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1 Introduction

In this paper, we construct an equilibrium model of directed search. Un-
employed workers, observing the wages posted at all vacancies, direct their
applications towards the vacancies they find most attractive. At the same
time, (the owners of) vacancies post their wages taking into account that
the wages they post will influence the number of applicants they attract.
Burdett, Shi, and Wright (2001) (hereafter BSW) develop a model of this
type, albeit in a product market setting. In the labor market version of
BSW, each unemployed worker makes a single application. They show that
there is a unique symmetric equilibrium in which all vacancies post a wage
between zero (the monopsony wage) and one (the competitive wage). The
value of this common posted wage depends on the number of unemployed,
u, and the number of vacancies, v, in the market.

In our model, each unemployed worker makes a fixed number of appli-
cations, a, where a € {1,2,...,v}. BSW is thus the special case of a = 1.
In addition to being more realistic — job seekers in fact typically apply to
more than one vacancy at a time —, the model with multiple applications
is of interest because its results differ qualitatively from those of the sin-
gle application model. In particular, when a € {2,..,,v}, all vacancies post
the monopsony wage in the unique symmetric equilibrium. However, when
workers apply for two or more jobs at the same time, there is a possibil-
ity that more than one vacancy will want to hire the same worker. In this
case, we assume that the vacancies in question can compete for this worker’s
services. The end result is that some workers (those who receive no offers)
remain unemployed, some workers (those who receive exactly one offer) are
employed at the monopsony wage, and some workers (those who receive two
or more offers) are employed at the competitive wage.

We make two contributions by considering the case ofa € {2, ..., v}. First,
we provide a new microfoundation for the matching function,! an essential
ingredient in much of the search literature (Pissarides 2000). The standard
microfoundation for the matching function is the urn-ball model. In that
model, each worker makes a single application, and there is a coordination
problem among applicants because some vacancies can receive applications
from more than one worker, while others can receive none. With multiple
applications, there is a second coordination problem, this time among va-
cancies. When workers apply for more than one job at a time, some workers

1 Qur derivation of the matching function is taken from Albrecht, Gautier and Vroman
(2002). Relative to that paper, our contribution here is to derive our matching function
in an equilibrium setting.




can receive offers from more than one vacancy, while others receive none.
Ultimately, a worker can only take one job, and the vacancies that “lose the
race” for a worker will have wasted time and effort while considering his or
her application. Our matching function incorporates both the urn-ball and
the multiple application coordination frictions.

The second contribution of our multiple application model is that it
generates equilibrium wage dispersion with directed search, even though
workers and vacancies are homogeneous. Some workers are employed at
the monopsony wage and others at the competitive wage. Postel-Vinay
and Robin (2000) have a similar result in an undirected, random search
framework. In their model, as in Burdett and Mortensen (1998), wage offers
arrive at Poisson rates to both the unemployed and the employed. If a worker
who is already employed receives another offer, then that worker’s current
employer and prospective new employer engage in Bertrand competition for
his or her services.

In addition to looking at positive issues — the matching function and
the equilibirum wage distribution —, we also examine a normative question,
namely, whether vacancy creation in a labor market with wage posting and
directed search is constrained efficient. That is, is the equilibrium, free-
entry level of labor market tightness the same as the level that a social
planner would choose? In competitive search equilibrium, as« and v become
arbitrarily large, the results of Moen (1997) suggest an affirmative answer
to this question. To look at this issue, we investigate a limiting version of
our model. We let u,v — oo with v/u = 6 and a fixed. We verify that the
standard efficiency result holds when a = 1, but for each fixed a > 1, we show
that equilibrium is inefficient; specifically, there is excess vacancy creation.
Interestingly, however, if we let @ = v, which corresponds to the model of
Julien, Kennes and King (2002), then equilibrium is always efficient, both
in the finite (u,v) case and in the limiting version of the model.

We now turn in the next section to our basic model. Then, in Section 3,
we consider efficiency. In the final section, we discuss additional issues that
we plan to address in future versions of this paper.

