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1 Introduction

Since at least Arrow (1962) knowledge has been recognized to have
peculiar properties in economic analysis. Knowledge and thus inno-
vations and ideas are, in a useful idealization, nonrival and aspatial.

A good is nonrival when its use by one agent does not degrade its
usefulness to a yet different agent. Thus, ideas, mathematical theo-
rems, videogames, engineering blueprints, computer software, cookery
recipes, the decimal expansion of π, gene sequences, and so on are
nonrival. By contrast, food is distinctly rival: consumption renders
it immediately no longer existent.

A good is aspatial when its extent is not localized to a physical
spatial neighborhood. Thus, all the examples of nonrivalry mentioned
previously, including perhaps more vividly rich media filestreams—
sounds and images—on an Internet server, are all also aspatial.1

For compactness I will refer to all such products as intellectual
assets or knowledge products—even if, for instance, a Spice Girls
MP3 file might typically be viewed as neither knowledge nor intel-
lectual. Nonrival, aspatial knowledge products are important for at

∗ I thank the ESRC (award R022250126) and the Andrew Mellon
Foundation for supporting parts of the research reported here. Com-
ments from Michele Boldrin, Paul David, Louise Keely, Paul Romer,
and participants at LSE’s International Economics workshop have
been helpful.

1 It is difficult to think of interesting nonrival economic goods
that are not at the same time aspatial. Emphasizing both features,
however, serves to remind why “increasing returns” is not necessarily
the most useful way to model nonrivalry. Quah (2002b) describes
how these properties describe a subclass of cultural goods as well.
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least three reasons: First, in the endogenous growth formulations of
Aghion and Howitt (1998), Grossman and Helpman (1991), Helpman
(1993), Romer (1990), and others, knowledge advance is the driver of
economic growth, and intellectual property rights (IPRs) protect the
incentives for continued innovation.

Second, as more and more everyday economic activity becomes
the creating and disseminating of knowledge products, the associ-
ated incentive mechanisms become correspondingly more important.
These can no longer be relegated to historically- and haphazardly-
determined patent and copyright law.2

Third, the aspatial nature of knowledge products creates power-
ful forces that will redraw the economic landscape across realworld
geographies. Economic analyses and policy formulations that rely on
the sanctity of national boundaries or on transportation costs across
physical distance will, a fortiori, need to be re-examined. (See, e.g.,
Quah (2000, 2001a).)

Issues raised by these developments are large and complex, and are
not usefully treated in a single article. I mention them here because
they outline the economic importance of mechanisms for creating and
disseminating knowledge and other knowledge-like nonrival goods.

Economists have long recognized that efficient allocations for in-

2 Take, as just one example, Microsoft Corp.: If this company
and its actions are as central to the modern economy’s operation as
both plaintiff and defendant in high-profile antitrust suits through the
1990s have made them out to be, then certainly the economics sur-
rounding Linux and the Open Source Software movement matters im-
portantly. And that economics is, in essence, that of the creation and
dissemination of knowledge products. So too, over the same period,
is the concern over ownership of knowledge on the human genome,
provision of pharmaceuticals cheaply to developing economies, and
proliferation of music on the Internet, among others. Internet devel-
opment then, at its rapid rate of technical progress, amplifies the im-
portance of appropriate institutions for managing IPRs. See, among
others, Boldrin and Levine (2002a), Romer (2002), and section 2.3
below.
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tellectual assets fail to obtain in competitive markets to decentralize
trading after the usual assignment of property rights. When an asset
has zero marginal costs of reproduction, the stream of rents it com-
mands under perfect competition is also zero. But if so then a costly
first instantiation will never occur, even if social efficiency dictates it
should.

Recently, Boldrin and Levine (2002b) have challenged the view
that competitive markets fail for nonrival intellectual assets. They
allow perfectly competitive markets in the asset and in the consump-
tion flows derived from the asset. In their analysis, for intellectual
assets, as for all ordinary economic commodities, competitive markets
produce a socially efficient outcome. (To be clear, it is only nonri-
valry that is of concern below and in Boldrin and Levine (2002b), not
aspatiality.)

This paper uses the Boldrin-Levine framework to address three
issues. First, what if market participants can act 24/7, i.e., more and
more frequently as technology advances? Second, what if IPRs are re-
laxed even further, so that consumers who use an intellectual asset—
through buying only its consumption service flows—can legally make
copies and compete with the original owner, without having to pur-
chase the asset itself? Third, the paper distinguishes nonrivalry—in
the sense described above—from infinite reproduction; what if goods
are nonrival but allow only finite reproduction in finite time? Allow-
ing 24/7 actions restores the conventional wisdom, that markets fail.
However, keeping to the discrete-time convention, relaxing IPRs as
described maintains the viability of competitive markets in achieving
social efficiency. Nonrivalry with finite reproduction also has com-
petitive markets attain social efficiency. In a special case (log utility)
even the 24/7 version of the weakened-IPRs, nonrival economy con-
tinues to have markets retain optimal allocation properties.

Comparing the workings of competitive markets with IPR institu-
tions, the latter create monopolies that reduce social efficiency. The
effect is two-fold. First, IPR institutions that create monopolies re-
strict consumption and dissemination, away from socially optimal
levels. Second, they increase the rents accorded an intellectual asset
and therefore incentivize too much innovation.
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The organizing principle used throughout the paper is dynamic
equilibrium pricing of intellectual assets. In this, the current paper
follows Boldrin and Levine (2002b) and differs from the approach used
in evaluating innovation taken by, among others, Jones and Williams
(2000).

The paper is organized as follows. Section 2 briefly describes the
traditional economics of intellectual assets in particular and nonrival
goods more generally. Subsection 2.3 segues this discussion into what
is done in the current paper, to emphasize the progression in this line
of ideas.

Section 3 examines the Boldrin-Levine analysis, expositing and
confirming their findings. In Section 4 I allow demanders and suppli-
ers to take actions progressively frequently as technology improves.
This turns out to restore the conventional wisdom on the need for
institutions like IPR protection. This does not say that IPR regimes
are socially optimal, only that the search continues for reasonable
institutions that support efficiency in knowledge-intensive economies.

Throughout sections 3–4 I follow Boldrin and Levine (2002b) in
distinguishing an intellectual asset from the use or consumption flows
that that asset generates. Thus, for instance, an MP3 music track is
distinct from its consumption. The assumption in the model thus far
is that the former can generate further copies; the latter, cannot. In
reality, however, this distinction is blurred for many knowledge prod-
ucts. Indeed, because it is impossible to use many intellectual assets
without making a copy—if only temporarily in computer memory—
several legal cases have argued that existing copyright law is overly
restrictive, varying with “fair use” interpretations. Moreover, nonri-
valry as described above differs from infinite reproduction.

Section 5 takes up both these observations and considers mar-
kets where the good is nonrival but only gradually reproduced and
where ordinary users can legally make copies for resale. The section
shows that, under the same timing conventions as used in section 3,
perfectly competitive markets achieve social efficiency. The section
establishes this optimality result also in the Boldrin-Levine specifica-
tion, where nonrivalry and infinite expansibility are not distinguished,
when users, in addition to asset holders, are allowed to make and sell
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copies.

Thus, section 5 confirms the optimality of competitive markets,
going even further than Boldrin and Levine (2002b) in dispensing
with IPR protection. Section 6 shows, however, that the continuous-
time version of the economy in section 5 suffers from the same prob-
lem as in section 4—markets generally fail if agents can act suffi-
ciently frequently. A special case—unavailable in sections 3–4—forms
a counter-example to the general proposition, although it seems more
a curiosity than substantive. Section 7 briefly concludes.

2 Issues

Since at least Arrow (1962), Machlup (1962), and Nordhaus (1969)
the creation and allocation of intellectual assets—nonrival goods—
have been relegated to institutions other than competitive markets.
The view was that because of zero marginal costs of reproduction,
the present value of an intellectual asset would, under perfect com-
petition, turn out to be zero. But then the costly first instantation
would not be undertaken, and what would be a socially improving
innovation would fail to occur.

2.1 The traditional view — Institutions

One potential solution to this market failure is the set of institu-
tions that protect IPRs. Patent and copyright laws are examples.
Yet other institutions have been observed in economic history and
have efficiency properties that have been studied by economists (e.g.,
Dasgupta, 1988; David, 1992, 1993; Scotchmer, 1991; Wright, 1983).
David (1992) divides all such schemes into what he calls 3P’s: prop-
erty, patronage, and procurement. Under property, institutions sac-
rifice ex post social efficiency by sanctioning a legal monopolist who
controls the ownership and use of the intellectual asset in exchange
for society’s providing enough incentives for costly first instantiation
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of that intellectual asset.3 The alternatives of patronage and procure-
ment involve yet other inefficiencies, so that comparing the different
schemes leads often to ambiguous conclusions—see, e.g., Klemperer
(1990), Scotchmer (1991), and Wright (1983).

Managing intellectual assets—their creation and dissemination—
matters importantly not just in individual-level efficiency but also
in macroeconomic issues surrounding economic growth. The cre-
ation of scientific and engineering knowledge—nonrival and only par-
tially excludable—is central in endogenous growth, a point made ex-
plicit in Romer (1990). (See also Keely (2001) and O’Donoghue and
Zweimüller (1998).)

2.2 Competitive markets and finite expansibility

The Boldrin-Levine analysis is an important and profound develop-
ment. It seeks to overturn nearly half a century of formal economic
thinking on intellectual property, suggesting instead that perfectly
competitive markets in intellectual assets function in the usual Arrow-
Debreu way and therefore lead to socially efficient outcomes.

Following Boldrin and Levine (2002b) this paper will consider not
just nonrivalry in the extreme but instead varying degrees of nonri-
valry. For this, it helps to have a positive terminology for nonrivalry.
Taking a lead from David (1992) I will refer to nonrivalry as infinite
expansibility for some of the discussion to follow. (See also Thomas
Jefferson’s 13 August 1813 letter to I. McPherson in Koch and Peden,

3 There is a further important economic distinction between
patents and copyright but that will not be central in this paper. Copy-
right protects only the implementation of an idea, not the idea itself.
The latter is deemed part of nature and so cannot have been the
result of creative activity and thereby awarded monopolistic protec-
tion. Patents, on the other hand, provide a stronger form of intellec-
tual property protection. See, among others, the discussion in David
(1993), Quah (2001b), and Waterson and Ireland (1998). In practice,
copyright protection has strengthened to where in many instances it
is indistinguishable from patent protection.
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eds (1944).) Goods that are near nonrival are goods with high but
finite expansibility.

