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Abstract

We examine the long-run survival of irrational traders who use persistently wrong beliefs
to make their portfolio choices. Using a parsimonious model, we show that the partial
equilibrium arguments to support the long-run survival of irrational traders are flawed. The
impact irrational traders have on equilibrium prices is important in determining their long-
run fortunes; in particular, we find that irrational traders with very little wealth and CRRA
preferences may still have a large impact on stock prices. However, absent intermediate
consumption and rational traders with logarithmic preferences, irrational traders with beliefs
mildly different from the true probabilities can survive in the long run. In the presence of
intermediate consumption, we show that under fairly realistic conditions irrational traders
do not survive or have a long term price impact, but that these results are sensitive to
assumptions about preferences and the aggregate endowment.

∗Kogan, Ross and Wang are from the Sloan School of Management, MIT and NBER, and Westerfield is
from the Economics Department, MIT.



Contents

1 Introduction 1

2 The Model 3

3 The Equilibrium 6

4 The Survival of Irrational Traders 7

4.1 Heuristic Partial Equilibrium Analysis . . . . . . . . . . . . . . . . . . . . . 8

4.2 General Equilibrium Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Stock Prices, Wealth Dynamics and Portfolio Policies 17

5.1 Stock Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Wealth Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Portfolio Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Utility Loss of Irrational Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 Time-Varying Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Intermediate Consumption 30

6.1 The Model with Intermediate Consumption . . . . . . . . . . . . . . . . . . 30

6.2 The Survival and Price Impact of Irrational Traders . . . . . . . . . . . . . . 32

6.3 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Conclusion 35

A Appendix 36



1 Introduction

Classical asset pricing models rely on the assumption that market participants (traders) are

rational in the sense that they behave in ways that are consistent with the objective proba-

bilities of the states of the economy (e.g., Radner (1971) and Lucas (1978)). In particular,

they maximize expected utilities using the true probabilities of uncertain economic events.

Such an assumption is not based on the observed behavior of average traders in the market.

It is often based on two types of arguments. The first argument is that asset prices are not

determined by average traders, but rather by informed traders with easy access to capital,

namely, the large traders whose behavior is (close to) rational. The second argument (see,

e.g., Friedman (1953)), which further reinforces the first line of reasoning, is that irrational

traders who use wrong probabilities do not survive in a competitive market. Trading under

the wrong beliefs makes them lose money to the rational traders and eventually lose their

wealth. It is the rational traders who survive and ultimately dominate in the market.

However, whether or not irrational traders with persistently wrong beliefs can survive in

a competitive market remains an open question. For example, De Long, Shleifer, Summers

and Waldmann (1991) (DSSW, thereafter) use a partial equilibrium model to argue that in

the absence of intermediate consumption, traders with wrong beliefs may survive in the long

run because they may hold portfolios with higher growth rate and therefore can eventually

outgrow the rational traders. In contrast, in a stationary general equilibrium setting with in-

termediate consumption, Sandroni (2000) and Blume and Easley (2001) show that irrational

traders do not survive in the long run. DSSW also point out the negative impact intermedi-

ate consumption has on the long-run survival of irrational traders in their partial equilibrium

framework. Reconciling these seemingly contradictory results in a unified framework has re-

mained an open and challenging problem. In particular, how robust is the intuition based on

partial equilibrium arguments? Can irrational traders survive in equilibrium in the absence

of intermediate consumption? And finally, a question central to the debate about the role

of irrational traders in financial markets, does there exists a conceptual distinction between

the long-run survival and the long-run price impact of irrational traders?

In this paper we address these questions using a parsimonious general equilibrium model

analogous to the partial equilibrium framework of DSSW. By deriving an explicit solution

to the model, we show that the partial equilibrium arguments of DSSW are not reliable,

demonstrating that the impact of the irrational traders on asset prices is important to their

long-run fortunes and should not be overlooked. However, we find that in the absence of
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intermediate consumption, the irrational traders can survive in the long-run, unless the

rational traders have logarithmic utility. The intuition is well known (see, e.g., Hakansson

(1971)). With non-logarithmic utility, traders in general hold portfolios that have lower

growth than the maximum growth portfolio. Wrong beliefs can drive the irrational traders

to hold portfolios closer to the maximum growth portfolio than those of the rational traders.

As a result, their wealth sustains a higher growth rate in the long-run and can eventually

dominate the allocation of wealth in the economy. However, we find that the long-run

survival of the irrational traders only occurs when the deviations in their beliefs from the

true probability measure is mild.

Another question of interest to us is how critical the survival of irrational traders, in

terms of their relative wealth, is to their ability to impact prices. This is directly related to

the first argument for the rationality assumption mentioned above. Sandroni (2000) gives

an affirmative answer, showing “the intuitive result that agents whose wealth converges to

zero eventually have no influence on prices.” However, in our framework we demonstrate

that irrational traders do not need a significant share of wealth to affect the behavior of

asset prices. It is possible for a group of irrational traders with small share of wealth to

exert significant influence on prices. The price impact of non-surviving irrational traders

dies much more slowly than their share of wealth. Figlewski (1979) has argued that it may

take the irrational traders a very long time to lose their share of wealth. Our analysis shows

that it may take an order of magnitude longer for them to lose their influence on prices.

Even when the irrational traders’ wealth share is small, they affect the dynamics of

instantaneous moments of stock returns. Over long periods of time, the wealth distribution

in the economy may change drastically, inducing changes in the investment opportunity set.

For example, if the irrational traders are pessimistic and relatively small in the economy, they

will hold proportionately less of their wealth in the stock. If the stock price were to decline

significantly due to a negative shock to the aggregate state (the expectations of the terminal

dividend), the relative wealth of the irrational traders would rise and the stock price moments

would be affected accordingly. Such a potential change in the investment opportunity set

induces a non-trivial hedging demand on behalf of the rational traders, which in turn can

have a significant impact on the level of prices and the moments of returns. Thus, the price

impact of the relatively small traders is indirect and relies critically on the dynamic nature

of the financial markets; it comes through the hedging demand of the larger traders rather

than directly through the demand of the smaller traders.

We extend our analysis of the survival and price impact of irrational traders by considering
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economies with time-varying irrational beliefs and economies with intermediate consumption.

Several papers, including De Long, Shleifer, Summers, and Waldman (1990), show that

under certain conditions irrational traders can earn higher expected returns than rational

traders. This result is not sufficient for survival because it ignores the relative volatility

of the portfolios of rational and irrational traders. We demonstrate in our framework that

when irrational traders have a deterministically fluctuating bias in their beliefs, they do not

survive and do not affect prices in the long run. Because the beliefs of irrational traders

change over time, their portfolio holdings fluctuate as well. The irrational traders become

extinct not necessarily because they “buy high and sell low”, but also because their portfolio

exhibits a higher average volatility than for the rational traders.

Our second extension is to consider economies with intermediate consumption. In such

economies the irrational traders must make both portfolio and consumption choices, both

of which are affected by their beliefs. We find that under fairly plausible conditions, the

irrational trader does not survive and has no price impact, but that this is not a completely

general conclusion. In contrast to earlier results, e.g., Sandroni (2000), who claims that the

extinction of irrational traders is a generic evolutionary outcome, we show that when the

aggregate endowment is allowed to be unbounded the irrational traders may survive.

The rest of the paper is organized as follows. Section 2 describes a canonical, pure

exchange economy similar to that of Black and Scholes (1973), but in presence of irrational

traders who have persistently wrong beliefs about the economy. Section 3 describes the

general equilibrium of the economy. In Section 4, we first consider the partial equilibrium

argument of DSSW using our setting to analyze the conditions under which the irrational

traders may survive in the long run. We then present the general equilibrium results on

the survival of irrational traders. In Section 5, we examine in detail the shortcomings of

the partial equilibrium analysis. We also study the portfolio policies, the wealth dynamics,

and the price impact of the irrational traders. We then extend our basic model with time-

varying irrational beliefs. Section 6 describes and evaluates the economy with intermediate

consumption. Section 7 concludes.

2 The Model

Since our objective is to analyze the economic mechanisms that determine the survival of

irrational traders and their impact on prices, we use a simple model for parsimony. Gener-

alizations are discussed in Section 7.
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Information structure

We consider a continuous-time, finite-horizon economy. The uncertainty of the economy is

described by a one-dimensional, standard Brownian motion Bt for 0 ≤ t ≤ T , defined on a

complete probability space (Ω, F, P ), where F is the augmented filtration generated by Bt.

Financial markets

There is a single share of a risky asset in the economy, the stock, which is a claim on a

dividend payment DT at time T . DT is the value of a geometric Brownian motion Dt at

time T , where D0 = 1 and

dDt = Dt (µdt + σdBt) , σ > 0. (1)

There is also a risk-free bond, available in zero net supply. Each unit of the risk-free bond

makes a payment of one at time T . We use the risk-free bond as the numeraire and denote

the price of the stock at time t by St.

Endowments

There are two competitive traders in the economy, each endowed with half a share of the

stock and zero unit of the bond at time zero.

Trading strategies

Financial markets are frictionless, and there are no constraints on lending and borrowing.

Traders’ trading strategies satisfy the standard integrability condition∫ T

0

θ2
t d〈S〉t < ∞ (2)

where θt is the number of shares of the stock held in the portfolio at time t and 〈S〉t is the

quadratic variation process of St.
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Preferences and beliefs

Both traders have constant relative risk aversion utility, defined over their consumption at

time T :

1

1 − γ
C1−γ

T , γ ≥ 1.

For simplicity in exposition, we only consider the cases when γ is no less than one. The cases

when 0 < γ < 1 can be analyzed similarly and the results are similar in spirit.

Standard aggregation results imply that each trader in our model can actually repre-

sent a collection of traders with the same preferences. This provides a justification for our

competitive assumption for each of the traders.

The first, rational trader, knows the true probability measure P and maximizes expected

utility

EP
0

[
1

1 − γ
C1−γ

r,T

]
(3)

where the subscript r denotes quantities associated with the rational trader.

The second, irrational trader, believes incorrectly that the probability measure is Q,

under which

dBt = (ση)dt + dBQ
t (4)

and hence

dDt = Dt

[(
µ + σ2η

)
dt + σdBQ

t

]
(5)

where BQ
t is the standard Brownian motion under the measure Q and η is a constant,

parameterizing the degree of irrationality of the irrational trader. When η is positive, the

irrational trader is optimistic about the prospects of the economy, overestimating the rate

of growth of the aggregate endowment. Similarly, negative η corresponds to a pessimistic

irrational trader. The irrational trader maximizes expected utility using belief Q:

EQ
0

[
1

1 − γ
C1−γ

n,T

]
(6)

where the subscript n denotes quantities associated with the irrational trader.
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Because η is assumed to be constant, the probability measure of the irrational trader Q

is absolutely continuous with respect to the objective measure P , i.e., both traders agree

on zero-probability events. Let ξt ≡ (dQ/dP )t denote the Radon-Nikodym derivative of the

probability measure Q with respect to P . Then

ξt = e−
1
2
η2σ2t+ησBt (7)

and the irrational trader maximizes

EQ
0

[
1

1 − γ
C1−γ

n,T

]
= EP

0

[
ξT

1

1 − γ
C1−γ

n,T

]
. (8)

Thus, the objective of the irrational trader can be equivalently expressed as the expected

value of a state-dependent utility function, ξT
1

1−γ
C1−γ

n,T , under the true probability measure

P .