2 The Basic Model

We consider a game played by u homogeneous unemployed workers and (the
owners of) v homogeneous vacancies, where u and v are given. This game
has several stages:

1. Each vacancy posts a wage.




2. Each unemployed worker observes all posted wages and then submits
a applications with no more than one application going to any one
vacancy.

3. Each vacancy that receives at least 1 application randomly selects one
to process. Any excess applications are returned as rejections.

4. A vacancy with a processed application offers the applicant the posted
wage. If more than one vacancy makes an offer to a particular worker,
then those vacancies can bid against one another for that worker’s
services.

5. A worker with one offer can accept or reject that offer. A worker with
more than one offer can accept one of the offers or reject all of them.

Workers who fail to match with a vacancy and vacancies that fail to match
with a worker receive payoffs of zero. The payoff for a worker who matches
with a vacancy is w, where w is the wage that he or she is paid. A vacancy
that hires a worker at a wage of w receives a payoff of 1 — w.

Before we analyze this game, some comments on the underlying assump-
tions are in order. First, this is a model of directed search in the sense that
workers observe all wage postings and send their applications to vacancies
with attractive wages and/or where relatively little competition is expected.
Second, we are treating a as a parameter of the search technology; that is,
the number of applications is taken as given. In general, a € {1,2,...,v}. The
case of a = 1 corresponds to BSW. Third, we assume that it takes a period
for a vacancy to process an application. This is why vacancies return excess
applications as rejections. This processing time assumption is important for
our results. It captures the idea that when workers apply for several jobs at
the same time, firms can waste time and effort pursuing applicants who ul-
timately go elsewhere. Finally, we assume that 2 or more vacancies that are
competing for the same worker can engage in ex post Bertrand competition
" for that worker. This means that workers who receive more than one offer
will have their wages bid up to w = 1, the competitive wage. There are, of
course, other possible “tie-breaking” assumptions. For example, one might
assume that vacancies hold to their posted wages, that is, refuse to engage
in ez post bidding. This, however, would not be in the individual interest of
vacancies.

We consider symmetric equilibria in which all vacancies post the same
wage and all workers use the same strategy to direct their applications.




We will show that for each (u,wv,a) combination there is a unique symmet-
ric equilibrium, and we will derive the corresponding equilibrium matching
function and posted wage. Assuming (for the moment) the existence of a
symmetric equilibrium, we begin with the matching function. The following
result is from Albrecht et.al. (2002).

Proposition 1 The expected number of matches in symmetric equilibrium

M(u,v30) = u(l = (1= —(1 = (1= 2)))"). ¢

Proof: Let g be the probability that any one application leads to a job offer.
This equals the number of vacancies with applications divided by the total
number of applications, that is, ¢ = pv/au, where p is the probability that a
particular vacancy will receive at least one application. If all vacancies post
the same wage, then the optimal mixed strategy for each unemployed (given
that all other unemployed follow the same strategy) is to send applications
to randomly selected vacancies. The number of applications received by any
one vacancy is then a binomial randmg variable with parameters v and a/v,
1-(1—-)

sop=1—(1— 2)“ and ¢ = ————Y—. The probability that at least one
v au/v

of a worker’s applications leads to a job offer is 1 — (1 — q)?; so, the total
number of matches is u[1 — (1 —¢)%]. Substitution gives equation (1). QED.

For a = 1, this result is analogous to the one given in Proposition 2
of BSW. That is, with a = 1 (and with the notational change of m = v
and n = u) our results exactly match those of BSW. For a € {1,2,.,,v},
M (u,v;a) is increasing at a decreasing rate in both 4 and v. In addition,
M (u,v;a) exhibits decreasing returns to scale in (u,v) for each fixed a.
(Proofs available on request.) The basic point of these results is that the
qualitative properties of the matching process in BSW hold for general values
of a, i.e., not just for the special case of a = 1.