Boldrin and Levine (2002b) take nonrivalry as the limit of finitely
expansibility. In their model, nonrivalry means the ability to make an
infinite number of copies instantly. Finite expansibility, conversely,
means a bounded rate of reproduction, although the possibility re-
mains that an infinite number of copies can be made, eventually.
Boldrin and Levine (2002b) allow untrammeled competition in the
sale and resale of near-nonrival assets. Thus they imagine a world
where property rights over intellectual assets are exactly the same
as property rights over any other kind of asset. This contrasts with
current patent and copyright law where both ownership and use of
intellectual assets are severely controlled.4

Boldrin and Levine (2002b) show that perfectly competitive mar-
kets achieve social efficiency and incentivize positive innovation, with-
out the need for additional IPR protection beyond that implicit in
Arrow-Debreu general competitive analysis. No one disputes that
conclusion in economies with goods that have high but finite expansi-
bility, i.e., are only nearly nonrival. Remarkable in the Boldrin-Levine
analysis is that the same conclusion holds even in the limit as expan-
sibility increases without bound. In their view, therefore, economies
where nonrival goods are important can be usefully approximated
by economies requiring only perfectly competitive markets, not IPR-
type institutions like patent and copyright laws. Such second-best
institutions are not required to achieve socially optimal outcomes.
Conventional markets do the job perfectly well.

4 To be clear, Boldrin and Levine (2002b) do not permit illegal
reproduction of intellectual assets for sale. Illegal copying is distinct
from legally purchasing a copy of an intellectual asset and then setting
up a reproduction service that competes with the original owner—
the latter is allowed in their discussion, the former is not. However,
with appropriate adjustment of prices this distinction turns out to be
inessential—see section 5.2 below.
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2.3 24/7 and Open Source Software

This paper takes up below two alternative formulations of the frame-
work. In Boldrin and Levine (2002b), the decision interval is fixed;
the model operates in discrete time. So, first, I allow consumers and
firms to operate instead at time intervals that grow progressively finer,
i.e., in continuous time in the limit. Popular descriptions of “working
24/7 in Internet time” reflect, after all, that emerging possibility. I
find this overturns the Boldrin-Levine conclusion, restoring the con-
ventional wisdom that nonrival goods require something other than
just competitive markets.

Second, notice that nonrivalry means not just that an infinite
number of copies can be made. In the definition from the Introduc-
tion, nonrivalry means simply that one use of the knowledge product
does not detract from yet another use. This says nothing about the
magnitude of copying rates. I consider therefore an economy where
copying rates are bounded but nonrivalry holds in this alternative
meaning. In this new model, property rights are even weaker than
those in Boldrin and Levine (2002b) as the model no longer distin-
guishes purchases of the services of the asset from purchases of the
asset itself. Those who have bought only the consumption flow from
the asset can capture it into the stock of the asset itself, and thereby
make yet further copies. Surprisingly, competitive markets achieve
social efficiency here too, under the same timing conventions as in
Boldrin and Levine (2002b).

Third, I return to the structure in Boldrin and Levine (2002b),
now allowing consumers as well as asset-holders to copy and sell the
intellectual asset. What happens then is that the equilibrium prices
in Boldrin and Levine (2002b) need to be adjusted, but competitive
markets again achieve social efficiency.5

One interpretation of this paper and Boldrin and Levine (2002b) is
5 These descriptions appear in a section called Issues, a section

that proceeds chronologically, for two reasons. First, they seem to me
the natural next questions to ask of intellectual assets in general, in
light of the analysis in Boldrin and Levine (2002b). Second, these last
variations in the model, in my view, correspond to Open Source Soft-
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that each considers different approximations to nonrival goods. The
Boldrin-Levine approximation leads to where perfectly competitive
markets work even in the limit. One of the approximations in this
paper leads to where they don’t; yet others, to where they do. Why
take one approximation more seriously than another?

Technically the description of the previous paragraph is correct.
However, it hides substantive differences in what economic agents in
the models do in the different approximations. In my continuous-
time scheme agents are free to select when they trade—they could,
for example, choose to act only at discrete time intervals if that is
what they wished. In a discrete-time model, by contrast, agents are
prohibited from taking action within an otherwise-arbitrary time pe-
riod. In many economic models, this restriction is irrelevant. The
contention in this paper is that here, it matters. The incentive to act
more and more often increases when the losses from being prevented
to do so are rising in technological improvements. Those improve-
ments on the one hand mirror real-world developments in computer,
media, and Internet technology; and on the other simply constitute
a mathematical device to approximate, better and better, the con-
cept of nonrivalry more generally. This part of the analysis says that
institutions like IPRs are needed to overcome the traditional market
failure in intellectual assets.

The other approximation—where nonrivalry is unrelated to repro-
duction rates—confirms the Boldrin-Levine insight. Perfectly com-
petitive markets function optimally, here under even weaker restric-
tions on trading than in Boldrin and Levine (2002b). The socially
efficient outcome has intellectual assets disseminated as widely as
possible. In equilibrium the price system supports that outcome; it

ware, a set of ideas and institutions recently enabled by Internet-based
worldwide collaboration (e.g., http://www.opensource.org/). My
emphasis on pricing intellectual assets—i.e., the output or software
part of Open Source Software—distinguishes the current work from
other Open Source economics research such as Lerner and Tirole
(2001) that focus more on the input side in studying individual in-
centives and corporate strategies.
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does not restrict dissemination and consumption below what is tech-
nically feasible.

However, even with the Boldrin-Levine specification on technol-
ogy, competitive markets function optimally without restricting users’
rights to make copies and redistribute them further. The kind of mar-
ket competition envisioned here, without intellectual property pro-
tection and with all asset exchange and consumption flows restricted
only by the competitive price system, comes close—in my view—to
the kind of economic organization envisioned by the Open Source
Software community. This part of the analysis below, therefore, sup-
ports the proposition that strong intellectual property rights are not
just unnecessary, but impede social efficiency.

3 The model

The key assertion in Boldrin and Levine (2002b) is that many puta-
tively nonrival knowledge products are not literally infinitely expan-
sible. Copying rates are finite. Reproduction to an infinite number
of copies from the first instance of a knowledge product might well
occur, eventually, but cannot happen instantaneously. What happens
in the first few periods after instantiation then becomes critical for
determining economic outcomes.

This section goes over the Boldrin-Levine analysis. It treats the
decentralized markets allocation explicitly, beginning from a two-
period case and extending to the Boldrin-Levine model. This serves
principally to exposit how the infinite horizon socially efficient out-
come, already compactly characterized in Boldrin and Levine (2002b),
is achieved by firms and consumers trading in markets.

3.1 Technology

Time extends from 0 to infinity. I use t subscripts to denote integer
time when the decision interval is discrete, and (t) parenthesized when
time is taken as continuous. First, consider the fixed time-interval
model. I will turn to the continuous time model only in Section 4
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below.
Let st denote the stock of the intellectual asset or knowledge prod-

uct at the beginning of time t, for t = 0, 1, 2, . . . . Begin the analysis
at time 0, and assume that the (costly) act of instantiating the knowl-
edge product occurs just before then.

The copying rate is given, exogenously, by γ > 1 when s is not
otherwise being used. (The mnemonic is γ for either copying or
growth.) Let ct ∈ [0, st] denote the flow of consumption services; when
consumption occurs, the copying rate from the knowledge product
deteriorates to γ̂ ∈ [0, γ). Call γ̂ the rate of degraded copying. After
time 0 the knowledge product evolves only in volume and through
copying,

∀ integer t ≥ 0 : st+1 = (st − ct) · γ + ct · γ̂ = γst − (γ − γ̂)ct.

To interpret the specification, consider a hypothetical copying
technology for videogames. After the first few instances of the game
exist, all necessary resources can be devoted to creating further copies
of it. Copying proceeds at rate γ. Alternatively, the firm can set
aside some instances of the videogame for employee or customer play.
But then the bit-manipulating copying machines that are working off
those copies slow down to the degraded copying rate γ̂ < γ. This
might happen either because the magnetic heads reading the hard
disk medium have to allow for conflicting demands, or because the
firm’s employees are distracted and cannot operate at maximum effi-
ciency.

As one extreme, it might be that no copies can be made at all
when s is used to generate consumption services, so that degradation
is complete, γ̂ = 0. This special case be used to develop intuition but
what matters for the discussion below is only that γ̂ < γ.

When γ is finite, an infinite number of copies of s cannot be made
instantaneously. Then, provided that consumer preferences show non-
satiation and impatience, the market will clear in the first period only
at a positive price. The higher is γ, the faster will copies propagate
and the faster will equilibrium price, one suspects, converge to zero.
At the same time, however, the more will asset holders value s, as
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more and more copies can be made, to be sold at putatively positive
prices. Equilibrium below will reflect both effects.

It will turn out that for nondegenerate equilibrium the copying
rate γ must be sufficiently high. How high exactly depends on the
kind of equilibrium to be studied—whether the economy exists only
for two periods or infinitely; whether decisions occur only at discrete
time intervals or continuously.

3.2 Preferences

The economy has an infinitely-lived representative consumer with
preferences

W =
∞∑

t=0

βtU(ct), β ∈ (0, 1), (1)

where U is strictly increasing, concave, at least twice continuously
differentiable, and has

lim
c→0

U ′(c) = ∞. (2)

This Inada condition, as well as its failure, will be important for parts
of the discussion below.

3.3 Allocation

Given initial stock s0 > 0, an allocation is a sequence of quantities in
consumption flows and asset stocks:

{ ct, st+1 : t = 0, 1, . . . } .
An allocation is feasible when it satisfies the technology constraints:

ct ∈ [0, st]
st+1 = γst − (γ − γ̂)ct.

(3)

Given s0 > 0 denote C(s0) to be the collection of all consumption
sequences c = { ct : t = 0, 1, 2, . . . } each part of a feasible allocation.
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Iterating on (3) gives

st = (γ − γ̂)γ−1
∞∑

j=0

γ−jct+j + lim
j→∞

γ−jst+j.

Thus, provided that γ−jst+j → 0 as j → ∞, we have

∀c ∈ C(s0) :
∞∑
t=0

γ−t dct
ds0

= (γ − γ̂)−1γ. (4)

Definition 3.1 (Social efficiency) At initial stock s0 > 0, an al-
location is socially efficient (SE) when it is feasible and maximizes
the representative consumer’s preferences W in (1). Define the value
function V : R+ → R

V (s0)
def= sup

C(s0)

∞∑
t=0

βtU(ct).

Evaluating W in (1) at the consumption component of an SE alloca-
tion gives the value function V .

3.4 Competitive Equilibrium

Denote by qt the share price at the beginning of time period t. Let
pt be the period t price of a unit flow of consumption services.

Consumers own shares in the representative firm. They take prices
as given and choose consumption ct and asset holdings st+1 to maxi-
mize preferences (1) subject to the period budget constraint

ptct + qt+1st+1 ≤ qtst. (5)

Correspondingly, the representative firm takes prices as given and
begins time 0 with stock s0 > 0. At each time period t the firm
supplies to the market consumption services ct and asset holdings
st+1 subject to technology (3) so that it maximizes value

qtst
def=

∞∑
j=0

pt+jct+j . (6)

24/7 Competitive Innovation 14

Since copying technology (3) is linear in st, production of (ct, st+1)
displays constant returns to scale. At each time period the maximum
number of copies that can be made is the same whether a single firm
owns all of s or that amount of s is divided across multiple firms.

