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Abstract

This paper studies the economic benefits of return predictability by analyzing the

impact of market and volatility timing on the performance of optimal portfolio rules.

Using a model with time-varying expected returns and volatility, we form optimal portfo-

lios sequentially and generate out-of-sample portfolio returns. We are careful to account

for estimation risk and parameter learning. Using S&P 500 index data from 1980-2000,

we find that a strategy based solely on volatility timing uniformly outperforms mar-

ket timing strategies, a model that assumes no predictability and the market return in

terms of certainty equivalent gains and Sharpe ratios. Market timing strategies perform

poorly due estimation risk, which is the substantial uncertainty present in estimating

and forecasting expected returns.
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1 Introduction

There is strong empirical evidence that equity returns have predictable components. Standard

theoretical results based on Merton (1971) show how investors should alter their optimal

portfolio holdings to take advantage of time-varying investment opportunities. For example,

investors should increase their allocation to risky assets in periods of high expected returns

(market timing) and decrease their allocation in periods of high volatility (volatility timing).

In this paper, we evaluate the economic benefits of equity return predictability. While the-

ory shows that an investor gains from market and volatility timing, the nature and magnitude

of the potential benefits is largely unknown. Our approach takes the perspective of an investor

who exploits predictability by using a model of time-varying expected returns and volatility

to sequentially form optimal portfolios. To measure the economic benefits of predictability,

we compare our investor’s returns to those based on a model without predictability and to

the market.

We find that a strategy based on solely volatility timing leads to significant economic gains.

On the other hand, market timing strategies based on time-varying expected returns always

perform worse than the volatility timing strategy. Moreover, expected return strategies often

perform worse than the no predictability strategy or the market. For example, an investor with

a risk aversion of 4 who follows the volatility timing strategy attains an annualized Sharpe

ratio of 0.71, compared to 0.49 for the market, 0.39 for the no predictability strategy and

0.31 for a expected returns based strategy. Relative to the model with no predictability, the

volatility timing strategy results in an annualized certainty equivalent gain of 3.26%, which

shows the substantial economic gains generated by volatility predictability.

Our approach differs from the existing literature in two major ways. First, instead of mea-

suring the benefits of predictability via ex-ante calibration,1 we measure economic benefits

through the out-of-sample performance of the optimal portfolio holdings. This provides a

practical evaluation of the economic benefits and is especially important in light of recent ev-
1Ex-ante calibration quantifies the population properties of optimal portfolios. Typically, calibration com-

putes the expected utility gains of predictability and reports the sensitivity of the optimal portfolio rule to

changes in the state variables or parameters. See, for example, Balduzzi and Lynch (1999), Campbell and

Viceira (1999), Campbell, Chan and Viceira (2002), Lynch (2000), Gomes (2001) or Chacko and Viceira

(2002).
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idence that questions the nature of return predictability. For example, while there is evidence

for in-sample expected return predictability based on scaled price variables, lagged returns

or interest rate based variables, there is little evidence for any out-of-sample expected return

predictability.2

Second, our investor does not observe the parameters or state variables that characterize

the return distribution, thus we have to account for estimation risk and parameter learning

when forming optimal portfolios. Estimation risk is the static uncertainty that is inherently

present when estimating parameters or state variables. Parameter learning is the dynamic

counterpart to estimation risk and corresponds to the process of revising beliefs about para-

meters as more data arrives. Ignoring estimation risk or parameter learning typically leads to

misleading allocations (Brennan (1998), Stambaugh (1999) and Barberis (2000)).

To form optimal portfolios sequentially, our investor computes the filtering and predictive

distribution of returns, while simultaneously accounting for estimation risk and parameter

learning. To do this, we extend the current econometrics literature by developing a new

Markov Chain Monte Carlo (MCMC) algorithm that solves the optimal filtering and pre-

diction problem under parameter uncertainty. To study the role of parameter uncertainty

in forecasting expected returns and volatility, we compare both filtered and smoothed esti-

mates of expected returns and volatility. We also extend the current literature by analyzing

sequential parameter estimates which characterize parameter learning over time.

Our model specifies that expected returns and volatility are stochastic and mean-reverting.

This closely coincides with the idealized stochastic setting described in Brennan (1998) and

the model used in Brandt and Kang (2002). For expected returns, our mean-reverting model is

motivated by Merton (1971) and our log-volatility specification is standard. Our specification

provides a flexible and parsimonious model for incorporating predictability that reflects our

agnosticism over the source of the return predictability.

We focus on the single-period problem portfolio problem, since the multi-period portfolio

problem with time-varying expected returns or volatility in the presence of estimation risk

or parameter learning is computationally intractable. The difference between the single and

multi-period problems is hedging demands. Recent evidence suggests that ignoring hedging
2See, for example, Bossaerts and Hillion (1999), Cremers (2001), Goyal and Welch (2002) and Hahn and

Lee (2001).
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demands is not a major concern, as they are typically a small component of asset demands

(see Brandt (1999), Ang and Bekaert (2000), Aït-Sahalia and Brandt (2001), Gomes (2001)

and Chacko and Viceira (2002)). Hedging demands are important components only when

investors have very long investment horizons. To derive the optimal portfolio rule, we use an

extension of Stein’s lemma that applies when return predictability is generated by stochastic

expected returns and volatility (Gron et al. (2001)).

Given the portfolio rule, we compute out-of-sample portfolio returns for a number of mod-

els incorporating time-varying expected returns, volatility or both. Evaluating the economic

benefits of these dynamic strategies is a difficult problem and we therefore use a number of

different metrics. First, we report average portfolio returns and volatility, and the modified

Sharpe ratio of Graham and Harvey (1997) which accounts for the shortcomings of the tra-

ditional Sharpe ratio in dynamic settings, see Leland (1997). Second, in terms of utility, we

compute the certainty equivalent gain (or loss) that a given portfolio strategy generates over

the returns from the no predictability case and the market strategy.

As mentioned earlier we find that the optimal portfolio strategy based on a model with

only time-varying volatility uniformly outperforms the other strategies in terms of the Sharpe

ratio and certainty equivalent gains. This holds for a range of risk aversions and with or

without portfolio leverage. Perhaps even more striking is the performance of an optimal

portfolio based solely on time-varying expected returns. If the investor knew the full-sample

parameter estimates, the portfolio gains frommarket timing would be on par with the volatility

timing model. However, once estimation risk and parameter learning are accounted for, we

find that expected returns based strategies perform poorly. For example, its modified Sharpe

ratio is always worse than the volatility timing strategy and nearly always worse than the

market return. The market timing strategy in some cases provides certainty equivalent gains

over a model with no predictability. This indicates that it may be advantageous to account for

time-varying expected returns when forming optimal portfolios even in presence of estimation

risk.

Finally, we find that strategies based on a model with both time-varying expected returns

and volatility perform similarly to those based solely on time-varying expected returns. Once

again, estimation risk is responsible. This highlights the difference between in-sample statisti-

cal model fitting and out-of-sample portfolio performance. While, the model with time-varying
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expected returns and volatility certainly provides a better fit in-sample, the model provides

little economic benefit to an investor.

Our conclusions regarding the economic benefits of volatility timing strategies are related

to the findings in Fleming, et al. (2001a, b), although there are a number of major differ-

ences. First, while they do use out-of-sample volatility forecasts, they condition on full-sample

estimates of expected returns which introduces a look-ahead bias. We find the expected es-

timation risk is of first-order importance in calculating the economic benefits. Second, we

find economic benefits to volatility timing using only a single risky asset, without relying on

diversification or time-varying correlations (Fleming et al. (2001a, b) use three risky assets

(gold, T-bonds and S&P 500 futures)). This is of particular concern given the well-known

extreme sensitivity of optimal allocations to estimates of expected returns (see, e.g., Best and

Grauer (1991)).

The rest of the paper is outlined as follows. Section 2 discusses the evidence on pre-

dictability, introduces our model and discusses optimal portfolio formation. Sections 3 and

4 describe our estimation methodology and estimation results. Section 5 summarizes the

portfolio performance. Section 6 concludes.

2 The Investment Set and Optimal Portfolios

2.1 A Model of Time-Varying Expected Returns and Volatility

While it is commonly accepted that both expected returns and volatility have predictable

components, the exact nature of the predictability is less certain. Take for example, expected

return predictability. Many authors have found evidence supporting expected return pre-

dictability based on variables such as the dividend-price ratio, lagged returns, interest rates

and interest rate spreads. Despite this evidence for in-sample return predictability, there is

little evidence for any out-of-sample expected return predictability. This distinction is es-

pecially important in portfolio applications where, presumably, an investor seeks to predict

returns out-of-sample.