In what follows, we adopt this equivalent expression of the irrational trader’s objective

and use the true probability measure P without further clarification.

3 The Equilibrium

The competitive equilibrium of the economy defined above can be solved analytically. Since

there is only one source of uncertainty in the economy, the financial markets are dynamically

complete, as long as the volatility of stock returns remains non-zero almost surely. In fact,

in equilibrium, the instantaneous volatility of stock returns is bounded below by σ. Conse-

quently, the equilibrium allocation is efficient and can be characterized as the solution to a

central planner’s problem:

max

[
1

1 − γ
C1−γ

r,T + b ξT
1

1 − γ
C1−γ

n,T

]
(9a)

s.t. Cr,T + Cn,T = DT (9b)

where b is the ratio of utility weights. The equilibrium allocation is characterized in the

following proposition.

Proposition 1 For the economy defined in Section 2, the equilibrium allocation between the
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two traders is

Cr,T =
1

1 + (b ξT )1/γ
DT (10a)

Cn,T =
(b ξT )1/γ

1 + (b ξT )1/γ
DT (10b)

where

b = e(γ−1)ησ2T . (11)

The price of a financial security with the terminal payoff ZT is given by

Pt =
Et

[(
1 + (b ξT )1/γ

)γ

D−γ
T ZT

]
Et

[(
1 + (b ξT )1/γ

)γ

D−γ
T

] . (12)

For the stock, ZT = DT and its volatility is bounded between σ and σ(1 + |η|).

4 The Survival of Irrational Traders

In this section, we examine the survival of each type of traders in the long-run when T

becomes large. We start by defining long-run survival and extinction.

Definition 1 The irrational trader is said to experience relative extinction in the long-run

if

lim
T→∞

Cn,T

Cr,T

= 0 a.s. (13)

The relative extinction of the rational trader can be defined symmetrically. A trader is said

to survive in the long-run if relative extinction does not occur.

In our model, the final wealth of each trader equals the terminal consumption. Thus, the

above definition of survival and extinction is equivalent to a similar definition using wealth.
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4.1 Heuristic Partial Equilibrium Analysis

De Long, Shleifer, Summers and Waldmann (1991) have examined the survival of irrational

traders, using partial equilibrium arguments. In this section, we follow their argument and

derive ‘conditions’ under which the irrational trader may survive in the long run despite

the wrong belief. We start with two limiting cases in which one of the two traders controls

most of the aggregate wealth in the economy while the other trader is infinitesimal. We then

assume that the infinitesimal agent has no impact on market prices and compute the implied

growth rate of both traders’ wealth. If the wealth of the infinitesimally small trader has a

higher growth rate, and therefore the share of wealth of such a trader is growing over time,

then DSSW conclude that such a trader would be able to successfully “invade” the economy

and hence must survive in the long run, “in the sense that their wealth share does not drop

toward zero in the long run with probability one.”

Assume first that the rational trader dominates the economy and the prices of financial

assets are as if there are no irrational traders in the economy. Let µS and σS denote the

drift and volatility of the stock price process:

dSt = St (µSdt + σSdBt) .

It is easy to show that

µS = γσ2, σS = σ.

The rational trader invests only in the stock. The rate of growth of the rational trader’s

portfolio, defined as the drift of the logarithm of the trader’s wealth, is given by

µS − 1

2
σ2

S =
1

2
(2γ − 1)σ2.

Under the beliefs of the irrational trader (under the measure Q), the drift of the stock price

process is

µ̂S = µS + σ2η

and the volatility remains σ. The irrational trader invests a fraction wn = µ̂S/ (γσ2) = 1+η/γ
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of the wealth in the stock. Thus, the growth rate of the irrational trader’s portfolio is

µS − 1

2
σ2 +

1

2

σ2

γ2
η (γη� − η)

where we define

η� ≡ 2(γ − 1). (14)

The growth rate of wealth of the “invading” irrational trader is higher than that of the

dominant rational trader if and only if 0 < η < γη�.

Next, assume that the irrational trader dominates the economy. Repeating the steps of

the previous analysis, the volatility of the stock price remains at σ and the drift becomes

µS = γσ2 − ησ2.

For the irrational trader, the growth rate of the portfolio is

µS − 1

2
σ2.

while for the rational trader it is

µS − 1

2
σ2 +

1

2

σ2

γ2
(2γ − 1)η

(
η − γ

2γ − 1
η�

)
.

The rational trader’s portfolio grows faster than the irrational trader’s portfolio if and only

if η < 0 or η > γ
2γ−1

η�.

The partial equilibrium analysis thus appears to provide sufficient conditions for long-run

survival of both types of traders. In particular,

0 < η < γ
2γ−1

η� ⇒ Irrational trader survives

γ
2γ−1

η� < η < γη� ⇒ Both traders survive

η < 0 or η > γη� ⇒ Rational trader survives

(15)

For γ = 1, only the rational trader survives regardless of the value of η. These results can be

summarized in the following phase diagram in the parameter space. Note that γ/(2γ−1) ≤ 1

for γ ≥ 1, therefore η� belongs to the second region defined by (15).
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Figure 1: The survival of rational and irrational traders for different values of η and γ in partial
equilibrium. For each region in the parameter space, we document which of the agents survives in
the long run. “R” means that survival of the rational trader is guaranteed inside the region, “N”
corresponds to the irrational trader, “N,R” means that both traders survive.

4.2 General Equilibrium Analysis

The partial equilibrium analysis seems straightforward and intuitive. However, it relies on

the assumption that the stock price is unaffected by the diminishing trader, whose wealth

approaches zero in the long run. As we will demonstrate, this assumption does not always

hold. Thus, the results from the partial equilibrium analysis on survival and extinction can

be incorrect. Given the competitive equilibrium derived in Section 3, we have the following

result:

Proposition 2 Suppose η 	= 0.

(i) For γ = 1, the irrational trader never survives.

(ii) For γ > 1, only one of the traders survives in the long run. In particular, defining
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η� = 2(γ − 1),

Pessimistic irrational trader: η < 0 ⇒ Rational trader survives

Moderately optimistic irrational trader: 0 < η < η� ⇒ Irrational trader survives

Strongly optimistic irrational trader: η > η� ⇒ Rational trader survives

(16)

For η = η�, both rational and irrational traders survive.

The result for γ = 1 is intuitive. For γ = 1, the rational trader holds the portfolio with

maximum growth. Any deviation in the belief from the true probability causes the irrational

trader to move away from the maximum growth portfolio, which leads to long-run relative

extinction.

For γ > 1, Proposition 2 identifies three distinct regions in the parameter space, which

is shown in Figure 2. For η < 0, the irrational trader is pessimistic and does not survive in

the long-run. For 0 < η < η�, the irrational trader is moderately optimistic and survives in

the long-run while the rational trader does not. For η > η�, the irrational trader is strongly

optimistic and does not survive.
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General Equilibrium, Survival

Figure 2: The survival of rational and irrational traders for different values of η and γ in general
equilibrium. For each region in the parameter space, we document which of the agents survives in
the long run. “R” means that survival of the rational trader is guaranteed inside the region, “N”
corresponds to the irrational trader.
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It is interesting to compare Figure 2, the phase diagram in general equilibrium, with

Figure 1, the phase diagram from partial equilibrium arguments. Other than the knife-

edge case (η = η�), only one of the traders can survive in general equilibrium. Moreover,

for certain parameter values, the partial equilibrium argument of DSSW leads to incorrect

predictions about the survival of irrational traders. We discuss the reasons for the failure

of the partial equilibrium argument in the next section. It is also worth noting that in

the current setting, it is impossible for both traders to survive. In fact, the surviving trader

eventually dominates the economy and own most of the wealth. In general, however, survival

and dominance may not be equivalent.

In the above discussion, we used the notion of extinction in the relative sense, when the

relative wealth of a trader goes to zero in the long-run. We can also consider the notion of

extinction in the absolute sense.

Definition 2 The irrational trader is said to experience long-run extinction in the absolute

sense if

lim
T→∞

Cn,T = 0 a.s. (17)

The absolute extinction of the rational trader can be defined symmetrically.

Our equilibrium analysis gives the following result:

Proposition 3 Assume that the aggregate endowment is growing, i.e., µ > 1
2
σ2.

(i) The irrational trader experiences long-run absolute extinction if

η < (γ − 1) −
√

(γ − 1)2 + γ (2µ/σ2 − 1)

or

η > (γ − 1) +
√

(γ − 1)2 + γ (2µ/σ2 − 1).

(ii) The rational trader experience long-run absolute extinction if (γ−1)2−γ (2µ/σ2 − 1) > 0

and

(γ − 1) −
√

(γ − 1)2 − γ (2µ/σ2 − 1) < η < (γ − 1) +
√

(γ − 1)2 − γ (2µ/σ2 − 1).
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Figure 3 shows the ranges of η, given γ, for the relative and absolute extinction of the

two traders.

�( )) (

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
lim

T→∞
Cn,T

Cr,T
= 0 lim

T→∞
Cn,T

Cr,T
= ∞ lim

T→∞
Cn,T

Cr,T
= 0

︸ ︷︷ ︸
lim

T→∞
Cn,T = 0

︸ ︷︷ ︸
lim

T→∞
Cr,T = 0 lim

T→∞
Cn,T = 0

︸ ︷︷ ︸0 η� η

Figure 3: Asymptotic consumption behavior.

In order to gain more intuition about what determines the survival of the irrational trader,

we examine the terminal wealth profile of the rational and irrational traders. Figure 4 shows

the two traders’ terminal wealth profile and the state price density when the irrational trader

is pessimistic. The left panel shows the terminal wealth distributions of the rational trader

(solid line) and the irrational trader (dashed line) for three values of T (5, 25 and 125).

Obviously, the rational trader ends up with more wealth in good states of the economy

(when the dividend is high) while the irrational trader, being pessimistic, ends up with

more wealth in the bad states of the economy. In the right panel, we show the probability

distribution of the terminal state with the dashed line and the state price density with the

solid line. Apparently, the rational trader has more wealth (consumption) in cheap states,

those states with low state prices adjusted by the true probabilities. The irrational trader,

however, has more wealth in expensive states. (Of course, adjusted by his own belief, these

states look cheap.) Since the more likely states tend to be the cheap states, the rational

trader is more likely to end up with more wealth. The probability for the rational trader to

win increases as the horizon increases.

When the irrational trader is mildly optimistic, the situation is different. His impact on

the prices make the bad states (i.e., the low dividend states) cheaper than the good states.