Definition 3.2 (Competitive Equilibrium) At initial stock s0 >
0, a competitive equilibrium (CE) is a sequence of prices and quanti-
ties {

p∗t , q
∗
t , c

∗
t , s

∗
t+1 : t = 0, 1, 2, . . . ,

}
such that when consumers and firms take CE prices as given, then
markets clear at CE quantities, with consumers maximizing prefer-
ences (1) subject to constraints (5) and firms maximizing value (6)
subject to constraints (3).

The definition allows that, at time t, any agent can purchase some
quantity of the stock st at price qt, and set up a copying service to
compete with the original owner. That agent can, moreover, further
sell on that asset to yet other downstream resellers. Hence, as in
standard competitive equilibrium, legal rights are assigned only over
asset ownership, not over asset use and resale—dissemination prac-
tices that current IPRs typically prohibit. Note, however, that an
agent’s purchasing copies of the asset for potential resale differs from
that agent claiming to buy only consumption service flows ct and
then, illegally, making copies off those flows for re-distribution. In
the first case the agent pays q per copy of the asset; the second, p
per unit of consumption flow. In the legal system envisioned in the
model of this section and the next—but not in sections 5 and 6—the
asset stock s and its flow of consumption services c are two distinct
economic goods. In equilibrium their prices q and p differ. We return
to this in section 5 below.

By constant returns to scale in (3), competitive equilibrium will be
independent of the ownership of st. The central issue then is, What
is the value of the firm q0s0 in CE? Instantiation of the first copy
of s will occur provided that the costs of such creation don’t exceed
q0. In this no-IPR world, whether innovation, artistic endeavor, music
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recording, and so on take place hinges on the competitive equilibrium
value of q0. At time 0 intellectual assets with costs of creation up to
q0 will be instantiated.

3.5 Two-period equilibrium

Suppose that consumers live only for two periods, t = 0 and 1. This
will turn out to have all the features of the infinite horizon case be-
low, with some interesting but inessential differences. The two-period
case is useful to describe explicitly, however, to develop intuition for
the more intricate situations later. Also, as noted in footnote 9 be-
low, the two-period outcome—with its finite endpoint—provides an
alternative confirmation that the positive asset prices calculated for
the infinite-horizon cases are not simply so-called “rational bubbles”
or Ponzi-game outcomes.

Assume:

Condition G: Copying rate γ is bounded from below,

γ > γ̂ + β−1 × sup
s>0

U ′(s)
U ′(γ̂s)

.

Some special cases are useful to provide intuition for this restric-
tion.6 It always holds when U satisfies the Inada condition (2) and
degradation is complete, γ̂ = 0, as the denominator on the right side
is then infinite. More generally, since U is concave the larger is γ̂
the larger will be sups>0 U

′(s)/U ′(γ̂s), so that the more restrictive
becomes the inequality in condition G, and the larger must be the
difference γ − γ̂. When γ̂ < 1 it suffices that the difference γ − γ̂ be
at least β−1 > 1. For given γ̂, the higher is the subjective discount
rate (the smaller is β), the higher must be γ.

6 Boldrin and Levine (2002b) leave implicit conditions G, G′, and
G′′ (the latter two to follow below). Sections 5–6 below will do away
with these altogether.
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If preferences (1) imply constant intertemporal elasticity of sub-
stitution or, equivalently, U(c) shows constant relative risk aversion:

U(c) =
c1−R − 1
1 −R

, R > 0 (7)

then the inequality in condition G becomes

γ > γ̂ + β−1γ̂R.

In words, copying must be faster than degraded copying by β−1γ̂R,
a quantity increasing in both the rates of degraded copying γ̂ and
subjective discount.

I characterize competitive equilibrium in two steps. First, obtain
the SE outcome. Second, find market-clearing prices such that con-
sumers and firms optimally demand and supply those SE quantities.

Proposition 3.3 Under condition G the SE allocation (c∗0, s∗1, c∗1) sat-
isfies

U ′(c∗0) = βU ′(c∗1)× (γ − γ̂)
c∗1 = s∗1 = γs0 − (γ − γ̂)c∗0.

(All proofs appear in section 8 below.) The first of the equations
in Prop. 3.3 gives the relation between marginal utilities in consump-
tion across the two time periods. At the SE allocation those marginal
utilities have slope in time that depends on γ − γ̂, the difference be-
tween the rates of copying and degraded copying. The higher is this
difference, the more consumption is tilted towards the future. This is
efficient because undegraded copying is then sufficiently better than
degraded copying that, other things equal, welfare is improved by re-
fraining from consumption today. The prediction on U ′ is not, how-
ever, always unambiguous. When γ changes, so does the opportunity
set described in (3): general equilibrium wealth effects then affect the
outcome as well.
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Turn now to competitive equilibrium. The firm’s problem is

max
{ c0,s1,c1, }

q0s0 = p0c0 + p1c1

s.t. ct ≤ st, t = 0, 1
s1 = γs0 − (γ − γ̂)c0,

while the consumer’s problem is

max
{ c0,s1,c1 }

U(c0) + βU(c1)

s.t. p0c0 + q1s1 ≤ q0s0

p1c1 ≤ q1s1.

Knowing the SE allocation allows calculating market-clearing prices.
Boldrin and Levine (2002b) use equivalence between a recursive Bell-
man equation description, social efficiency, and competitive equilib-
rium in their elegant and efficient discussion. however, since part
of the analysis below develops conditions under which the perfectly
competitive markets mechanism fails, I have chosen to undertake all
the reasoning here explicitly from first principles.

Proposition 3.4 Assume condition G. For any positive constant µ,
the SE allocation

(c∗0, c
∗
1, s

∗
1)

gives market-clearing quantities at prices

p∗0 = U ′(c∗0) × µ

p∗1 = (γ − γ̂)−1p∗0
q∗0 = (γ − γ̂)−1γ × p∗0 = (γ − γ̂)−1γ × U ′(c∗0)× µ

q∗1 = (γ − γ̂)−1p∗0 = γ−1q∗0 = p∗1.

Set s∗2 = 0. The resulting
{
(p∗t , q∗t , c∗t , s∗t+1) : t = 0, 1

}
is a CE.

The idea in Prop. 3.4 is straightforward and familiar from general
equilibrium analysis. Knowing the SE allocation, seek prices such
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that consumers optimally select that allocation. Since Prop. 3.3 char-
acterizes social efficiency as a relation between marginal utilities, such
decentralizing prices are readily available—just take scaled versions of
the marginal utilities evaluated at the SE allocation. Moreover, social
efficiency respects feasibility. Those marginal utilities then must also
align with the boundaries of the technologically feasible set, thereby
maximizing firm value. The proof given in the Technical Appendix
below simply formalizes this intuition. These same ideas are used
again in Props. 3.7 and 4.4 below.

Useful to notice explicitly is a further relation between q and p,
which will reappear below.

Proposition 3.5 In CE we have q∗0 = s−1
0 × (p∗0c

∗
0 + p∗1c

∗
1). Setting

µ = 1 in Prop. 3.4, we also have q∗0 = V ′(s0).

In words, the competitive equilibrium price on the asset is the present
value of the stream of consumption flows that that asset will generate
over its lifetime. Further, that asset price turns out also to equal the
social value of a marginal increment in the initial asset s0.

Prop. 3.4 indicates that in competitive equilibrium, as copying
proceeds, the price of consumption flows declines at rate (γ − γ̂).
Provided that early on, capacity remains finite, Prop. 3.5 says that
those initial positive prices ensure a positive valuation to q0 in CE.

In Prop. 3.4 the rate of decline in price p reflects both the copying
rate γ, i.e., the rate at which copies are flooding the market, and γ̂,
the degraded copying rate, at the end of the economy’s lifetime, when
all s is used to generate consumption flows. With an infinite horizon
this second, endpoint effect vanishes and the rate of price decline
on c will be simply γ−1. Notice that the rate of decline in p is, in
Prop. 3.4, also the rate of decline on the asset price q. Asset and
consumption prices in infinite horizon economies, below, will again
show equal rates of decline.

Without loss, the proportionality constant µ in Prop. 3.4 can be
normalized to 1 so that p∗0 = U ′(c∗0). This normalization reflects only
choice of numeraire; all subsequent price accounting is in units of
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period 0 marginal utility. Then

q∗0 = (γ − γ̂)−1γ × U ′(c∗0) ≥ U ′(c∗0) > 0,

with the inequality strict whenever γ̂ > 0. Private agents will there-
fore undertake, prior to period 0, any innovation or knowledge pro-
duction costing no more than q∗0 . Provided then that q∗0 remains
bounded away from zero, innovation occurs even with only competi-
tive markets and no IPRs.

Is such innovation socially efficient? What “socially efficient in-
novation” means can be subtle—partly because innovation involves
new goods, partly because an earlier partial-equilibrium literature has
made up ad hoc welfare functions in defining social efficiency for ana-
lyzing these issues. Here, because the analysis is general equilibrium
with a representative agent, social efficiency can be transparently and
unambiguously defined relative to that agent’s utility, and, in turn,
the economy’s value function. Because this two-period case is in-
tended only as an example to confirm intuition, it will be efficient to
postpone complete discussion until after Prop. 3.8 below.

3.6 Discrete-time infinite horizon equilibrium

Equilibrium in an infinite-horizon economy has all the same essential
features described for the two-period one.

Replace condition G with something weaker:

Condition G′: Copying rate γ is bounded from below,

γ > β−1 × sup
s>0

U ′(s)
U ′(γ̂s)

.

The inequality in G′ is satisfied whenever that in G holds. Recall
that G rules out the boundary outcome when all the period 0 asset
is used to generate consumption flows. When consumers live beyond
two periods, the marginal value to having more s is correspondingly
higher. Therefore, the less likely will consumers wish to have as great
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a consumption in the initial period, the less likely will c0 be driven
to its upper boundary at s0.

The analysis parallels that for the two-period model.

Proposition 3.6 Assume G′ and fix s0 > 0. The SE allocation{
c∗t , s∗t+1

}∞
t=0

satisfies

U ′(c∗t ) = βU ′(c∗t+1)× γ, t = 0, 1, 2, . . . (8)

s0 = (γ − γ̂)γ−1
∞∑

j=0

γ−jc∗j (9)

s∗t = (γ − γ̂)γ−1
∞∑

j=0

γ−jc∗t+j , t = 1, 2, 3, . . . . (10)

Condition (8) differs from its two-period model counterpart in
Prop. 3.3 in its slope coefficient being γ, not γ − γ̂. This is because
the infinite-horizon setting shows no endpoint effects, as already ear-
lier described. In condition (9) the initial stock s0 is given—the rela-
tion confirms feasibility in the sequence { c∗t }∞t=0, which can be solved
for using (8)–(9). Condition (10) gives the s∗t implied by the se-
quence { c∗t }∞t=0. Together, conditions (9) and (10) rule out a Ponzi
game with

{
γ−tst

}
remaining bounded away from zero. The proof

to Prop. 3.6 shows a Ponzi game would be socially inefficient.
The equivalence earlier established for the two-period model in

Prop. 3.4 is available here as well. Taking prices (p, q) as given, the
representative firm solves for each t,

sup
{ ct+j, st+1+j }∞j=0

qtst =
∞∑

j=0

pt+jct+j

s.t. ct+j ≤ st+j

st+j+1 = γst+j − (γ − γ̂)ct+j , j = 0, 1, 2, . . . ,
given st.
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Similarly, consumers take prices (p, q) as given, and solve for each t,

sup
{ ct+j, st+1+j }∞j=0

∞∑
j=0

βjU(ct+j)

s.t. pt+jct+j + qt+j+1st+j+1 = qt+jst+j, j = 0, 1, 2, . . . ,
given st.