Specifically, recent papers by Bossaerts and Hillion (1999), Cremers (2001) and Goyal

and Welch (2002) analyze the ability of standard predictors to forecast out-of-sample returns.
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Goyal and Welch (2002) argue there is no out-of-sample predictability based on dividend-price

ratios due to the structural instability in the relationship between returns and the dividend-

to-price ratio.3 Bossaerts and Hillion (1999) and Cremers (2001) study the sensitivity of

model choice (the number and type of linear predictors) on predictability and find that while

there is some evidence for in-sample predictability, there is little evidence for out-of-sample

predictability.4 Additionally, as pointed out by Hodrick (1992) and Stambaugh (1999), there

are statistical issues regarding tests of predictability based on scaled price variables.

Our approach to modeling return predictability is motivated by Merton (1971) and al-

lows for predictable time-variation in expected returns and volatility by specifying that both

are mean-reverting stochastic processes. We consider the following model of continuously

compounded returns (rt):

rt = µt +
p
Vtεt (1)

µt+1 = αµ + βµµt + σµε
µ
t+1 (2)

log (Vt+1) = αv + βv log (Vt) + σvε
v
t+1 (3)

where µt is the time-varying and stochastic expected return,
√
Vt is the stochastic volatility

and εt, ε
v
t and εµt are potentially correlated normal random variables.

This specification provides a flexible model of time-varying expected returns and volatility.

It embodies our agnostic beliefs about the specific sources of predictability as expected returns

and volatility are stochastic and latent. The specification for expected returns captures the

common view that expected returns have a mean-reverting component.5 One practical advan-

tage of this specification is that our portfolio returns will not be the result of our particular

choice of predictor variables.
3In particular, they find that the predictive ability of dividend ratios was due to two influential observations

in the 1970s.
4The variables in Bossarts and Hillion (1999) and Cremers (2001) include a January dummy, lagged returns,

excess bond returns, Treasury yields and term spreads, stock market price level, dividend yield, price-to-

earnings, volume-to-price, industrial production, inflation, changes in inflation and credit spreads. Recently,

Lettau and Ludvigson (2000) find evidence that the consumption to wealth (CAY) ratio provides out-of-

sample predictability, although Hahn and Lee (2001) question the recent predictive ability of the consumption

to wealth ratio.
5For example, this specification is consistent with Campbell and Shiller (2001) who argue that dividend-

to-price and price earnings ratios are mean-reverting components of expected returns.
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Our expected returns specification is identical to that used in continuous-time portfolio

problems by Merton (1971), Kim and Omberg (1996), Liu (1999) and Wachter (1999).6 These

papers focus on solving for the optimal rule, while ours analyzes the dynamic properties of the

optimal portfolio returns. Following Merton (1971) we consider a partial equilibrium setting

and allow for the possibility of negative expected returns. The log-variance model is popular

for empirical applications (see Jacquier, et al. (1994, 2001)). As shown by Chernov et al.

(2001) and Andersen et al. (2001), it provides a fit similar to that of the square-root model

which is commonly used in portfolio applications.

Our specification does not include any lagged interaction between µt and Vt. This implies,

for example, that there is not a variance risk premia term in the expected returns equation:

µt+1 = αµ + βµµt + βvVt + σµε
µ
t+1.

This is consistent with the current literature that finds no evidence that lagged volatility

explains expected returns or vice versa (see Brandt and Kang (2002) and Koopman and

Uspensky (1999)). We do, however, allow for a contemporaneous interaction between expected

returns and volatility via a correlation between the shocks to the latent variables, cov(εvt , ε
µ
t ) =

ρ. This effect proxies a leverage-type effect and allows expected returns and volatility to move

together. Brandt and Kang (2002) find that a correlation between εt and εµt is not significant.

As noted by Whitelaw (1994) and Harvey (2001), the relationship between the levels and

dynamics of µt and Vt are certainly extremely complicated. Harvey (2001) argues that the

findings will depend crucially on the conditioning information used, on the data set and

the model used. Given the large number of papers that analyze this issue and the lack of

consensus,7 we intentionally chose the simplest specification that captured the time-variation

in expected returns and volatility.

Finally, we note that adding additional lagged variables and correlations may generate

identification problems and significantly complicates estimation (see Brandt and Kang (2002)
6These papers specify that dµt = κ (θ − µt) dt+ σdWt. Since this SDE implies a Gaussian process for µt,

the specifications are the same if we set βµ = e−k, αµ = θ(1− e−k) and σ2µ =
σ2

2k (e
2k − 1).

7A partial list of the papers analyzing the relationship between levels and/or dynamics of expected re-

turns and volatility includes French, Schwert and Stambaugh (1987), Breen, Glosten and Jaganathan (1989),

Glosten, Jaganathan and Runkle (1993), Whitelaw (1994, 1997), Harrison and Zhang (1999), Brandt and

Kang (2001) and Harvey (2001). Despite this large literature, there are few if any robust findings regarding

the relationship between expected returns and volatility.
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for a discussion of some of the issues involved). We will discuss these issues later in more

detail, but it is not clear if parameters in more general models can be identified from the

observed data. Moreover, filtering and forecasting expected returns and volatility in more

general models may not be possible.

2.2 Portfolio Allocation

Beginning with Merton (1971), a number of authors have solved for exact, closed-form solu-

tions in optimal portfolio problems assuming expected returns or stochastic volatility evolve

continuously through time.8 There are also a number of papers that provide numerical or

approximate closed-form solutions.9 Our problem is noticeably harder due to the presence of

time-varying µt and Vt, estimation risk and parameter learning. To understand the issues in-

volved in solving this problem, we first consider the problem of portfolio choice in the complete

information economy, and then in a partial information setting.

In a complete information economy, there is no estimation risk which implies that µt, Vt
and any parameters, Θ, governing their evolution are observed. In the general multi-period

problem, an investor chooses at time t a sequence of portfolio weights {ωs}t≤s≤T to maximize
utility at time T :

J (Wt, µt, Vt,Θ) = max
{ωs}Ts=t

E [U (WT ) |Wt, µt, Vt,Θ]

subject to the usual budget constraint. If we consider a continuous-time diffusion model for

expected returns and volatility the optimal portfolio is

ωt =

µ−JWW

JWW

¶
µt − rf
Vt

where rf is the risk-free rate, JW and JWW are partial derivatives of the value function. For

simplicity, this rule assumes the shocks to expected returns and volatility are independent of

the shocks to returns.
8See, e.g., Kim and Omberg (1996), Liu (1999) and Wachter (1999) in the case of time-varying expected

returns and Liu (1999), Longstaff (2000) and Liu, Longstaff and Pan (2001) in the case of stochastic volatility.
9In either discrete or continuous-time settings, Brennan, et al. (1997), Ang and Bekaert (1999), Balduzzi

and Lynch (1999), Campbell and Viceira (1999), Chacko and Viceira (1999), Campbell, Chan and Viceira

(2001) and Lynch (2001) use approximate or numerical solutions to study optimal portfolio holdings in the

presence of expected return or volatility predictability.
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However, given the uncertain nature of return predictability, it is unrealistic to assume

that µt, Vt and Θ are observed by the investor. In practice, all must be estimated and this

raises the issue of estimation risk and parameter learning. In general, assuming parameters

are known when they are in fact estimated with noise data can lead to drastically misleading

optimal portfolio conclusions as the investor ignores a source of risk (see, e.g., Kandel and

Stambaugh (1996), Stambaugh (1999), Barberis (2000) and Pastor (2000)).

When µt, Vt or Θ are not observed, the investor solves the optimal portfolio problem in

two stages. In the first stage, the investor estimates the parameters and state variables and

then computes the predictive distribution of wealth given observed data, p (WT |Rt). Given
this density, the investor solves

J
¡
Rt
¢
= max

{ωs}Ts=t
E
£
U (WT ) |Rt

¤
= max

{ωs}Ts=t

Z
U (WT ) p

¡
WT |Rt

¢
dWT

where Rt is a vector of observed, discretely compounded returns up to time t and the maxi-

mization is subject to the usual budget constraint.

There are two difficult components to this problem. First, solving for p (WT |Rt) requires
the investor to estimate parameters and forecast future expected returns and volatility. The

solution to this highly nonlinear filtering and estimation problem is p (µT , VT ,Θ|Rt). Second,
conditional on p (WT |Rt) or p (µT , VT ,Θ|Rt), solving for the optimal portfolio rule is extremely
difficult. In general, since the filtering density is of the same dimension as the entire history

of returns, Rt, solving this dynamic program either analytically or numerically is currently

intractable.

In some highly stylized cases, there are tractable solutions in continuous-time to a multi-

period investment problem when parameters or state variables are unobserved (see Brennan

(1998), Brennan and Xia (2000), Comon (2001) or Xia (2001)). Unfortunately, this approach

is limited along two dimensions. First, only certain parameters or state variables can be

unobserved. For example, expected returns can be unobserved but the current volatility state

or parameters driving the volatility of returns cannot by the quadratic variation process.

