wt. (19)

Equation (18) captures the intertemporal aspect of an agent’s problem. Roughly speaking, it

states that the marginal benefit of an additional unit of consumption in a given state as measured

by the marginal utility of consumption should be equal to the “cost” of a unit of consumption in

that state. In turn this “cost” is measured by the product of the stochastic discount factor and

the probability that the consumer will live until time t (namely e−π(t−s)). Equation (19) is the

standard intratemporal first order condition. It states that the ratio of marginal utilities of leisure

to consumption should be equalized to the opportunity cost of leisure, namely the real wage.

Using the functional-form assumption (17) and the intratemporal first order condition (19) one

arrives at the following relationship between hours, consumption and wages:

hit,s =
π + χ

π
e−χ(t−s) − (1− ψi)

ψi

cit,s
wt

for i ∈ {A,B} (20)

Letting Ht denote the aggregate hours supplied in the economy and using (20) along with (16)

gives

Ht =

Z t

−∞
πe−π(t−s)

¡
υhAt,s + (1− υ)hBt,s

¢
ds

= 1− Yt
wt

µ
(1− ψA)

ψA

Xt +
(1− ψB)

ψB

(1−Xt)

¶
(21)

This expression is the aggregate labor supply relation implied by the model.

To clear the labor market, it remains to determine the aggregate labor demand. To achieve

that, we turn attention to the representative firm’s optimization problem (11), which leads to the

first order condition

Ztf
0 (Ht) = wt. (22)
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Using (5) and (3), equation (22) becomes

Yt
wt
=

Ht

α(Ht)
, (23)

and using (23) inside (21) results in

Ht = 1− Ht

α(Ht)

µ
(1− ψA)

ψA

Xt +
(1− ψB)

ψB

(1−Xt)

¶
. (24)

Given a value of Xt, equation (24) determines the equilibrium quantity of hours implied by

the model. We shall therefore write Ht = H(Xt) to denote this dependence on Xt. Furthermore,

equation (22) implies that the equilibrium wage can be written in the form wt = Ztf
0(H(Xt)). It

will be useful to define

ω (Xt) ≡ f 0(H(Xt)),

so that the resulting equilibrium wage can be expressed as wt = Ztω(Xt) as asserted at the beginning

of this section.

Next we turn our attention to the determination of the interest rate rt and the Sharpe ratio κt.

Using the functional-form specification (17) and carrying out the differentiations leads to

cit,s
cis,s

= e
− ρi
1−ψi(1−γi)

(t−s)
Ã

π+χ
π e−χ(t−s) − hit,s

π+χ
π − his,s

!− (1−ψi)(γi−1)
1−ψi(1−γi)

µ
ξt
ξs

¶− 1
1−ψi(1−γi)

. (25)

We observe that, since (20) has to hold at all dates and states, it implies the following relation

between consumption, hours, and wages between two different points in time:

π+χ
π e−χ(t−s) − hit,s

π+χ
π − his,s

=
cit,s
cis,s

ws

wt
. (26)

Combining (25) with (26) and rearranging leads to

cit,s
cis,s

= e
− ρi
γi
(t−s)

µ
wt

ws

¶ (1−ψi)(γi−1)
γi

µ
ξt
ξs

¶− 1
γi

. (27)

Equation (27) gives the consumer’s ratio of optimal consumption between birth and any other

point in time as a function of wages and the stochastic discount factor. In order to determine the

initial consumption (cis,s) we employ the inter-temporal budget constraint

Es

Z ∞

s
e−π(t−s)cit,sξt dt = Es

Z ∞

s
e−π(t−s)wth

i
t,sξt dt. (28)
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This states that the consumer’s net present value of consumption over the life cycle should be equal

to the net present value of her labor income (since she is born with zero financial wealth). Using

(20) inside the right-hand side of (28) and rearranging gives

Es

Z ∞

s
e−π(t−s)ct,sξt dt = ψi

π + χ

π
Es

Z ∞

s
e−(π+χ)(t−s)wtξt dt.

It is convenient at this point to make the following two conjectures, which we will verify subse-

quently. Namely, we conjecture first that the net present value of human capital, defined as

Φis ≡ ψi
π + χ

π
Es

Z ∞

s
e−(π+χ)(t−s)wt

ξt
ξs

dt, (29)

can be expressed as

Φis = φi(Xs)Ys (30)

for an appropriate function φi (Xt). Second, we conjecture that the initial consumption cis,s for

each agent i ∈ {A,B} is given by

cis,s = βi (Xs)Ys (31)

for an appropriate function βi (Xs) that will be determined subsequently.

3.2 Dynamics of the Stochastic-Discount-Factor and the Consumption Share

Given these assumptions, it is possible to derive the dynamics of Xt. In particular, we will be

interested in determining the drift and diffusion coefficients of the diffusion

dXt = µXdt+ σXdBt. (32)

To achieve that, define the function g (Xt) as

g (Xt) ≡ Yt
Zt
= f (H(Xt)) . (33)

Combining (27), the fact that wt = Ztω (Xt), the definition of g in equation (33) and the definition

of Xt in equation (16) leads to

XtYt = υ

Z t

−∞
πe
− π+

ρ1
γ1

(t−s)
βAs Zsgs

µ
Ztωt
Zsωs

¶ (1−ψ1)(γ1−1)
γ1

µ
ξt
ξs

¶− 1
γ1

ds, (34)
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where we have used the shorthand notation gs = g(Xs) and ωs = ω (Xs) . Applying Ito’s Lemma

on both sides of (34) and matching the resulting diffusion coefficients on both sides shows that (34)

implies

σX
Xt

+ σZ +
g0

g
σX =

(1− ψA) (γA − 1)
γA

µ
ω0

ω
σX + σZ

¶
+

κt
γA

. (35)