The properties of M(u,v;a) as a function of a are of more interest. With
a = 1, the familiar urn-ball friction operates in the labor market. Some va-
cancies receive more than one application, while others receive none, so the
expected number of matches is less than the minimum of v and v. When
workers submit more than one application, the urn-ball friction is reduced
in the sense that the probability that any particular vacancy receives no
applications decreases, but with a > 1, a new friction is introduced by the
multiple applications. A worker who gets multiple offers can only accept
one job. A vacancy that has processed a particular application may find
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at the end of the period that the worker whose application it processed
takes a job elsewhere. The urn-ball friction results from a lack of coordi-
nation among job seekers; the multiple-application friction is due to a lack
of coordination among vacancies. The urn-ball friction decreases with a;
the multiple-application friction increases with a. The result of this inter-
play between the two frictions is that the expected number of matches first
increases but then decreases as a function of a.

The special case of a = v is of particular interest. A matching process
in which workers apply to all vacancies and each vacancy then randomly
selects one applicant is an urn-ball process with the role of urn played by
workers and that of ball played by vacancies. That is, the case of a = v is
essentially the same as that of @ = 1, except that the roles of workers and

vacancies are reversed. The symmetry between the cases ofa =1anda=7v
1 1
can be seen in M (u,v;1) = v(1—(1— ;)“) and M (u,v;v) = u(1—(1— a)”)

The case of a = v is the one considered in Julien, Kennes, and King (2002),
a paper that we discuss below.

Proposition 1 and its implications are only interesting if a symmetric
equilibrium exists. We now turn to the existence question.

Proposition 2 There exists a unique symmetric equilibrium. Whena =1,
all vacancies post a wage of

u(v —1) (”—;1)u

v(v—1) — (13-1)” (u+v(v—1)) @)

w(u,v;1) =

When a € {2,...,v}, all firms post the monopsony wage of w = 0. As in
a
1—(1——)«

Proposition 1, let g = V__ . A fraction aq(1—q)® ! of all job seekers
P q

au/v
receive exactly one offer. These workers are paidw = 0. A fraction 1 — (1 —
q)* —aq(l — q)* ! of job seekers receive two or more offers. These workers

are paid w = 1.

Proof: To prove the existence of a symmetric equilibrium, we need to show
that there is a wage w > 0 such that if all vacancies, with the possible
exception of a “potential deviant” (D), post w, then it is also in the interest
of D to post w. If all vacancies post the same wage, then the unemployed
can do no better than to send their applications to a vacancies selected at
random.

To proceed, we need some notation. First, we let D denote the potential
deviant, posting a wage of w?, and N the nondeviant vacancies; that is,




those posting the common, putative equilibrium wage, which we call w!.
Second, let k be the probability that any individual applies to D. In sym-
metric equilibrium, k must be the same for all workers. Finally, let ¢P be
the probability that a worker is offered the D job, conditional on apply-
ing for that job, and let ¢V be the probability that a worker is offered any
particular N job, conditional on applying for that job.

The expected profit of D as a function of w?, taking wh as fixed, is

r(w?w") = (1 -wP)(1 - 1 - k") —¢")* (3)

When D posts a wage of w?, there are 3 possible outcomes. One is that no
one applies to this vacancy. This occurs with probability (1 — k)¥. In this
case, D’s profit is zero. With probability 1 — (1 — k)*, D receives at least
one application. With probability 1 — (1 —¢")*1, the applicant to whom D
offers its job has at least one other offer. In this case, Bertrand competition
bids the wage up to w = 1, and D’s profit is again zero. With probability
(1 — ¢™)21, however, the applicant has no other offers. In this case, the
applicant accepts D’s offer of w?, leading to a profit of 1 —w®. Using this
notation, a symmetric equilibrium wage is thus a w such that

w solves maz T(w”;w).
wP>0

We next develop explicit expressions for ¢” and ¢"V and an implict ex-
pression for k. The derivation of g” is as follows. The probability that a
particular worker is offered the D job is kqP. At the same time, given that
all workers choose the same value of k, each worker has an equal chance of
being offered the D job, so the probability that the worker is offered this job

equals the probability that this vacancy has at least one applicant divided
1—(1-—k)“
by u. That is, kqP = —u or
u

p_l-(-k* .

ku 4

q
To derive gV, we reason in a similar fashion. There are v — 1 N vacan-
cies. Each worker sends a — 1 applications to the N vacancies; a worker
sends his or her a* application to an N vacancy with probability 1 — k.