Second, when there are multiple unobserved states, the computational demands for filtering

grow exponentially. Thus solving the multi-period problem with estimation risk or parameter

learning in realistic settings is currently not possible.
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To solve the optimal portfolio problem, we follow the existing literature and simplify the

allocation problem by considering a single-period problem:

J
¡
Rt
¢
= max

ωt
E
£
U (Wt+1) |Rt

¤
= max

ωt

Z
U (Wt+1) p(Rt+1|Rt)dRt+1,

where p(Rt+1|Rt) is the predictive distribution of future returns and next periods wealth
is Wt+1 = Wt[Rf + ωt(Rt+1 − Rf)]. This is the approach taken in, for example, Kandel and
Stambaugh (1996), Stambaugh (1999), Barberis (2000), Pastor and Stambaugh (2000), Pastor

(2000) and Wang (2002).

The difference between single and multi-period problems is hedging demands. As shown

by Brandt (1999), Ang and Bekaert (2000), Aït-Sahalia and Brandt (2001), Gomes (2001)

and Chacko and Viceira (2002), hedging demands are typically extremely small components

of the optimal portfolio allocation and have been found to be important only for long-horizon

investors such as the infinitely lived investors in Campbell and Viceira (1999, 2000).

To derive the optimal portfolio rule, assume that U (Wt+1) is twice differentiable, strictly

increasing and concave in the portfolio weight. Given this, the optimal portfolio is character-

ized by the first order condition

E
£
U 0(Wt+1)(Rt+1 −Rf)|Rt

¤
= 0,

where the expectation is taken over the predictive distribution of future returns. Applying

the definition of covariance implies that

cov
£
U 0(Wt+1), Rt+1 −Rf |Rt

¤
+ E

£
U 0(Wt+1)|Rt

¤
E
£
(Rt+1 −Rf )|Rt

¤
= 0. (4)

To separate utility effects from those of risk and return, we use the fact that the pre-

dictive distribution of returns is a stochastic volatility mixture distribution. In this case, a

generalization of Stein’s lemma allows us to re-write the covariance term as

cov
£
U 0(Wt+1), Rt+1 −Rf |Rt

¤
= EQ

£
U 00(Wt+1)|Rt

¤
cov

¡
Wt+1, Rt+1|Rt

¢
= ωtE

Q
£
U 00(Wt+1)|Rt

¤
var

£
Rt+1|Rt

¤
,

where Q is the size-biased volatility-adjusted distribution (see Gron, et al. (2000)). Solving

for the optimal portfolio, we find that

ωt =
1

γ

E [Rt+1 −Rf |Rt]
V ar [Rt+1|Rt] (5)
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where γ−1 = −EQ [U 00(W )|Rt] /E [U 0(W )|Rt]. This provides a justification for using a mean-
variance rule, where the risk-aversion is modified to take into account the fact that returns

are generated by a fat-tailed stochastic volatility distribution. Alternatively, the rule can be

viewed just as the usual conditional mean-variance rule.

We use a second order Taylor series expansion of ert to convert from discretely to con-

tinuously compounded returns. Alternatively we could assume that Rt+1 ≈ µt+1 + 1
2
Vt+1 +√

Vt+1εt+1. This implies that

ωt =
1

γ

Et(µt+1)− rf
V art (rt+1)

+
1

2γ
. (6)

We implement this optimal rule. This is the same rule that Kandel and Stambaugh (1996)

use to approximate a constant relative risk aversion utility function.

It is important to recognize potential problems that may arise in this setting. For example,

with constant relative risk aversion utility, U (Wt+1) =
W1−A
t+1

1−A , expected utility can be infinite

for A > 1 when the investor either shorts the risky asset or takes a levered position, as noted

by Kandel and Stambaugh (1996). The problem in their setting is that the expected value of

wealth may not exist because the predictive density of returns has a fat-tailed t-distribution,

as the variance has an inverted gamma prior. In our empirical implementation, our prior is

effectively a mixture of normals, which leads to finite expected utility in cases such as power

utility.

3 Optimal Sequential Learning and Estimation Risk

The optimal portfolio rule depends on the investor’s perception of the predictive distribution

of future returns. When forecasting expected returns and variance, our Bayesian investor is

careful to integrate out all of the uncertainty in estimating Θ, µt and Vt. This section discusses

the inferential problems our investor solves prior to making portfolio decisions.

To understand the difficulties in sequentially forecasting returns, consider the following
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factorization of the predictive distribution of returns:

p(rT+1|rT ) =
Z
p(rT+1, VT+1, µT+1,Θ|rT )dΘdµT+1dVT+1

=

Z
p(rT+1|VT+1, µT+1)p(VT+1, µT+1|Θ, rT )p

¡
Θ|rT¢ dΘdµT+1dVT+1

This decomposition shows that the predictive density incorporates three different compo-

nents: (1) the conditionally normal model specification for returns, p(rT+1|VT+1, µT+1) =
N (µT+1, VT+1); (2) latent variable filtering and forecasting, p(VT+1, µT+1|rT ,Θ), and (3) the
parameter estimation problem p

¡
Θ|rT¢. We briefly discuss each of these components.

The marginal parameter posterior distribution, p
¡
Θ|rT¢ , provides parameter inference and

quantifies the uncertainty regarding the values of the parameters. It is important to note that

our investor treats the parameters as random. If estimation risk is not taken into account, this

distribution is a point mass evaluated at a set of parameters, bΘ. Previous research documents
that in both i.i.d. and regression based settings, parameter uncertainty tends to alter the

predictive density of returns and can have a major impact on portfolio allocation. 10

If the investor knew the parameter values, p(VT+1, µT+1|rT ,Θ) provides the predictive
distribution of expected returns and volatility. We can represent this density as

p(VT+1, µT+1|rT ,Θ) =
Z
p(VT+1, µT+1|µT , VT ,Θ, rT )p(µT , VT |rT ,Θ)dµTdVT . (7)

The intuition is that, conditional on the parameters, prediction of the future state variables

involves two steps. The first step specifies the evolution of the state variables over time. If

the investor knew the parameters and the current expected returns and volatility then the

distribution of next periods expected returns and volatility, p(VT+1, µT+1|µT , VT ,Θ, rT ), is
again normal. The final component, p(µT , VT |rT ,Θ), solves the classical filtering problem of

estimating the latent state variables given parameters and observed data. Together, these

components account for the uncertainty in estimating the latent state variables.
10In the i.i.d. settings, see for example, see Bawa, Brown and Klein (1979) or Polson and Tew (2000). In

settings that include regression parameters, see Kandel and Stambaugh (1996), Pastor and Stambaugh (1999),

Pastor (1999) and Barberis (2000).
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3.1 Estimation and Posterior Simulation

To estimate the model and implement the optimal portfolio allocation, we need to solve the

smoothing, filtering, sequential learning and forecasting problems which are summarized by

the following distributions:

Smoothing : p
¡
Θ, µT , V T |rT¢

Filtering : p
¡
µt, Vt|rt

¢
t = 2, ..., T

Sequential Learning : p
¡
Θ|rt¢ t = 2, ..., T

Forecasting : p
¡
µt+1, Vt+1|rt

¢
t = 2, ..., T

where rT = (r1, . . . , rT ), µT = (µ1, . . . , µT ), and V T = (V1, . . . , VT ) as the full observation and

state vectors.

While these three distributions are clearly related, they use different amounts of informa-

tion and address different issues. The smoothing distribution summarizes information about

the parameters and the entire paths of expected returns and volatility conditional on the

entire data set. For example, the smoothing distribution generates p
¡
Θ|rT¢ which summa-

rizes in-sample parameter inference. While reasonable for static inference problems, this is

not useful for practical portfolio problems as it uses future information (up to time T ) to

estimate the state variables at time t. The filtering and sequential learning distributions solve

for the distribution of the current latent states or parameters conditional only on available

information at time t. We now discuss these estimation problems in turn.

3.2 The Smoothing Problem

To solve the smoothing problem, we generate samples from p
¡
Θ, µT , V T |rT¢. Since the di-

mension of p
¡
Θ, µT , V T |rT¢ is 2T + K, where K is the number of elements in Θ, it is not

possible to directly sample from the smoothing distribution and we must rely on numerical

schemes to characterize the distribution.

We use Markov Chain Monte Carlo (MCMC) methods to sample from p
¡
Θ, µT , V T |rT¢.

MCMC is very popular for estimating latent variable models due to their generality and the

speed of implementation. Recent papers in finance using MCMC include Barberis (2000), Pas-

tor (1999), Pastor and Stambaugh (2000) and Eraker, Johannes and Polson (2002). Johannes
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and Polson (2002) provide a general overview and description of these methods.