This induces the rational trader to accumulate more wealth in the bad states by giving up

wealth in the good states, including those with high probabilities. As a result, the irrational

trader is more likely to end up with more wealth. When strongly optimistic, the irrational
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Figure 4: The terminal consumption of rational and irrational traders and the state prices for
different values of the economy horizon T . We consider three values of the economy horizon, T =
5, 25, 125. We set the model parameters to µ = 0.12, σ = 0.18, and γ = 2. We assume that
the irrational trader is pessimistic and set η = −0.5η�. The horizontal axis in all panels is the
normalized value of the terminal dividend, i.e.,

[
ln DT − (µ − σ2/2)T

]
/(σ

√
T ). The three panels

on the left show the terminal consumptions of the rational trader (solid line) and the irrational
trader (dashed line) as a fraction of the aggregate endowment, i.e., Cr,T /DT and Cn,T /DT . The
three panels on the right show the probability distribution of the normalized dividend (dashed line),
which is a standard normal random variable, and the state price density with respect to the Lebesque
measure over

[
ln DT − (µ − σ2/2)T

]
/(σ

√
T ) (solid line).
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Figure 5: The terminal consumption of rational and irrational traders and the state prices for
different values of the economy horizon T . We consider three values of the economy horizon, T =
5, 25, 125. We set the model parameters to µ = 0.12, σ = 0.18, and γ = 2. We assume that the
irrational trader is moderately optimistic and set η = 0.5η�. The horizontal axis in all panels is the
normalized value of the terminal dividend, i.e.,

[
ln DT − (µ − σ2/2)T

]
/(σ

√
T ). The three panels

on the left show the terminal consumptions of the rational trader (solid line) and the irrational
trader (dashed line) as a fraction of the aggregate endowment, i.e., Cr,T /DT and Cn,T /DT . The
three panels on the right show the probability distribution of the normalized dividend (dashed line),
which is a standard normal random variable, and the state price density with respect to the Lebesque
measure over

[
ln DT − (µ − σ2/2)T

]
/(σ

√
T ) (solid line).
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Figure 6: The terminal consumption of rational and irrational traders and the state prices for
different values of the economy horizon T . We consider three values of the economy horizon, T =
5, 25, 125. We set the model parameters to µ = 0.12, σ = 0.18, and γ = 2. We assume that the
irrational trader is strongly optimistic and set η = 1.5η�. The horizontal axis in all panels is the
normalized value of the terminal dividend, i.e.,

[
ln DT − (µ − σ2/2)T

]
/(σ

√
T ). The three panels

on the left show the terminal consumptions of the rational trader (solid line) and the irrational
trader (dashed line) as a fraction of the aggregate endowment, i.e., Cr,T /DT and Cn,T /DT . The
three panels on the right show the probability distribution of the normalized dividend (dashed line),
which is a standard normal random variable, and the state price density with respect to the Lebesque
measure over

[
ln DT − (µ − σ2/2)T

]
/(σ

√
T ) (solid line).

16



trader ends up accumulating wealth in very unlikely, good states by giving up wealth in most

other states, which leads to his extinction in the long-run.

5 Stock Prices, Wealth Dynamics and Portfolio Poli-

cies

The application of the partial equilibrium “invasion” argument to the general equilibrium

economy, as described by De Long et al., relies on the following three assumptions. If one

of the traders becomes infinitesimal, i.e., controls only a negligible fraction of the total

wealth in the economy, then (i) such an trader has no impact on prices, (ii) the portfolio

policies of both traders are the same as if the prices are exclusively set by the dominant

trader, and (iii) as long as under these conditions the infinitesimal trader’s wealth is growing

as a fraction of the total, one can conclude that such an trader must survive in the long

run. The third statement appears very intuitive and one may be tempted to conclude that

it is an immediate implication of the first two assumptions, rather than an independent

assumption. As we argue below, this is not the case. Having derived the exact solution to

the general equilibrium economy, we investigate the validity of each of these assumptions

and characterize the precise combinations of the model parameters under which they fail to

hold.

The general expressions for the equilibrium asset prices and individual policies involve

conditional expectations which cannot always be computed in closed form. To derive an

explicit characterization of the objects of interest, we resort to asymptotic analysis. In this

section and in the rest of the paper, we call two stochastic processes asymptotically equivalent

if for large values of T , their ratio converges to one. Formally, we have

Definition 3 (Asymptotic Equivalence) Two stochastic processes, Xt and Yt are said to be

asymptotically equivalent if

lim
T→∞

XT

YT

= 1

denoted by XT ∼ YT .

As we consider a sequence of economies with increasing horizon, the time of observation

is chosen to be t = λT , 0 < λ ≤ 1. Thus, as the horizon of the economy approaches infinity,
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the “current” time t increases as well, but remains at a constant fraction of the horizon of

the economy. Moreover, the time remaining until the final date of the economy is increasing

proportionally to T . Since the properties of the equilibrium prices and quantities depend on

how much time is remaining till the final date, they depend on λ. We introduce the following

three constants, which help us identify the points of change in the limiting behavior:

λS ≡ 2

2γ − η
, λr ≡ η

(γ − 1)(2γ − η)
, λn ≡ η

η(γ + 1) − 2γ(γ − 1)
. (18)

It is easy to verify that for η < η�, 0 < λS ≤ 1; for 0 < η ≤ η�, 0 < λr ≤ 1; and for η < 0 or

η > η�, 0 < λn ≤ 1.

5.1 Stock Prices

We first characterize the limiting behavior of the stock price process.

Proposition 4 (Stock Price) At t = λT , the stock price behaves as follows when T → ∞.

Case 1. Pessimistic Irrational Trader (η < 0):

St ∼
 e(µ/σ2−γ+η)σ2T+ 1

2 [(2γ−1)−2γη+η2]σ2t+(1−η)σBt , 0 < λ < λS

e(µ/σ2−γ)σ2T+ 1
2
(2γ−1)σ2t+σBt , λS < λ ≤ 1

Case 2. Moderately Optimistic Irrational Trader (0 < η < η�):

St ∼
 e(µ/σ2−γ)σ2T+ 1

2 [(2γ−1)+2(γ−1)η−η2]σ2t+(1+η)σBt , 0 < λ < λS

e(µ/σ2−γ+η)σ2T+ 1
2
[(2γ−1)−2η]σ2t+σBt , λS < λ ≤ 1

Case 3. Strongly Optimistic Irrational Trader (η� < η):

St ∼ e(µ/σ2−γ)σ2T+ 1
2
(2γ−1)σ2t+σBt

The limiting values of the instantaneous moments of stock returns are equal to the mo-

ments of the corresponding asymptotic expressions above.
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Observe that in the first two cases the stock price process does not immediately converge

to its value in the economy populated exclusively by the trader who survives in the long

run. Instead, over long periods of time, i.e., for t between 0 and λST , the stock price process

is affected by the presence of both traders. We illustrate this property of the stock price

in Figure 7, by showing which of the traders has a finite asymptotic impact on the stock

price for different combinations of model parameters. We pick a particular value of λ, 2/3,

to illustrate that both traders can potentially affect the stock price even if one of them

becomes infinitesimally small asymptotically. Eventually, when t reaches λST , convergence

of the stock price to its value in a single-trader economy does occur. As we show in the next

proposition, in each of the cases considered in Proposition 4, for any non-zero value of λ,

the proportion of aggregate wealth controlled by the trader who does not survive in the long

run becomes arbitrarily small already at time t = λT .
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General Equilibrium, Stock Price Impact (λ = 2/3)

Figure 7: The price impact of rational and irrational traders for different values of η and γ in
general equilibrium. The time is fixed at t = (2/3)T . For each region in the parameter space, we
document which of the traders has an impact on the stock price in the long run. “R” means that
the rational trader has an impact inside the region, “N” means that the irrational trader has an
impact, and “N,R” means that both traders have an impact.

The first assumption of the partial equilibrium “invasion” argument appears incorrect.

As the horizon of the economy expands, a trader can control an asymptotically infinitesimal

fraction of the total wealth and yet exert a non-negligible effect on the price. This happens

despite the fact that for any given economy, with fixed horizon T and the observation period

t, the first partial equilibrium assumption applies, as shown in Proposition 5 below.
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Proposition 5 (Stock Price, Fixed T )

For any fixed values of T and t, the instantaneous moments of stock returns, µSt and σSt,

behave as follows.

Case 1. Pessimistic Irrational Trader (η < 0):

Bt → ∞ ⇒ Wr

Wn
→ ∞, µSt → γσ2, σSt → σ

Bt → −∞ ⇒ Wr

Wn
→ 0, µSt → γσ2 − ησ2, σSt → σ

Case 2. Optimistic Irrational Trader (η < 0):

Bt → ∞ ⇒ Wr

Wn
→ ∞, µSt → γσ2 − ησ2, σSt → σ

Bt → −∞ ⇒ Wr

Wn
→ 0, µSt → γσ2, σSt → σ

As the relative wealth of any one of the traders becomes “sufficiently small”, the price

impact of such trader becomes small as well. What constitutes “sufficiently small” in this

context depends on the horizon of the economy and the observation period. Therefore,

it must be that as one allows the horizon of the economy to expand, the critical level of

relative wealth below which the price impact becomes “small” declines as well. Conclusions

of Propositions 4 and 5 can thus be reconciled: for a range of values of λ and t = λT , as the

horizon of the economy increases, the relative wealth of one of the traders converges to zero,

but not rapidly enough for the result of Proposition 5 to apply. Therefore, one can observe

finite price impact while the relative wealth of the trader approaches zero as T → ∞.

5.2 Wealth Distribution

In Section 4, we have discussed the limiting distribution of wealth between the rational and

irrational traders at the final date T , as T goes to infinity. We now characterize the dynamics

of the wealth distribution in the economy.

Proposition 6 (Individual Wealth) At t = λT , the individual wealth processes behave as

follows when T → ∞.

20



Case 1. Pessimistic Irrational Trader (η < 0):

Wr,t

Wn,t

∼
 e

1
2
[η−2(γ−1)]ησ2t−ησBt , 0 < λ < λn

e
1
2
(η2/γ2)(γ−1)σ2T+ 1

2 [(η2/γ2)−2η(γ−1)/γ]σ2t−(η/γ)σBt , λn < λ ≤ 1

Wr,t ∼ St

Case 2, Moderately Optimistic Irrational Trader (0 < η < η�):

Wr,t

Wn,t

∼
 e

1
2
[η−2(γ−1)]ησ2t−ησBt , 0 < λ < λr

e−
1
2
(η2/γ2)(γ−1)σ2T+ 1

2 [(η2/γ2)(2γ−1)−2η(γ−1)/γ]σ2t−(η/γ)σBt , λr < λ ≤ 1

Wn,t ∼ St

Case 3. Strongly Optimistic Irrational Trader (η� < η):

Wr,t

Wn,t

∼
 e

1
2
[η−2(γ−1)]ησ2t−ησBt , 0 < λ < λn

e
1
2
(η2/γ2)(γ−1)σ2T+ 1

2 [(η2/γ2)−2η(γ−1)/γ]σ2t−(η/γ)σBt , λn < λ ≤ 1

Wr,t ∼ St

The third case provides a stark example of the failure of the second assumption behind

the partial equilibrium analysis. In this case only the rational trader survives in the long

run. Moreover, according to Proposition 4, convergence of the stock price process at t = λT

occurs for any non-zero value of λ.1 Nevertheless, the growth rate of the irrational trader’s

wealth converges to the value suggested by the partial-equilibrium arguments only for λ > λn.