The probability that a worker applies to any particular NV vacancy is thus
(a—1)+(1—k) a—Fk s
1 = T so the probability that an N vacancy has at
v — v—

least one applicant is 1 — (1 — Z:

];)“. The probabililty that a worker gets




a—k 1_(1*'0—1)”
a particular N job is (-—1> v = ; thus,
U p—

a—k
1—(1— )u
N _ v—1 _ (5)

For future reference, we note that

9q°  ku(l—-k)“l—-(1-(1-k)¥)

ok k2u (©)
and
a—k\*“ ! fa— a—k\"
652’2(1;;1) ‘“(“rf} ((ﬁ))gJ“l_(l*v—];) 0

To derive an implicit expression for k, we begin with the fact that each
worker has two possible application strategies:

1. Send a — 1 applications to randomly selected N vacancies and also
apply to D;

2. Send all a applications to randomly selected N vacancies.

Note that if @ = v, only the first strategy is possible and k = 1.
Given w? and w¥, we can compute the expected payoffs to the two

strategies. The expected payoff to the first strategy is

P (1 - ¢y twP +qP(1— (1—¢")* )
+(1-¢")(a~1)g" (L —g")*Pwl
+(1-gP)1—(1—¢g")* = (a=1)g" (1 —g")*?).

The first term in this expression reflects the fact that a worker who follows
the first strategy is offered only the D job with probability ¢ (1—¢")*1; in
this case, a payoff of wP is realized. With probability ¢ (1 — (1 — ¢™)*~1),
the worker’s application to D is accepted along with at least one of his or
her applications to the N vacancies; in this case the worker’s payoff is 1.
With probability (1 — ¢”)(a — 1)g (1 — ¢™V)*2, the worker is rejected at
D and accepted at exactly one of the NV vacancies; the resulting payoff is

7




w?. With probability (1 —¢P)(1 — (1 —¢™)* ! — (a — 1)g"¥ (1 — ¢V)*~?),
the worker is rejected at D but gets 2 or more offers at w”; in this case, a
payoff of 1 is realized. The only other possibility is that all of the worker’s
applications are rejected, implying a payoff of zero.

The expected payoff to the second strategy is

agV(1 - g")* N +[1 - (1~ ¢™)* —ag (1 - ¢V)* Y.

The first term reflects the fact that the probability of being offered only one
N job is ag™V (1 — ¢™)*~L. In this case, the worker receives w® . The second
term gives the probability that the worker is offered more than one job in
which case the worker receives 1. For k € (0,1), the expected payoffs from
the two strategies must be equal giving the indifference condition,

(1—¢") (¢PwP — ¢~ +ag" (1 —w™))—(1-¢")(a—1)g" (1-w™) = 0. (8)

Holding w” fixed, we can differentiate (8) with respect to w”. Solving for

uD gives
Ok _ —q°(1=q")
dwP M ’ (9)
where
an D N N N
M o= =P =)+ (- 1g (1 —w)
_+_6(;1_:[_(1 - QCZN)(l - a(l - ’LUN)) — quD — (1 _ qD)(a _ 1)(1 _ ’LUN)]

Now we can return to D’s choice of w”. The derivative of D’s expected
profit (equation (3)) with respect to w? is

(wD: w
% = —(1-Q=-R1-g") T+~ wD)a?U_kD (10)
u(l - k)L - g™) = (11)

(a -1 - qN)a_2§g—k(1 (1 - k)Y

We now show that (i) for a = 1, there is a unique w € (0, 1), namely, the

on(w; w._) = 0 but (ii) fora € {2, ...,v},

wage given by equation (2), such that 50D

on(w; w)
owP

< 0 for all w € [0,1].




D., N
To establish these claims, we need to evaluate M

9D at w
w

D —_
w? = w. When D posts the same wage as the other vacancies, we have

a—k
k= — =afv
P =N = 1—(1-k)" =4
ku
g™ v u—
o~ e AR -9

oqP dq™
TR T

ok _ —a(v - 1)g(1 —q)

owP (1 - k)1~ q@)(w(l —agq) + (a —1)g)

Note that (i) (1—k)*~*—¢ < 0? and (ii) w(1—ag)+(a—1)g > 0 Vw € [0,1]%.

