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ABSTRACT

The paper describes a relative entropy procedure for imposing moment restrictions on
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of minimizing the associated Kullback-Leibler Information Criterion, or relative entropy. The
technique is illustrated in several examples that indicate how to produce conditional forecasts
from time series models with unknown or difficult to calculate conditional distributions; how
restrictions from economic theory may be introduced into a forecasting model; and how to adjust
the simulations from a dynamic general equilibrium model to introduce minimal consistency with
actual data.
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INTRODUCTION

One of the frustrations of macroeconometric modeling and policy analysis is that

empirical models that forecast well are largely nonstructural, yet making the kinds of

theoretically coherent conditional forecasts policymakers wish to see requires imposing structure

which in turn takes the model far from empirical relevancy. In this paper, we address this

frustration by providing a procedure that can be used for producing conditional forecasts in the

“middle ground”: the procedure can be used to produce conditional forecasts from any model

capable of generating a predictive distribution. Have simulation? Will forecast conditionally.

Thus it is possible to modify predictions of a time series model by imposing ever more of the

restrictions implied by economic theory, or to modify predictions of an equilibrium model by

imposing ever more realism from the data.

Our procedure, inspired by Stutzer (1996) and Kitamura and Stutzer (1997), involves a

change of measure from an initial predictive distribution to a new one that satisfies modeler-

specified moment conditions, but which incorporates the least additional information possible.

That is, we minimize the relative entropy between the two distributions, subject to the restriction

that the new one satisfies the given moment conditions. Stutzer (1996) used this idea to modify a

nonparametric predictive distribution for the price of an asset to satisfy the martingale condition

associated with risk-neutral pricing. Kitamura and Stutzer (1997) used the idea to provide an

alternative to generalized method of moments estimation in which the moment or orthogonality

conditions hold exactly relative to a new measure (but not, of course, in the data); the parameters

are chosen to make the new probability distribution as close in the information-theoretic sense as

possible to the original.
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Conditional forecasting has been applied in a variety of settings. In the VAR literature,

Doan, Litterman and Sims (1984) exploit the contemporaneous and inter-temporal variance-

covariance matrix structure in a VAR to account for the impact of conditioning a forecast on one

or more variables for one or more periods into the future. Waggoner and Zha (1999) extended

this analysis to accommodate uncertainty in model parameters in a fully Bayesian setting. Our

procedure can be viewed as an alternative to the Wagonner-Zha procedure that incorporates the

conditioning information directly into the prior.

There are several non-controversial applications of conditional forecasting that are

justified for forecasting conditional upon known values for other variables in a model. For

example, when there are data release lags, the forecaster is subject to irregular patterns of data

availability, and is forced to stagger the elements of the forecast data set. In circumstances when

one data series is known before another contemporaneous data series is released, a forecaster will

make predictions for the unknown value conditional on the known data. In these circumstances,

the conditioning value would have no uncertainty unless there was revision error. In the case of

financial markets data, like interest rates, when the conditioning values are known data, these

conditions would require no error bounds for its values. In the case of estimated data such as

GDP, the forecaster can utilize the distribution of revision errors as additional information.

In what follows, we first present the general theory of entropic conditional forecasting.

We then turn to several examples. The first example involves incorporation of conditioning

information associated with the availability of sub-period data as well as implicit financial

market forecasts into a forecasting exercise with a vector autoregressive model. We then turn to

the incorporation of conditions implied by economic theory. We conclude with an example that
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takes a step toward incorporating restrictions from real data into calibrations from a simulated

general equilibrium model.

I. UPDATING PREDICTIONS USING RELATIVE ENTROPY

I.1 Relative Entropy and Moment Conditions. Our problem involves interest in the expectation of

a function h(X) of the M-dimensional random variable X representing predictions implied by a

model, J. To facilitate calculation of E[h(X)], we have

1. A sample of N observations (draws) { }, 1, ,ix i N= � on X, together with

weights { }ˆ , 1, ,i i Nπ = � , which ensure that each observation receives weight

in the sample dictated by the predictive density. (For an iid sample from the
predictive density itself, ˆ 1/i Nπ = for all i.)

2. Other information about X or functions of X not used in the creation of the
predictive density.

The expectation E[h(X]) might represent the predictive mean or standard deviation, while the

other information might involve knowledge of values of some elements of X, knowledge of some

predictive moments of X, knowledge of expectations of functions of X, etc. The question is how

to use this “new” information.