Market clearing then gives the competitive equilibrium

{
p∗t , q

∗
t , c

∗
t , s

∗
t+1

}∞
t=0

.

Proposition 3.7 Assume G′ and fix s0 > 0 from Prop. 3.6. For any
positive constant µ, the SE allocation

{
(c∗t , s

∗
t+1), t = 0, 1, 2, . . .

}
gives market-clearing quantities at prices

p∗0 = U ′(c∗0)× µ

p∗t = γ−1p∗t−1, t = 1, 2, 3, . . .
q∗t = (γ − γ̂)−1γ × p∗t

= (γ − γ̂)−1γ × γ−tU ′(c∗0)× µ, t = 0, 1, 2, . . . .

The resulting
{
p∗t , q∗t , c∗t , s∗t+1

}∞
t=0

is a CE.

Although more intricate, the argument to establish Prop. 3.7 is, in
concept, the same as that for the two-period Prop. 3.4. Now, however,
both consumption and asset prices decline at rate γ−1. While, again,
Prop. 3.7 gives asset price q as a simple contemporaneous relation
to the price of consumption flows p, the former is more insightfully
viewed as the present value of all current and future revenues on
supplying c to the market:

Proposition 3.8 In CE we have q∗0 = s−1
0 ×∑∞

t=0 p
∗
t c

∗
t . Setting µ = 1

in Prop. 3.7, we also have q∗0 = V ′(s0).
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The period 0 asset price q∗0 is the cost threshold below which
socially useful but costly innovation occurs. If q∗0 is zero then no
innovation occurs, even if positively valued by society according to
Prop. 3.6. Since the relation q∗0 = V ′(s0) also occurs in the two-period
model of Prop. 3.5 and all the cases considered below—Props. 4.5, 5.4,
5.6, and 6.2—that asset price is, in many different circumstances,
the social value of a marginal change in the initial stock s0. As
long as this holds—exceptions where q∗ = 0 are described in foot-
note 11 below—when considering an innovation project that costs
ψ ≤ q∗0 and that takes the initial stock from 0 to s0, activating that
project maximizes consumer surplus and thus social welfare. As in
the usual demand/supply-curve analysis, this marginal condition cap-
tures within it maximization of the entire integral under the demand
curve. Given s0, any lower-cost innovation benefits society even more;
any higher-cost innovation will reduce social surplus from the maxi-
mum. Undertaking the marginal innovation at ψ = q∗0 is, therefore,
socially efficient.7

7 To be clear, from q∗0 = V ′(s0) being the derivative with respect
to s, at ψ = q∗0 the social surplus maximization is over all projects
equally costly but with different instantiation quantities in the asset
stock s. Because this model explicitly treats only one intellectual
asset (as in Boldrin and Levine (2002b)), this is a sensible definition
for social efficiency. An alternative definition for socially efficient
innovation—with multiple projects and multiple intellectual assets—
is to maximize consumer welfare net of costs across different projects
creating different kinds of intellectual assets. This takes into account
new goods and their associated Dupuit triangles—see, e.g., Quah
(2002a) and Romer (1994). The optimal policy then is to accept all
projects for which V (s0)−V (0) ≥ ψ, or at the margin to drive V (s0)−
V (0) = ψ. This obviously differs from V ′(s0) = ψ. Quah (2002b)
uses that alternative to evaluate the social efficiency of IPR regimes.
There, market-based outcomes can display too much or too little
innovation relative to the social optimum. This occurs even without
the externalities induced by patent races and creative destruction
from Aghion and Howitt (1998), Dasgupta (1988), and Jones and
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By choice of numeraire, we can again set µ in Prop. 3.7 to unity
so that

q∗0 = (γ − γ̂)−1γ × U ′(c∗0).

Two factors enter the determination of q∗0 . The first is the multiplier
(γ − γ̂)−1γ; the second is period 0 marginal utility U ′(c∗0). Under
almost all reasonable assumptions on utility U marginal utility U ′(c∗0)
at the SE allocation is bounded away from zero.8 Notice then that
when γ grows without bound, q∗0 always remains positive.

This then is the key Boldrin-Levine insight. Even when tech-
nology advances to allow near-nonrival reproduction, perfectly com-
petitive markets survive and positive rents allow ongoing innovation.
Consumption and asset prices might decline to zero (at rate γ ↑ ∞),
but in period 0 the positive price U ′(c∗0) guarantees positive q∗0 in
competitive equilibrium.9

This analysis implies that to a reasonable approximation nonrival
goods present no difficulties to the workings of perfectly competitive
markets. This result from Boldrin and Levine (2002b) is a profound
and remarkable finding that overturns decades of economic thinking
on intellectual property rights. The result relies crucially, however,
on what happens in period 0. Regardless of how high γ gets, actions
by consumers and competing firms can only occur once every fixed
time period. A positive price in period 0 prevails for all of period
0. This need not be reasonable. Agents will, in general, wish to

Williams (2000).
8 Marginal utility might even diverge to infinity, but ignoring

that case loses no insight and is not central to the discussion. See the
example in the Technical Appendix following the proof of Prop. 4.5.

9 It should be apparent that such an asset price is based on fun-
damentals, namely the stream of revenues that the asset generates.
But if any worry lingers that this price might be simply a so-called
“rational bubble” or Ponzi-game outcome, the two-period model of
Section 3.5 fixes that. The finite endpoint after t = 1 would not sup-
port a rational bubble, but clearly the prices in Prop. 3.7 are simply
the infinite-horizon counterparts to those in Prop. 3.4.
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adjust demand and supply decisions more and more frequently, and
prices change more and more rapidly—should this be what maintains
equilibrium with ever higher γ. The right approximation then is one
that allows actions by economic agents in continuous time.

4 Continuous Time

In continuous time while consumption price p = U ′ can be bounded
away from zero at t = 0, the length of time that it remains posi-
tive can be fleetingly brief. The integral form used to asset price q
(the continuous time counterpart to Prop. 3.8) then evaluates to zero
even when consumption flow price remains positive. But then no in-
novation occurs even if social efficiency dictates the opposite. This
continuous-time analysis, therefore, restores the conventional wisdom
that perfectly competitive markets fail with nonrival (or near nonri-
val) goods.

Rewrite consumer preferences (1) and technology constraints (3)
as

W =
∫ ∞

t=0
e−ρtU(c(t)) dt, ρ > 0 (1′)

and

c(t) ∈ [0, s(t)]
ṡ(t) = γs(t) − (γ − γ̂)c(t),

(3′)

with γ > γ̂ ≥ 0. Similarly, the consumer’s budget constraint (5) and
the firm’s value (6) become:

d

dt
[qs] = −pc (5′)

and

q(t)s(t) def=
∫ ∞

0
p(t+ r)c(t+ r) dr. (6′)
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For completeness explicitly give definitions for social efficiency
and competitive equilibrium in continuous time. Given initial stock
s(0) > 0, an allocation is a time profile of quantities

{ c(t), s(t) : t ≥ 0} .
An allocation is feasible when it satisfies (3′). As before, call C(s(0))
the collection of every consumption profile c = { ct : t ≥ 0 } that is
part of a feasible allocation. Provided that limt→∞ e−γts(t) = 0,
integrating (5′) gives

s(0) = (γ − γ̂)
∫ ∞

t=0
e−γtc(t) dt,

so that for all c ∈ C(s(0)) we have∫ ∞

t=0
e−γt dc(t)

ds(0)
dt = (γ − γ̂)−1. (11)

Definition 4.1 (SE – Continuous Time) At initial stock s(0) >
0, an allocation is socially efficient (SE) when it is feasible and max-
imizes the representative consumer’s preferences W in (1′). Define
the value function V : R+ → R

V (s(0)) def= sup
C(s(0))

∫ ∞

t=0
e−ρtU(c(t)) dt.

As before, we will compare the SE allocation with competitive
equilibrium.

Definition 4.2 (CE – Continuous Time) At initial stock s(0) >
0, a competitive equilibrium (CE) is a time profile of prices and quan-
tities

{ p∗(t), q∗(t), c∗(t), s∗(t) : t ≥ 0 }
with s∗(0) = s(0), such that when consumers and firms take CE prices
as given, then markets clear at CE quantities, with consumers max-
imizing preferences (1′) subject to (5′) and firms maximizing value
(6′) subject to (3′).
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Next, we need the continuous-time counterpart to conditions G
and G′. Define

R(c) = −cU ′′(c)/U ′(c) > 0.

This would be the coefficient of relative risk aversion in a model of
choice under uncertainty. Here, equivalently, it is also the reciprocal
of the intertemporal elasticity of substitution. Assume:

Assumption G′′: Copying rate γ is bounded from below,

γ > ρ+ γ̂ × sup
s>0

R(s).

Condition G′′ might at first appear to contradict the usual γ < ρ
restriction familiar from the theory of economic growth. However, the
model’s steady-state growth rate is not γ but a convex combination
of γ and γ̂—see this by using, e.g., that c is a constant fraction of s
from the Example in the Technical Appendix.

I can now state the continuous-time versions of the social efficiency
and competitive equilibrium equivalence propositions.

Proposition 4.3 Under condition G′′ the SE allocation

{ (c∗(t), s∗(t)), t ≥ 0 }

satisfies for some non-negative {λ(t) : t ≥ 0 } the set of equations

U ′(c∗(t)) = (γ − γ̂)λ(t)
λ̇/λ = ρ− γ < 0

s∗(0) = s(0) = (γ − γ̂)
∫ ∞

t=0
e−γtc∗(t) dt

s∗(t) = (γ − γ̂)
∫ ∞

r=0
e−γrc∗(t+ r) dr, t > 0.

Interpretation of the equations characterizing SE above follows
exactly that in their discrete-time counterparts from Prop. 3.6.
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Proposition 4.4 Assume G′′. For any positive constant µ, the SE
allocation

{ (c∗(t), s∗(t)), t ≥ 0 }

gives market-clearing quantities at the prices

p∗(0) = U ′(c∗(0)) × µ

ṗ∗/p∗ = −γ < 0 or p∗(t) = e−γtp∗(0)
q∗(t) = (γ − γ̂)−1 × p∗(t)

= (γ − γ̂)−1 × e−γtU ′(c∗(0)) × µ.

Set s∗(0) = s(0). The resulting { (p∗(t), q∗(t), c∗(t), s∗(t)) : t ≥ 0 } is
a CE.

As before, while asset price bears a simple contemporaneous rela-
tion with consumption price, it is also the present value of the revenue
stream from current and future sales of consumption services.