Similarly, matching the drift coefficients on both sides gives

µX +

µ
µZ +

g0

g
(µX + σXσZ) +

σ2X
2

g00

g

¶
Xt +

µ
ω0

ω
σX + σZ

¶
σX

= Xt

"
D
Ã
w
(1−ψA)(γA−1)

γA
t ξ

− 1
γA

t

!
−
µ
π +

ρA
γA

¶#
+ υπβAt , (36)

where we have used the shorthand notation

D
³
waξb

´
≡ a

µ
µZ +

σ2Z
2
(a− 1) + ω0

ω
(µX + aσZσX − κtbσX)− bκtσZ

¶
(37)

+
σ2X
2

Ã
a (a− 1)

µ
ω0

ω

¶2
+ a

ω
00

ω

!
− b

µ
rt +

κ2t
2
(1− b)

¶
.

To solve for µX and σX from equations (35) and (36) we need to obtain expressions for rt and

κt, which is facilitated by the goods-market clearing condition (13). Specifically, combining (13)

with (27) gives

X
i∈{A,B}

Z t

−∞
πe
− π+

ρi
γi

(t−s)
υiβ

i
sZsgs

µ
Ztωt
Zsωs

¶ (1−ψi)(γi−1)
γi

µ
ξt
ξs

¶− 1
γi

ds = Ztg (Xt) , (38)

where υA = υ and υB = 1−υ. Once again, applying Ito’s Lemma to both sides of (38) and matching
diffusion terms on both sides yields

σZ +
g0

g
σX =

X
i∈{A,B}

xit

∙
κt
γi
+
(1− ψi) (γi − 1)

γi

µ
ω0

ω
σX + σZ

¶¸
, (39)

where xAt = Xt and xBt = 1−Xt. Similarly, by matching drift coefficients we obtain

µZ+
g0

g
(µX + σXσZ)+

1

2

g00

g
σ2X =

X
i∈{A,B}

υiπβ
i
t+xit

∙
D
µ
w
(1−ψi)(γi−1)

γi ξ
− 1
γi

¶
−
µ
π +

ρi
γi

¶¸
. (40)

Fixing a value of Xt, equations (35) and (39) form a linear system in σX and κt that can be

solved explicitly. This yields σX and κt as functions of Xt. Having obtained σX and κt, equations

(36) and (40) also form a linear system in rt and µX that can be solved explicitly, yielding rt and
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µX as functions of Xt. Since both µX and σX are functions of Xt, the consumption share process

Xt is a Markov process as asserted at the beginning of the section.

The last step in the construction of the equilibrium stochastic discount factor is the explicit

determination of the functions φi and βi. The following Lemma shows how to obtain these functions:

Lemma 1 Let σX(Xt), κ(Xt), µX(Xt), and r(Xt) denote the solution to the system (35)-(40) and

let

µY ≡ µZ +
g0

g
(µX + σXσZ) +

σ2X
2

g00

g
(41)

σY ≡ σZ +
g0

g
σX . (42)

Then the function φA(Xt) is the solution to the differential equation

0 =
σ2X
2

¡
φA
¢00
+
¡
φA
¢0
(µX + σX(σY − κ))+φA(µY − r−σY κ−π−χ)+ψAπ + χ

π

ω(Xt)

g(Xt)
, (43)

where we have used the simpler notation σX , µX , r, κ, rather than σX(Xt), µX(Xt), etc.. The func-

tion φB(Xt) is given by φB (Xt) =
ψB
ψA

φA (Xt) . Finally, the functions βi, i ∈ {A,B} are given as
βi(Xt) = φi(Xt)/ζ

i(Xt), where ζi(Xt) solves the differential equation

−1 =
σ2X
2

¡
ζi
¢00
+
¡
ζi
¢0 µ

µX + σX
(1− ψi) (γi − 1)

γi

µ
σZ +

ω0 (Xt)

ω (Xt)
σX

¶
− σX

γi − 1
γi

κ

¶
(44)

+ζi

"
D
Ã
w
(1−ψi)(γi−1)

γi
t ξ

1− 1
γi

t

!
−
µ
π +

ρi
γi

¶#
.

Equations (43) and (44) form a system of three ordinary differential equations in ζi (Xt) , φ
A (Xt).

By determining the solution to these three differential equations we can obtain rt, κt, µX and σX

as functions of Xt, which in turn allows us to determine the dynamics of the stochastic discount

factor ξt for this economy.

3.3 Stock Price

Given ξt it is possible to define the stock market value as follows

St ≡ Et

Z ∞

t

µ
ξu
ξt

¶
Dudu. (45)
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We will assume throughout that St < ∞. To verify that the constructed allocation forms an

equilibrium, it remains to verify conditions (14) and (15). Adding up these two equations, and using

Walras’ law it suffices to verify that the aggregate financial wealth is equal to the stock market

value

X
i∈{A,B}

Z t

−∞
πe−π(t−s)υiKi

t,sds = St (46)

The next Lemma asserts that equation (46) holds.

Lemma 2 Let St be defined as (45). Then equation (46) holds.