In the absence of the new information, a natural way to estimate the expectation of a

function of interest h(X) from the predictive density is via the sample moment estimator

( )
1

ˆ
N

i i
i

h x π
=
∑ .

Suppose the new information takes the form of knowledge that the expectation of another

function of X, g(X), is equal to a known quantity, g . In general,

( )
1

ˆ
N

i i
i

g x gπ
=

≠∑ ;



4

that is, expectation under the original probability measure will not satisfy the moment condition

associated with the new information. This, of course, is what makes the information “new”.

Accommodating the new information requires modifying the beliefs embodied in the original

probabilities ˆ{ }iπ . Following Stutzer (1996) and Kitamura and Stutzer (1997), we seek to do this

by finding a new set of probabilities { }iπ representing a new predictive density that is as close as

possible to the original, in the information-theoretic sense, subject to the restriction that the new

moment condition be satisfied. Following the notation of Soofi and Retzer (2002), the Kullback-

Leibler Information Criterion (KLIC), or relative entropy of π to π̂ is

(1)
1

ˆ( : ) log
ˆ

N i
ii

i

K
ππ π π
π=

 
=  

 
∑ .

Thus we seek new weights that minimize K, subject to the moment constraints1:

(2)
1 1 1

min log s.t. 0, 1, ( ) 0
ˆ

{ }

N N Ni
i i i i ii i i

i
i

g x
ππ π π π
π

π
= = =

 
≥ = = 

 
∑ ∑ ∑ .

There is a substantial literature in science and statistics motivating KLIC and demonstrating its

successful application (see volume 107—spring 2002) of The Journal of Econometrics for

examples). Solution of this problem is straightforward using the method of Lagrange (see

Csiszar, 1975 for the solution in case of general probability distributions); the solution can be

written

(3)
( )( )

( )( )1

ˆ exp

ˆ exp

i i
i N

i ii

g x

g x

π γ
π

π γ
=

′
=

′∑

1 The KLIC is a “directed divergence” between two probability distributions. Reversing the roles of π and π̂ in the
objective function would yield a different set of weights. In the estimation context, the formulation we have adopted
leads to the “information-theoretic” estimator of Kitamur and Stutzer (1997); the alternative leads to the “empirical
likelihood” estimator of Qin and Lawless (1994).
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where γ is the vector of Lagrange multipliers associated with the moment constraints. Thus the

initial weights π̂ have been modified or exponentially “tilted” to generate the new weights π in

much the same way that the state-price density modifies objective probabilities of payoffs to

risk-neutral probabilities in contingent-claims asset pricing. Moreover, using the fact that

1
1

N

ii
π

=
=∑ , and

1
( ) 0

N

i ii
g x π

=
=∑ , the “tilting parameter” g can be computed as the solution to a

minimization problem:

(4) ( )( )1
ˆarg min exp [ ]

N

i ii
g x gγ π γ

γ
=

′= −∑ �

�

.

Then, with the weights in hand, one can compute the updated expectation h(X) as

( )
1

N

i i
i

h x π
=
∑ .

I.2 A Gaussian Example. To illustrate the tilting procedure, consider the problem of finding the

KLIC-closest density g(y) to a bivariate normal f(y) = ),(N Σθ subject to the restriction that

E(y2) = µ2 and var(y2) = Ω22. Letting γ1 denote the Lagrange multiplier associated with the mean

restriction and γ2 the multiplier associated with the variance restriction, the first order conditions

lead to

(5) { }2
1 1 2 2( ) ( ) expg y c f y y yγ γ= ⋅ ⋅ +

where c is the normalizing constant. The exponential tilt simply adds a linear and a quadratic

term to the quadratic form in the Gaussian kernel. Upon completing the square, we find that g(y)

= N(µ,Ω) where µ2 and Ω22 are as given, and

µ1 = θ1 + (Σ22)
-1Σ12(µ2 -θ2)

Ω12 = Σ12(Σ22)
-1Ω22
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Ω11 = (Σ22)
-1(Σ11Σ22 - Σ21Σ21) + Ω22((Σ22)

-1Σ12)
2 .

Thus the moment conditions lead to the usual formula for the conditional mean. If, in addition,

the variance condition is Ω22 = 0, we obtain the usual formula for the conditional variance-

covariance matrix as well.