Proposition 4.5 In CE we have

q∗(0) = s(0)−1 ×
∫ ∞

t=0
p∗(t)c∗(t) dt.

Setting µ = 1 in Prop. 4.4 we also have q∗(0) = V ′(s(0)).

Prop. 4.5 gives the same present value interpretation to q∗(0) as
in the discrete-time case in Prop. 3.8. Similarly, it is also the social
value of a marginal change in initial stock s(0).

At the same time, however, the formula for q∗(t) in Prop. 4.4
reflects the intuition developed at the beginning of this section. Again
we can set µ = 1 by choice of numeraire. From Prop. 4.4,

q∗(0) = (γ − γ̂)−1 × p∗(0) = (γ − γ̂)−1 × U ′(c∗(0)),

so that the multiplier on p∗ = U ′ is now (γ− γ̂)−1, not (γ− γ̂)−1 × γ.
The numerator γ from the discrete-time Prop. 3.7 no longer ap-
pears. This highlights the first-period effect in the discrete-time
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model, where no further, within-period actions could be taken af-
ter setting U ′(c∗0) > 0. In the continuous-time version, as γ ↑ ∞,
the multiplier (γ − γ̂)−1 converges to zero rather than unity. So too
then does asset price q converge to zero, even with p = U ′ remain-
ing strictly positive.10 As γ rises, the time interval when prices p
remain appreciably positive becomes shorter and shorter. Asset price
q, which involves a product of both the price level and the appro-
priate covering timespan, then converges to zero, rather than remain
strictly positive.11

Elsewhere in this paper I describe the results of this continuous-
time formulation using evocative language like “economic agents tak-
ing actions progressively frequently as technology advances”. Some
have objected that this is not strictly consistent with a model where
time is continuous, rather than one where, say, the time interval
shrinks with γ. At the expense of some cumbersome notation this
dissonance is easy to repair. Re-use the discrete-time model in section
3 but now let the time interval have length γ−1. Rewrite equations
(1), (3), (5), and (6) appropriately so that t + j becomes (t + j)/γ
in indexing and taking powers of β. The only substantive change
then is to the firm’s value equation (6) describing revenue flow where
now individual summands on the right side of this equation are mul-
tiplied by time-period length γ−1. (A similar change appears in (1)
but that is irrelevant to the argument.) The resulting SE and CE
descriptions remain unaltered except the formula for q∗ in Prop. 3.7

10 Example 4.6 in the Technical Appendix contains an explicit para-
metric treatment for U ′(c∗(0)), showing how it can remain bounded
even when γ ↑ ∞. In general equilibrium, as γ changes, both substi-
tution rates and production possibilities vary, and so the effect of γ
on c∗ need not be transparent.

11 An argument might be made that the zero price q is, indeed, the
appropriate, socially efficient outcome, as zero is, literally, what the
time integral of marginal utilities turns out to be. In this view, at the
margin society as well as putative enterpreneurs do not value such
innovations. But this is just the market failure identified by Arrow
(1962) and Nordhaus (1969) reworded.
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is now divided by γ. This adjustment cancels the same term in the
numerator, and gives the multiplier in Prop. 4.4. More generally, the
same reasoning works for a time interval having length any function
that has order of magnitude O(γ−1). The numerator in the expres-
sion for q∗ in Prop. 3.7 is always the same magnitude, and so always
gets appropriately cancelled.

5 Completely unrestricted dissemination

In the analysis thus far, as in Boldrin and Levine (2002b), property
rights cover the asset s. Although the model economy envisions no
restrictions on how purchasers of s can subsequently use s—to com-
pete, say, with the original owner—it does restrict the behavior of
purchasers of the consumption flow c. In particular, those users can-
not themselves become competing producers. Whether this restric-
tion is legal or technical is not made explicit in Boldrin and Levine
(2002b). Arrangements such as SDMI, for instance, combine both
legal and technical dimensions. This section relaxes that restriction
and asks what happens with pure untramelled competition.

The analysis in two parts. First, section 5.1 alters the technol-
ogy to consider goods that are nonrival, in the sense described in the
introduction, but at the same time remain finitely expansible. Sec-
ond, section 5.2 reverts to the rival and finitely expansible technology
from section 3. In both cases competitive equilibrium achieves social
efficiency, but the equilibrium allocations differ in interesting ways.
In section 5.1 social efficiency calls for the widest possible dissemi-
nation of the intellectual asset. The price system supports that in
equilibrium. Technological feasibility, not the price system, becomes
the binding constraint.

Section 5.2 has, under current legal systems, activity that might
be identified as bootlegging. Nevertheless, perfectly competitive mar-
kets achieve the socially efficient outcome, requiring only an adjust-
ment in prices to those obtained in section 3 above and in Boldrin
and Levine (2002b). Here, however, prices do curtail dissemination
to levels below that in section 5.1.
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5.1 Unrestricted dissemination with nonrivalry but finite
expansibility

Nonrivalry means that one use does not detract from another. This
says nothing about the magnitudes of rates of copying. Therefore,
reconsider the assumption that generating consumption flow c off the
stock of intellectual asset s degrades the copying potential of that
stock. In Sections 3–4 that degradation is γ − γ̂ > 0. When an
s-holder puts aside c ≤ s to provide that amount of consumption
services, the remainder (s−c) reproduces at rate γ but c, the amount
set aside, reproduces only at rate γ̂ < γ.

Suppose now that when s is used to provide consumption services
c, the consumer who purchased c can, while enjoying U(c), also turn
c into asset stock s′ = σ × c that she can use for further copying,
with σ > 0. (The mnemonic is σ for subsidiary producer or user or
consumer.) If, in Boldrin and Levine (2002b), this action is legally
prohibited, then what I have just described might be regarded as
making bootleg copies—under a particular legal regime. If, on the
other hand, Boldrin and Levine (2002b) intend this to be a technical
restriction, then what I have just described is simply an acknowledge-
ment of advancing information and media technologies.12

Unlike the degraded rate γ̂, the copying rate σ can bear any rela-
tion to γ. If consumers own copying machines that are not as good as
professionals’, then it might be reasonable to take σ < γ. If, however,
consumers are themselves professionals in converging industries, then
there is no reason why we could not have σ > γ. That products grow
faster by disseminating as widely as possible to all potential users
has long been an operating tenet of, for instance, the Open Source
Software community—the formulation with σ positive and potentially
exceeding γ allows exactly this.

I proceed with the analysis as before, first characterizing social

12 This formulation suggests also that the typical identification
of nonrivalry with infinite expansibility can be misleading. What
Boldrin and Levine (2002b) study is finite expansibility, not near-
nonrivalry.
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efficiency and then decentralizing the model with a price system under
perfect competition. Society’s resource constraints are now altered
from (3) to:

ct ∈ [0, st]
st+1 = γst + σct.

(12)

The coefficient on ct has changed from the negative −(γ − γ̂) to the
positive σ. Notice, however, that technology (12) remains constant
returns to scale.

Because of the nonrivalry in consumption and production, the fea-
sible consumption set C(s0) is no longer obtained by simply iterating
equation (12). Instead, C(s0)’s upper boundary—the only part that
will matter when consumers show nonsatiation—has the following
characterization. Set ct to its upper bound st so that

ct+1 = st+1 = [γ + σ]st = [γ + σ]t+1 × s0.

Then, on C(s0)’s upper boundary,

dct
ds0

= [γ + σ]t.

Definition 5.1 (SE – CUD) At initial stock s0 > 0, an allocation
is socially efficient (SE) when it is feasible relative to technology (12)
and maximizes the representative consumer’s preferences W in (1).
Define the value function V : R+ → R

V (s0)
def= sup

C(s0)

∞∑
t=0

βtU(ct).

Here, social efficiency differs in essential features from those previ-
ously obtained in Sections 3 and 4. Conditions such as G no longer
restrict c away from the boundary at s. Indeed, since σ > 0, the
greater is consumption, the greater is next period’s stock. It is there-
fore optimal to set consumption to the boundary at s, achieving
widest possible dissemination of the intellectual asset at the same
time maximizing its growth rate.
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Proposition 5.2 The SE allocation
{
(c∗t , s∗t+1), t = 0, 1, 2, . . .

}
sat-

isfies

c∗0 = s0

c∗t = s∗t = (γ + σ)s∗t−1

= (γ + σ)ts0, t = 1, 2, . . . .

The value function can be explicitly written

V (s0) =
∞∑
t=0

βtU(c∗t ) =
∞∑
t=0

βtU([γ + σ]ts0).

This allocation satisfies, simultaneously, two potentially competing
considerations. First, the allocation achieves widest feasible dissem-
ination of the intellectual asset, consistent with suggestions in, e.g.,
Richard Stallman’s GNU Manifesto and many writings in the Open
Source movement. Second, the allocation respects the finite capacity
constraint emphasized in Boldrin and Levine (2002b). By contrast,
the allocations studied in Sections 3–4, socially efficient under as-
sumption (3), optimally never had use c achieve the feasible boundary
s.13

That the SE allocation can be attained under perfect competition
comes from two features of the model. One, the technology (12)
displays constant returns to scale. Two, the payoff structure of asset
s resembles those of the dividend-paying trees in Lucas (1978), where,
we will see below, here the dividend equals the price of the asset
next period multiplied by the growth rate σ. That there is constant
returns to scale means that it is irrelevant whether the economy has
one firm, acting competitively, or multiple firms, all competing with
each other. That the model is close to that in Lucas (1978) means
that asset prices here behave the same way as there.

Turn next to markets and competitive equilibrium. While the
SE allocation is obviously that given in Prop. 5.2—as long as utility

13 Boldrin and Levine (2002b) rule out this boundary solution. See
also footnote 6 above.
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is monotone increasing—that allocation could well imply unbounded
welfare, with consumption growing at rate γ + σ > γ > 1. This is
problematic for characterizing the consumer’s choice problem. To get
around this, a sufficient condition is

Condition C: Technology (γ, σ) and preferences (β,U) jointly sat-
isfy:

lim
t→∞

[
([γ + σ]β)t ×

∞∑
j=0

([γ + σ]β)j × U ′ ([γ + σ]t+j
)]

= 0.

Condition C states that marginal utility U ′ must decline sufficiently
rapidly as growth occurs. The higher is γ+σ relative to β, the faster
must U ′ fall. While the condition might seem intricate, it is implied
by consumer preferences W displaying low constant intertemporal
elasticity of substitution:

Lemma 5.3 Suppose that for preferencesW given in (1) the function
U satisfies (7). Then condition C holds whenever the intertemporal
elasticity of substitution R−1 ≤ 1.

The inequality R−1 ≤ 1 is sufficient but not necessary for con-
dition C—see the proof of Lemma 5.3 and equation (36) in particu-
lar. Thus, log utility or R−1 = 1—which will play a special role in
Props. 5.5 and 6.2—implies condition C but so will utility functions
with even higher intertemporal elasticities of substitution.

Despite the specifics in Lemma 5.3, that marginal utility have the
form U ′(c) = c−R is inessential to condition C. What matters is that,
asymptotically, marginal utility decline faster than c−1.