Our MCMC algorithm consists of repeated sampling from the following set of conditional

distributions:

Regression Parameters : p(φ |µT , V T ,Σ, rT )
Innovation Covariance : p(Σ |µT , V T ,φ, r T )

Expected Returns : p(µT |V T ,φ,Σ, rT )
Volatility : p(V T |µT ,φ,Σ, rT )

where φ = (αµ,βµ,αv,βv) denotes the “regression” parameters and Σ denotes the innovation

covariance matrix:

Σ =

Ã
σ2µ ρ σµσv

ρ σµσv σ2v

!
.

Given initial values for the parameters (φ0,Σ0) and state variables
³¡
µT
¢0
,
¡
V T
¢0´
, the

algorithm updates iteratively by sampling from the conditional distributions given above. For

example, the first two steps of the algorithm would be

φ1 ∼ p(φ | ¡µT¢0 , ¡V T¢0 ,Σ0, rT )
Σ1 ∼ p(Σ | ¡µT¢0 , ¡V T¢0 ,φ1, r T ).

Continuing in this manner, the algorithm produces a Markov Chain,©
φg,Σg

¡
µT
¢g
,
¡
V T
¢g
,
ªG
g=1

whose distribution converges to p
¡
Θ, µT , V T |rT¢ under a number of different metrics.

To derive conditional distributions for the parameters, we need to specify the prior dis-

tributions. We assume conjugate prior distributions on the parameters which implies that

both φ and Σ can be updated directly by drawing from the posterior conditional. The prior

distribution for φ is multivariate normal and the prior for Σ is inverted Wishart (W−1).

Under these assumptions, the full conditional posterior distribution of φ is also normal,

p(φ |µT , V T ,Σ, rT ) ∼ N (m∗, S∗), and the conditional posterior of Σ is W−1(A∗, d∗) (the

formulas for the starred parameters are given in the Appendix).
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The complete conditionals for the latent states are slightly more complicated. The condi-

tional for µ is given by

p(µT |V T ,φ,Σ, rT ) ∝ p(rT |µT , V T )p(µT |V T ,φ,Σ)

and by inspection is proportional to the likelihood, p(r|µ, V ), multiplied by the evolution
distribution p(µ|V,φ,Σ). These densities combine to form a heteroskedastic Gaussian state-

space model, and so we can sample the entire vector µ jointly using the Forward-Filtering

Backward-Sampling (FFBS) algorithm of Carter and Kohn (1994). As in most cases, the

volatility update presents the only difficulty in our MCMC scheme as p(V |µ,φ,Σ, r) is un-
recognizable and cannot be directly sampled from. However, we avoid this problem by using

the mixture approach of Carter and Kohn (1994, 1996) (see also Kim, Shephard and Chib

(1998)).

3.3 The Filtering Problem

The filtering distribution, taking into account parameter uncertainty, is defined as

p(µt, Vt|rt) for t = 2, . . . , T.

and provides the distribution of the current expected return and volatility states given current

information. One way to calculate this distribution is to marginalize the parameters from

the joint density p(µt, Vt ,φ,Σ| rt ). Obtaining this distribution for one time period is not
difficult (it is the same as the smoothing problem using data up to time t), but computing

this distribution for every day in our sample is problematic due to computational demands.

Computing the smoothing distribution a single time takes about 20 minutes using our S&P

500 data which has over 3000 observations. Repeating this for every day in our sample would

be prohibitively expensive in terms of computing time.

Our filtering problem is more difficult than the typical problem because we account for

parameter uncertainty. Typical filtering exercises compute p(µt, Vt|bΘ, rt), ignoring the fact
that the parameters are not known, while we require p(µt, Vt|rt). This implies that standard
methods such as approximate Kalman filtering, whereby a non-linear, non-Gaussian model is

approximated by a linear Gaussian model, are not applicable.

15



To compute the filtering distribution, we use two approximations, one with regard to

parameter uncertainty and the other with regard to the filtering distribution of the state

variables conditional on the parameters. Ideally, the filtering algorithm would update inference

on the parameters as every additional data point arrives. However, it is unlikely that the

parameter posterior would change with the addition of a single data point if a reasonable

number of observations have already been observed. Because of this, we update the parameter

posterior every 50 days, that is, we recompute p(µt, V t ,φ,Σ| rt ). Our results show that the
parameters tend to change very slowly with the exception of a couple of periods like the crash

of 1987. In this case, it is clear that the parameters would change even if they were updated

as every new data point arrived.

Second, we use an approximate sampling procedure to draw the state variables µt and

Vt for the periods between parameter refreshing. Conditional on the parameters, we have

that the filtering density of the latent states is p(µtt−k, V
t
t−k|rt,φ,Σ), where in our empirical

implementation, k = 250 (1-year), µtt−k = {µt−k, ..., µt} and V tt−k = {Vt−k, ..., Vt}. This density,
by the Markov property, can be written as the integralZ

p(µtt−k, V
t
t−k|rtt−k, µt−k, Vt−k,φ,Σ)p

¡
µt−k, Vt−k|rt,φ,Σ

¢
dµt−kdVt−k

where rtt−k = {rt−k, ..., rt}.
Our approximation uses the MCMC draws

©
µgt−k, V

g
t−k
ªG
g=1

from the last periods filter-

ing problem to initialize the states, (µt−k, Vt−k). That is, we use the MCMC draws from

p (µt−k, Vt−k|rt−1,φ,Σ) instead of p (µt−k, Vt−k|rt,φ,Σ). This approximation will only have an
effect if the current return observation dramatically affects the estimate of expected returns

and volatility from k−periods ago. In practice with k = 250, it is unlikely that this has any
substantive impact. Given these draws, we sample the unobserved states from

p(µtt−k, V
t
t−k|rtt−k, µgt−k, V gt−k,φ,Σ)

which provides draws from p(µtt−k, V
t
t−k|rt,φ,Σ). We also randomize over parameters to ac-

count for parameter uncertainty. The algorithm is extremely fast as the smoothing step re-

quires computing only k steps. In the limit, as we refresh parameters every day and increase

the fixed length to the entire history, our algorithm converges the true filtering distribution.

To our knowledge, this is the only computationally feasible algorithm that can perform filter-
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ing under parameter uncertainty. Polson, Stroud and Mueller (2002) provide further details

of this filtering algorithm and simulation based evidence on its efficiency.

3.4 Prediction Problem

Given the filtering distribution, it is straightforward to calculate the forecasting distribution.

The distribution of future returns conditional on µt+1 and Vt+1 is normal, given the model

specification, thus the predictive distribution is

p
¡
rt+1|rt

¢
=

Z
N (µt+1, Vt+1) p

¡
µt+1, Vt+1|rt

¢
dµt+1dVt+1.

To compute the predictive distribution, we need only to calculate p (µt+1, Vt+1|rt).
The predictive distribution for next periods expected return and volatility state are given

by the model specification:

µt+1 = αµ + βµµt + σµε
µ
t+1

log (Vt+1) = αv + βv log (Vt) + σvε
v
t+1.

The filtering problem from the previous section provides samples from p(µt, Vt ,φ,Σ| rt ) and
implies that the predictive distribution of returns is

p
¡
rt+1|rt

¢ ' 1

G

GX
g=1

N
¡
µgt+1, V

g
t+1

¢
.

From this, it would be straightforward, although numerical intensive, to compute the optimal

allocations for a specific utility function.

Since our portfolio rule requires us only to know the conditional mean and variance, we

only need to forecast those moments. Given the Gaussian nature of the problem we have that

Et (µt+1) = E
¡
αµ + βµµt|rt

¢
=

Z
(αµ + βµµt) p

¡
µt,Θ|rt

¢
dµtdΘ

where we are careful to integrate out the posterior uncertainty regarding the parameters and

expected returns. The MCMC estimate of the forecasted expected returns is:

Et (µt+1) ≈ 1

G

GX
g=1

¡
αgµ + βgµµ

g
t

¢
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The volatility is similarly estimated.

3.5 Prior Specification

To complete the specification, we need to specify the prior parameters. When analyzing

optimal portfolio holdings using actual data, it is now standard in both i.i.d and regression

settings to formally impose prior information on the form of the expected returns process (see,

e.g. Black and Litterman (1991), Pastor (1999) and Pastor and Stambaugh (1999)).11

We place uninformative priors over the volatility parameters, αv, βv, σv and ρ and the

volatility of expected returns, σµ, but we do impose some prior information on parameters

that determine the average expected return and speed of mean reversion, αµ and βµ.

Our motivation for using informative priors is twofold. First, without some restrictions

on the nature of expected returns, optimal portfolio positions will often be extreme.12 To see

why, consider taking simple 45-day moving average estimates for µt and Vt for the S&P 500

index. For example, from April 3 - May 20, 1997, the S&P 500 went from 760.60 to 841.66,

a 10 per cent move (86 per cent annualized). Volatility, estimated similarly was about 15 per

cent annualized. What is the mean-variance optimal portfolio rule? With a reasonable risk

aversion of 4, the portfolio leverages wealth by a factor of 8.9. Even with a risk aversion of 8,

the investors is leveraged more than 4 times wealth.