. - . , 9™ 9q
These inequalities, which we use below, imply e > 0, ' < 0, and
Ok 0 ted
a—w'5> ,ﬂ.SEXpece .
When a =1,
om(w;w) 1—w 1 (v—1)q
—_——=—(1-(1=-k)Y) - — 1— k) .
HwD (1—( ) w (“( ) V(1 — k)T =gq)

Setting this expression equal to zero and substituting for £ and q gives the
wage in equation (2).

The situation when a € {2,..,v} is more complicated. In this case, we
have

O (w;w u el
_a(wD—) = —A-(1-K"1-g)
ok u(l—k)* M1 = q)* P~
+1—w)z 5 ( (@a—1)(1 - q)“_za—gg(l —(1-k)")

2proof: Let X be a binomial random variable with parameters u > 1 and & € (0,1).
ku(l—k)* " - (1-(1—-k)™ = =1-1

ku ku
3Proof: The inequality holds at w = 0 and at w = 1, and the expression is linear in

uw.




Using 1 — (1 — k)* = kug and substituting for 50D and T have
o (ww) 1—w ('U - 1)(1 - Q)(l — k)u—l
H — k _1 B _
ow uq ( + v(w(l — ag) + (a — 1)q) ( q— (1— K)o 1 (a—1)q

(13)
Since w(l — aq) + (@ — 1)qg > 0 Vw € [0, 1], the inequality we want to prove
reduces to

(=D -9( -k
(w1 ~ag) + o o) > (1 —w) (DT 0 1)g)

(14)
Note that this inequality is (i) true for w = 1 and (ii) linear in w. Thus, if
we can prove that this inequality holds at w = 0, we will have our result.
That is, we need to show

(v-1N(1 -9 -k
g— =k —(a—1)q. (15)

v(a —1)g >
Since ¢ — (1 — k)*~! > 0, the inequality we want to show can be expressed
as
(v+1)(a—1)glg— (1 -k)*1) —(v-1)1-g1 - k)" >0

If this inequality holds for a = 2, then it holds for a € {3, ..,v}, so we set
a = 2 and show

(v+1glg—(1—k)* ) = (v-1)1-g)1-k)""">0.
To do this, we rewrite the inequality as
o - A=K+ (-1 —k)* T +alg— (1 -k >0

Since the second and third terms on the left-hand side of this inequality are
positive, it suffices to show ¢> — (1 — k)*"1 > 0, i.e,,

(1—(1—k)¥“)?2—k*>(1—-k)*“ >0 (16)
The proof of this final inequality is as follows.* First,

1—(1—k)=k(l4+Q—k)+...+(L—k)*),

1We are extremely grateful to Harald Lang for this proof.
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so (16) can be expressed as
B (4 A=) ot (L= B — a1 - ) ),
Next, since
1 1
E(l + (1 - k) + ...+ (]. — k)u—l) > (1 % (1 — k;) % .. X (1 _ k)u—l)i’

i.e., the arithmetic mean is at least as large as the geometric mean, and

1x (1—E) X o (1— k¥t = (1— k)5
we have
A+Q—-k)+..+1 -k 2 —w?(1-k)*12>0.
QED.

The equilibrium wage for the case of a = 1 is equal to one minus the
price given in Proposition 2 in BSW — again with the appropriate notational
change. The tradeoff that leads to a well-behaved equilibrium wage, w €
(0,1), when @ = 1 is the standard one in equilibrium search theory. As
any particular vacancy increases its posted wage, holding the wages posted
by other vacancies constant, the probability that it will attract at least
one applicant also increases. At the same time, however, the profit that
this vacancy will generate conditional on attracting an applicant decreases.
This tradeoff varies smoothly with u and v; so the equilibrium wage varies
smoothly between zero and one as v increases and/or u decreases. Thus, as
emphasized in BSW (p. 1069), there is a sense in which frictions “smooth”
the operation of the labor market.