When the representative consumer purchases ct she now pays pt

upfront but then can, if she wishes, allow ct to grow at rate σ and
sell the result on the market qt+1. The consumer’s budget constraint
at time t is therefore changed from (5) to:

qt+1st+1 ≤ (qtst − ptct) + qt+1σct. (13)
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In competitive equilibrium the representative consumer takes as given
prices p and q, and at time t solves

sup
{ ct+j, st+1+j }∞j=0

∞∑
j=0

βjU(ct+j)

s.t. pt+jct+j + qt+j+1st+j+1

≤ qt+jst+j + qt+j+1σct+j , j = 0, 1, 2, . . . ,
given st.

The representative firm at the beginning of period t sells con-
sumption flow ct at price pt, and then if it so wishes, at the end of
the period, buys the consumer-generated stock σ × ct at price qt+1

to increment its holdings of s. The firm’s revenue flow for period t is
therefore (pt − qt+1σ) × ct, while its s holdings follow:

st+1 = γst + σct.

Its value then is given by:

qtst =
∞∑

j=0

(pt+j − qt+1+jσ)× ct+j . (14)

In competitive equilibrium the representative firm maximizes value
(14) taking p and q as given. At each time period t, therefore, the
firm solves

sup
{ ct+j, st+1+j }∞j=0

qtst =
∞∑

j=0

(pt+j − qt+1+jσ) ct+j

s.t. ct+j ≤ st+j

st+j+1 = γst+j + σct+j , j = 0, 1, 2, . . . ,
given st.

The firm’s production set coincides with that for society given in (12).
Competitive equilibrium achieves social efficiency through the fol-

lowing market-clearing prices:
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Proposition 5.4 Assume condition C and set s∗0 = s0. For any
positive constant µ, the SE allocation{

(c∗t , s
∗
t+1), t = 0, 1, 2, . . .

}
of Prop. 5.2 gives market-clearing quantities at prices

q∗t = (s∗t )
−1βt ×

[ ∞∑
j=0

βjU ′(s∗t+j)s
∗
t+j

]
× µ

p∗t = βtU ′(s∗t ) × µ+ q∗t+1σ.

The resulting
{
p∗t , q∗t , c∗t , s∗t+1

}∞
t=0

is a CE. Taking µ = 1, the initial
asset value q∗0 further satisfies q

∗
0 = V ′(s0).

Equilibrium asset price q∗ again has a present value form. How-
ever, it now has time profile that is no longer a smooth geometric
decline q∗t+1/q

∗
t = γ−1, but instead one that varies with consumer

preferences and all the other parameters of the economy. Similarly,
the equilibrium time profile for the consumption flow or rental price
p∗ is no longer the same geometric decline but now depends also on
the dynamics of a forward-looking present value term. In Prop. 5.4,
p∗ is no longer only contemporaneous marginal utility but has added
to that the resale value from the consumer creating an appropriate
extra number of copies.

The competitive outcome continues to be socially efficient even as
goods approach infinite expansibility. Writing

q∗0 = s−1
0 ×

[
U ′(s0)s0 +

∞∑
t=1

βtU ′(s∗t )s
∗
t

]
× µ

p∗0 = U ′(s0)× µ+ q∗1σ,

both q∗0 and p∗0 are bounded from below by the positive quantity
U ′(s0)×µ, independent of copying rates. All socially efficient innova-
tions, therefore, continue to occur, even when γ+σ ↑ ∞, re-confirming
the Boldrin-Levine insight that perfectly competitive markets achieve
social efficiency even as the degree of expansibility grows without
bound.
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We can get further intuition in more precise formulas if we spe-
cialize preferences to that earlier used to motivate condition C.

Proposition 5.5 Assume the hypotheses in Lemma 5.3. Then CE{
p∗t , q∗t , c∗t , s∗t+1

}∞
t=0

exists where, taking an appropriate numeraire,
we have:

c∗t = s∗t = (γ + σ)ts0

q∗0 =
[
1 − β

(γ + σ)R−1

]−1

× s−R
0

q∗t =
[

β

(γ + σ)R

]t

× q∗0

p∗t =
[

β

(γ + σ)R

]t

×
[
s−R
0 + q∗0

σβ

(γ + σ)R

]
.

Asset and consumption prices decline at rate β/(γ + σ)R, and
thus have time profiles that depend on not just technology (γ, σ) but
also preference parameters (β,R).

Consider the effects of copying rates γ and σ on equilibrium in
Prop. 5.5. When R−1 < 1 so that demand is inelastic, then both
period-0 prices converge to the same limiting value, q∗0 → s−R

0 and
p∗0 → s−R

0 if either γ or σ increase without bound. However, when
R−1 = 1, i.e., U is log utility, then q∗0 = (1 − β)−1 × s−1

0 is invari-
ant with respect to the copying rates. Now, if γ → ∞ at least as
quickly as σ, then the period-0 consumption price p∗0 → s−1

0 , whereas
if σ → ∞ while γ remains bounded (or increases slower than σ), then
consumption price

p∗0 → s−1
0 + βq∗0 =

(
1 +

β

1 − β

)
s−1
0 = q∗0.

Thus, except with log utility and γ ↑ ∞ no slower than σ, as some
copying rate gets arbitrarily large the distinction between the asset
s and its consumption flow c disappears, in both prices converging
towards each other.
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This peculiar feature of unit intertemporal elasticity has already
appeared elsewhere in dynamic macroeconomics, and should be rel-
atively familiar. As one might already suspect from the discussion
contrasting the discrete and continous time findings from section 4,
unit elasticity manifests as an interesting special case in continuous
time. We turn to that in section 6 further below.

5.2 Unrestricted dissemination with rivalry and finite ex-
pansibility

Now, instead, I discuss what happens if the same kind of unrestricted
copying is allowed, maintaining the rival and finitely expansible tech-
nology in section 3 and Boldrin and Levine (2002b). With discrete
time, competitive equilibrium remains optimal and the asset price q is
unchanged. Only the consumption price p is affected, and in the obvi-
ous and intuitive way. Thus, the Boldrin and Levine (2002b) insight
that perfectly competitive markets achieve social efficiency obtains
even under weaker restrictions on trading than they described.

The analysis combines the discussions from sections 3.6 and 5.1.
Since neither preferences nor society-wide technology has changed,
the feasible consumption set C(s0) and the value function V are un-
changed from those in Props. 3.6–3.8.

Consumers maximize preferences (1) subject to (13) with γ̂ re-
placing σ, i.e.,

qt+1st+1 ≤ (qtst − ptct) + qt+1γ̂ct.

Because goods are rival here, when a firm rents out consumption
services c at price p, it loses access to those assets and so is no longer
able to make copies at rate γ̂. What the firm continues to hold,
s − c, can be copied at the usual rate γ. To increase s next period
beyond this, the firm can purchase γ̂c from the consumer at price q.
Or, the consumer can now compete with the firm, using her freshly-
constituted holdings γ̂c. Since, however, the technology is constant
returns to scale, the outcome is invariant to which of these occurs.
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The firm’s revenue flow is, paralleling section 5.1,

(pt − qt+1γ̂)× ct,

so that its value, modifying equation (14), is:

qtst =
∞∑

j=0

(pt+j − qt+1+j γ̂)× ct+j , (15)

while now its s holdings follow

st+1 = (st − ct)γ + γ̂ct. (16)

But, rewritten, (16) is exactly the same as the dynamic equation in
(3). Firms therefore maximize value (15) subject to (3).

Proposition 5.6 Assume G′ and fix s0 > 0 from Prop. 3.6. Then CE{
p†t , q

†
t , c

†
t , s

†
t+1

}∞
t=0

exists and achieves the SE allocation of Prop. 3.6,

c†t = c∗t and s†t+1 = s∗t+1, t = 0, 1, 2, . . .

at prices

p†t = q†t = q∗t , t = 0, 1, 2, 3, . . . .

Taking µ = 1, the initial asset value q†0 satisfies q
†
0 = V ′(s0).

Competitive markets continue to achieve social efficiency, even
with no restrictions on what consumers can do with copies of the
asset that they have merely rented. Exactly the same amount of
innovation continues to take place—asset price q is unchanged. Only
the rental price p changes. It rises to reflect the increased demand
when consumers can now make copies and therefore enter the market
themselves to compete with the incumbent. And, intuitively, it equals
the asset price q itself since now the two no longer differ.

It might be useful to discuss a real-world example relating the
equilibrium in Prop. 5.6 to the Boldrin-Levine one in Props. 3.6–3.8.
Example 5.7 provides intuition for this comparison by looking at the
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evolution of technology, law, and Internet music dissemination. Since
this takes the flow of argument from the more rigorous and analytical,
some readers might wish to skip the rest of this section and proceed
directly to section 6.

Example 5.7 Suppose that corporation S uses Internet streaming
technology that purports to distribute music for one-time listening
only. The music digital bits pass through a Media Player on my
Internet node, I enjoy the music, and then—so S engineers think—
the bits simply vanish. Corporation S charges me price p for this.
However, they charge the value-added retailer R a higher price q > p
because R wants not just to listen but to make legal copies and sell
them on. In equilibrium I am indifferent between paying p for just
listening and paying q for becoming a value-added retailer (VAR).

If S can enforce this technical restriction then provided that only
finite reproduction occurs, competitive equilibrium is possible with
q > p > 0. This is what happens in Boldrin and Levine (2002b) and
in Props. 3.6–3.8 above.

Now, however, suppose I write a software program that breaksS’s
protection scheme. So, when S thinks I only listen, I could actually
be writing the music (bits) to hard disk at the same time. However,
even if the technology has changed, provided that all agents obey the
law against illegal copying, the competitive equilibrium of Boldrin
and Levine (2002b) and Props. 3.6–3.8 continues to apply.

Next, suppose that corporation S suddenly realizes advancing
technology has broken their protection scheme, and suppose further
that the law either has been repealed or can no longer be enforced.
What happens in equilibrium?

The price p charged consumers rises until they are again indiffer-
ent between being consumers and VARs. What price is that? It will
be q, the same price that VARs pay, because now both VARs and I
can do the same things with the music we buy. The line between con-
sumers and producers vanishes. Nothing has changed for the VARs.
Provided that I can’t reproduce infinite copies instantaneously the
economy will still have q > 0 at the same value as before. But this is
just Prop. 5.6.
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Music holds no special features that make Example 5.7 work. The
principle applies to a broad range of cases where technology, law, and
expansible assets are evolving in the way described.

6 Unrestricted dissemination in continuous time

In continous time consumer preferences remain as earlier in (1′), while
the economy’s technology constraint becomes

c(t) ∈ [0, s(t)]
ṡ(t) = γs(t) + σc(t).

(12′)

Then the socially efficient (SE) allocation maximizes (1′) subject to
(12′), with solution:

∀ t ≥ 0 : c∗(t) = s∗(t) = e(γ+σ)ts(0). (17)

The set C(s(0)) of feasible consumption profiles has upper boundary
given by equation (17) and the value function V : R+ → R is

V (s(0)) = sup
C(s(0))

∫ ∞

t=0
e−ρtU(c(t)) dt =

∫ ∞

t=0
e−ρtU(e[γ+σ]ts(0)) dt.