The second motivation for informative priors on αµ and βµ is statistical. Without informa-

tive priors on these parameters (especially βµ), there are identification problems. For example,

with uninformative priors, estimates quickly degenerate and the algorithm converges to a state

where µt ≈ rt, corresponding to a near perfect fit and an infinite likelihood. Expected returns
are extremely volatile, oscillating from -20 to +40% over short periods of time. They are not

persistent (β is close to zero) and expected returns explain most of the volatility returns. We

have strong prior beliefs over the expected returns process that this is not correct.

This should not be a surprise as our model is a mixture of normal distributions and mixture
11A more subtle form of prior is specification of the expected returns process. Brandt and Kang (2001) use

a specification for the expected returns process which is always positive which is a sufficiently strong prior

specification to avoid identification issues.
12See Jobson and Korkie (1980) or Best and Grauer (1991) for details on the sensitivity of mean-variance

portfolios on estimates of expected returns.
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Table 1: Annualized summary statistics for the S&P 500 index returns.

Mean SD Mean/SD Sharpe Ratio

13.6 14.9 0.91 0.49

models often have identification problems. For example, a mixture of normal distributions

(regime-switching models) results in an unbounded likelihood function without parameter

restrictions. In a related model with constant variance, Lamoreaux and Zhou (1996) also

place informative priors on the latent process driving the conditional expected value of the

dependent variable.

Our approach to prior specification is intuitive and pragmatic. For βµ, we consider three

different values, βµ = 0.98, 0.99 and 0.995, which varies the persistence of the process. We

have also considered lower values, however, the expected returns process degenerates and is

extremely volatile. Given the mean-reverting specification, it is easy to calculate the persis-

tence of expected returns at other horizons. For example, the persistence with βµ = 0.99 over

the monthly horizon is (.99)20 = 0.81, which is reasonable. Our prior for αµ must depend

on βµ as the unconditional mean of the volatility process is E (µt) =
αµ
1−βµ . Increasing the

persistence naturally increases the average expected return. We center our prior for αµ at

10% annualized with a reasonably large standard deviation.

4 Empirical Results: S&P 500

This section provides estimation results. The S&P 500 is our risky asset and we use daily data

from January 1, 1980 to December 31, 2000.13 Table 1 provides S&P 500 summary statistics.

For interest rate data, we use daily 3-month Treasury bill rates over the same time period and

the mean T-Bill rate was 6.186%

We estimate and evaluate portfolio performance for the following models: (SMVC) the

general model with stochastic µt and Vt and correlated shocks; (SMV) the special case of

SMVC with no correlation, ρ = 0; (SV) the model with stochastic Vt but constant expected
13We also considered the Nasdaq 100 index from January 1, 1986 - December 31, 2000. The results were

similar and we have omitted these results for brevity.
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Table 2: Parameter estimates for the S&P 500 index for the various models. We report the

parameter posterior mean and the standard deviation is reported below.

Posterior

Prior SMVC SMV SV SM

βµ 0.98 0.995 0.98 0.995 . 0.98 0.995

αµ .04(1− βµ) 0.837 0.248 0.868 0.260 . 0.829 0.228

·1000 0.100 0.094 0.073 0.092 0.072 . 0.094 0.074

σµ 0.0160 0.0091 0.0064 0.0087 0.0064 . 0.0096 0.0068

0.0121 0.0017 0.0011 0.0023 0.0011 . 0.0021 0.0014

αv 0.1205 -0.0080 -0.0093 -0.0100 -0.0103 -0.0086 . .

0.1001 0.0029 0.0031 0.0031 0.0032 0.0029 . .

βv 0.9804 0.9802 0.9780 0.9764 0.9759 0.9789 . .

0.0996 0.0048 0.0051 0.0050 0.0053 0.0050 . .

σv 0.1921 0.1474 0.1558 0.1580 0.1607 0.1465 . .

0.1416 0.0164 0.0159 0.0151 0.0166 0.0167 . .

ρ -0.3591 -0.4916 -0.2307 . . . . .

0.4520 0.2198 0.2122 . . . . .
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return, µt = µ; (SM) the model with a stochastic µt and constant volatility, Vt = V and

(Constant) the model with constant mean and variance: µt = µ and Vt = V . Note that in all

of the models, any constant parameters are assumed unknown and we account for parameter

estimation risk.

We use a daily sampling frequency for two reasons. First, if we view our model as a

time-discretization of a continuous-time model, we know from Merton (1981) that accurate

volatility estimation requires high frequency data. The high sampling frequency does not

aversely effect expected returns estimates as their accuracy is a function of the total time

span of the data. Second, daily data allows for daily rebalancing of optimal portfolios which

comes close to the continuous-rebalancing of continuous-time portfolio problems.

4.1 Smoothing Results

4.1.1 Parameter Estimates

Table 2 provides summary statistics of the marginal posterior distribution for the parameters

for S&P 500 returns, in the cases where βµ = 0.98 and 0.995. We report the posterior mean

and posterior standard deviation for each parameter and specification. Estimates for the case

βµ = 0.99 are not reported, as there is little additional insight beyond the other two cases.

In all cases, the posterior standard deviation is substantially smaller than the prior standard

deviation for all of the parameters, which indicates the uninformative nature of our priors.

For example, the prior standard deviation of σµ, αv, βv and σv is about 10 times as large as

the posterior. We can be uninformative regarding these parameters due to the fact that we

estimate conditional on the value for βµ. The posterior mean for αµ implies a long run mean

of, 252 ∗ αµ/(1− βµ), which is equal to about 10.5%.

Notice that as the persistence of expected returns increases from βµ = 0.98 to 0.995,

expected returns become closer to a random walk and both the σµ and ρ decline. Both effects

are expected. Since volatility is often rapidly moving, if the correlation between expected

returns and volatility shocks were high, rapid movements in volatility would induce large

rapid declines in expected returns. In order to keep expected returns very persistent, expected

returns cannot rapidly move and so the correlation must fall. Third, there is substantial

posterior uncertainty regarding ρ, whose posterior mean is negative, but there is significant
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posterior mass for ρ > 0. This uncertainty does not disappear when expected returns become

more persistent.

Finally, our estimation results indicate that the estimates of αv, βv and σv are effectively

unchanged by the model specification. Since the returns data are so informative about the

volatility state, the volatility parameter estimates are nearly independent of the expected

returns specification. When volatility is constant in the SM model, the volatility of expected

returns increases because time-varying expected returns must generate more volatility.

4.1.2 Smoothed Expected Returns and Volatility

While the parameter estimates provide insight into the roles played by the persistence and

model specification, smoothed estimates of the spot expected returns and volatility provide

a more intuitive view of their relative impact. Figures 1 and 2 provide smoothed expected

returns and volatility estimates in a number of different cases.

Figure 1 displays smoothed expected returns estimates, E
¡
µt|rT

¢
, for different persistence

levels and models. The top panel, panel A, shows the impact of persistence in the SMVC

model with the solid line showing the smoothed expected returns in the case βµ = 0.995 and

the dashed line the case where βµ = 0.98. Clearly, increasing the persistence smooths out

the expected returns path, but it is important to note that the differences can be quite large.

Panel B compares expected returns paths in the SMVC and SMV model for βµ = 0.98 and

shows the impact of the correlation between the shocks to the latent state variables, ρ. There

are large downward spikes in expected returns in the SMVC model that are driven by rapid

increases in volatility. Rapid increases in volatility signal rapid declines in expected returns as

ρ < 0. These spikes downward are not present in the SMV model as there is no link between

shocks in µt and Vt. In the SMV model, expected returns do not drastically change during

period of high volatility such as the episodes in 1987, 1997 and 1998. For example, in 1987,

the SMVC models estimate µt is less than -10% during the crash, while the SMV model has

expected returns close to its mean, about 10%. In a sense, during these periods, the noise

(volatility) is so great that it is difficult to extract the signal (expected returns) unless there

is a prior link between the two. Finally, panel C displays smoothed expected returns for the

SMV and SM model for βµ = 0.98. In the SM model, the expected returns process must move

more rapidly to generate large shocks, such as those in 1987.
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Figure 1: This figure show the effect of expected return persistence (changing βµ) and different

specifications.
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Figure 2: This figure shows the difference between filtered and smoothed estimates of volatility

in the SMVC model for βµ = 0.98. Panel A shows filtered volatility estimates, Panel B shows

smoothed volatility estimates and Panel C shows their difference.
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Figure 3: Sequential parameter learning plots for the SMVC model with βµ = 0.98. The

straight line is the smoothed posterior mean, the solid line is the posterior mean at a given

point in time and the shaded lines are a 2-standard deviation posterior confidence band.
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Figure 4: This figure shows the difference between filtered and smoothed estimates of expected

returns in the SMVC model for βµ = 0.98. Panel A shows filtered estimates, Panel B shows

smoothed estimates and Panel C shows their difference.
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The top panel of Figure 2 displays smoothed estimates of volatility, E
¡
Vt|rT

¢
, for the

SMVC model. The smoothed estimates for the other models are similar and are therefore not

reported.