The example illustrates the general principle, apparent from (3) that for a random vector y

~ f(y), the random vector y* with given E[T(y*)] for some integrable function T has density given

by

(6) { }* * *( ) ( ) exp ( )g y f y T yγ′∝ .

This also suggests a convenient way to sample from the density g, a subject we take up next.

I.3 Relation to Importance Sampling. Expression (6) suggests how to generate a sample { }*
iy

from the density g using “importance sampling” (Geweke, 1989). If it is possible to sample

directly from the density f, generate an iid sample { }iy for i = 1, …, n from f(.). To each drawing

yi, assign the “weight”

∑ =
= n

1j ji
*
i w/ww ,

where

}y'exp{w ii γ= .

Then to compute the expectation of a function h(y*), simply calculate

*

1
( )

n

n j ij
h w h y

=
=∑ .

Note that the drawings are those from the f(.) density; the weights are adjusted to make these a

set of drawings from the g(.) density. Of course, for this procedure to make sense, the support of

f(.) and g(.) must be the same.
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More generally, Geweke (1989) gives several guides regarding when f(.) is a “good”

importance density for g(.). In essence, what is required is that the weights wi* must be well-

behaved. For example, the new weights should not be “too far” from the uniform weights 1/n:

that is, the new density g(.) should not be too far from f(.) in the KLIC sense. To monitor this,

Geweke suggests keeping track of the fraction of total weight assigned to the drawing yj*

receiving highest weight. It is common experience amongst importance samplers to encounter a

situation in which a poorly designed importance density yields largest weight nearly equal to

unity. It is of course desirable to keep this largest weight small—much smaller, say than 1

percent. Another monitoring device advocated by Geweke is more sensitive to unequal

weighting: this device compares the sum of the squares of the highest m weights relative to the

sum of the squares of all of the weights from the importance sample, multiplied by a normalizing

factor. In our applications, m = 10 is used.

Still another device for assessing the quality of an importance sampler introduced by

Geweke involves the concept of “relative numerical efficiency”. This quantity is the ratio of the

variance of h to the asymptotic variance of the (scaled) Monte Carlo estimator of E(h),

1/ 2 ( ( ))nn h E h− . Were it possible to sample from the tilted density directly, this ratio would be

1.0. The ratio differs substantially from 1.0 when the weight function can take on relatively large

values. The relative numerical efficiency measure is the ratio of the number of draws necessary

to achieve any given numerical standard error using the posterior density to the number required

using the importance density. Small values suggest that the importance density is a poor one.

I.4 Interpretation of Weight Function as a Prior Distribution. In our applications, the distribution

of interest is generally a predictive distribution. Such a distribution arises as follows. First, a
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parametric model (likelihood) for a random vector y given parameters θ is specified: f(y|θ).

Similarly, a prior distribution for θ is specified as p(θ). By Bayes’ rule, the posterior distribution

for θ is proportional to the product of prior and likelihood,

( | ) ( | ) ( )p y f y pθ θ θ∝ .

Given the data y and the parameters θ, the distribution of a future value of y, y′ is given by

( | , )p y y θ′ . Then the predictive distribution is

( | ) ( | , ) ( | )p y y p y y p y dθ θ θ′ ′∝ ∫ .

To sample from the predictive distribution, one typically samples θi from the posterior p(θ|y) and

then yi from ( | , )ip y y θ′ . That is, we can think of the drawing of y′ as being a function of the

underlying parameter draw θi. Similarly, the re-weighted draw from a tilted density for y′ can

simply be thought of as a drawing from the predictive density associated with the original

likelihood but a tilted prior { }exp ( ( )) ( )T y pγ θ θ′ ′ . Thus the moment condition used to modify

the original predictive density can be thought of as part of the prior itself, a very natural way to

incorporate non-sample information into the analysis.

II. EXAMPLES

In this section we present four examples that implement the entropic conditional

forecasting scheme. In the first, we employ a simple Bayesian vector autoregression routinely

used in forecasting at the Federal Reserve Bank of Atlanta to produce an alternative forecast

conditional on information about the future course of the federal funds rate. Since it is possible

(though cumbersome) to produce approximate conditional forecasts in such a model (see

Waggoner and Zha, 1999), our procedure simply provides a computationally convenient
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substitute for existing methods. The second example shows how to impose moment conditions

from economic theory on the predictions of a time series model. Specifically, we incorporate the

consumption-based asset pricing model covariance restriction between the intertemporal

marginal rate of substitution and returns into a predictive density computed from a simple two-

variable vector autoregression for consumption growth and returns. Finally, our third example

completes a progression from atheoretic conditional forecasting (example 1) to theoretically

coherent empirical modeling by incorporating moment conditions from data into a simulation

exercise involving a dynamic stochastic general equilibrium model. That is, the data inform the

simulation exercise via a tilt of the model simulations that ensures that the simulated

distributions share some features of actual data.