This implies that even if the price process and the moments of returns do converge to their

partial-equilibrium values, the individual portfolio policies may not. We make this explicit

in the following discussion.

5.3 Portfolio Policies

Expressions for portfolio policies are not available in closed form. However, using the same

arguments as in the proof of the bounds on the volatility of stock returns, Proposition 1,

1We establish convergence of the price level, as well as convergence of the drift and diffusion coefficients
of the return process in the appendix.
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it is easy to show that individual portfolio holdings are bounded in absolute value, |w| ≤
1 + |η|(γ + 1)/γ. This implies that our asymptotic survival results do not rely on the

traders being able to use progressively higher levels of leverage and our solution for the

equilibrium would remain valid even if agents were constrained in their portfolio choice, as

long as the constraint was sufficiently loose to allow for w = ±(1 + |η|(γ + 1)/γ). The

traders fail to survive asymptotically either because they take short positions in a stock with

positive expected excess return, or because they adopt portfolio policies with excessively

high volatility of returns.

To analyze the traders’ portfolio policies further, we decompose a trader’s stock demand

into two components, the myopic component and the hedging component. The sum of the

two gives the trader’s total stock demand.

Proposition 7 (Portfolio Policies) At t = λT , the individual stock holdings behave as follows

when T → ∞.

Case 1. Pessimistic Irrational Trader (η < 0):2

wr,t ∼


γ−η

γ(1−η)
− (γ−1)η

γ(1−η)
= 1, 0 < λ < λS

(myopic) (hedging) (total)

1 + 0 = 1, λS < λ ≤ 1

wn,t ∼


1

1−η
+ 0 = 1

1−η
, 0 < λ < min(λn, λS)

(myopic) (hedging) (total)

1 + η
γ

+ 0 = 1 + η
γ
, max(λn, λS) < λ ≤ 1

2The limit of the portfolio policy for values of λ ∈ [min(λn, λS),max(λn, λS)] can be characterized ex-
plicitly as well, but the results depend on the ordering between λn and λS , which in turn is determined by
the values of model parameters. We chose to omit these results to simplify the exposition.
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Case 2. Moderately Optimistic Irrational Trader (0 < η < η�):

wr,t ∼



1
1+η

+ 0 = 1
1+η

, 0 < λ < λr

(myopic) (hedging) (total)

1
1+η

+ η(γ−1)
γ(1+η)

= 1 − η
γ(1+η)

, λr < λ < λS

1 − η
γ

+ 0 = 1 − η
γ
, λS < λ ≤ 1

wn,t ∼


γ+η

γ(1+η)
+ η(γ−1)

γ(1+η)
= 1, 0 < λ < λS

(myopic) (hedging) (total)

1 + 0 = 1, λS < λ ≤ 1

Case 3. Strongly Optimistic Irrational Trader, (η� < η):

wr,t ∼ 1 + 0 = 1, 0 < λ ≤ 1

wn,t ∼


1 + η

γ
+ η(γ−1)

γ
= 1 + η, 0 < λ < λn

(myopic) (hedging) (total)

1 + η
γ

+ 0 = 1 + η
γ
, λn < λ ≤ 1

Although the moments of stock returns are asymptotically state-independent, the portfo-

lio policy is not myopic, i.e., it does not converge to the corresponding values in the economy

where the moments of returns are exactly equal to their limiting values. The reason for this

lack of convergence of the individual portfolio policies is due to the presence of non-trivial

hedging demand in our economy, in addition to the myopic demand. By definition, the

myopic component of portfolio holdings is a function of the instantaneous moments of stock

returns and hence it converges to its partial equilibrium value as long as the instantaneous

moments of stock returns converge. It may seem surprising, however, that even when the

moments of stock returns are asymptotically state-independent, the hedging component of

portfolio holdings does not necessarily converge to zero, as can be seen, for example, from the

first case in Proposition 7. This is because for finite values of T , investment opportunities

do not remain constant. In fact, the instantaneous Sharpe ratio of returns, which completely

summarizes the instantaneous investment opportunities, can vary drastically, as illustrated

in Figure 8. The Sharpe ratio is a function of the distribution of wealth between the two
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traders. Figure 8 illustrates the properties of the economy with pessimistic irrational traders.

For the chosen set of parameter values, λS = 0.29, hence the panels on the left correspond

to “small” values of t, t < λST , while panels on the right correspond to “large” values of t,

t > λST . It is straightforward to show that for very low values of Dt, holding time t fixed,

the economy is dominated by the irrational traders (see the bottom row of panels) and the

instantaneous Sharpe ratio of returns converges to its value in a homogeneous economy pop-

ulated by irrational traders only, σ(γ−η). Portfolio holdings of both agents converge to their

values in the homogeneous economy as well. For very large values of Dt, the Sharpe ratio is

the same as in an economy populated exclusively by the rational traders, σγ, and equals the

asymptotic value for t > λST .3 These properties of the Sharpe ratio are shown in the top

two panels of Figure 8. Note that for small values of t (left panels), with high probability the

Sharpe ratio is close to σ(γ − η), while for large values of t (right panels), it is close to σγ.

This behavior is captured by the asymptotic result in Proposition 4. However, there always

exists a possibility of a significant change in the Sharpe ratio, provided a sufficiently large

movement in the state variable. Such a possibility is reflected in the indirect utility function.

Since traders in our model have constant relative risk aversion, their indirect utility function

can be expressed in the form

V (t,Wt, Dt) =
1

1 − γ
eh(t,Dt)W 1−γ

t (19)

State dependence of the indirect utility function is captured by the function h(t,Dt). As

shown in the second row of plots, function h is non-constant over a wide range of values

of Dt. In particular, for small values of t, the indirect utility function exhibits significant

state dependence even when the contemporaneous Sharpe ratio of returns is approximately

constant. This captures the effect of possible future changes in the Sharpe ratio. On the

other hand, as he remaining time horizon T − t declines, the indirect utility function reflects

more closely the behavior of the contemporaneous Sharpe ratio, as shown in the panel on the

right. State dependence in the indirect utility function induces hedging demand. The third

row of panels shows hedging demand of the rational trader. For small values of t, over a wide

range of values of Dt, hedging demand is close to its asymptotic value (γ − 1)η/(γ(1 − η))

(see Proposition 7), which equals 0.375 for the chosen values of parameters. For large values

of t, hedging demand is close to zero with high probability, although it remains positive over

3When the irrational trader is optimistic, for large values of Dt the Sharpe ratio is the same as in a
homogeneous economy populated by the irrational traders, while for small values of Dt the Sharpe ratio is
the same as in a homogeneous economy populated by the rational traders.
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the range of values of Dt for which the Sharpe ratio of returns is variable.

Finally, we illustrate precisely how the third assumption of the partial equilibrium argu-

ment can fail as well. Consider a combination of model parameters satisfying η� < η < γη�.

Even though for sufficiently large values of t the stock prices, the individual portfolio policies,

and the growth rate of individual wealth eventually do converge to their partial equilibrium

values, the irrational trader still becomes extinct in the long run. The reason for this can

be seen from Proposition 6 and is further illustrated in Figure 9. Even though for t = λT ,

λ > λn the relative wealth of the irrational trader is growing, it does so only following a

period of decline, i.e., 0 < λ < λn. This happens because the first two assumptions of the

partial equilibrium analysis do not hold for 0 < λ < λn. After all, these assumptions do

not explicitly state how small the fraction of wealth of the irrational (or rational) trader

must become before one can safely ignore the trader’s impact on the market prices. As the

horizon of the economy increases, the relative wealth threshold below which the trader has

no impact on the equilibrium prices and policies declines. The net result is the ultimate

relative extinction of the irrational trader.
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Figure 8: The figure illustrates the properties of the economy for the following set of parameter
values: µ = 0.12, σ = 0.18, γ = 2, T = 125. We assume that the irrational trader is pessimistic
and set η = −1.5η� = −3. We consider two value of t, 0.1 × T (left panels) and 0.7 × T (right
panels). The horizontal axis in all panels is the normalized value of the terminal dividend, i.e.,[
ln DT − (µ − σ2/2)T

]
/(σ

√
T ). The four rows of panels show (i) the instantaneous Sharpe ratio of

returns, µS/σS ; (ii) the state dependence of the indirect value function, as captured by the function
h(t,Dt) in (19); (iii) the portion of the portfolio strategy of the rational trader attributable to
hedging demand, defined as whedge

r = wr − µS/(γσ2
S); (iv) the fraction of the aggregate wealth

controlled by the rational agent, Wr/(Wr + Wn).
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Figure 9: Asymptotic Wealth Behavior.
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5.4 Utility Loss of Irrational Beliefs

As we have established in Section 5.1, the irrational trader can have a significant impact

on the behavior of stock returns. In this subsection we show that the impact on prices

is associated with utility loss by irrational traders. By revealed preference, the rational

trader always benefits from the presence of irrational traders, since the autarchic solution

remains feasible in our equilibrium economy. We quantify this benefit and show that it is

asymptotically independent of the exact belief of the irrational traders, i.e., independent of

the long run survival of the rational trader.

Assuming γ > 1 and η 	= 0, the certainty equivalent of the terminal consumption of the

rational trader in the equilibrium economy we are analyzing is given by

C.E. (Cr,T ) ≡ (E0

[
C1−γ

r,T

]) 1
1−γ ∼ e(µ− 1

2
σ2γ)T .

The above expression is the same as the certainty equivalent of consuming the entire aggre-

gate dividend at time T . Thus, we find that, in the limit of economy horizon approaching

infinity, the rational trader realizes the largest possible benefit of risk sharing, and this con-

clusion is independent of the exact belief bias η exhibited by the irrational trader. This

remains the case even if the rational trader does not survive in the long run.

Next, we compute the certainty equivalent of the consumption of the irrational trader.

We are using the objective probability distribution in our calculation, i.e., we are finding the

certainty equivalent the the rational trader would assign to the terminal consumption profile

of the irrational trader. As before, we assume γ > 1 and η 	= 0. We find

C.E. (Cn,T ) ≡ (E0

[
C1−γ

n,T

]) 1
1−γ ∼ e(µ− 1

2
σ2γ− 1

2
η2σ2(2γ−1)/γ2)T (20)

We know from our previous analysis that the irrational traders can have long-run impact on

the asset prices in equilibrium. To quantify this impact, we consider that certainty equivalent

of the consumption chosen by the irrational trader facing the prices free of the impact of

the irrational traders, i.e., the prices in the economy populated exclusively by the rational

traders. Assuming that the endowment of the irrational trader is one half of the aggregate

dividend, a straightforward calculation yields the certainty equivalent of

1

2
e(µ− 1

2
σ2γ− 1

2
η2σ2 1

γ )T .