It is also possible to give a simple expression for St in terms of the functions ζi, φi.

Lemma 3 The stock market value is given as

St = Yt

⎡⎣ X
i∈{A,B}

ζi (Xt)
Xi
t

ψi
− π

π + χ

φA (Xt)

ψA

⎤⎦ (47)

From (47) we obtain the price dividend ratio as

p(Xt) =
St
Dt

=
1

1− α (H(Xt))

⎡⎣ X
i∈{A,B}

ζi (Xt)
Xi
t

ψi
− π

π + χ

φA (Xt)

ψA

⎤⎦
Finally, the stock-market volatility is computed as

σt = σ(Xt) = σZ +

µ
p0

p
− α0H0
(1− α)

+
g0

g

¶
σX (48)

and the expected return on the stock market as

µt = rt + κtσt.

4 Qualitative Features of the Model

Before proceeding with an analysis of the quantitative implications of the model, it is easiest to

start by examining some special cases that will illuminate the channels behind the model. Our

aim in this section is simply to give intuition. The quantitative importance of these channels is

illustrated in the next section.
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4.1 Homogenous Preferences and the Role of Life-Cycle Savings

We will start our analysis with the special case where ψA = ψB = 1, γA = γB = γ, and ρA =

ρB = ρ, so that agents of type A and agents of type B have identical preferences and supply labor

inelastically. In this case Xt = 1, hence µX = σX = 0, and also Ht = 1. Furthermore, all functions

of Xt are constants that we can determine in closed form. Specifically, equation (24) shows that

aggregate hours are constant5, and hence g0, g00, ω0, ω00 are all zero. Hence equations (39) and (40)

become

κ = σZγ (49)

r = ρ+ γµZ −
κ2

2

µ
1 + γ

γ

¶
− γπ (β − 1) . (50)

The above two equations are reminiscent of the equations that are obtained in standard textbook

treatments of the Lucas (1978) tree model with a representative agent having CRRA preferences

and facing an endowment that follows a geometric Brownian motion. In particular, when π = 0 the

above two equations coincide with the well known equations for the Sharpe ratio and the interest

rate in a Lucas tree setup.

The only departure from the standard representative-agent model that is introduced by over-

lapping generations is the additional term −γπ (β − 1) in the expression of the interest rate. This
term will tend to reduce the interest rate whenever β > 1 – i.e., when the consumption of the

agents entering the economy is larger than that of the agents exiting the economy, in this model

equal to average consumption – and hence can help resolve the so-called low risk free rate puzzle.

To determine β, we use equations (61) and (44) recognizing that ζ 0 = ζ 00 = φ0 = φ00 = 0 and

the fact that β = φ
ζ to obtain

β =
π + χ

π

α(1)

r + π + χ+ σZκ− µZ

∙
γ − 1
γ

µ
r +

κ2

2

1

γ

¶
+ π +

ρ

γ

¸
.

Plugging this expression for β into (50) leads to the following quadratic equation for the interest

5This is reminiscent of the result in the seminal paper by King, Plosser, and Rebelo (1988), who show an analogous

result in a model that has a representative agent with preferences given by (17).
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rate:

0 =
1

γ
r2 + r

µ
−µZ −

µ
π +

ρ

γ

¶
+
1

γ
(π + χ+ σZκ− µZ) + (π + χ)α(1)

γ − 1
γ

+
κ2

2

1 + γ

γ2

¶
∙
−µZ +

κ2

2

µ
1 + γ

γ2

¶
−
µ
π +

ρ

γ

¶¸
(π + χ+ σZκ− µZ)

+ (π + χ)α(1)

∙
γ − 1
γ2

κ2

2
+ π +

ρ

γ

¸
.

Figure 1 illustrates the effects of changing χ on the equilibrium interest rate r. The graph

reconfirms (in a stochastic environment) the observations originally made by Blanchard (1985): An

increase in χ reduces the interest rate.

This is intuitive: A more steeply declining labor income forces agents to save early in life, thus

raising savings and lowering the equilibrium interest rate. This helps in resolving the low risk free

rate puzzle. Figure 1 illustrates how one can still obtain relatively low interest rates even for high

levels of γ.

Even though the decline of labor income over the life cycle can help explain the low real rates

that are observed in reality, a model with identical agents produces a constant price-to-dividend

ratio and hence cannot explain why the stock market is more volatile than dividends, which in

turn are more volatile than consumption. Next, we will utilize the heterogeneity of preferences to

introduce variation in discount rates and hence the price-to-dividend ratio.

4.2 Heterogenous Agents

4.2.1 Sharpe Ratio

In what follows we will continue to assume that ψA = ψB = 1 but γA 6= γB and ρA 6= ρB.Without

loss of generality we will assume that γA < γB. This special case is particularly attractive, because

it implies that aggregate hours worked will still be Ht = 1. However, now Xt will be a time varying

process. Since hours are constant, this implies that the aggregate output Yt satisfies

dYt
Yt

=
dZt

Zt
,

so that the aggregate endowment follows a geometric Brownian motion, as is commonly assumed in

the literature. Furthermore, since hours are not time varying, both functions g (Xt) = f(H(Xt)) and
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Figure 1: Interest rates as a function of χ for various levels of risk aversion γ. The line “infinite”

refers to the interest rate in the case where agents are infinitely lived and “finite” to the case where

they are finitely lived and generations overlap. The rest of the parameters are ρ = 0.01, µ = 0.018,