II.1 Forecasting the Federal Funds Rate Using Information from the Futures Market. In this

example we employ a VAR model that embodies a Normal-Wishart prior of the type describe in

Sims and Zha (1998) and as implemented in Robertson and Tallman (1999). The model variables

are the federal funds rate, the log of real GDP (distributed monthly), the log of the CPI price

index, the log of the price of West Texas Intermediate oil, the unemployment rate, and the log of

the M2 monetary aggregate.

The VAR can be written as:

(7) y v B y B y ut t p t p t= + + + +− −1 1 … , t = 1,…,T

where yt denotes an m×1 vector of current dated observations for period t on the m variables in

the VAR; the Bi are m×m coefficient matrices; and b is an m×1 vector of constant terms. The

error term is defined as u At t= −1ε where ε t is assumed to be a Normal and independently
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distributed m¥1 vector such that E y st t s[ | , ]ε − > =0 0 , and E y s It t t s[ | , ]ε ε′ > =− 0 for all t; and

A is a non-singular m¥m matrix so that the covariance of ut is Σ = ′− −A A1 1 .

To compute out-of-sample h-period-ahead forecasts we solve equation (1) forward from

the last estimation period T and express yT h+ as

(8) y C b JT h h
h

T i T h i
i

h

+ − + −
=

−
= + +∑1

0

1
D Y Ψ ε , h = 1,2,…

where C I0 = , C I B Ci j i j
j

i
= + −

=
∑

1

, i = 1,2,…, with Bj = 0 for j > p;

YT

T

T

T p

y

y

y

=

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

−

− +

1

1

�
: ( )mp ×1 ; D =

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

−B B B

I

I

p p1 1

0 0

0 0

…

� � �

…

: ( )mp mp× ;

Ψi
iJ J A= ′ −D 1: ( )m m× is the i-period-ahead matrix of impulse responses; and

J I= 0 0… is the ( )m mp× matrix such that y JT T= Y (see Lutkepohl, 1991). Given

data, Y y yT= ′
1, ,… , and parameters, θ = vec(B,Σ), where B = b B Bp, , ,1 …

′ , the first two

terms in (8) sum to give the average value of yT h+ , that is E y YT h[ | , ]+ q . The last term in (8) is

the resulting forecast error vT h+ = yT h+ − E y YT h[ | , ]+ q , and has conditional variance equal to

Ψ Ψi ii
h ′=

−
∑ 0

1
.

The usual point forecast of yT h+ reported in VAR studies is an estimate of

E y YT h[ | , ]+ q . But θ is not completely known, even after observing the data and so some

uncertainty exists about the point forecast. Moreover, even given θ it is frequently the case that
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we know more about average behavior of yT h+ than E y YT h[ | , ]+ q would imply. In particular,

because of data release lags some, but not all elements of yT j+ , j=1,…,n may be known. For

example, at the end of February 1999 data values for the federal funds rate, commodity prices,

and perhaps the money aggregates for February would be known. In contrast, the most recent

CPI and unemployment observations would be measurements for January, and the GDP data

would contain measurements only as recent as the fourth quarter of 1998. Thus, the VAR could

only be fitted using data through December of 1998. This description is especially relevant for

our forecasting exercise.

To generate simulated out-of-sample realizations, we first calculated predictive densities

for 24 months beginning in January 1992 using data from 1960:2 to 1991:12. Samples from the

predictive densities include those for the variables for which we do not yet have data (like

output, unemployment and the CPI) at the time the forecasts are constructed.

The entropy-based forecasts use six months of the federal funds rate futures market

forecasts as extra information. That is, we calculate the futures market forecasts and use the

relative entropy procedure to force the tilted forecast distributions to have the same mean. One

can stop at this point, leaving the conditions “soft” in the terminology of Wagonner and Zha

(1999). One may also restrict the variation around the mean forecast to be very small, meaning

the conditions are “hard”—the traditional conditional forecast. Another possibility would be to

restrict the variability of titled funds rate forecast to match the historical sample variance of the

futures market forecast errors, thereby imposing the same precision as the futures market.