Since γ > 1, the above expression has lower growth rate in T than (20), i.e., asymptotically
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the irrational traders are hurt by their own price impact. As a quantitative measure of

the resulting utility loss one can use the fraction of the aggregate dividend with which the

irrational agent must be endowed in an economy without price impact to achieve the same

certainty equivalent consumption as in our general equilibrium economy. We find that this

fraction converges to zero asymptotically.

5.5 Time-Varying Beliefs

So far we have focused on the case when irrational traders are persistently wrong in their

beliefs, they are either constantly optimistic or pessimistic. We now consider an exten-

sion of our basic model by allowing the beliefs of the irrational trader to be time-varying.

Specifically, we let η be a deterministic function of time, ηt = η0 sin(κt). Then

ξt = exp

(
−η2

0σ
2

4κ

(
κt − 1

2
sin(2κt)

)
+

∫ t

0

ση0 sin(κt) dBt

)
Thus, “on average”, the irrational trader holds correct beliefs, i.e., the time-average value

of ηt is zero. However, at any point in time they the irrational trader is either optimistic or

pessimistic, with beliefs varying periodically. Following the proof of Proposition 1, one can

show that the equilibrium allocations are given by (10) with

b = exp

(
η0σ

2(γ − 1)

κ
(1 − cos(κT ))

)
Since b is bounded as a function of T , it follows that the irrational trader fails to survive

in the long run, as long as η0 	= 0. Moreover, the wealth of the irrational trader decays

exponentially as a fraction of the total.

Asymptotically, the irrational trader has no price impact in this economy, i.e.,

St ∼ e(µ/σ2−γ)σ2T+ 1
2
(2γ−1)σ2t+σBt

for t = λT , λ > 0. In the limit of T → ∞, the portfolio policies of the two agents take the
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form

wr,t ∼ 1, 0 < λ ≤ 1

wn,t ∼
{

1 + η0 sin(κt), 0 < λ < 1
γ+1

1 + 1
γ
η0 sin(κt), 1

γ+1
< λ ≤ 1

Intuitively, one would expect the lack of survival of the irrational trader to be attributable

to the price impact exerted due to changing belief bias, ηt. In particular, when ηt is positive,

one would expect the irrational traders to increase their stock holdings, temporarily raising

the stock price. The opposite would happen when ηt is negative. Thus, irrational traders

would “buy high and sell low.” Our analysis shows that this is not the only mechanism

by which irrational traders can disappear in the long run. Asymptotically, the irrational

trader has no price impact at t = λT , for any positive λ. Nevertheless, the relative wealth

of the irrational trader continues decaying exponentially. The reason lies in fluctuations in

the trader’s portfolio policy. While the average return on the irrational trader’s portfolio is

the same as for the rational trader, the former exhibits a higher average variance of returns,

which results in a lower average growth rate of wealth.

6 Intermediate Consumption

Our previous discussion relies on a model with only terminal consumption. A natural ques-

tion is how intermediate consumption may affect our results. With intermediate consump-

tion, each trader has two decisions to make: how much to consume today and how to invest

savings for the future. These two decisions are interdependent, so that a trader who per-

ceives better investment opportunities may well choose to save less. Thus, in our analysis, an

irrational trader’s wrong beliefs may well affect his consumption/saving decision and signifi-

cantly change his chance for long-run survival. In this section we consider an extension of the

model in Section 2 to allow intermediate consumption. We then examine how intermediate

consumption may affect irrational traders’ survival.

6.1 The Model with Intermediate Consumption

We start with the setting in Section 2 and make the appropriate adjustments to introduce

intermediate consumption. With intermediate consumption, we can extend the horizon of
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the economy to infinity and use the current price of the consumption good as the numeraire.

The uncertainty of the economy is defined by a one-dimensional, standard Brownian motion

Bt for t ≥ 0.

Two financial securities are traded, a bond and a stock. The bond pays an instantaneous,

risk-free interest rate of rt. The stock pays a stream of dividend at an instantaneous rate of

Dt, where D0 = 1 and

dDt = Dt (µdt + σdBt) , σ > 0. (21)

It is worth emphasizing that even though Dt here follows the same process as in Section 2,

its meaning is different. In the current context, it stands for the rate of dividends paid at

each point in time while previously it stands for the level of dividends paid on the terminal

date. Furthermore, we use current consumption rather than the bond as the numeraire.

We still consider two competitive traders, each endowed with a fraction share of the stock.

Each chooses a consumption strategy Ct, which denotes the rate of consumption at time t,

and a trading strategy θt.
4 The consumption and trading strategies satisfy the following

integrability conditions:

∀ t > 0 :

∫ t

0

|Cs|ds < ∞,

∫ t

0

θ2
sd〈Ss〉 < ∞ (22)

where St denotes the stock price as before.

The rational trader knows the correct probability measure P . The irrational trader

believes the probability measure to be Q, under which dBt = (ση)dt + dBQ
t and

dDt = Dt

[(
µ + σ2η

)
dt + σdBQ

t

]
where, as before, BQ

t is the standard Brownian motion under Q and η is a constant.

Both traders have a constant coefficient of relative risk aversion, and each maximizes

expected utility over his lifetime consumption. For the rational trader, the expected utility

function is

EP
0

[
1

1 − γ

∫ ∞

0

e−ρtC1−γ
r,t dt

]
(23)

4As with dividends, Ct is an abuse of notation. With intermediate consumption, it stands for the rate of
consumption at each point in time, while with terminal consumption it stands for the level of consumption
at the terminal date.
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where ρ > 0 is the time-discount coefficient and EP denotes the expectation under probability

measure P . For the irrational trader, the expected utility function is

EQ
0

[
1

1 − γ

∫ ∞

0

e−ρtC1−γ
n,t dt

]
= EP

0

[
1

1 − γ

∫ ∞

0

e−ρtC1−γ
n,t ξtdt

]
(24)

where ξt ≡ (dQ/dP )t is given in equation (7).

In addition, we will assume

ρ >

(
µ + ησ2 − 1

2
γσ2

)
(1 − γ) (25)

ρ >

(
µ − 1

2
γσ2

)
(1 − γ) (26)

so that the expected utilities of both agents are guaranteed to be finite.5

6.2 The Survival and Price Impact of Irrational Traders

Since the financial markets are dynamically complete, the solution to the equilibrium in the

case of intermediate consumption is similar to the case of terminal consumption. In fact, we

obtain the same sharing rule for the traders’ optimal consumption, except the social utility

weight b now depends on the initial wealth distribution, as opposed to the horizon of the

economy. We use the same criteria to examine the survival of irrational traders. That is,

if his relative share of aggregate consumption diminishes eventually, the irrational trader is

said to experience relative extinction. We have the following result.

Proposition 8 In the economy defined in Section 6.1, the irrational trader does not survive,

as long as η 	= 0.

This result is stronger than the result for the economy with only terminal consumption.

Apparently, the irrational trader’s consumption decision, which is based on his incorrect be-

lief about his future wealth growth, is a decisive factor in his fate. The following proposition

illustrates this intuition for integer values of γ, showing that both optimistic and strongly

5The first condition ensures that if the irrational trader consumes his initial endowment then re-
sulting expected utility is finite. This provides a lower bound on the expected utility in equilibrium:
1/(1 − γ)E0

[∫∞
0

(Dt/2)1−γξtdt
]

= 2γ−1/(1 − γ)
∫∞
0

e[−ρ+(µ+ησ2− 1
2 γσ2)(1−γ)]tdt. Equation (25) ensures that

this integral is finite. Condition (26) is derived similarly for the rational trader.
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pessimistic irrational traders eventually consume more of their wealth than rational traders.

The proposition also shows that, in the long run, the growth rate of the traders’ wealth and

consumption is the same, therefore our results on the long-run relative consumption shares

apply to the agents’ wealth as well.

Proposition 9 For integer values of γ ≥ 1,

lim
t→∞

Cr,t/Wr,t

Cn,t/Wn,t

= k

where

k =

∫∞
0

e−ρtE0

[
D1−γ

t ξ
1/γ
t

]
dt∫∞

0
e−ρtE0

[
D1−γ

t

]
dt

and k > 1 if and only if −2γ < η < 0.

We also find (again, for integer γ), that in the long run irrational traders have no impact

on neither the stock price nor the interest rate. This stands in contrast to the result for the

terminal-consumption economies, where long-run extinction did not necessarily imply the

absence of long-run price impact.

Proposition 10 For integer γ ≥ 1,

lim
t→∞

St

Dt

=
1

ρ + (γ − 1)
(
µ − 1

2
γσ2
)

and

lim
t→∞

rt = ρ + γµ − 1

2
γ (γ + 1) σ2

6.3 Further Discussion

Proposition 8 establishes the extinction of irrational traders in the setting specified in Section

6.1. To examine the robustness of this result, we now relax our assumptions on the traders’

preferences and the aggregate endowment process.

Proposition 11 Suppose that rational and irrational traders have the same utility function

with the relative risk aversion γ bounded from above, and that the equilibrium consumption
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allocation is Pareto optimal and corresponds to an interior solution, i.e., u′
r/u

′
n = b ξt. If the

bias of the irrational trader is sufficiently large, so that ξt → 0, then Cn,t/Cr,t → 0.

Proposition 11 shows that as long as both traders have the same utility function with relative

risk aversion bounded from above, irrational traders who do not learn the true probability

distribution sufficiently quickly cannot survive. The exact specification of the endowment

process is irrelevant.

Our results so far have involved conditions on three aspects of the economy. The first

condition is on the degree of irrationality, which can be measured by the asymptotic behavior

of ξt. In terms of survival, ξt → 0 implies significant degree of irrationality. The second

condition is on the traders’ preferences. An upper bound on relative risk aversion is non-

trivial assumption which has important exceptions. The third condition is on the aggregate

endowment process.

Sandroni (2000) and Blume and Easley (2001) use a setting similar to ours with inter-

mediate consumption. They show that “agents making inaccurate predictions are driven

out of the market” and claim this to be a general “evolutionary” result, independent of the

traders’ preferences. However, they assume that the level of dividends (i.e. the aggregate

endowment) is bounded. Other than being unrealistic, a bounded dividend process is crucial

to their result, as highlighted by the following counter-example.

Example 1 Assume that irrational and rational agents have the same utility function with

absolute risk aversion bounded away from zero by a positive constant. Assume that the

equilibrium consumption allocation is Pareto optimal and corresponds to an interior solution,

i.e., u′
r/u

′
n = b ξt. If the aggregate endowment is growing fast enough relative to the bias in

beliefs of the irrational trader, so that (ln ξt)/Dt → 0, then the irrational trader will survive

and Cn,t/Cr,t → 1.