When a € {2,...,v}, matters are radically different. No matter what
the values of u and v, so long as workers make more than one application,
the posted wage collapses to the Diamond (1971) monopsony level. The
intuition for this result is based on the change in the tradeoff underlying
equilibrium wage determination. It is still the case that as any particular
vacancy increases its posted wage, holding all other posted wages constant,
the probability that at least one applicant will be attracted also increases.’
However, the profit that a vacancy generates conditional on attracting an

% As a increases, the rate of increase in this probability decreases. In the limiting case
of a = v, an increase in the posted wage cannot increase the probability of attracting an
applicant since that probability is necessarily already one.
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applicant now decreases for two reasons when the posted wage is increased.
First, if the vacancy manages to employ the worker at the posted wage,
then an increase in that wage obviously decreases profit. This is the same
factor that limits increases in the posted wage when a = 1. Second, and
this i1s the new factor, the probability that the applicant will have other
offers increases. The reason is that in symmetric equilibrium, all workers
respond to an increase in the wage posted by one vacancy by increasing
the probability of applying for that job. Equivalently, the probability that
other workers will apply to the same vacancies as the ones applied to by
the applicant selected by the vacancy that increased its wage decreases.
The probability that the selected applicant will get multiple offers and so
generate zero profit thus increases.

Despite the fact that the posted equilibrium wage is zero, there is still
a sense in which “the wage” varies smoothly with v and v. The er post
1-—(1-¢)*—ag(l—gq)*?!

1-(1-¢g)*

with v and decreases with u, and in the limit, as v — oo holding « fixed (as
u — oo holding v fixed), v — 1 (v — 0). Note that since the wage is either
0 (the posted wage) or 1 (the Bertrand wage), that -y is the expected wage
(paid, as opposed to posted).

, increases

fraction of wages equal to one, y =

3 Efficiency

We now turn to the question of constrained efficiency. Since this issue is
usually discussed in the context of “large” labor markets, we first look at
the limiting properties of the labor market described in the preceding section.
To do this, we let the labor market get large in the standard way, namely,
we let the number of unemployed and vacancies increase without limit, but
we do so in such a way that the ratio of vacancies to unemployed, i.e., labor
market tightness, is held fixed. In Proposition 3, we carry out this limiting
exercise holding the number of applications per worker fixed. To make this
clear, we use the notation a € {1, ..., A}, where A is an integer greater than
1 and does not change as u and v go to infinity.

Proposition 3 Let u,v — oo with v/u = 0 and a € {1,..., A} fixed. The
number of matches increases without limit, but the probability that any one
worker finds a job converges to

m(f;a) =1—(1— 2(1 _ e/t (17)
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In the case of a = 1, the wage converges to

w(6;1) = (i/f )ei’sz(__l%? . (18)

In the case of a € {2,...,A}, the fraction of wages paid that equals one
converges to
(6:0) = L2 (L= 8(1—e®/%))a — 01 — e=¥/%)(1 — £(1 — 79/%))a
y(\o;a) = 5 — -
D)

Proof: The probability that an unemployed worker finds a job is

M via) g - Za-a-2p

Taking the limit as u,v — o0 with v/u = € and a fixed gives

m(B5a) =1 (1~ 21— Jim (1— F-)) = 1~ (1 - 2(1 - exp(~3)))"
Similarly,
v—1\"
ulv—1)
w®;1) =  lim ( 2 )

wo =00 y(y— - (L21) s ol - 1)

vju=7~0
lo—1/v-1 ¥
@ v Y

= lim
w00y — 1 v—1\",1 wv-1
. *( v ) W)
(1/6) exp(=1/6)
1 —exp(—1/60)

The expression for v(8; a) is derived using lim g = %(1 — e %%, QED.
UU—00

With a = 1, it is easy to verify that our limiting matching function and
the limiting wage for the case of a = 1 match the corresponding entities
in a labor-market version of BSW. In general, i.e., for a € {1,2,..., A}, the
limiting matching probability has the following properties:

9.
m 9’ %) is decreasing and

(i) m(#;a) is increasing and concave in 6 and

convex in 6,
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(ii) For large values of v and v, the matching function exhibits approximate
constant returns to scale for each fixed a in the sense that in the limit, the
matching probability depends only on the ratio of v to u,

(iii) m(6; a) first increases and then decreases in a.