4.2 Sequential Learning and Estimation

We now discuss sequential inference which is summarized by filtered estimates of expected

returns, volatility and the parameters. These estimates are given by E [µt|rt] , E [Vt|rt] and
E [θ|rt]. Since our sequential estimates incorporate estimation risk, we do not start filtering
with the first observation, as there is no information regarding the parameters. Rather, we

assume the investor uses the first 500 observations as a warm-up period and begins filtering

with t = 501. To our knowledge, this paper is the first paper to report filtered estimates

for expected returns and volatility and also to address sequential parameter learning problem

using actual data.

4.2.1 Sequential Parameter Learning

As investors observe data, they naturally revise their beliefs about the parameter values. Fig-

ure 3 provides the sequential parameter estimates for the SMVC model,14 the most general

specification. Figure 3 reports the posterior means sequentially through time and a two stan-

dard deviation symmetric coverage interval for each of the parameters for the entire sample.

That is, for each parameter θ we plot E [θ|rt] and construct a 2-standard deviation confidence
interval using std [θ|rt]. The solid constant line provides the full-sample posterior mean for
each of the parameters, E

£
θ|rT ¤. Deviations from this line indicate the effect of sequential

parameter learning. Note that the filtered estimates converge to the smoothed estimates as

the sample size increases.

The most noticeable feature of the sequential learning is the substantial time-variation

in parameter estimates, especially in σv and ρ. For example, prior to the crash in 1987,

the posterior mean for σv was about 0.12 and after the crash it jumped upward to almost

0.17. This is indicative of a structural shift in volatility of volatility, as σv has remained high
14The sequential parameter estimates for the other models were similar and were therefore omitted.
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Figure 5: This figure shows the difference between filtered estimates in the SMVC and SMV

models. Panel A displays filtered expected return estimates in the SMVC model for βµ = 0.98,

Panel B displays filtered expected return estimates in the SMV model for βµ = 0.98and Panel

C displays the difference.
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throughout the decade of the 1990s.15

Even more striking is the variation in ρ. The full-sample estimate of ρ is about -0.5, but

the sequential estimates vary dramatically. For example, the posterior mean of ρ has switched

signs from positive in the early 1980s to nearly zero in the early 1990s. The sequential

variation in ρ provides an explanation for why it is so difficult to pin down the relationship

between expected returns and volatility: the investor’s perception of this relationship changes

drastically over time depending on how much data is available. This could, in part, explain the

disparate results in the literature regarding the nature of the contemporaneous relationship

between expected returns and volatility (see also Whitelaw (1994) and Harvey (2001)).

Why do these sequential parameter estimates change so drastically? A compelling argu-

ment is that, in this setting with unobserved expected returns and volatility, 3000 data points

is still a relatively small sample. The reason for this is that we are estimating the parameters

that drive expected returns and volatility, both of which are persistent processes and it is

difficult to estimate the parameters of persistent processes.

4.2.2 Filtering Expected Returns and Volatility

Figures 2, 4, 5 and 6 provide filtered expected returns and volatilities to highlight the difference

between filtered and smoothed estimates, the effect of estimation risk, the impact of learning

and the effect of correlation. Specifically, Figure 2 displays filtered volatilities (panel A),

smoothed volatilities (panel B) and their difference (panel C) for the SMVC model with

βµ = 0.98. Filtered volatilities are far noisier than smoothed and the difference between

smoothed and filtered volatilities can be quite large, especially in periods of market stress

such as 1987, 1997 and 1998.

Figure 4 displays filtered expected returns (panel A), smoothed expected returns (panel

B) and their difference (Panel C) for the SMVC model with βµ = 0.98. These estimates take

into account estimation risk. There are two effects. First, the filtered estimates do not use

future returns to estimate the current expected return or volatility state, which explains why

the smoothed estimates of µt are much “smoother” than their filtered counterparts. Second,

estimation risk has a greater impact on the filtered estimates during the early portion of the
15Alternatively, this could be driven by model misspecification and the need to incorporate jumps in returns

or in volatility, see, for example, Eraker, et al. (2001).
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Figure 6: This figure shows the impact of estimation risk and parameter learning on forecast-

ing expected returns in the SMVC model. Panel A displays filtered expected return estimates

taking into account estimation risk, Panel B displays filtered expected return estimates con-

ditional on the full-sample parameter estimates, and Panel C displays their difference.
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Table 3: Characteristics of optimal portfolio returns for the SMVC model. The portfolio

return mean, standard deviation and certainty equivalent are all in percentages.

Leverage No Leverage

γ Mean SD Mean
SD S.R CE1 CE2 Mean SD Mean

SD S.R CE1 CE2

βµ = 0.980 Parameter Learning

2 11.2 18.8 0.60 0.18 -0.52 -3.71 9.0 10.9 0.83 0.41 0.16 -3.60

4 8.8 14.2 0.62 0.20 -1.27 -4.40 8.4 9.4 0.89 0.48 0.44 -2.53

6 7.8 10.8 0.72 0.31 -1.09 -2.64 7.7 8.2 0.94 0.52 0.29 -1.26

βµ = 0.980 No Parameter Learning

2 12.7 17.2 0.74 0.32 1.55 -1.64 10.4 10.2 1.02 0.60 1.71 -2.02

4 9.9 13.1 0.76 0.34 0.43 -2.70 9.2 8.6 1.07 0.65 1.53 -1.44

6 8.9 10.3 0.86 0.44 0.03 -1.22 8.3 7.4 1.12 0.71 1.13 -0.28

βµ = 0.995 Parameter Learning

2 12.8 21.3 0.60 0.19 0.07 -3.12 12.8 21.3 0.60 0.19 0.61 -3.12

4 11.0 17.9 0.61 0.20 -1.45 -4.57 11.0 17.9 0.61 0.20 -1.60 -4.57

6 9.8 14.9 0.66 0.24 -2.25 -3.80 9.8 14.9 0.66 0.24 -2.25 -3.80

sample as there is more uncertainty regarding the parameters.

Figure 5 displays the difference between filtered expected returns in the SMVC and SMV

models when βµ = 0.98. Panels A and B provide filtered expected returns for the SMVC

and SMV models, respectively, and panel C displays their difference. While there are large

differences for many periods, there is surprisingly little difference during certain periods, such

as the crash of 1987. When discussing the smoothed estimates of µt, we found that the

expected returns estimates in the SMVC and SMV models differed the most in periods of

high volatility. This effect does not occur in the filtered estimates in 1987, as the investor

perceived that the correlation between expected returns and volatility was in fact close to zero
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Table 4: Characteristics of optimal portfolio returns for the SMV model. The portfolio return

mean, standard deviation and certainty equivalent are all in percentages.

Leverage No Leverage

γ Mean SD Mean
SD S.R CE1 CE2 Mean SD Mean

SD S.R CE1 CE2

βµ = 0.980 Parameter Learning

2 13.2 19.9 0.66 0.25 1.05 -2.14 11.0 11.7 0.94 0.53 1.97 -1.75

4 10.2 14.7 0.69 0.28 -0.16 -3.28 9.4 9.9 0.95 0.53 1.24 -1.72

6 9.0 11.2 0.80 0.39 -0.16 -1.70 8.4 8.5 0.99 0.57 0.84 -0.71

βµ = 0.980 No Parameter Learning

2 15.8 19.4 0.81 0.40 3.85 0.65 13.0 12.3 1.05 0.64 3.83 0.11

4 11.5 12.8 0.90 0.48 2.18 -0.90 10.7 9.7 1.10 0.69 2.62 -0.34

6 9.9 9.3 1.06 0.65 1.91 0.37 9.3 7.8 1.19 0.78 2.10 0.54

βµ = 0.995 Parameter Learning

2 12.8 21.3 0.60 0.19 0.07 -3.11 10.9 12.3 0.89 0.47 1.73 -1.99

4 11.0 17.9 0.61 0.20 -1.45 -4.46 9.8 11.0 0.89 0.48 1.19 -1.78

6 9.8 14.9 0.66 0.24 -2.25 -3.80 9.2 10.1 0.91 0.50 0.75 -0.80

(see Figure 3). During the periods of high volatility in 1997, 1998 and 2000, when the investor

perceived that ρ was negative, the SMVC and SMV models have drastically different filtered

expected returns.

Finally, Figure 6 provides the filtered expected returns with and without parameter learn-

ing and estimation risk in the SMVC model with βµ = 0.98. Panel A displays filtered expected

returns taking into account estimation risk and parameter learning. Panel B displays filtered

expected returns conditional on the full sample posterior means and Panel C their difference.