This example, together with the results in this paper and in Sandroni (2000) and Blume

and Easley (2001), illustrates that in general the survival of irrational traders depends on

their preferences and the properties of the endowment process.
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7 Conclusion

In this paper, we have examined the long-run survival of irrational traders who use persis-

tently wrong beliefs to make their portfolio choices. Using a parsimonious model, we have

shown that the partial equilibrium arguments to support the long-run survival of irrational

traders are flawed. The impact irrational traders have on equilibrium prices is important in

determining their long-run fortunes; in particular, we have found that an irrational trader

with a very small wealth and CRRA preferences may still have a large impact on the stock

price. However, in absence of intermediate consumption and rational traders with logarith-

mic preferences, irrational traders with beliefs mildly different from the true probabilities can

survive in the long run. In the presence of intermediate consumption, we have shown that

under fairly realistic conditions irrational traders do not survive or have a long term price

impact, but that these results are sensitive to assumptions about preferences and aggregate

consumption.

For our analysis, we have adopted a continuous-time model. Formulating the model

in continuous time allows us to obtain explicit analytic expressions for equilibrium portfo-

lio policies of agents and the moments of asset returns. Our main results do not rely on

the continuous-time assumption and remain valid as long as the financial markets are com-

plete. We restricted ourselves to preferences with constant relative risk aversion primarily

for tractability. Extensions of our analysis to more general preferences are possible. We have

also assumed that the rational and irrational traders differ only in their beliefs but not in

their preferences. This allows us to focus on the impact of irrational beliefs on survival and

prices. Of course, differences in time and risk preferences can have their own implications

for long-run survival.
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A Appendix

Proof of Proposition 1

The optimality conditions of the maximization problem in (9a) require that

Cr,T = Cn,T (b ξT )1/γ .

Combined with the market clearing condition (9b), this implies (10a) and (10b).

The state price density must be proportional to the traders’ marginal utilities. Since we

set the interest rate equal to zero, the state price density conditional on the information

available at time t is given by(
1 + (b ξT )1/γ

)γ

D−γ
T

Et

[(
1 + (b ξT )1/γ

)γ

D−γ
T

] .
The price of any payoff ZT is therefore given by (12).

The individual budget constraint in a dynamically complete market is equivalent to the

static constraint that the initial wealth of an trader is equal to the present value of the

trader’s consumption (e.g., Duffie (1996, Sec. 9.E)). Since the two traders in our model have

identical endowments at time t = 0, their budget constraints imply

Wr,0 =

E0

[
D1−γ

T

(
1 + (b ξT )

1
γ

)γ−1
]

E0

[
D−γ

T

(
1 + (b ξT )

1
γ

)γ] =

E0

[
D1−γ

T (b ξT )
1
γ

(
1 + (b ξT )

1
γ

)γ−1
]

E0

[
D−γ

T

(
1 + (b ξT )

1
γ

)γ] = Wn,0. (27)

We now verify that b = eησ2(γ−1)T satisfies (27). Note that

D1−γ
T = e[(1−γ)(µ−σ2

2
)+ 1

2
(1−γ)2σ2]T e−

1
2
(1−γ)2σ2T+(1−γ)σBT

where the second term is an exponential martingale. Define a new measure Q, such that(
dQ

dP

)
t

= e−
1
2
(1−γ)2σ2t+(1−γ)σBt

where P is the original probability measure. By Girsanov’s theorem, the process

BQ
t = Bt − (1 − γ)σt
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is a Brownian motion under Q. Thus, Girsanov’s theorem implies that the equality

E0

[
D1−γ

T (b ξT )
1
γ

(
1 + (b ξT )

1
γ

)γ−1
]

= E0

[
D1−γ

T

(
1 + (b ξT )

1
γ

)γ−1
]

is equivalent to

EQ
0

[
(ξQ

T )
1
γ

(
1 + (ξQ

T )
1
γ

)γ−1
]

= EQ
0

[(
1 + (ξQ

T )
1
γ

)γ−1
]

where ξQ
t = exp(−1

2
σ2η2t + σηBQ

t ). Since the process BQ
t is equivalent in distribution to Bt,

we can restate the last equality equivalently as

E0

[
ξ

1
γ

T

(
1 + ξ

1
γ

T

)γ−1
]

= E0

[(
1 + ξ

1
γ

T

)γ−1
]

.

To verify that the above equality holds, consider a function F (z) defined as

F (z) = E0

[(
e

1
2γ

zT + e−
1
2γ

zT ξ
1
γ

T

)γ]
. (28)

Changing the order of differentiation and expectation operators, (see Billingsley 1995, Th.

16.8),

F ′(z)|z=0 = E

[
1

2

(
1 − ξ

1
γ

T

)(
1 + ξ

1
γ

T

)γ−1
]

.

Thus it suffices to prove that F ′(z)|z=0 = 0.

Since

E0

[(
e

1
2γ

zT + e−
1
2γ

zT ξ
1
γ

T

)γ]
= E0

[(
e

1
2γ (zT− 1

2
η2σ2T+ησBT ) + e−

1
2γ (zT− 1

2
η2σ2T+ησBT )

)γ

ξ
1
2
T

]
(29)

if we define a new measure Q so that(
dQ

dP

)
t

= e−
1
8
η2σ2t+ 1

2
ησBt

and use Girsanov’s theorem in a manner similar to its earlier application in this proof, we

find that (29) equals

E0

[(
e

1
2γ

(zT+ησBT ) + e−
1
2γ

(zT+ησBT )
)γ]

e−
1
8
η2σ2T .
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The symmetry of the distribution of the normal random variable BT implies that F (z) =

F (−z), therefore F ′(z)|z=0 = 0. This verifies that b = eησ2(γ−1)T .

The stock price is given by

St =
Et

[
D1−γ

T

(
1 + (bξT )1/γ

)γ]
Et

[
D−γ

T

(
1 + (bξT )1/γ

)γ]
Define

A = e

(
−ησ2

γ

)
(T−t)

g = e−
1
2
η2σ2 1

γ
T+σ2η(γ−1) 1

γ
t+ ησ

γ
BT

then, as we have shown above, the stock price can be equivalently expressed as

St = e(µ−σ2γ)T+(− 1
2
σ2(1−2γ))teσBt

Et [(1 + g)γ]

Et [(1 + gA)γ]

and therefore, by Ito’s lemma, its volatility σSt is given by

σSt =
∂ ln St

∂Bt

= σ + ησ

(
Et

[
(1 + gA)γ−1]

Et [(1 + gA)γ]
− Et

[
(1 + g)γ−1]

Et [(1 + g)γ]

)
(30)

To establish the bounds on volatility, we prove that

Et

[
(1 + gA)γ−1]

Et [(1 + gA)γ]
− Et

[
(1 + g)γ−1]

Et [(1 + g)γ]
≥ 0 (31)

for A ≤ 1 with the opposite inequality for A ≥ 1. Note that for any twice-differentiable

function F (A, γ),

∂

∂γ

∂

∂A
ln (F (A, γ)) ≥ 0 ⇒ ∂

∂A
ln (F (A, γ − 1))− ∂

∂A
ln (F (A, γ)) ≤ 0 ⇒ ∂

∂A

F (A, γ − 1)

F (A, γ)
≤ 0

Thus, to prove (31), it suffices to show that ∂2 ln (Et [(1 + gA)γ ]) / ∂A∂γ ≥ 0. The func-

tion (1 + gA)γ is log-supermodular in A, g, and γ, since it is positive and it’s cross-partial

derivatives in all arguments are positive. Thus, according to the additivity property of log-

supermodular functions (see Athey (2002)), Et [(1 + gA)γ] is log-supermodular in A and γ,

i.e., ∂2 ln (Et [(1 + gA)γ ]) / ∂A∂γ ≥ 0.
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Because A > 1 if and only if η < 0 , we have shown that

η

(
Et

[
(1 + gA)γ−1]

Et [(1 + gA)γ]
− Et

[
(1 + g)γ−1]

Et [(1 + g)γ ]

)
≥ 0

and hence σSt ≥ σ.

Because

(
Et[(1+gA)γ−1]
Et[(1+gA)γ ]

− Et[(1+g)γ−1]
Et[(1+g)γ ]

)
is bounded between −1 and 0 for η < 0 and be-

tween 0 and 1 for η > 0, we obtain the stated upper bound from (30): σSt ≤ σ (1 + |η|).

Proof of Proposition 2

According to (10a) and (10b),

Cn,T

Cr,T

= (b ξT )1/γ = exp

[
1

γ

(
−1

2
σ2η2 + ησ2 (γ − 1)

)
T +

1

γ
ησBT

]
.

Using the strong Law of Large Numbers for Brownian motion (see Karatzas and Shreve

(1991, Sec. 2.9.A)), for any value of σ,

lim
T→∞

ea T+σ BT =

{
0, a < 0

∞, a > 0
(32)

where convergence takes place almost surely. The statement of the proposition then follows.

Proof of Proposition 3

Equations (10a) and (10b) state that

Cr,T =
1

1 + (b ξT )1/γ
DT

Cn,T =
(b ξT )1/γ

1 + (b ξT )1/γ
DT

If µ > 1
2
σ2, then the irrational trader’s consumption converges to zero if and only if

(b ξT )1/γ DT converges to zero:

(b ξT )1/γ DT = exp

[(
ησ2 1

γ
(γ − 1) − 1

2
η2σ2 1

γ
+ µ − 1

2
σ2

)
T +

(
ση

1

γ
+ σ

)
BT

]
(33)
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Similarly, the rational trader’s consumption converges to zero if and only if DT

(b ξT )1/γ converges

to zero:

DT

(b ξT )1/γ
= exp

[(
−ησ2 1

γ
(γ − 1) +

1

2
η2σ2 1

γ
+ µ − 1

2
σ2

)
T +

(
−ση

1

γ
+ σ

)
BT

]
(34)

According to (32), (33) and (34) imply that

Cn,T → 0 ⇔ γ
(
2

µ

σ2
− 1
)

< −2η (γ − 1) + η2 (35a)

Cr,T → 0 ⇔ γ
(
2

µ

σ2
− 1
)

< 2η (γ − 1) − η2 (35b)

The right hand side of (35a) is convex in η, thus Cn,T → 0 for η < (γ−1)−
√

(γ − 1)2 + γ
(
2 µ

σ2 − 1
)

and η > (γ − 1) +
√

(γ − 1)2 + γ
(
2 µ

σ2 − 1
)
.

Similarly, Cn,T → 0 for η > (γ − 1) −
√

(γ − 1)2 − γ
(
2 µ

σ2 − 1
)

and η < (γ − 1) +√
(γ − 1)2 − γ

(
2 µ

σ2 − 1
)
. Such a value of η exists as long as (γ − 1)2 − γ

(
2 µ

σ2 − 1
)

> 0.

Proof of Propositions 4 – 6

Our analysis will make use of the following technical result.