For the case of a € {2, ..., A}, we also need to investigate the properties
of v(6;a). In a series of plots (not shown), we can see that the expected
wage is increasing and concave in both # and a. The result for 8 is exactly
as one would expect — as the labor market gets tighter, the chance that an
individual worker gets multiple offers increases. To understand v,(6;a) > 0,
especially in light of the fact that m(0;a) first increases but then decreases
with @, it is important to remember that y(6;a) is the expected wage for
those workers who match with a vacancy; in particular, those workers who
fail to match are not treated as receiving a wage of zero.

Proposition 3 describes the limiting properties of the labor market taking
a as a given constant. Alternatively, we could let the number of applications
per worker become arbitrarily large as well. The most natural way to do
this is to let a = v, and to then let u and v go to infinity in the standard
way. This allows us to consider a limiting version of the Julien, Kennes, and
King (2002) model.

Proposition 4 Let a = v, and let u,v — oo with v/u = 6. Then the proba-
bility that any one worker finds a job converges to

m(@) =1—e®
and the fraction of wages paid equal to one converges to

1—ef—0e?
"0) = o

We omit the proof, as it is straightforward.

We now verify that the standard result on the efficiency of competitive
search equilibrium holds in our setting when a = 1; however, when a €
{2,..., A}, this result breaks down. As in Proposition 3, we let u,v — co
with v/u = 6 and a fixed. We now imagine that vacancies are set up at
the beginning of the period and that each vacancy is created at cost c. The
efficient level of labor market tightness® is determined as the solution to

mgxx{—c@ +m(0;a)}

5In a finite labor market with u given, the social planner chooses v to maximize —cv +
M (u,v;a); ie., expected output (equal to the expected number of matches since each
match produces an output of 1) minus the vacancy creation costs. Dividing the maximand
by u and letting «,v — 0o gives the maximand in the text.
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ie.,
—c+my(6*;a) = 0. (19)

The equilibrium level of labor market tightness is determined by free entry.
When a = 1, this means

m(6**; 1)

o** (1 - w(et*§ 1)) =0, (20)

_._C.+.

whereas for a € {2, ..., A}, the condition is

*

0**:a
MO0 (01— (05 0)) =0, @)
Equations (21) and (22) reflect the condition that entry (vacancy creation)
occurs up to the point that the cost of vacancy creation is just offset by
the value of owning a vacancy. This value equals the probability of hiring
a worker times the expected surplus generated by a hire — equal to 1 minus
the wage when a = 1 and to 1 minus the expected wage when a € {2, ..., A}.
Here, we are using 6% to denote the constrained Pareto efficient level of
labor market tightness and and 6™ to denote the equilibrium level of labor
market tightness. At issue is the relationship between * and 6**.

_C+

Proposition 5 Let u,v — oo with v/u = 6 and a € {1,..., A} fized. For
a=1,0"=6% Forac{2.. A}, ™ > 0"

Proof: When a = 1, differentiating equation (17) gives
me(6;1) =1 — e~ /0 _ %e_l/a;
and equations (17) and (18) give
%gﬂ(l —w(@;1)=1—e1% %e_l/g.

Thus, equations (19) and (20) imply 6* = 6**.
Similarly, we find that when a € {2, ..., A}, 8" solves

c=(1~ 2(1 —e~o/f))a7l(1 —e7/f - %e‘“/g), (22)
whereas 8** solves

e=(1- (1 —e i1 - o). (23)
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The right-hand sides of both (22) and (23) are decreasing in 6. Since the
right-hand side of (23) is greater than that of (22) for all > 0, it follows
that 8** > 0*. QED.