The differences are quite large. During the beginning of the sample, parameter uncertainty is
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Table 5: Characteristics of optimal portfolio returns for the SV model. The portfolio return

mean, standard deviation and certainty equivalent are in percentages.

Leverage No Leverage

γ Mean SD Mean
SD S.R CE1 CE2 Mean SD Mean

SD S.R CE1 CE2

Parameter Learning

2 16.0 17.0 0.94 0.53 4.92 1.73 13.6 12.3 1.11 0.69 4.43 0.71

4 11.3 10.0 1.13 0.71 3.26 0.14 10.8 8.5 1.27 0.86 3.16 0.20

6 9.6 6.8 1.41 1.00 2.82 1.27 9.2 6.3 1.46 1.05 2.62 1.07

No Parameter Learning

2 16.1 17.0 0.95 0.53 5.02 1.83 13.5 12.2 1.11 0.69 4.36 0.63

4 11.2 10.2 1.10 0.68 3.08 -0.04 10.8 8.5 1.27 0.86 3.16 0.20

6 9.6 7.1 1.35 0.94 2.70 1.11 9.2 6.4 1.44 1.02 2.58 1.03

the highest and naturally this translates into more volatile expected returns estimates. To-

ward the end of the sample, the sequential parameter estimates are closer to the full sample

estimates, but there are still substantial differences in filtered expected returns. This shows

the strong effect of parameter estimation risk (as opposed to parameter learning) in estimating

expected returns.
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Table 6: Characteristics of optimal portfolio returns for the SM model. The portfolio return

mean, standard deviation and certainty equivalent are in percentages.

Leverage No Leverage

γ Mean SD Mean
SD S.R CE1 CE2 Mean SD Mean

SD S.R. CE1 CE2

βµ = 0.980 Parameter Learning

2 12.9 20.1 0.64 0.23 0.67 -2.52 10.2 11.3 0.90 0.49 1.27 -2.46

4 10.6 14.6 0.73 0.31 0.30 -5.04 9.3 10.0 0.93 0.51 1.10 -4.08

6 9.3 11.0 0.85 0.43 0.28 -5.71 8.6 8.6 1.00 0.58 0.99 -5.00

βµ = 0.980 No Parameter Learning

2 15.5 18.3 0.85 0.43 3.96 -0.77 13.3 12.1 1.10 0.68 4.18 0.45

4 10.3 9.5 1.08 0.67 2.45 -0.65 10.5 9.1 1.15 0.73 2.65 -0.32

6 8.8 6.4 1.38 0.96 2.18 0.63 8.8 6.4 1.38 0.96 2.18 0.63

βµ = 0.995 Parameter Learning

2 13.5 20.7 0.65 0.24 1.03 -2.16 10.0 11.0 0.91 0.49 1.13 -2.59

4 12.1 17.7 0.68 0.27 -0.21 -3.32 9.6 10.3 0.93 0.52 1.28 -1.68

6 10.4 14.5 0.72 0.30 -1.30 -2.85 9.2 9.6 0.96 0.54 1.04 -0.50

5 The Economic Benefits of Predictability

5.1 Measuring Economic Benefits

Our approach measures the benefits of return predictability by comparing the out-of-sample

performance of optimal portfolios.16 This provides an intuitive metric to measure the gains
16It is important to recognize that very few researchers compute truly out-of-sample optimal portfolio

returns. While there is a large literature that analyzes the out-of-sample returns to technical and other ad-hoc

timing rules (see, e.g., Brock, Lakonishok and LeBaron (1992) and Peseran and Timmermann (1995)), these

results typically ignore the utility concerns of the investor.
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Table 7: Characteristics of optimal portfolio returns for the constant model, a model where

expected returns and volatility are constant, but unknown parameters. The portfolio return

mean, standard deviation and certainty equivalent are all in percentages.

Leverage No Leverage

γ Mean SD Mean
SD S.R CE2 Mean SD Mean

SD S.R CE2

Parameter Learning

2 11.8 19.0 0.62 0.21 -3.19 9.0 11.6 0.78 0.36 -3.73

4 8.0 9.9 0.81 0.39 -3.12 8.0 9.5 0.84 0.42 -2.96

6 6.7 6.6 1.02 0.60 -1.55 6.7 6.6 1.02 0.60 -1.55

No Parameter Learning

2 22.3 27.5 0.81 0.40 3.36 14.0 14.8 0.95 0.53 0.43

4 14.8 14.9 0.99 0.58 1.20 14.0 13.7 1.02 0.61 1.09

6 11.7 9.9 1.18 0.77 1.82 11.7 9.9 1.18 0.77 1.82

or losses of return predictability. Our approach for evaluating the economic benefits is similar

to the approach of Brennan, et al. (1996) who examine out-of-sample returns for a timing

strategy based on time variation in the expected returns in bonds, stock and cash.17 They

solve a multi-period portfolio problem, ignoring estimation risk and learning, two factors which

we find to be important.

Given the filtered expected returns and volatility, we compute optimal portfolios daily and

calculate portfolio returns. This provides a long time series of out-of-sample portfolio returns

to evaluate the performance of the different models and the impact of estimation risk and

parameter learning.

There are a number of alternative approaches for measuring the economic benefits of
17Fleming, Kirby and Ostdiek (2000, 2001) compute portfolio returns using out-of-sample volatility estimates

but in-sample expected returns estimates.
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predictability. Lynch (2001), for example, calculates the ex-ante benefits as measured by the

amount an investor would pay to have access to certain variables which are assumed to predict

future returns. This calibration or population approach provides a measure of economic costs

and benefits of predictability but ignores the fact that the true nature of the predictability is

uncertain. If parameters are unknown and must be estimated, the ex-ante optimal portfolio

may have poor ex-post performance as the ex-ante measures assume the investor knows the

true nature of the predictability.

An alternative, but related approach is used by Chapman, et al. (2001). Their investor

chooses an optimal portfolio after running predictability regressions on returns that are sim-

ulated from a general equilibrium model. One of their main conclusions is that “calibration

exercises based on point estimates can be very misleading” (Chapman, et al. (2001), p. 3) and

they also find that estimation risk plays a crucial role in portfolio performance. Our approach

provides a natural complement to these other population based approaches for studying the

benefits of predictability.

Comparing the performance of dynamic trading strategies is difficult because of market

timing, the potential for leverage and non-normal returns. Due to these factors, many standard

metrics for evaluating portfolio performance, such as the Sharpe Ratio, cannot be used when

evaluating dynamic trading strategies.18

We report a number of different summary statistics to evaluate the portfolio performance.

First, we report the portfolio mean and standard deviation as well as their ratio. Second, we

report the adjusted Sharpe ratio of Graham and Harvey (1997) which, to a certain extent,

mitigates the effect of leverage and market timing, while still retaining the attractive intuition

of the Sharpe ratio. This metric matches the portfolio return volatility to that of the bench-

mark (the S&P 500) by adjusting expected return up or down to obtain a better measure of

return for a given level of risk (the market’s risk). For example if a managed portfolio had a

8% average return and 10.5% volatility, we would lever/de-lever our holdings in the managed

portfolio match the volatility of the S&P 500 (14.9%), by multiplying the expected returns by

the ratio of S&P 500 to portfolio volatility. In this example, we would multiply the expected

return by 1.41 (0.149/0.105) to get a risk-adjusted return of 11.3%. Given this risk adjusted
18Leland (1997, page 32) argues that “applying the Sharpe ratio to a portfolio with nonlognormal returns

will, in general, produce nonsense as a measure of manageral ability.”
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return, we compute the usual Sharpe ratio on a constant volatility basis.

Finally, we use a utility based metric based on certainty equivalent return. On economic

grounds, this is the most relevant metric as it quantifies benefits based on investor preferences.

For each of the models we consider, we compute the annualized risk free return which would

match utility with that of the no predictability or buy-and-hold (sub-optimal) benchmarks.

CE1 is the certainty equivalent gain from the model with no predictability and CE2 is the

certainty equivalent gain relative to the buy-and-hold strategy.

To insure that our results are due to portfolio leverage, we report results allowing for

leverage (up to twice wealth, consistent with current margining practices) and without lever-

age. In both cases, for simplicity we do not allow for short selling, although the results are

substantively unchanged when allowing for leverage.

5.2 Economic Benefits: S&P 500

Tables 3-7 summarize optimal portfolio performance for all of our models. We also analyze

the impact of parameter uncertainty. In the case without parameter uncertainty by setting

the parameters equal to the posterior means obtained using the full sample. We report the

results for a range of risk aversions.

The most striking result is that volatility timing (the SV model) uniformly dominates the

other strategies in terms of Sharpe ratios and certainty equivalent gain for all risk aversions

and with or without leverage. Moreover, the SV model also outperforms (suboptimal) buy-

and-hold strategy in terms of Sharpe ratios and certainty equivalent gains. For example, an

investor with a risk aversion of 6 has an Sharpe ratio of 1.00 with leverage and 1.05 without

leverage. The annualized certainty equivalent gain from the no predictability optimal strategy

is 2.82% with leverage and 2.62% without leverage.