Lemma 1 Consider a stochastic process Xt = ec t+v Bt and a constant a ≥ 0. Assume that

ac + 1
2
v2a2(1 − λ) 	= 0, 0 ≤ λ < 1. Then the limit limT→∞ Et[X

a
T ] is equal to either zero or

infinity almost surely, where we set t = λT . The following convergence results hold:

(i) (Point-wise convergence)

lim
T→∞

Et [(1 + XT )a]

1 + Et [Xa
T ]

= 1. (36)

(ii) (Convergence of moments)

lim
T→∞

meant Et [(1 + XT )a]

meant (1 + Et [Xa
T ])

= 1, (37)

lim
T→∞

volt Et [(1 + XT )a]

volt (1 + Et [Xa
T ])

= 1, (38)
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where meantft and voltft denote the instantaneous mean and standard deviation of the process

ln ft respectively.

Proof of Lemma 1

(i) Consider the conditional expectation

Et [Xa
T ] = exp

[
ac T +

1

2
v2a2(1 − λ) T + avBt

]
(39)

The limit of Et[X
a
T ] is equal to zero if ac+ 1

2
v2a2(1−λ) < 0 and equal to infinity if the opposite

inequality holds (according to the strong Law of Large Numbers for Brownian motion, see

Karatzas and Shreve, 1991, Sec. 2.9.A).

Because the function ac T + 1
2
v2a2(1− λ) T is convex in a and equal to zero when a = 0,

we find that for a ≥ 1

Et [Xa
T ] → ∞ ⇒ Et [Xz

T ]

Et [Xa
T ]

→ 0, ∀z ∈ (0, a) (40)

Et [Xa
T ] → 0 ⇒ Et [Xz

T ] → 0, ∀z ∈ (0, a) (41)

We prove the result of the lemma separately for six regions that cover the entire parameter

space.

Case 1: 0 ≤ a ≤ 1, Et [Xa
T ] → ∞.

If XT ≤ 1, (XT + 1)a ≤ 2a, while if XT ≥ 1 ⇒ (XT + 1)a − Xa
T ≤ aXa−1

T ≤ a since

(XT + 1)a is concave and a − 1 ≤ 0. Therefore, Xa
T ≤ (1 + XT )a ≤ Xa

T + 2a + a, and hence

limT→∞ Et [(1 + XT )a]/Et [Xa
T ] = 1, which implies limT→∞ Et [(1 + XT )a]/(1 + Et [Xa

T ]) = 1.

Case 2: 1 ≤ a ≤ 2, Et [Xa
T ] → ∞.

By the mean value theorem, (1 + XT )a = Xa
T + a (w + XT )a−1 for some w ∈ [0, 1]. Using

the analysis of case 1, (w + XT )a−1 ≤ (1 + XT )a−1 ≤ Xa−1
T + 2a−1 + a − 1, which, combined

with (40), implies that limT→∞ Et [(1 + XT )a]/Et [Xa
T ] = 1 and the main result follows.

Case 3: 2 ≤ a, Et [Xa
T ] → ∞.

By the mean value theorem, (1 + XT )a = Xa
T + a (w + XT )a−1 for some w ∈ [0, 1]. By
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Jensen’s inequality, ((1 + XT )/2)a−1 ≤ (1 + Xa−1
T )/2. Thus,

0 ≤ (w + XT )a−1 ≤ (1 + XT )a−1 ≤ 2a−2 + 2a−2Xa−1
T

which, combined with (40) implies that limT→∞ Et [(1 + XT )a]/Et [Xa
T ] = 1 and the main

result follows.

Case 4: 0 ≤ a ≤ 1, Et [Xa
T ] → 0:

If XT ≤ 1, (1 + XT )a ≤ 1 + XT ≤ 1 + Xa
T , while if XT ≥ 1, (1 + XT )a ≤ Xa

T +

a ≤ 1 + Xa
T since (1 + XT )a is concave. Thus, 1 ≤ (1 + XT )a ≤ 1 + Xa

T and therefore

limT→∞ Et [(1 + XT )a] = 1, which implies the main result.

Case 5: 1 ≤ a ≤ 2, Et [Xa
T ] → 0.

By the mean value theorem, (1 + XT )a = 1 + aXT (1 + wXT )a−1 for some w ∈ [0, 1].

Further, XT (1 + wXT )a−1 ≤ XT (1 + XT )a−1 ≤ XT

(
Xa−1

T + 2a−1 + a − 1
)
, using the same

argument as in case 1. Since limT→∞ Et [Xa
T ] = 0, according to (41), limT→∞ Et [XT ] = 0

and hence limT→∞ Et [(1 + XT )a] = 1.

Case 6: 2 ≤ a, Et [Xa
T ] → 0.

By the mean value theorem, (1 + XT )a = 1 + aXT (1 + wXT )a−1 for some w ∈ [0, 1].

Further, XT (1 + wXT )a−1 ≤ XT (1 + XT )a−1 ≤ 2a−2XT + 2a−2Xa
T by Jensen’s inequal-

ity. Since limT→∞ Et [Xa
T ] = 0, according to (41), and limT→∞ Et [XT ] = 0 and hence

limT→∞ Et [(1 + XT )a] = 1.

(ii) Since the conditional expectations Et [(1 + XT )a] and Et [1 + Xa
T ] are martingales,

they have zero drift for all values of T and t. By Ito’s lemma, convergence of the first

moments of the natural logarithms of the same processes follows from convergence of the

second moments.

We now establish convergence of volatility of the process Et [(1 + XT )a]. According to

Ito’s lemma, one must show that

lim
T→∞

∂ ln Et [(1 + XT )a] /∂Bt

∂ ln(1 + Et [Xa
T ])/∂Bt

= 1, ∀a ≥ 0

Given (39), it suffices to prove that limT→∞ ∂ ln Et [(1 + XT )a] /∂Bt = 0 if limT→∞ Et [Xa
T ] =

0 and limT→∞ ∂ ln Et [(1 + XT )a] /∂Bt = av if limT→∞ Et [Xa
T ] = ∞.

First, changing the order of differentiation and expectation operators (see Billingsley
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1995, Th. 16.8),

∂ ln Et [(1 + XT )a]

∂Bt

= av
Et

[
XT (1 + XT )a−1]
Et [(1 + XT )a]

= av

(
1 − Et

[
(1 + XT )a−1]

Et [(1 + XT )a]

)
.

Furthermore, according to part (i),

Et

[
(1 + XT )a−1]

Et [(1 + XT )a]
∼ Et

[
(1 + XT )a−1]

1 + Et [Xa
T ]

. (42)

Assume a ≥ 1. As we have shown in case 1 of the proof of part (i), Xa−1
T ≤ (1 + XT )a−1 ≤

Xa−1
T +2a−1 +a−1. If Et [Xa

T ] → ∞, according to (40), Et

[
Xa−1

T

]
/Et [Xa

T ] → 0, which yields

lim
T→∞

∂ ln Et [(1 + XT )a]

∂Bt

= av.

Similarly, if Et [Xa
T ] → 0, then, according to (41), limT→∞ Et

[
Xa−1

T

]
= 0, which, according

to part (i), implies that limT→∞ Et [(1 + XT )a−1] = 1 and

lim
T→∞

∂ ln Et [(1 + XT )a]

∂Bt

= 0.

Next, consider the case of 0 < a < 1. If Et [Xa
T ] → ∞, because Et [(1 + XT )a−1] ≤ 1, (42)

implies limT→∞ ∂ ln Et [(1 + XT )a]/∂Bt = a v.

Suppose that limT→∞ Et [Xa
T ] = 0. By Markov’s inequality, Pt [XT > ε] ≤ Et [Xa

T ]/εa →
0, for any ε > 0. Similarly, Pt [XT < ε] ≤ Et

[
(1 + XT )a−1]/(1 + ε)a−1. Thus, 1≥ Et

[
(1 + XT )a−1]

≥ Pt [XT < ε] (1 + ε)a−1, and therefore lim infT→∞ Et

[
(1 + XT )a−1] ≥ (1 + ε)a−1 for any ε >

0. This implies that limT→∞ Et

[
(1 + XT )a−1] = 1, and therefore limT→∞ ∂ ln Et [(1 + XT )a]/∂Bt =

0.

We establish the long-run behavior of the quantities St and Wr,t/Wn,t for the case when

γ > 1 and 0 < η < η� = 2 (γ − 1). The results for all other regions in the parameter space

can be obtained similarly.

The equilibrium stock price and the ratio of the individual wealth processes are given by

St =
Et

[
D1−γ

T

(
1 + (bξT )

1
γ

)γ]
Et

[
D−γ

T

(
1 + (bξT )

1
γ

)γ] .
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Wr,t

Wn,t

=

Et

[
D1−γ

T

(
1 + (bξT )

1
γ

)γ−1
]

Et

[
D1−γ

T (bξT )
1
γ

(
1 + (bξT )

1
γ

)γ−1
] .

We therefore need to characterize the long-run behavior of the following four quantities:

Et

[
D1−γ

T

(
1 + (bξT )

1
γ

)γ]
Et

[
D−γ

T

(
1 + (bξT )

1
γ

)γ]
Et

[
D1−γ

T

(
1 + (bξT )

1
γ

)γ−1
]

Et

[
D1−γ

T (bξT )
1
γ

(
1 + (bξT )

1
γ

)γ−1
]

.

We will establish the asymptotic behavior of the stock price process in detail, the corre-

sponding results for the wealth ratio process in Proposition 6 are obtained in a very similar

fashion.

Consider the first expression,

Et

[
D1−γ

T

(
1 + (bξT )

1
γ

)γ]
= D1−γ

t Et

[(
DT

Dt

)1−γ
(

1 +

(
bξt

ξT

ξt

) 1
γ

)γ]
.

Given the aggregate dividend process,(
DT

Dt

)1−γ

= e(T−t)(µ(1−γ)− 1
2
σ2(1−γ)γ)e−

1
2
(1−γ)2σ2(T−t)+(1−γ)σ(BT−Bt).

As in the proof of Proposition 1, we introduce a new measure Q with the Radon-Nikodym

derivative(
dQ

dP

)
t

= e−
1
2
(1−γ)2σ2(T−t)+(1−γ)σ(BT−Bt).

By Girsanov’s theorem, BT − Bt = BQ
T − BQ

t − (1 − γ)σ(T − t), where BQ
t is a Brownian

motion under the measure Q. Using the expression for b from Proposition 1, b = eT (γ−1)σ2η,

we find

Et

[
D1−γ

T

(
1 + (bξT )

1
γ

)γ]
= eT(µ(1−γ)− 1

2
σ2(1−γ)γ)+t(− 1

2
σ2(1−γ)2)+Bt(σ(1−γ))

× EQ
t

[(
1 + e(−

1
2
η2σ2 1

γ )T+( 1
γ
(γ−1)σ2η)t+ ησ

γ
BQ

T

)γ]
. (43)
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We will omit the superscript Q in (43), since the distribution of BQ
t under the measure Q is

the same as the distribution of Bt under the original measure P .

Using the assumption that t = λT , define

XT = e(−
1
2
η2σ2 1

γ
+(1−λ) 1

γ
(γ−1)σ2η)T+ ησ

γ
BT .