σ = 0.04, π = 0.01, α(1) = 0.8.
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ω (Xt) = f 0 (H(Xt)) are constants. It will simplify the formulas to define the following expression

that is a weighted harmonic average of agents’ risk aversions:

Γ (Xt) ≡ 1
Xt
γA
+ (1−Xt)

γB

. (51)

Using this definition and the fact that hours are constant, equation (39) simplifies to

κt = Γ (Xt)σZ . (52)

Since Γ0 < 0, if follows that κt is a declining function of Xt. Furthermore, equation (35) together

with (52) leads to

σX
Xt

= σZ

µ
Γ (Xt)

γA
− 1
¶
. (53)

Since Xt ∈ [0, 1], both the numerator and the denominator are positive, so that σX ≥ 0. Hence,
the state variable Xt increases in response to positive innovations to the exogenous productivity

process Zt and hence to positive news about the aggregate endowment Yt. Since κt is declining in

Xt, this implies that the Sharpe ratio in the economy is countercyclical.

This property of the model is a first illustration of the forces of aggregation: Less risk-averse

agents (type A agents) will have portfolios that are more tilted towards stocks, and hence their

wealth is more exposed to aggregate productivity risks. As a result, their wealth increases more

than the wealth of more risk-averse agents (type B agents) in response to positive economic news.

This increases the relative importance of type-A agents in the economy, which is captured by Xt,

i.e, the share of their consumption of the aggregate endowment. Furthermore, by equation (52),

the Sharpe ratio is proportional to the (harmonic) weighted average of the risk aversions of the two

agents, where the weights are given by Xt and 1−Xt. Accordingly, the Sharpe ratio declines when

the less risk-averse agents become relatively more important.

It should be noted here that the interaction of heterogeneity with overlapping generations helps

overcome a problem of models where agents have heterogeneous preferences, but are infinitely

lived. In these models, the less risk-averse agent will typically drive out the more risk-averse agent

asymptotically. This absence of stationarity makes it difficult to calibrate the model to the data.

For instance, in such models the P/D ratio will asymptotically converge to a constant, as will the

interest rate and the Sharpe ratio. This is in contrast to the data, where the P/D ratio follows a
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stationary process. Overlapping generations help overcome this problem: Because agents have no

bequests, the wealth distribution has a stationary distribution, as do the P/D ratio, the interest

rate, and the Sharpe ratio.

4.2.2 Interest Rate

The implications of the model for the interest rate can be seen by examining (40). Given the

specific assumptions we have made in this section, this equation becomes

rt = Γ (Xt)
£
ρ (Xt) + µZ − π

¡
β (Xt)− 1

¢¤− (Γ (Xt)σZ)
2

2

⎧⎨⎩
Xt
γA

³
γA+1
γA

´
+ (1−Xt)

γB

³
γB+1
γB

´
Xt
γA
+ (1−Xt)

γB

⎫⎬⎭ , (54)

where

β (Xt) ≡ υβAt + (1− υ)βBt (55)

ρ (Xt) ≡ Xt
ρA
γA

+ (1−Xt)
ρB
γB

. (56)

Equation (54) looks remarkably similar to equation (50). The main difference is that the

homogenous risk aversion γ in equation (50) is replaced with Γ (Xt) , the discount rate ρ is replaced

with Γ (Xt) ρ (Xt) and the term β in (50) is replaced by an average of βAt and βBt , both of which

are functions of Xt. As in section 4.1, the presence of the term −π(β (Xt) − 1) has a dampening
effect on the interest rate, which drives the relatively low level of interest rates that we obtain later,

when we calibrate the model.

Equation (54) also helps illustrate under what assumptions the model can produce a small

variability in the interest rate, despite time-varying risk aversion. Equation (54) decomposes the

interest rate into two components. The first component, namely

Γ (Xt)
£
ρ (Xt) + µZ − π

¡
β (Xt)− 1

¢¤
,

captures the usual intertemporal smoothing motives, while the second component, namely

(Γ (Xt)σZ)
2

2

⎧⎨⎩
Xt
γA

³
γA+1
γA

´
+ (1−Xt)

γB

³
γB+1
γB

´
Xt
γA
+ (1−Xt)

γB

⎫⎬⎭ , (57)

captures the precautionary-savings motive. WhenXt declines, Γ (Xt) increases and hence aggregate

precautionary savings in equation (57) increase6, as the importance of more risk-averse agents
6As long as γB > γA > 1.
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(type-B agents) increases. If Γ (Xt) is sufficiently high and β (Xt) is a declining function7 of Xt,

the interest rate would start to decline when Γ (Xt) increases, since rt in (54) is a quadratic and

concave function of Γ(Xt). This would happen in response to negative productivity shocks that

would reduce Xt. Hence, one would expect procyclical interest rates that would “inherit” some of

the variation of Xt.

In the data the real interest rate is by and large acyclical and substantially less volatile than stock

returns. Our setup allows a simple way to reproduce this fact within the model, namely by assuming

that ρ (Xt) is a declining function of Xt. In light of equation (56) this amounts to assuming that

ρB > ρA. Intuitively, if the more risk averse agents are also sufficiently impatient, their increased

appetite for precautionary savings caused by their high risk aversion will be counteracted by their

lack of savings due to their impatience. Hence, the agents’ attitudes towards savings are roughly

similar, whereas their attitude towards risk can be substantially different. As a result, variations in

the relative importance of type-A and type-B agents will end up affecting risk premia rather than

interest rates.