Notice that the three-month lag in the availability of quarterly GDP data means that, the

forecast formed at the end of February, say, are for the 24 months including January, because

there is still no real GDP data yet. For March, the forecast follows the same procedure, but there
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is clearly more “data” that can be used for conditioning the forecasts of January, February and

March real GDP.2 The process is followed for each quarter until we reach 1999:1, the last period

for which we have 8 quarters of data to compare to 8 quarters of forecasts. This produces 36

overlapping quarterly forecasts to compare. Due to the overlapping forecast observations, we

focus most attention of the relative magnitudes of the forecast error statistics.

Table 1 presents comparisons of the standard forecast accuracy measures from the

unconditional forecast, the relative entropy (tilted) conditional forecast (with the mean and

variance restricted to match the futures market data), and the hard conditional forecast computed

using the methods of Waggoner and Zha (1999). The point forecast accuracy results are about

the same for the hard and the relative entropy conditional forecasts.

The federal funds rate forecasts are more accurate when the forecasts condition on federal

funds futures market information than when the model forecasts are unconditional. These results

are consistent with those in Robertson and Tallman 2001, Evans and Kuttner 1998, and

Rudebusch 1998. The relative RMSE of the conditioned federal funds forecasts for the one

quarter ahead RMSE is 60 percent lower than the unconditional forecast error, indicating that

there is substantial information content in the federal funds futures market forecasts in short-run

forecasts of the federal funds rate. The reduction of RMSE persists, with still more than a 20

percent reduction for the funds rate forecast 4 quarters into the future, although the improvement

dissipates by the end of the forecast horizon.

Despite notably improved forecast accuracy for the federal funds rate, there is no

systematic evidence that the conditional forecasts contribute to a consistent improvement in the

forecast accuracy of the other variables. Among the more notable results, the RMSE of the

2 The tilting procedure could be readily adapted to take the advance and preliminary GDP estimates as mean
estimates of “final” GDP, and use the historical variability of the revision errors as variance conditions.
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unemployment rate forecasts are 10 percent smaller than those of the unconditional forecast.

However, at that same four-quarter horizon, the conditional forecast errors of inflation are 10

percent larger. Also, the RMSE for the unemployment rate at the eight-quarter horizon are

worse for the conditional than the unconditional forecasts.

Financial market data is not the only source of potentially useful forecast information.

Suppose, for instance, that one was interesting in forecasting from a VAR model of the funds

rate, inflation and the output gap, and that some form of dynamic Taylor-rule for the funds rate

were available. Then, rather conditioning on the futures market forecast one might condition on

the policy rule-based interest rate forecast. However, one shortcoming of the using only

forecasts of a single variable as auxiliary information is that the co-movement between variables

implied by the external model are not utilized in constructing the tilted forecast distributions.

This suggests that richer results could be potentially obtained by looking at the correlation

information contained in other forecasting models.

II.2 Forecasting Consumption and Returns by Incorporating Asset Pricing Model Information.

Rather than using alternative forecasts as moment restrictions it is also possible to impose

theoretically motivated moment restrictions directly on a forecast distribution by using the

relative entropy procedure. In the following example, we use the Euler equation from a standard

specification of the inter-temporal consumption capital asset pricing model (CCAPM) as a

moment restriction in a forecast of consumption and interest rates. Specifically, we impose the

prediction that the expected value of the product of the gross real return and the stochastic

discount factor is unity; that is,

1
1 1; 1, . . . , ,t

it
t

c
E r i N

c

α

β
−

+
+

  
= =  
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where itr is the gross real return to asset i at time t, tc is the level of real consumption at time t,

α is the constant relative risk aversion parameter [inherited from (1-α ) in the utility function],

β is the discount factor, and E is the expectation operator.

Empirical applications of this restricted specification of the CCAPM typically fit the data

poorly. For our application, the characteristic bad fit of this model helps highlight how a variety

of “goodness of fit” indicators can be used to assess the adequacy of the relative entropy

procedures. In the present context, these indicators signal inadequacy of the procedure when one

imposes restrictions that require radical distortions to the predictive distribution. If the

restrictions do not alter greatly the empirical predictive density, then the KLIC value will not be

far from zero. We use the statistics proposed by Geweke (1989), as described above, to indicate

how closely the ‘tilted‘ distribution mimics the original distribution.