For competitive equilibrium (CE), the representative consumer’s
budget constraint is now

d

dt
[qs] = −pc+ qσc = −(p− qσ)c, (13′)

following the reasoning surrounding its discrete-time version (13).
Similarly, the representative firm’s value is

q(t)s(t) =
∫ ∞

r=0
[p(t+ r)− q(t+ r)σ] × c(t+ r) dr. (14′)

The firm maximizes value (14′) subject to constraint (12′). At initial
stock s(0) > 0 competitive equilibrium is, as before, a time profile of
prices and quantities

{ p∗(t), q∗(t), c∗(t), s∗(t) : t ≥ 0 }
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with s∗(0) = s(0), such that when consumers and firms take CE
prices as given, then markets clear at CE quantities, with consumers
maximizing preferences (1′) subject to (13′) and firms maximizing
value (14′) subject to (12′).

For exactly the same reason as before, we need the continuous-
time counterpart to condition C:

Condition C′: Technology (γ, σ) and preferences (ρ, U) jointly sat-
isfy:

lim
t→∞

[
e−(ρ−[γ+σ])t ×

∫ ∞

r=0
e−(ρ−[γ+σ])rU ′

(
e[γ+σ](t+r)

)
dr

]
= 0.

As with the previous condition C the preferences given in Lemma 5.3
imply C′.

Lemma 6.1 Suppose that for preferences W given in (1′) the func-
tion U satisfies (7). Then condition C′ holds whenever the intertem-
poral elasticity of substitution R−1 ≤ 1.

The principal result of this section then is:

Proposition 6.2 Assume condition C′. Competitive equilibrium ex-
ists and achieves social efficiency. The CE and SE allocations coincide
at (17), and, taking any positive constant µ, the CE prices are:

q∗(t) = s∗(t)−1e−ρt ×
[∫ ∞

r=0
e−ρrU ′(s∗(t+ r))s∗(t+ r) dr

]
× µ

p∗(t) = e−ρtU ′(s∗(t)) × µ+ q∗(t)σ.

Taking µ = 1, the period-0 asset value q∗(0) satisfies q∗(0) = V ′(s(0)).

Finally, give the special case with constant intertemporal elasticity
of substitution.
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Proposition 6.3 Assume the hypotheses in Lemma 6.1. Then CE
prices, taking an appropriate numeraire, are:

q∗(0) = [ρ+ (γ + σ)(R − 1)]−1 × s(0)−R

q∗(t) = e−[ρ+(γ+σ)R]t × q∗(0)
p∗(t) = e−[ρ+(γ+σ)R]t × [

s(0)−R + q∗(0)σ
]
,

so that

q̇∗/q∗ = ṗ∗/p∗ = −[ρ+ (γ + σ)R] < 0.

As in section 4 the generic case has q∗(0) → 0 as γ ↑ ∞, so that
competitive markets then fail to deliver socially efficient innovation.
However, as in Prop. 5.5, the case of log utility, R−1 = 1, is spe-
cial. Here, even in continuous time and even as (γ + σ) ↑ ∞ we
have q∗(0) remaining bounded away from 0. Competitive innovation
continues, 24/7 and with completely unrestricted dissemination of in-
finitely expansible intellectual assets—an extremely special case but
nonetheless hypothetically possible.

7 Conclusions

This paper has considered competitive markets as a mechanism for
creating and desseminating nonrival or near-nonrival goods. The tra-
ditional view, since at least Arrow (1962), Machlup (1962), and Nord-
haus (1969) has been that markets fail and therefore mechanisms
other than perfect competition are necessary. While not socially op-
timal, such alternative institutions improve economic performance
over market failure.

Boldrin and Levine (2002b) have recently proposed that under
reasonable approximations to nonrivalry, perfectly competitive mar-
kets perform their usual efficient allocation functions and continue to
do so even as the degree of expansibility grows without bound. That
competitive markets achieve the optimal outcome is never in dispute
with only rival goods. Boldrin and Levine’s important and profound
contribution is to show that markets continue to work well, even in
the nonrival limit.
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This paper has, first of all, confirmed the Boldrin-Levine analy-
sis, providing a first-principles, easily accessible exposition. Following
that, this paper did three things. First, it considered when deman-
ders and suppliers speed up their actions as goods become progres-
sively expansible. The limit under this “24/7 Internet time” approx-
imation restores the conventional wisdom that perfectly competitive
markets do not function with nonrival or near nonrival goods. Sec-
ond, it removed the distinction between consumption and production
of an intellectual asset, so that ordinary users can legally make copies
and compete with asset holders. Third, this paper considered when
nonrivalry means consumption not detracting from production, but
potentially increasing productivity.

The last formalization suggests that the typical identification of
nonrivalry with infinite expansibility can be misleading. It is possi-
ble to have an intellectual asset used simultaneously in consumption
and production, in a nonrival way, while its rate of copying never-
theless remains bounded. The socially efficient outcome then has the
intellectual asset disseminated as widely as technologically possible.

As long as time remains discrete competitive markets continue
to achieve social efficiency—even with consumers engaged in what,
under current legal systems, might be interpreted as bootleg copying.
Although in 24/7 continuous time, markets fail in general, a special
case continues to allow socially efficient competitive innovation even
as the degree of expansibility increases without bound and market
participants act in continuous time.

In summary, parts of the analysis in this paper call for institutions
like IPRs, to overcome failure in markets for intellectual assets. In
other parts, the opposite conclusion obtains. The critical distinction,
in the analysis above, is the speed with which economic agents can
act.

When perfectly competitive markets suffice to achieve social ef-
ficiency, IPR institutions are damaging in two distinct ways. First,
by creating unnecessary monopolies, they restrict consumption and
dissemination—lowering these below socially optimal levels. Second,
because they increase the flow of rents to an intellectual asset, they
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cause excessive innovation.14
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8 Technical Appendix

This section holds all proofs to results in the paper. It also treats,
in Example 4.6, an explicit functional form in U , illustrating how
U ′(c∗(0)) varies as γ changes.

Proof of Prop. 3.3 The socially efficient allocation solves

max
{ c0, s1, c1 }

U(c0) + βU(c1)

s.t. c0 ≤ s0

s1 = γs0 − (γ − γ̂) c0
c1 ≤ s1.

Since the economy ends after t = 1, set

c∗1 = s∗1 = γs0 − (γ − γ̂) c∗0.

From Inada condition (2) we must have c∗0 > 0. The necessary FOC
for the optimization is then

U ′(c∗0) ≥ βU ′(c∗1) · (γ − γ̂) with equality if c0 < s0.

Define the function

M(c) def= (γ − γ̂)βU ′(γs0 − [γ − γ̂] c), c ∈ [0, s0].

From U concave, the function M is increasing in c. At c = s0, condi-
tion G gives

M(c) = (γ − γ̂)βU ′(γ̂s0) > U ′(s0).

But then we must have c∗0 � s0 so that

U ′(c∗0) = βU ′(c∗1) · (γ − γ̂). Q.E.D.

Proof of Prop. 3.4 First show that at CE (p∗0, p
∗
1) firms maximize

value by supplying (c∗0, c
∗
1), and that that implies values (q

∗
0, q

∗
1). Since
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the economy ends after period 1 firms optimally supply c1 = s1. We
can therefore restrict attention to (c0, c1) such that

0 ≤ c0 ≤ s0

(γ − γ̂)c0 + c1 ≤ γs0. (18)

From (18), if p0p
−1
1 > γ − γ̂, firms optimally supply c0 = s0. If,

conversely, p0p
−1
1 < γ − γ̂, then optimal supply is c0 = 0. However,

when p0p
−1
1 = γ − γ̂, as in (p∗0, p

∗
1), any (c0, c1) satisfying (18) with

equality maximizes value. Then

p∗0c0 + p∗1c1 = [(γ − γ̂)c0 + c1] (γ − γ̂)−1p∗0
= s0γ · (γ − γ̂)−1p∗0,

so that q∗0 = γ ·(γ−γ̂)−1p∗0. Moreover, since c
∗
1 = s∗1, we also have q

∗
1 =

p∗1 = γ−1q∗0. Next, verify that consumers optimally demand (c∗0, c∗1) at
the hypothesized prices { (p∗t , q∗t ) : t = 0, 1 }. At an interior optimum,
guaranteed by condition G, consumers’ first-order conditions are:

U ′(c0) = βU ′(c1) × p0p
−1
1 (19)

p0c0 + p1c1 = q0s0

p1c1 = q1s1.

At the hypothesized CE prices, Prop. 3.3 asserts (19) is satisfied at
the CE quantities (c∗0, c∗1). Finally, the consumption sequence (c∗0, c∗1)
is affordable since

p∗0c
∗
0 + p∗1c

∗
1 = [(γ − γ̂)c∗0 + c∗1] (γ − γ̂)−1p∗0
= s0 · γ × (γ − γ̂)−1p∗0 = s0 × q∗0. Q.E.D.

Proof of Prop. 3.5 Divide the last line in the Proof of Prop. 3.4,
by s0 to get:

q∗0 = s−1
0 × (p∗0c

∗
0 + p∗1c

∗
1) .
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From Prop. 3.3,

s0 = (γ − γ̂)γ−1c∗0 + γ−1c∗1

=⇒ dc∗0
ds0

+ (γ − γ̂)−1 dc
∗
1

ds0
= (γ − γ̂)−1γ.

Then using the optimality characterization in Prop. 3.3 in the direct
calculation,

V ′(s0) = U ′(c∗0)
dc∗0
ds0

+ βU ′(c∗1)
dc∗1
ds0

=
[
dc∗0
ds0

+ (γ − γ̂)−1 dc
∗
1

ds0

]
U ′(c∗0)

= (γ − γ̂)−1γU ′(c∗0)
= q∗0µ

−1 = q∗0 . Q.E.D.

Proof of Prop. 3.6 The Lagrangean for maximizing W in (1) sub-
ject to technology constraint (3) is

L =
∞∑

t=0

βt [U(ct) − (st+1 − γst + (γ − γ̂)ct) × λt] ,

where {λt }∞t=0 is a sequence of non-negative multipliers. The first-
order conditions are

U ′(c∗t ) ≥ (γ − γ̂)λt, with equality if ct < st

λt = βλt+1 × γ.
(20)

To verify equation (8), suppose conversely that ct = st so that the first
component in (20) has the inequality strict at time t but otherwise
holds with equality at ct′ = c∗t′ < st′ . Then ct = st and st+1 = γ̂st,
giving

U ′(ct) > βU ′(c∗t+1) × γ =⇒ γ < β−1 U ′(st)
U ′(c∗t+1)

< β−1 U
′(st)

U ′(γ̂st)
.
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But by G′ this is impossible. Thus, every c∗t chosen is strictly less
than s∗t giving

U ′(c∗t ) = βU ′(c∗t+1)× γ,

i.e., equation (8) of the Prop. Next, iterating (3) forwards from t = 0,

s0 = (γ − γ̂)γ−1c0 + γ−1s1

= (γ − γ̂)γ−1c0 + (γ − γ̂)γ−2c1 + γ−2s2

= (γ − γ̂)γ−1
∞∑
t=0

γ−tct + lim
t→∞ γ−tst.