4.3 Dividends and Labor

The standard assumption in several asset pricing models since the work of Lucas (1978) is to assume

that dividends are equal to consumption, which implicitly means that the labor share is zero. This

is a useful theoretical abstraction. It implies, however, that the volatility of the two series is the

same. In the data the volatility of dividends is larger than the volatility of consumption. However,

one would expect the two quantities to be cointegrated over longer-run horizons.

The model can capture these effects in a simple way by allowing agents’ preferences to be

heterogeneous not only with respect to risk aversion and the subjective discount factor, but with

respect to the inclination to work as well. In particular, if ψA 6= ψB, then equation (24) implies

that hours worked will become a function of Xt. An application of the implicit function theorem

to (24) implies

1

Ht

dHt

dXt
=

³
1
ψA
− 1

ψB

´
α0(Ht) (1−Ht)− α(Ht)

Ht

. (58)

Since α0(Ht) ≤ 0, α(Ht) ≥ 0 and Ht ≤ 1, the denominator on the right hand side of (58) will be
7This turns out to be the case when one solves the model for reasonable parameters.
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negative. If ψA > ψB the numerator will be negative and hours will be an increasing function of Xt,

whereas if ψA < ψB, hours will be a declining function of Xt. In the data, hours are procyclical and

hence we will assume from this point onward that ψA > ψB. The existence of stationary variation

in hours implies that the model will endogenously produce cyclical variation in output alongside the

variation caused by shocks to productivity (Zt). Using the definition of g in equation (33), the fact

that Ht is an increasing function of Xt also implies that output is increasing in Xt. Mathematically,

g0 (Xt) > 0.

Since we are interested in the asset-pricing implications of the model, we will not focus on

these effects. Instead, we will calibrate the model so as to ensure that hours supplied are roughly

constant and as a result consumption is roughly a random walk. To achieve this, we will choose

1 = ψA ' ψB.

For our purposes, we will only need a small and procyclical variation in hours, which in conjunc-

tion with (5) and (6), will result in a countercyclical labor share and hence a procyclical dividend

share of output. More specifically, the volatility of dividends σD is given by

σD ≡ σZ +

µ
g0

g
− α0H0
(1− α)

¶
σX (59)

Given the assumption ψA > ψB all three terms in the above expression are positive, since g
0 > 0,

α0 ≤ 0, σX > 0, and H0 > 0 by equation (58). This means that dividends are more volatile than

productivity and also than output (and hence consumption), since σY < σD by (42). However, over

longer horizons (log) dividends and (log) output are cointegrated since the dividend-to-consumption

ratio 1− α(Xt) is stationary.

One important challenge for models that produce such realistic dynamics for consumption and

dividends is that the volatility of stock prices as given by (48) may become smaller than σD. Al-

ternatively put, such models may produce countercylical variation in the price to dividend ratio,

contrary to the data. To see the source of the potential problem, it is easiest to consider figure

2 and consider the following thought experiment: Suppose that a model can produce a volatility

of dividends that is higher than the volatility of consumption, say by a factor of k > 1. Roughly

speaking, if consumption increases (instantaneously) by 1 percent, dividends have to increase (in-

stantaneously) by k percent. To simplify matters, we shall assume furthermore that consumption

is a random walk in logs, so that this 1 percent increase is permanent. Finally, we shall also assume

that the model also implies that (log) consumption and (log) dividends are cointegrated. This last
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Figure 2: The implications of co-integration between dividends and consumption.
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assumption implies that the long-run response of (log) dividends to a one percentage point change

in (log) consumption must also be one percent. Else the two series would not be cointegrated.

Since the short-run response of (log) dividends (k percent) is larger than their long-run response

(1 percent), this means that the anticipated growth rate in dividends will be negative. Because

of this, the well known Campbell-Shiller decompositions of the ratio of prices to dividends (P/D

ratio) imply that the P/D ratio should be expected to decline in response to a positive consumption

shock, if discount rates are constant.

However, in the present model discount rates will not be constant: Instead, they decline in

response to positive shocks, as explained in section 4.2.1. If the decline in the anticipated dividend

growth is smaller than the decline in discount rates, the price to dividend ratio is procyclical, as in

the data.

As Lettau and Ludvigson (2005) point out, the comovement of discount rates with the antici-

pated growth rate in dividends can help account for the observed inability of the price-to-dividend

ratio to predict dividend growth. If the variation in discount rates is sufficiently large, then the

price to dividend ratio will be procyclical8.

Finally, because the labor share is countercyclical, the model is qualitatively consistent with the

three observations about labor income growth reported in Lustig and Van Nieuwerburgh (2007).

Specifically, dividend growth and labor income growth are negatively correlated in our framework.

This is intuitive: When the labor share α(Xt) is above its stationary mean, it can be expected

to mean revert. Hence, dividends can be expected to increase as a fraction of the aggregate

endowment, while labor income can be expected to decline. Furthermore, shocks to the productivity

shock Zt increase Xt (by equation [53]) and hence make α(Xt) decline since α0(Xt) ≤ 0. Because
a(Xt) can be expected to mean revert after such a shock, anticipated labor income growth will

be positively correlated with “current” shocks to the productivity process. Finally, when Xt is

below its stationary mean, α(Xt) is above its stationary mean and can be expected to mean revert.

Hence, periods of high expected return will coincide with periods of low anticipated income growth.