For illustrative purposes, we use the nominal three-month Treasury bill rate as the

nominal interest rate measure and the (annualized) percentage change in the CPI (average of

monthly CPI levels over the quarter) as the inflation measure. To proxy the real rate of interest,

we use the nominal three-month Treasury bill rate less the quarterly inflation rate measured by

the CPI. For the real consumption growth rate, we add nominal consumption expenditures for

services and nominal consumption expenditures for non-durable goods and then deflate that

number by a geometric weighted-average of the relevant implicit deflators. All data series are

quarterly measures over the time period 1960Q1 to 1998Q4.

We estimate a simple vector autoregression model for real consumption growth and the

real interest rate with four lags and use a diffuse (Jeffrey’s) prior to produce an empirical forecast

distribution over a 7 quarter horizon. We then impose the CCAPM restriction on the forecast
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distribution. One can interpret the altered empirical distribution as the approximated predictive

distribution conditional on the moment restriction.

Of course, one must choose values for the constant relative risk aversion (CRRA)

parameter and the discount factor, β , to impose the Consumption CAPM restriction. In this

application, we hold β fixed at .96 and choose α to be 2, implying a degree of risk aversion.

We enforce the CCAPM restriction on the last forecast period (period 7) because at this point the

forecast distribution is close to the unconditional distribution (less affected by initial conditions

on the forecast). Table 2 presents the results. We find that restricting the furthest forecast period

results in a noticeable adjustment to the empirical distribution. The indicators of adequacy – the

KLIC value, the relative numerical efficiency (RNE), ratio of the sum of squares of the highest

10 weights (denoted as the “weight ratio”), and the Lagrange multiplier values – all suggest that

the empirical distribution must be altered radically in order to satisfy the moment condition, and

so results taken from the conditional density may not be reliable. Enforcing the restriction on

earlier forecasts in addition to the final forecast exacerbates the distortion.

Nonetheless, economic interpretations of the forecasts values for the real interest rate and

the growth rate of real consumption are consistent with the consumption CAPM restriction:

mean forecasts of the real interest rate are increased and the forecasts of the real consumption

growth rate are lowered relative to the respective original forecasts. These results from imposing

the restriction on the final forecast period appear in Figure1.

It is notable that imposing the condition for only the final forecast period still has

measurable effects on the forecasts of real consumption growth and the real interest rate for

several periods prior to the restriction. However, it is only in the final period, and specifically in

the consumption growth rate forecast that the conditional forecast falls outside the 2/3 error
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bounds of the original forecast. In order to satisfy the restriction, the consumption growth rate

must fall close to zero (compared to the original mean consumption growth forecast of about 3.2)

and the real interest rate mean forecast must rise to about 4.5 percent (versus the original mean

interest rate forecast of about 2.8). For the real interest rate, the higher value is maintained over

the prior periods of the forecast horizon.

We can use the relative entropy procedure to generate values of KLIC, RNE, and other

indicators of fit to indicate the value of the CRRA parameter that causes least distortion of the

empirical distribution. We range the risk aversion parameter from –2 (risk loving) to 2 in .125

increments. We produce a set of observations of fit indicators for each value of the risk aversion

parameter after we impose the CCAPM moment restriction using the given risk aversion

parameter value. In this way, we could use the relative techniques as an alternative estimation

procedure. Figure 2 presents KLIC and 10ω plotted relative to the value of the CRRA imposed

in the moment condition. In this case, we find that the empirical predictive density for the data is

altered least when the parameter of risk aversion is -.375, consistent with displaying risk-loving

behavoir, clearly in contrast with the value of 1 (a log specification) or of 2 as in most empirical

applications of CCAPM. However, it is notable that the finding of risk loving behavior is

consistent with the empirical results of Hansen and Singleton (1996). (See Neely, Roy, and

Whiteman, 2001 for a demonstration that the risk-loving estimates can be traced to near non-

identification of the model due to poor predictability of consumption growth and returns.)

II.3 Forecasting Using an Equilibrium Model by Incorporating Information in Actual Data. In

this section we use the relative entropy procedure to impose data-based moment restrictions on

the simulations of a dynamic stochastic general equilibrium model. Standard calibration

exercises assess the empirical fit of the theoretical model by specifying values for the structural
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parameters of the model, simulating data from the model, and then comparing the second

moment properties of the simulated data with those of actual data. Often, models perform

adequately in some dimensions, but fail to fit the data well in other ways. In this example we

take as a benchmark the model of Hansen (1985), which was calibrated to fit certain aspects of

US data, and then impose additional data-based correlation restrictions on the simulated data.