Volatility timing works well for two reasons. First, volatility timing is a successful portfolio

strategy. Although it is difficult to outperform the market in terms of expected returns,

reducing portfolio volatility is easier. The intuition for this is in the filtered volatility estimates

in Figure 2. In periods of market stress, forecasted volatility is high and the investor naturally

reduces their exposure in these periods. Second, the SV strategy is not adversely affected by

estimation risk. In fact, the portfolio rule that accounts for estimation risk performs marginally
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better than the rule that ignores it.

Surprisingly, the market timing strategy performs worse than the buy-and-hold strategy

in all cases. Table 6 provides portfolio returns in the SM model and shows that while the

pure market timing strategy does worse than the SV model. The market timing strategy

does provide some economic gains to predictability in terms of the certainty equivalent gain

over the constant model (CE1). This implies that expected return predictability still provides

economic benefits.

Unlike the simple stochastic volatility model, models with time-varying expected returns

suffer severely from estimation risk. Table 6 compares the performance of the SM model with

and without parameter uncertainty. If the parameters were known (set to the full-sample

posterior means), the SM models performs almost as well as the SV model. For example,

for βµ = 0.98 and γ = 6, the SM model attains a Sharpe ratio of 0.96, and an annualized

certainty equivalent gain of 2.18% over the no predictability strategy. These fall drastically to

a Sharpe ratio of 0.43 and certainty equivalent of 0.28% when parameter uncertainty is taken

into account.

This result was foreshadowed earlier in Section 4.2.2 where Figure 6 showed the dramatic

impact of parameter uncertainty on the filtered returns. Filtered expected returns substan-

tively change depending on whether or not estimation risk is accounted for. This implies that

conditioning on full-sample estimates when forming optimal portfolios leads to misleading

results for the SM model, while it results in no change for the SV model.

Table 3 and 4 summarize the portfolio returns for the models incorporating both time-

varying expected returns and volatility. The full model with correlation between the shocks

to expected returns and volatility performs the worst in terms of certainty equivalent, with or

without leverage and for nearly all risk aversions. The SMVC model is also outperformed by

the SMV model even when taking into account the parameter uncertainty in ρ. These results

clearly indicate that the simpler models outperform their more complicated counterparts, a

result reminiscent of Occam’s razor.

Table 7 summarizes the portfolio performance assuming the expected returns and volatility

are constant, though unknown, parameters. Finally, Figure 7 displays the unconstrained

portfolio weights for all the models with time-variation. The strategies based on time-varying

expected returns look similar while the SV model portfolio weights (the second from the
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bottom panel) are quite different. These portfolio weight plots shows that the volatility

timing strategy changes weights relatively smoothly and so transactions costs will have little

economic effect. 19

6 Conclusion

We study the economic benefits of market and volatility timing. To do this, we developed

and implemented sequential techniques to obtain out-of-sample estimates for time-varying

expected returns, volatility and parameters. Given these estimates, we investigated the per-

formance of optimal portfolio rules and focused on the relative importance of time-varying

state variables, estimation risk and parameter learning.

Our most important result is that a volatility timing strategy, based on simple stochastic

volatility model, uniformly dominates market timing strategies. This is measured by the

out-of-sample returns to optimal portfolios and holds for a range of plausible risk aversions.

The reason for this is twofold. First, it is relatively easy to forecast volatility and, moreover,

forecasting volatility is relatively immune to estimation risk. Second, as theory would suggest,

volatility timing appears to be a useful recipe for increasing portfolio returns, and especially

for decreasing portfolio volatility.

In contrast, market timing strategies provide few, if any, economic benefits. While the-

ory suggests investors should time the market based on expected returns, in practice this is

difficult due to the risk present in estimating the parameters that drive the expected returns

process. For example, in complete information setting where parameters are known, a model

with only stochastic expected returns outperforms the other models, while, when estimation

risk is taken into account, its performance deteriorates leading to a significant economic per-

formance reduction as measured by either Sharpe Ratios or certainty equivalents. Our results

indicate that simpler models appear to outperform their more complicated counterparts, a

result consistent with Occam’s Razor.
19Moreover, in practice, the portfolios would be implemented in the futures market which has extremely small

transactions costs. For example, current round-trip fees for a member of the Chicago Mercantile Exchange

for an S&P 500 E-Mini futures contract which pays $25 times the index level is about $0.15 per round trip.

We did not implement the portfolio rule using futures data because futures were only introduced in late 1982

and were not sufficiently liquid until a number of years later.
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Figure 7: This figure displays the optimal portfolio holdings for the SMVC model (top panel)

the SMVmodel (second panel), the SV model (third panel) and the SMmodel (bottom panel).
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In future work, we plan a number of extensions. First, it is straightforward (although com-

putationally more difficult) to add jumps in returns or a leverage effect (correlation between

shocks to returns and volatility) to the model specification. Estimation and filtering proceed

in the same manner, although, in the case of jumps, the portfolio rule would change as the

model. Moreover, as noted by Liu, Longstaff and Pan (2002), it is never optimal to hold a

levered portfolio with normally distributed jumps in returns. Second, it is also straightforward

to extend the estimation and filtering methods to the multivariate setting, either via explicit

models for time-varying correlations or via a factor model. Finally, it is possible to study the

effect of rebalancing frequency on the performance of optimal rules.
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Appendix: MCMC algorithm and the complete Conditionals of φ
and Σ

The likelihood at each time period is Gaussian, p(rt|µt, Vt) = N(rt |µt, Vt), and the tran-
sition density at each time is a bivariate normal:

p(µt+1, Vt+1|µt, Vt,φ,Σ) = N
ÃÃ

αµ + βµ µt

αv + βv log Vt

!
,Σ

!

The full likelihood can be written as p(rT |µT , V T ) =QT
t=1 p(rt|µt, Vt), and the distribution on

the latent components as

p(µT , V T |φ,Σ) =
TY
t=1

p(µt, Vt|µt−1, Vt−1,φ,Σ)

due to the Markov specification. To simplify notation let φ = (αµ,βµ,αv,βv) denote the

“regression” parameters and let Σ denote the innovation covariance matrix:

Σ =

Ã
σ2µ ρ σµσv

ρ σµσv σ2v

!
.

The joint probability model can be specified in three parts: the likelihood, p(rT |µT , V T ),
the distribution on the latent components, p(µT , V T |φ,Σ), and the prior on the parameters,
p(φ,Σ) = p(φ) p(Σ). To complete the model, we assume conjugate priors for the unknown

parameters φ and Σ:

p(φ) = N(φ |m,S)
p(Σ) = IW (Σ |A, d),

where IW (·|A, d) denotes an inverse-Wishart distribution with matrix parameter A and scalar
degrees of freedom d (see O’Hagan, p. 293).

Our MCMC smoothing algorithm generates samples from the joint posterior distribution

(suppressing superscripts):

p(φ,Σ, µ, V |r) ∝ p(r|µ, V ) p(µ, V |φ,Σ) p(φ) p(Σ)

by the sequentially drawing from the full conditional posterior distributions.
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In this section, we derive the complete conditional for the parameters φ and Σ given vector

of the state variables, (µT , V T ), and the observed data. Conditional on the state vectors,

(µT , V T ), the parameters (φ,Σ) are independent of the observed returns, r. Hence, we need

to compute p
¡
φ,Σ|µT , V T¢ which is proportional to p ¡µT , V T |φ,Σ¢ p (φ,Σ). The transition

density p(µt, Vt|µt−1, Vt−1,φ,Σ), for t = 1, . . . , T, can be viewed as a multiple linear regression
model:

zt = Xt φ+ ²t,

²t ∼ N(0,Σ),

where

zt =

Ã
µt

logVt

!
and Xt =

Ã
1 µt−1 0 0

0 0 1 log Vt−1

!
.

Following standard regression theory (see, for example, Bernardo and Smith, 1995), the

posterior distribution for p(φ|µ, V,Σ) is N(m∗, S∗), where

S∗ =

Ã
TX
t=0

S−1t

!−1
and m∗ = S∗

Ã
TX
t=0

S−1t mt

!

with St = (X 0
tΣ
−1Xt)−1 and mt = (X 0

tΣ
−1Xt)−1X 0

tΣ
−1zt, for t = 1, . . . , T where the prior

distribution for φ is N(m0, S0). The prior distribution for Σ is

p(Σ) ∝ |Σ|−(d0+p+1)/2 exp{−1
2
tr (Σ−1A0)}

which implies that the to a conditional posterior distribution for Σ, p (Σ|φ, µ, V ) is IW (A∗, d∗),
where

A∗ =
TX
t=0

At and d∗ = d0 + 2T

with At = (zt −Xtφ)(zt −Xtφ)0.
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