All these observations are consistent with the evidence reported in Lustig and Van Nieuwerburgh

8It is even possible that the P/D ratio can predict dividend growth with a negative sign, as opposed to a positive

sign. This is consistent with the data (see. e.g. the textbook of Cochrane (2005), p. 392) and when we calibrate the

model we can reproduce this effect, as we explain below.
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µZ 0.018 γA 3 β1 0.99

σZ 0.041 γB 18 β2 0.81

υ 0.1 ψA 1 β3 0.5

π 0.01 ψB 0.95 β4 0.3

χ 0.018 ρA 0.001

ρB 0.3

Table 1: Parameters used in the calibration.

(2007).

5 Quantitative Results

5.1 Parameter Choice and Calibration

To calibrate the model we need to choose eleven parameters along with a functional form for

α(Ht) = α(H(Xt)).

The parameters that we use for the calibration are given in Table 1. The parameters µZ and

σZ are chosen so as to match the mean growth rate and the volatility of consumption growth

respectively.

The parameters π and χ are chosen so that the median agent dies at age 69, and half of her

endowment of hours over her entire life cycle occurs before age 39. We note here that given the

stylized assumptions of the model, the start of the work-life and natural life coincide. Clearly, both

of these numbers are hard to calibrate exactly to the data. In real life, death rates are age dependent

and the hours worked over the life cycle are not described by exponential decay. Nevertheless, given

the tractability of aggregation that is allowed by these assumptions, we believe that our choices for

π and χ are reasonable quantitatively.

The parameter υ controls the fraction of the population that is comprised by the less risk averse

agents. Since these are the agents that are predominantly exposed to risk (holding stocks), we set

that number to 10%, to reflect the order of magnitude of the average number of stockholders in the

long historical sample of returns that we are interested in matching.

The parameters that pertain to agent preferences are given in the second column of Table 1.
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These preferences are chosen so that the model can match asset-pricing data. To be able to match

the joint empirical facts that equity premia are time varying, whereas interest rates are not very

volatile, we need a joint assumption on the discount rates and the risk aversion of the agents.

Roughly speaking, we need to keep the aggregate savings in the economy relatively unaffected by

variations in Xt, while keeping the risk attitudes of agents very different. The latter is achieved

by setting the risk aversion of type-B agents substantially higher than the risk aversion of type-A

agents. In our model this implies that type A-agents hold more stock than type B- agents.Even

though we choose these large differences in risk aversion so as to match aggregate asset pricing data,

these differences do replicate a pattern in microeconomic data, namely that households that are

wealthy and tend to hold more stock also tend to have a consumption that exhibits higher covariance

with the stock market, especially over longer horizons. For instance Vissing-Jorgensen, Malloy,

and Moskowitz (2007) argue that the “long-run” covariance between consumption and returns for

wealthier, stock-holding households is 4 times larger than the equivalent covariance for the rest of

the households. One can show that in our setup type-A agents have a covariance between long run

consumption growth and returns that is γB/γA = 6 times higher than the equivalent quantity for

type-B agents.

To ensure that variations in Xt do not affect aggregate saving behavior, we need to set ρB higher

than ρA for the reasons we gave in section 4.2.2. It should be noted here that despite these large

differences in discount rates, equation (27) suggests that, since ρi
γi
is similar for the two agents, the

drift in their consumption path over the life cycle will not be affected considerably by the large

difference in their preferences.

Finally, the parameters that control the agents’ disutility of work are intentionally chosen very

close to each other. From equation (24) we know that, when ψA ≈ ψB, hours do not vary con-

siderably, and hence the predictable components of consumption growth become negligible. In

particular, by combining values of ψA ≈ ψB ≈ 1 with a steeply declining α (H(Xt)) we can ensure

that the volatility in Xt will almost exclusively affect the share of dividends, and not the predictable

components of consumption. To have enough flexibility to obtain these properties, we parameterize

α(H(Xt)) as

α(H(Xt)) = (β1 − β2)N (β3(X − β4)) + β2, (60)
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Data Model

Mean annual consumption growth 1.72 1.69

Volatility of annual consumption growth 3.28 3.41

Mean riskless rate 1.83 3.61

Standard deviation of riskless rate 3.00 0.52

Mean equity premium 4.18 2.73

Standard deviation of stock market returns 17.74 10.68

Sharpe ratio 0.24 0.25

Mean dividend share of output 17.6 13.6

Standard deviation of dividend share 4.3 6.5

Standard deviation of dividend growth rate 0.12 .09

Table 2: Unconditional annual moments of the data. The first seven rows in the data column are

from Chan and Kogan (2002). In the data column, the volatility of the interest rate is the volatility

of the ex-post real rate. Hence, it overstates the volatility of the ex-ante riskless rate, because it

doesn’t account for inflation surprises. The eighth and ninth row are from the Bureau of Economic

Analysis (Table 1.10) and spans the years 1929-2005. We include both proprietors income and

corporate profits in computing the “dividend share" in the data. The final row is based on data

available on the website of R. Shiller (Real dividends between 1871-2005).

where N is the cumulative normal distribution and β1, β2, β3, and β4 are constants that we can

choose to match certain properties of the data. Equation (60) implies that α ∈ (β1, β2) for any
value of Xt, so that β1 and β2 control the range of α. The constants β3 and β4 control the steepness

of the function and the point at which it achieves its maximum slope (in absolute value).

Our choices of β1, β2, β3, and β4 control the production function of the economy and are chosen

so as to imply a stationary dividend share and a volatility of that share close to the data.