We now apply the result of lemma 1, with

c = −1

2
η2σ2 1

γ
+ (1 − λ)

1

γ
(γ − 1) σ2η,

v =
ησ

γ
,

a = γ.

Since we are assuming γ > 1 and 0 < η < 2 (γ − 1), limT→∞ Et[X
a
T ] = ∞.

According to lemma 1,

Et

[
D1−γ

T

(
1 + (bξT )

1
γ

)γ]
∼ e(µ(1−γ)− 1

2
σ2(1−γ)γ)T+(− 1

2
σ2(η+1−γ)2)t+σ(η+1−γ)Bt .

We next examine

Et

[
D−γ

T

(
1 + (bξT )

1
γ

)γ]
.

Using a similar change of measure, we find

Et

[
D−γ

T

(
1 + (bξT )

1
γ

)γ]
= e(−µγ+ 1

2
σ2(1+γ)γ)T+(− 1

2
σ2γ2)t+(−σγ)Bt

× Et

[(
1 + e(−σ2η 1

γ
− 1

2
η2σ2 1

γ )T+σ2ηt+ ησ
γ

BT

)γ]
.

We apply lemma 1, setting XT = ec T+v BT and

c = −σ2η
1

γ
− 1

2
η2σ2 1

γ
+ (1 − λ)σ2η,

v =
ησ

γ
,

a = γ.
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The value of limT→∞ Et[X
a
T ] depends on the exact combination of the model parameters. In

particular,

lim
T→∞

Et[X
a
T ] =

{ ∞, −2η + λ(2γη − η2) > 0,

0, −2η + λ(2γη − η2) < 0,

(see the proof of lemma 1, part (i)). Define

λS =
2

2γ − η
.

Note that, because γ > 1 and 0 < η < 2 (γ − 1), 0 < λS < 1. Then, limT→∞ Et[X
a
T ] = ∞

if λ > λS and 2γη − η2 > 0 or if λ < λS and 2γη − η2 < 0, and the limit is equal to zero

otherwise.

By lemma 1, if limT→∞ Et[X
a
T ] = ∞,

Et

[
D−γ

T

(
1 + (bξT )

1
γ

)γ]
∼ eT(−µγ+ 1

2
σ2(1+γ)γ−σ2η)T+(− 1

2
σ2(η−γ)2)t+σ(η−γ)Bt

while if limT→∞ Et[X
a
T ] = 0, then

Et

[
D−γ

T

(
1 + (bξT )

1
γ

)γ]
∼ e(−µγ+ 1

2
σ2(1+γ)γ)T+(− 1

2
σ2γ2)t+(−σγ)Bt .

Using our definition of λS, we re-state these results as

Et

[
D−γ

T

(
1 + (bξT )

1
γ

)γ]
∼


e(−µγ+ 1

2
σ2(1+γ)γ)T+(− 1

2
σ2γ2)t+(−σγ)Bt , 0 ≤ λ < λS

e(−µγ+ 1
2
σ2(1+γ)γ−σ2η)T+(− 1

2
σ2(η−γ)2)t+σ(η−γ)Bt , λS < λ ≤ 1

Having established the behavior of both the numerator and the denominator of the ex-

pression for the stock price, we have proven the limiting result for the stock price itself.

According to part (ii) of lemma 1, not only the stock price, but also the mean and volatility

of returns behave according to the asymptotic expressions of Proposition 4 in the limit of

the economy horizon T approaching infinity. The same is true for the ratio of individual

wealth and the volatility of that ratio in Proposition 6.

Proof of Proposition 7

When the financial markets are dynamically complete and there is a single source of

uncertainty (driven by a Brownian motion), the fraction of the agent’s wealth invested in
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stock can be computed as a ratio of the instantaneous volatility of the agent’s wealth to

the instantaneous volatility of the cumulative stock return process. Propositions 4 and 6

provide expression for the long-run behavior of the volatility of stock returns and individual

wealth processes, from which the expression for portfolio holdings follow immediately. To

decompose the portfolio holdings of the rational trader into as a sum of the myopic and

hedging demands, we compute the hedging demand as µS/(γσ2
S), where µS and σS are the

drift and the diffusion coefficients of the stock return process. The difference between the

total portfolio holdings and the myopic component define the agent’s hedging demand. For

the irrational trader, the calculations are analogous, except the myopic demand is given by

µ̂S/(γσ2
S) = (µS + ησσS)/(γσ2

S), where µ̂S is the expected stock return as perceived by the

irrational trader.

Proof of Propositions 8 and 11.

Because Proposition 8 is a special case of Proposition 11, we prove the latter directly. Let

γ(c)

c
≡ −u′′(c)

u′(c)
= − d

dc
ln (u′(c))

where γ(c) is the coefficient of relative risk aversion. After integrating, Pareto optimality

implies

exp

[
−
∫ Cr,t

Cn,t

γ(s)

s
ds

]
=

u′ (Cr,t)

u′ (Cn,t)
= bξt → 0.

For every path on which ξt → 0, there exists a t′ such that for all t > t′, Cr,t > Cn,t. Since

γ(c) ≤ M , on each of these paths when t > t′ we have

M (ln Cr,t − ln Cn,t) ≥
∫ Cr,t

Cn,t

γ(s)

s
ds → ∞

and so Cn,t/Cr,t → 0.

Proof of Proposition 9

Our specification of the economy implies that for γ ≥ 1 and an integer,

Wn,t

Wr,t

=
Et

[∫∞
t

eρ(t−s)D1−γ
s (b ξs)

1/γ
(
1 + (b ξs)

1/γ
)γ−1

ds
]

Et

[∫∞
t

eρ(t−s)D1−γ
s (1 + (b ξs)1/γ)

γ−1
ds
]
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=

∑i=γ−1
i=0

(
γ−1

i

) ∫∞
t

Et

[
eρ(t−s)D1−γ

s (b ξs)
i+1
γ

]
ds∑i=γ−1

i=0

(
γ−1

i

) ∫∞
t

Et

[
eρ(t−s)D1−γ

s (b ξs)
i
γ

]
ds

.

where we changed the order of integration by Fubini’s Theorem for positive processes (see,

for example, Halmos (1950, pg. 147)). Notice that∫ ∞

t

Et

[
eρ(t−s)D1−γ

s (b ξs)
j
γ

]
ds = D1−γ

t (b ξt)
j
γ mj

where mj is a constant equal to

mj ≡
∫ ∞

t

eρ(t−s)Et

[(
Ds

Dt

)1−γ (
ξs

ξt

)j/γ
]

ds =

∫ ∞

0

e−ρsE0

[
D1−γ

s ξj/γ
s

]
ds.

Equation (25) and 0 ≤ j ≤ γ − 1 imply the mj are finite. The wealth ratio becomes

Wn,t

Wr,t

=

∑i=γ−1
i=0

(
γ−1

i

)
D1−γ

t (b ξt)
j+1

γ mj+1∑i=γ−1
i=0

(
γ−1

i

)
D1−γ

t (b ξt)
j
γ mj

Recall that Cn,t

Cr,t
= (b ξt)

1
γ , so we can write

Wn,t/Wr,t

Cn,t/Cr,t

=

∑i=γ−1
i=0

(
γ−1

i

)
(b ξt)

j
γ mj+1∑i=γ−1

i=0

(
γ−1

i

)
(b ξt)

j
γ mj

Because ξt → 0, both the numerator and denominator have a dominant term, and so

lim
t→0

Wn,t/Wr,t

Cn,t/Cr,t

=
m1

m0

Define

k ≡ m1

m0

=
ρ + (γ − 1)

(
µ − 1

2
γσ2
)

ρ + (γ − 1)
(
µ − 1

2
γσ2 + ησ2 1

γ
+ 1

2
η2σ2 1

γ2

)
and the result follows.

Proof of Proposition 10

This proof follows very closely the proof of Proposition 9, and so we omit some intermediate

48



steps. Our specification of the economy implies that for γ ≥ 1 and an integer,

St =
Et

[∫∞
t

eρ(t−s)D1−γ
s

(
1 + (bξs)

1/γ
)γ

ds
]

D−γ
t

(
1 + (bξt)

1/γ
)γ

=

∑i=γ
i=0

(
γ
i

) ∫∞
t

Et

[
eρ(t−s)D1−γ

s (bξs)
i
γ

]
ds∑i=γ

i=0

(
γ
i

)
D−γ

t (bξt)
i
γ

Notice that∫ ∞

t

Et

[
eρ(t−s)D1−γ

s (bξs)
j
γ

]
ds = D1−γ

t (bξt)
j
γ mj

where mj is defined in Proposition 9. Because ξt → 0, both the numerator and denominator

have a dominant term, and so we write the limit of the price-dividend ratio as

lim
t→∞

St

Dt

= m0 =
1

ρ + (γ − 1)
(
µ − 1

2
γσ2
)

To evaluate the interest rate, consider the marginal utility of the rational trader,

φt = e−ρtD−γ
t

(
1 + (bξt)

1/γ
)γ

.

The instantaneous interest rate is given by

rt = −Et [dφt]

φtdt
= ρ + γµ− 1

2
γ (γ + 1) σ2 +

γ − 1

2γ
η2σ2 (bξt)

1/γ(
1 + (bξt)

1/γ
)2 + γησ2 (bξt)

1/γ

1 + (bξt)
1/γ

and therefore

lim
t→∞

rt = ρ + γµ − 1

2
γ (γ + 1) σ2

Proof of Example 1

We write f = − ln(u′) so that by Pareto optimality,

f(Cr,t) − f(Cn,t) = − ln(b ξt).
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Dividing by Dt, we have

f(Cr,t) − f(Cn,t)

Dt

= − ln(bξt)

Dt

→ 0.

Since a(c) = −u′′(c)
u′(c) = f ′(c) ≥ M ,

Cr,t − Cn,t

f(Cr,t) − f(Cn,t)
=

Cr,t − Cn,t∫ Cr,t

Cn,t
f ′(s)ds

≤ Cr,t − Cn,t∫ Cr,t

Cn,t
Mds

=
1

M
.

We have shown the expressions for Cr,t > Cn,t. Those for Cr,t < Cn,t are analogous, and

we ignore the case when Cr,t = Cn,t because we have Cn,t

Cr,t
= 1 directly. Furthermore,

Cr,t−Cn,t

f(Cr,t)−f(Cn,t)
> 0 for Cr,t 	= Cn,t because f is increasing. Continuing,

0 <
Cr,t − Cn,t

f(Cr,t) − f(Cn,t)
≤ 1

M

so that

Cr,t − Cn,t

Dt

=
Cr,t − Cn,t

f(Cr,t) − f(Cn,t)

f(Cr,t) − f(Cn,t)

Dt

The first term on the right-hand side is bounded, and the second term converges to zero.

Thus, we have

Cr,t − Cn,t

Dt

→ 0

and so Cr,t + Cn,t = Dt implies Cn,t

Cr,t
→ 1.
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