The measures of fit proposed by Geweke then provide a metric for assessing the adequacy of the

restrictions. The analysis is also related to that in DeJong, Ingram and Whiteman (1996) in that

we allow for prior uncertainty about the structural parameters.

The basic model involves a representative agent whose objective function is to maximize

( )
0

logt
t t

t

E C A Nβ
∞

=

 − ⋅ 
 
∑

subject to

1
1 (1 )t t t t t tC K Z K N Kθ θ δ−

++ = + −

where tC is consumption; tN is labor; tK is the stock of capital; tZ is a technology shock

displaying the law of motion

2
1(1 ) log , ~ . . . (0, )t t t tZ Z Z i i d Nρ ρ ε ε σ−= − + + ;

and ( ), , , , , ,A Zδ θ ρ σ βΓ = are parameters.

Given the specification of parameter values and the stochastic process for the technology

shock, an approximate solution can be obtained by log-linearizing the resource constraint and the

implied Euler equations. As a benchmark we consider an economy measured quarterly in which

G = (0.33,0.04,0.36,0.95,1,0.712,0.99): the values used in Uhlig (1999). To allow for some

degree of parameter uncertainty we assume a prior over G that specifies that each parameter is

independent and normally distributed, with means given by the benchmark values and standard
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deviations (0.1,0.004,0.05,0.025,0,0,0), respectively. The 95 percent coverage intervals implied

by the prior are narrow: For example, the interval for the capital share is [0.26,0.46]. The range

for r captures the high degree of persistence in the technology shock that is assumed in most of

the literature. Draws on r ≥ 1 and d £ 0 were discarded from the simulations.3

We focus attention on the contemporaneous correlation between output and hours and try

to match this correlation with that in comparable US time series data. We simulate sample paths

of output and hours for each draw from the prior on G and take a total of 10,000 parameter

draws. As a preliminary experiment, we match the correlation restriction in the simulated output

and hours time series. We proceed by restricting the standard deviations in one period to be

equal to those in the simulated data, and require that the output-hours correlation be equal to 0.86

– a value representative of US time series data on quarterly GDP growth and hours. The

computed entropy weights are then applied to the simulated distributions of data in all

subsequent time-periods.

The correlation (across parameter draws) between the simulated output and hours data is

close to 0.70 in each period. As expected, matching the hours and output correlation is

problematic. The tilted distributions satisfy the moment restrictions by construction, but the

Geweke measures suggest that the fit is relatively poor. The RNE is only 0.53 and the weight-

ratio measure is relatively high at 11.3. As can be seen from Table 3, imposing the higher

correlation between hours and output has only modest effects on the standard deviations of the

other variables and the correlations between output and the other variables. However, it does

substantially raise the correlation between interest rates and output (from 0.37 to 0.60). These

3 No uncertainty is assumed in the real interest rate, productivity trend, or the standard deviation of the productivity
shocks. These latter restrictions were imposed simply for convenience and could be easily relaxed.
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effects also persist into the standard deviations and contemporaneous correlations in subsequent

periods since the model is stationary.

It is also of interest to consider the contribution of parameter uncertainty to the previous

results. Repeating the exercise with a prior that is a point mass at the benchmark parameter

values reveals that the output-hours correlation in the simulated data is slightly higher at around

0.75, and as a consequence the fit of the tilted distribution is somewhat better. The RNE and the

ratio of the weight-ratio are 0.80 and 2.6, respectively. Nonetheless, the effect of the correlation

restriction on the contemporaneous second moment properties of the simulated data is similar to

the case when there is parameter uncertainty. Again, the only large change is the increase in the

output-interest rate correlation (from 0.4 to 0.61).4

III. CONCLUSION

This paper has described a relative entropy procedure for imposing moment restrictions

on simulated distributions from a variety of models. The technique produces a set of weights

that imply a distribution that is as close as possible to the original in the sense of minimizing the

associated Kullback-Leibler Information Criterion, or relative entropy. The technique is

illustrated by three examples that progress from atheoretic conditional forecasting, to imposing

restrictions from a theoretical model on a forecast, and finally to incorporating moment

conditions from data into the simulations from a dynamic stochastic general equilibrium model.