Posting a vacancy has the standard congestion and thick-market effects
in our model — adding one more vacancy makes it more difficult for the in-
cumbent vacancies to find workers but makes it easier for the unemployed
to generate offers. A striking result of the competitive search equilibrium
literature is that adding one more vacancy causes the wage to adjust in such
a way as to balance these external effects correctly. Equivalently, one can
say that competition leads to a wage that equals the one that would be dic-
tated by the Hosios (1990) condition in a Nash bargaining model. The first
part of Proposition 5 shows that this result continues to hold when one uses
the urn-ball (a = 1) microfoundation for the matching function. However,
when workers make multiple applications, the result that 6** > 6* indicates
that the equilibrium level of vacancy creation is too high. Equivalently, the
equilibrium expected wage is too low, i.e., below the level that would be indi-
cated by the Hosios condition. The effects of the marginal vacancy are more
complicated with multiple applications than in the urn-ball model. Adding
one more vacancy makes it less likely that each incumbent vacancy will at-
tract any applicants but, conditional on attracting an applicant, makes it
more likely for the incumbent vacancy to “win the race” for that applicant.
Adding another vacancy to the market puts upward pressure on the (ex-
pected) wage but not to the extent required to achieve the efficient level of
entry.

Proposition 5 lets the labor market get large holding a fixed. We now
consider the question of efficiency with @ = v as the labor market gets
arbitrarily large.

Proposition 6 Let a = v, and let u,v — oo with v/u = 6. Then 6** = 6%;
i.e., the equilibrium level of labor market tightness is constrained efficient.

The proof follows directly from Julien, Kennes, and King (2002); in
fact, they show that this efficiency result holds even for finite u and v.
Alternatively, the result can be shown by mimicking the proof of Proposition
5.

The intuition for why we find constrained efficiency witha =1anda =v
but not with a fixed number of multiple applications has to do with the fact
that with @ = 1 and a = v, only the urn-ball coordination problem affects
the operation of the labor market, whereas with a fixed o € {2,..., A},
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the urn-ball and the multiple applications coordination problems operate
simultaneously. Adjusting the wage can only solve one coordination problem
at a time.

4 Concluding Remarks

Thus far, we have constructed a one-period model with homogeneous work-
ers and vacancies, and we have used our model to examine equilibria in
which all vacancies post the same wage. The preceding sentence suggests
three possible extensions.

First, it would be useful to extend our analysis to the steady-state.
Steady-state analysis would offer two advantages relative to the single-period
framework. First, both u and v can be endogenized in the steady state — by
a steady-state (Beveridge curve) condition and by free entry, respectively.
Second, the steady-state framework allows those unemployed who fail to find
an acceptable job in the current period to apply again in the next period;
that is, the unemployed will have a positive reservation wage. The ability of
the unemployed to hold out for a situation in which firms engage in Bertrand
competition for their services, albeit at the cost of delay, will in turn have
an impact on the wage-posting problem faced by vacancies.

Second, it would be useful to examine the implications of multiple ap-
plications in a model with heterogeneous workers and/or vacancies, i.e., to
incorporate multiple applications into a model along the lines of Shimer
(2001). When an unemployed worker can send out more than one applica-
tion, a plausible strategy might be to risk some applications on “long-shot”
vacancies while reserving others for relatively “safe” vacancies. It would
be very interesting to know whether a strategy of this type makes sense in
equilibrium and, if so, what the implications for equilibrium matching and
wage setting might be.

Third, one could think about equilibria in which not all vacancies post
the same wage. Qur argument in the multiple application case that it is in
the interest of each vacancy to post the monopsony wage is made conditional
on the provisional equilibrium assumption that all other vacancies post that
wage. There is nothing in our argument, however, that rules out a situation
in which some vacancies post the monopsony wage while others post a wage
between 0 and 1. (Obviously, there may be other arguments that preclude
this outcome.) That is, there may be scope for a directed search version of
a result along the lines of Burdett and Judd (1983).

While these extensions are potentially quite interesting, we feel that
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examining the role of multiple applications in a homogeneous worker and
homogeneous vacancy, one-period symmetric equilibrium directed search
model has been very fruitful. Multiple applications (i) introduce a new
-coordination friction into the matching process, (ii) generate equilibrium
wage dispersion, and (iii) imply excessive vacancy creation in large labor
markets.
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