5.2 Unconditional Moments

Table 2 compares the model’s performance with some key moments in the data. The model’s

performance is not as good as Campbell and Cochrane (1999), but it does explain a significant

fraction of some asset pricing facts. Most moments are within a reasonable distance from their
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empirical counterparts. The main moment that is underpredicted by the model is the volatility of

equity. The real rate and the equity premium are about 1.5 percent away from their target values.

The volatility of the interest rate is about 50 basis points in the model. We have intentionally

kept this volatility low, in order to show the potential of our framework to address a common

problem of most asset pricing models. The model fit could be improved further by increasing the

volatility of the interest rate. This would raise the volatility in stock prices, which is the main

moment that is missed by the model.

The main conclusion is that the model explains a significant fraction of certain unconditional

asset pricing moments, despite the usage of standard expected utility specifications and without

relying on excessive interest-rate volatility.

5.3 Conditional Moments

Figure 3 gives a depiction of the instantaneous Sharpe ratio, risk-free rate, conditional volatility,

and equity premium as functions of Xt. The range of values of Xt correspond to ±3 (stationary)
standard deviations around its stationary mean. The range of values for the conditional equity

premium is larger than the equivalent range for the riskless rate. Hence, most of the variation in

discount rates is related to variations of the equity premium, not the interest rate. This presents

an improvement over Chan and Kogan (2002) where the variability in interest rates is larger than

the variability in excess returns.

Figure 4 addresses another feature of the model that is consistent with the data and presents

a challenge for many models: The joint presence of a procyclical dividend share and a procyclical

price-to-dividend ratio. Figure 4 presents the dividend share in the economy and the P/D ratio as

a function of Xt. Note that both the dividend share and P/D are increasing in Xt. As we explained

in section 4.3, this can only happen if the variation of discount rates is stronger than the variation

in anticipated dividend growth rates. This is consistent with the evidence reported in Lettau and

Ludvigson (2005) who find that the P/D ratio cannot predict dividends because of the offsetting

effect of discount rates.

Table 3 gives a different perspective on these effects by showing the strong predictive ability

of the P/D ratio for excess returns. The model overpredicts the absolute value of the coefficients

in the predictive regressions for excess returns. This is partly driven by the fact that the model
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Figure 3: The top left panel depicts the Sharpe ratio as a function of the consumption share of

type A agents (less risk averse agents), which is denoted as X. The top right panel depicts the

interest rate as a function of Xt. The bottom left panel depicts the instantaneous volatility of the

stock market and the bottom right panel the equity premium, both as functions of Xt.
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Horizon (Years) Data Model

Coefficient R2 Coefficient R2

1 -0.13 0.04 -0.31 0.02

2 -0.28 0.08 -0.74 0.04

3 -0.35 0.09 -1.15 0.07

5 -0.60 0.18 -1.91 0.12

7 -0.75 0.23 -2.58 0.17

Table 3: Long Horizon Regressions of excess returns on the log P/D ratio. The model column

reports the mean of the regression results for 1000 simulated paths of length 80 years.

underpredicts the volatility of the (log) P/D ratio9. This is to be expected, because of the offsetting

effects of dividend growth on the time variation in discount rates. The R2 of the regression, which

is less affected by this issue, has the right order of magnitude when compared with the data.

5.4 The Dynamics of Cross-Sectional Inequality

The model’s key mechanism is that the wealthier agents (type-A agents) become comparatively

richer when the stock market performs well and poorer agents become comparatively poorer when

the stock market performs badly. Wolff (1992) provides some direct evidence to that effect. With

data that go back to the twenties he shows that the wealth distribution becomes more uneven

in response to positive excess stock market returns. This result is true even after controlling for

changes in the income distribution. Furthermore, Vissing-Jorgensen, Malloy, and Moskowitz (2007)

present evidence that the consumption share of shareholders is useful in predicting subsequent excess

returns.

We next investigate whether the model relies quantitatively on “too much” high frequency

variation in cross sectional inequality to explain returns. Figure 5 depicts the drift, diffusion and

the stationary distribution of the share of consumption that accrues to type-A agents (Xt). The

consumption share of type-A agents exhibits small instantaneous volatility. The middle panel of 5

shows that the consumption share of type-A agents changes by about ±0.015 over the interval of
9The volatility of the (log) P/D ratio is about a third of its empirical counterpart.
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a year. In simulations we find that this translates into a yearly change in the Gini coefficient of

consumption inequality of about 0.0057. This is consistent with the numbers given in Cutler and

Katz (1992) by looking at repeated CES samples in the seventies and eighties10.

The top panel of Figure 5 shows that changes in inequality are very persistent. The average

slope of the curve in Figure 5 is about −0.025. This implies that if one regressed Xt on Xt−1

over subsequent years, one would obtain a coefficient of about e−0.025 ≈ 0.975. The persistence of
changes in Xt implies that the stationary standard deviation of the Gini coefficient of consumption

inequality is larger than the standard deviation of its year-to-year change, and this is how the model

can produce sizable variations in asset prices despite small changes in Xt in the short run. More

importantly, the persistence of changes in the cross sectional inequality seems to be supported by

the data11.

6 Conclusion

In this paper we have presented a model that addresses a number of stylized facts about asset

prices. The model combines four key ingredients: a) Agents are finitely lived, b) They can be

heterogeneous in their preferences, c) They supply less labor as they age, and d) Consumption and

dividends may differ.