The preliminary results from the application of the technique are encouraging, and the potential

breadth of application seems to be large.

4 The next step will be to extend this analysis to incorporate intertemporal correlation restrictions as well.
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Table 1: Root Mean Squared Error Relative to Unconditional Forecast (Ratio)

Federal Funds Rate CPI Inflation Rate

Quarters Ahead Tilted Mean
and Variance

Hard conditioned Tilted Mean
and Variance

Hard
conditioned

1 0.39 0.39 1.02 1.02
2 0.61 0.61 1.04 1.04
3 0.74 0.73 1.10 1.11
4 0.77 0.77 1.11 1.11
5 0.84 0.83 1.06 1.05
6 0.90 0.89 1.02 1.02
7 0.93 0.93 1.03 1.02
8 0.95 0.95 1.01 1.01

Unemployment rate Real GDP Growth Rate

Quarters Ahead Tilted Mean
and Variance

Hard conditioned Tilted Mean
and Variance

Hard
conditioned

1 0.95 0.95 0.97 0.97
2 0.95 0.95 0.97 0.98
3 0.93 0.94 0.98 0.99
4 0.90 0.91 1.05 1.04
5 0.93 0.93 1.02 1.02
6 0.98 0.98 1.03 1.03
7 1.02 1.03 1.05 1.05
8 1.06 1.07 1.05 1.05
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Table 2: Indicators of Adequacy for the Importance Sampling

Example: Consumption Capital Asset Pricing Model Restriction Imposed on VAR Forecast

KLIC
Risk

Aversion
RNE 1 2 3 4 5 6

1.12 2.00 0.0128 4380.09 32.79 0.00 0.00 0.00 0.00 0.00

1.40 2.00 0.0032 7239.28 22.08 19.64 0.00 0.00 0.00 0.00

1.66 2.00 0.0033 7250.66 22.12 11.94 15.88 0.00 0.00 0.00

1.85 2.00 0.0024 7803.26 17.66 14.83 13.42 10.51 0.00 0.00

2.73 2.00 0.0027 8206.33 40.53 1.20 14.76 2.52 17.15 0.00

4.06 2.00 0.0005 8714.79 46.76 23.46 7.33 4.48 5.11 18.79

10ω

KLIC is the Kullback-Leibler Information Criteria, Risk Aversion is the parameter value used for
imposing the CCAPM, RNE is relative numerical efficiency, 10ω is the ratio of the sum

of the squares of the ten highest weights relative to the sum of the squares of all weights,
and the numbers 1 through 6 are the values for the Lagrange multipliers for imposing the
first constraint, first and second, etc, respectively.
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Table 3: Statistics From the Simulated Economy
Standard Deviations and Correlation with Output

Parameter Uncertainty

ORIGINAL “TILTED”

VARIABLE ST. DEV. CORR. ST. DEV CORR

CAPITAL 4.8 .82 4.1 .865

Consumption 3.8 .9 3.3 .934

Labor Hours 5.1 .7 *5.1 *.86

Output 2.3 1.0 *2.3 1.0

Interest Rate .11 .38 .10 .6

Investment 11.2 .89 11.6 .94

Technology 2.66 .993 2.6 .995

Relative numerical efficiency = .53 Weights ratio measure = 11.26

No Parameter Uncertainty

ORIGINAL “TILTED”

VARIABLE ST. DEV. CORR. ST. DEV CORR

CAPITAL 4.5 .77 3.7 .81

Consumption 3.24 .875 2.85 .904

Labor Hours 4.6 .75 4.6 *.86

Output 2.4 1.0 2.4 1.0

Interest Rate .11 .4 .10 .61

Investment 10.7 .91 11.1 .95

Technology 2.3 .9993 2.3 .9996

Relative numerical efficiency = .80 Weights ratio measure = 2.6

Statistics derived from simulations of the Hansen (1986) model as implemented by Uhlig (1999).
The “tilted” columns utilize the relative entropy procedure to impose the restriction that the
correlation between output and labor hours is .86. We also impose the restrictions that the mean
and the variance of the two series in the restriction are the same in the “tilted” distribution as in
the original simulated data. The top involve parameter uncertainty, whereas the bottom has no
parameter uncertainty
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Figure 2: Indicators of Adequacy of Importance Sampling 7th Step
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