These assumptions, which seem natural, help explain simultaneously several asset-pricing phe-

nomena: a) Riskless rates are low, since life-cycle motivations enhance agents’ incentive to save.

b) The Sharpe ratio is volatile, since variations in the wealth distribution determine the relative

importance of agents with differing risk aversion. This composition effect makes our model resemble

an economy that is populated by a representative agents with time varying and countercyclical risk

aversion. c) Since dividends are procyclical and more volatile than consumption, and discount rates

vary countercyclically, stock market prices are volatile and the equity premium is reasonably high.

10Cutler and Katz (1992) report the Gini coefficient for consumption inequality for the years 1960, 1972, 1980,

1984, and 1988. Computing the differences between those years and weighting them by the inverse of the square root

of the time distance between these years (to account for heteroskedasticity in the observations) and then computing

the standard deviation gives 0.0070.
11The Gini coefficient of income inequality in the CPS data follows almost a random walk. Data for consumption

inequality are not available over such a long sample. However, as Cutler and Katz (1992) argue, consumption and

income inequality share similar trends over longer horizons.
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Figure 5: The top panel shows the drift of the consumption share of type-A agents (less risk-

averse agents), which is denoted by X. The middle panel depicts the conditional volatility and the

bottom panel the stationary distribution of Xt.
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d) Most of the variation in discount rates is due to changes in equity premia, not interest rates. e)

The price-to-dividend ratio predicts excess returns. f) Even though dividends are predictable, the

time variation in expected dividend growth is offset by changes in the stochastic discount factor.

This makes the P/D ratio procyclical. g) Dividends are more volatile than consumption in the

short run, but are cointegrated over the long run. h) Consumption is practically a random walk.

These facts are consistent with the data. Moreover, calibrated versions of the model produce a

satisfactory but not perfect quantitative fit.

Accordingly, we believe that the broad conclusion of the model is that overlapping generations

along with preference heterogeneity can go a long way towards explaining prevailing asset-pricing

puzzles. Observationally, our framework resembles a model of exogenous habit formation of the

type proposed by Campbell and Cochrane (1999). However, both the economic mechanisms and

the broader implications of the models differ fundamentally.

Furthermore, our model allows us to draw a distinction between a claim to consumption and

a claim to dividends in a framework where the joint dynamics of dividends and consumption are

modelled realistically. This allows us to use our framework as a laboratory in order to understand

the mechanisms that may be behind a recent empirical literature that exploited this distinction12.

Finally, an important advantage of the model is its analytic tractability. It provides us with a

simple way of reproducing some key asset-pricing facts in a framework that can be used in various

applications. For instance, the model could be expanded to investigate the effect of demographic

shocks (such as a baby boom) on asset prices within a model that reproduces key asset-pricing

facts. The conventional utilities that we use also facilitate policy experiments, such as the effects

of a switch from pay as you go to a fully funded system. Such extensions and applications are left

for future research.

12See e.g. Lettau and Ludvigson (2005).
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A Proofs

Proof of Lemma 1. Combining (29) and (30) leads to

e−(π+χ)sφi(Xs)Ysξs + ψi
π + χ

π

Z s

T
e−(π+χ)twtξt dt = ψi

π + χ

π
Es

Z ∞

T
e−(π+χ)twtξt dt (61)

for any T < s. The right hand side of this expression is a martingale, since it is a conditional

expectation. Accordingly, applying Ito’s Lemma to the left hand side implies (43). Equation (29)

implies that φB (Xt) =
ψB
ψA

φA (Xt) . To obtain the functions βi, note that using equation (28), (30)

and (31) gives

ζi = Es

Z ∞

s
e−π(t−s)

cit,s
cis,s

ξt
ξs

dt. (62)

Furthermore, equation (27) implies

ζi = Es

Z ∞

s
e
− π+

ρi
γi

(t−s)
µ
wt

ws

¶ (1−ψi)(γi−1)
γi

µ
ξt
ξs

¶1− 1
γi

dt.

A similar argument to the one given for φi can now be used to arrive at (44).

Proof of Lemma 2. Applying Ito’s lemma to compute d
¡
e−πsξsKi

s

¢
and integrating leads

to

Ki
t,s = Et

Z ∞

t
e−π(u−t)

ξu
ξt

¡
ciu,s − wuh

i
u,s

¢
du (63)

We next observe that generations that will be born at dates that are larger than t neither consume,

nor supply hours, nor own any wealth at time t. This means that for any i ∈ {A,B}

Ki
t,s = cit,s = hit,s = 0 if s > t.

With this observation with (63) we obtainX
i∈{A,B}

Z t

−∞
πe−π(t−s)υiKi

t,sds =
X

i∈{A,B}

Z +∞
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X
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¶
ds
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Proof of Lemma 3. By Lemma 2 we know that
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We can compute the first term in (65) asX
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Now note that equation (27) implies that ciu,s/c
i
t,s is independent of s

13 i.e.,
ciu,s
cit,s

=
ciu,t
cit,t

. Using

this observation together with (62) leads toX
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13To see this, fix a time of birth s, apply equation (27) at two different points in time, say u and t, and then derive

ciu,s/c
i
t,s which is independent of s.
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Similarly we can compute the second term in (65) by using (20) asX
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The first term in (67) can be further rewritten asX
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Combining (68) with (67), (66), and the fact that φB (Xt) =
ψB
ψA

φA (Xt), we arrive at (47).
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