Whenever limt→∞ γ−tst > 0 an allocation can be strictly improved,
allowing greater ct while maintaining (8). Thus, at the socially ef-
ficient allocation, limt→∞ γ−tst = 0, verifying (9). Using this in (3)
then gives (10). Q.E.D.

In (20) the term (γ − γ̂) simply scales the sequence of marginal util-
ities, it does not affect their slopes in time. The two-period case in
Prop. 3.3, by contrast, conflates the two.

Proof of Prop. 3.7 First show that at CE { p∗t}∞t=0 firms maximize
value by selecting

{
c∗t , s∗t+1

}∞
t=0
, with result { q∗t }∞t=0. From arbitrary

st > 0 feasible supplies of c are described by

st = (γ − γ̂)γ−1ct + γ−1st+1

= (γ − γ̂)γ−1
∞∑

j=0

γ−jct+j + lim
j→∞

γ−jst+j . (21)

At nonnegative prices p the firm will always choose c to zero out the
limiting term on the right side of (21). At the hypothesized CE prices
the firm, when it supplies any feasible { ct+j }∞j=0, has value

∞∑
j=0

p∗t+jct+j = p∗t ×
∞∑

j=0

γ−jct+j . (22)
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Evaluate equations (21) and (22) at CE { c∗t+j }∞j=0. The resulting

limit term limj→∞ γ−js∗t+j equals zero, by the proof of Prop. 3.6, and
therefore vanishes from the right side of (21). Comparing (21) and
(22) at CE we see that any feasible perturbation in c either lowers the
firm’s value or keeps that value invariant. Thus, the firm maximizes
value by supplying CE { c∗t+j }∞j=0, with resulting asset prices at CE
values { q∗t }∞t=0 and asset stocks { s∗t }∞t=0 at the SE allocation. Next,
show that at CE prices, { p∗t , q∗t }∞t=0, consumers optimize by choosing
{ c∗t , s∗t+1 }∞t=0. At time t the consumer’s problem has Lagrangean:

Lt =
∞∑

j=0

βj
[
U(ct+j)−

(
q∗t+j+1st+j+1

+p∗t+jct+j − q∗t+jst+j

) × λt+j

]
,

for {λt+j }∞j=0 a sequence of non-negative multipliers. The first-order
conditions are:

U ′(ct+j) = λt+jp
∗
t+j

λt+jq
∗
t+j+1 = βλt+j+1q

∗
t+j+1,

satisfied with equality from condition G′. They imply:

U ′(ct+j) = βU ′(ct+j+1)
p∗t+j

p∗t+j+1

= βU ′(ct+j+1) × γ. (23)

Iterating on budget constraint (5) gives

q∗t st =
∞∑

j=0

p∗t+jct+j + lim
j→∞

q∗t+jst+j

=⇒ (γ − γ̂)−1γptst = pt

∞∑
j=0

γ−jct+j + (γ − γ̂)−1γpt × lim
j→∞

γ−jst+j,

or

st = (γ − γ̂)γ−1
∞∑

j=0

γ−jct+j + lim
j→∞

γ−jst+j. (24)
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By Prop. 3.6 equation (23) is satisfied with sequence c at its SE alloca-
tion value. Moreover, Prop. 3.6 guarantees that at the SE allocation,
equation (24) holds, with the resulting limiting term limj→∞ γ−js∗t+j

equal to zero, so that the SE allocation { c∗t , s∗t }∞t=0 is affordable.
Q.E.D.

Proof of Prop. 3.8 By direct calculation,

qt = (γ − γ̂)−1γpt = (γ − γ̂)−1(γst)pts
−1
t

= (γ − γ̂)−1

[
(γ − γ̂)

∞∑
j=0

γ−jc∗t+j

]
pts

−1
t

=
[ ∞∑

j=0

p∗t+jc
∗
t+j

]
s−1
t ,

using limj→∞ γ−js∗t+j = 0. Next, from (23) in the Proof of Prop. 3.7,

βtU ′(c∗t )
U ′(c∗0)

= γ−t.

Therefore,

V ′(s0) =
∞∑

t=0

βtU ′(c∗t )
dc∗t
ds0

= U ′(c∗0)
∞∑

t=0

γ−t dc
∗
t

ds0

= U ′(c∗0)× (γ − γ̂)−1γ

= q∗0µ
−1 = q∗0,

where the second line above uses equation (4) characterizing the fea-
sible consumption set C(s0). Q.E.D.

Proof of Prop. 4.3 The SE allocation solves

sup
{c(t):t≥0}

∫ ∞

0
e−ρtU(c(t)) dt

s.t. ṡ(t) = γs(t) − (γ − γ̂)c(t)
given s(0).



53 24/7 Competitive Innovation

The Hamiltonian at time t is then

H = e−ρt [U(c(t)) + { γs(t)− (γ − γ̂)c(t) } · λ(t), ]
for some nonnegative time profile {λ(t) : t ≥ 0 }. The dynamic first-
order condition is:

∂H
∂s(t)

= − d

dt

[
e−ρtλ(t)

]
=⇒ e−ρtγλ(t) = −

[
e−ρtλ̇(t) − ρe−ρtλ(t)

]
= e−ρt

[
ρ− λ̇/λ

]
λ(t),

so that

λ̇/λ = ρ− γ, (25)

while the static first-order condition ∂H/∂c(t) = 0 implies

U ′(c(t)) ≥ (γ − γ̂)λ(t), with equality if c(t) < s(t). (26)

To verify the first equation in the Prop., consider a perturbation with
c(t) = s(t) so that U ′(c(t))− (γ− γ̂)λ(t) > 0 but then converges back
to zero. For this, we must have

−R(s(t))ċ(t)/c(t) < ρ− γ

⇐⇒ γ < ρ+R(s(t))ċ(t)/c(t) ≤ ρ+ γ̂ R(s(t)).

But by Assumption G′′ this is impossible. Thus, such a perturbation
with c(t) = s(t) cannot be optimal, and relation (26) must therefore
hold with equality. Finally, rewrite the dynamic constraint on s to
get

γs(t)− ṡ(t) = (γ − γ̂)c(t)

=⇒ − d

dt

[
e−γts(t)

]
= (γ − γ̂)c(t)e−γt

=⇒ s(0) − lim
t→∞ e−γts(t) = (γ − γ̂)

∫ ∞

0
e−γtc(t) dt

=⇒ s(0) = (γ − γ̂)
∫ ∞

0
e−γtc(t) dt + lim

t→∞ e−γts(t).

24/7 Competitive Innovation 54

But if limt→∞ e−γts(t) > 0, the allocation cannot be maximizing
as all c(t) can then be increased while maintaining (26) and (25).
Therefore,

s(0) = (γ − γ̂)
∫ ∞

0
e−γtc(t) dt. Q.E.D.

The proof for the continuous-time equivalence result that follows
uses all the same ideas as its discrete-time counterpart Prop. 3.7.

Proof of Prop. 4.4 Verify first that firms are maximizing value
at the hypothesized c∗ when consumption and asset prices are set at
(p∗, q∗). For the firm the technology constraint

ṡ(t) = γs(t)− (γ − γ̂)c(t)

means it can supply consumption stream constrained by

s(t) = (γ − γ̂)
∫ ∞

0
e−γtc(t) dt + lim

t→∞ e−γts(t). (27)

At the hypothesized CE prices p∗,

q(t)s(t) =
∫ ∞

0
p∗(t+ r)c(t+ r) dr = p∗(t)

∫ ∞

0
e−γrc(t+ r) dr. (28)

At nonnegative prices p the firm will always select c to zero out the
limiting term on the right side of (27). Evaluate (27) and (28) at the
SE allocation quantities c∗. Every feasible perturbation in c satisfying
(27) either lowers the value (28) or leaves it invariant. Thus, the firm
maximizes value at c∗, implying s(t) = s∗(t). Turn next to show that
the consumer’s optimal choice is (c∗, s∗) given the hypothesized prices
(p∗, q∗). Rewrite the consumer’s budget constraint (5′) as

ṡ = −
(
p

q
c+

q̇

q
s

)
. (29)
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The Hamiltonian for the consumer’s problem is then

H = e−ρt

[
U(c(t)) −

(
p(t)
q(t)

c(t) +
q̇(t)
q(t)

s(t)
)
× ν(t)

]
for some non-negative time profile {ν(t) : t ≥ 0}. The first-order
conditions ∂H/∂c = 0 and ∂H/∂s = − d

dt

[
e−ρtν(t)

]
imply:

U ′(c) =
p

q
× ν (30)

ν̇/ν = ρ+ q̇/q, (31)

satisfied with equality from condition G′′. Moreover, (29) implies that
the desired consumption rental stream satisfies

s(t) = p(t)q(t)−1

∫ ∞

0
e
− ∫ r

0
q̇(u)
q(u

du × c(t+ r) dr. (32)

But at the hypothesized CE we have

p/q = γ − γ̂ and q̇/q = −γ
so that (30)–(32) become

U ′(c(t)) = (γ − γ̂)ν(t)
ν̇/ν = ρ− γ

s(t) = (γ − γ̂)
∫ ∞

r=0
e−γrc(t+ r) dr,

Setting ν = λ and using the characterization from Prop. 4.3 these
conditions are satisfied at c = c∗ and s = s∗. Q.E.D.

Proof of Prop. 4.5 By direct calculation

q(0) = (γ − γ̂)−1p(0) = (γ − γ̂)−1s(0)p(0)s(0)−1

= (γ − γ̂)−1

[
(γ − γ̂)

∫ ∞

t=0
e−γtc∗(t) dt

]
p(0)s(0)−1

=
[∫ ∞

t=0
e−γtp∗(0)c∗(t) dt

]
s(0)−1

=
[∫ ∞

t=0
p∗(t)c∗(t) dt

]
s(0)−1.
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Next, from equations (26) and (25) in the Proof of Prop. 4.3, we have

U ′(c∗(t))
U ′(c∗(0))

= e(ρ−γ)t.

Therefore, directly calculating

V ′(s(0)) =
∫ ∞

t=0
e−ρtU ′(c∗(t))

dc∗(0)
ds(0)

dt

= U ′(c∗(0))
∫ ∞

t=0
e−γt dc

∗(0)
ds(0)

dt

= U ′(c∗(0)) × (γ − γ̂)−1

= q∗(0)µ−1 = q∗(0). Q.E.D.

The discussion in the text following Prop. 4.5 takes U ′(c∗(0)) fi-
nite. This is, arguably, the interesting case. Having q∗(0) be positive
only because its constituent U ′ diverges to infinity would be too much
an artifact arising from a specific functional form. Example 4.6 shows
how U ′(c∗(0)) can remaind bounded even as the copying rate γ grows
arbitrarily large.

Example 4.6 (U ′ bounded as γ ↑ ∞) Suppose that R(s) from
condition G′′ is constant, i.e., repeating from Section 3.5,

U(c) =
c1−R − 1
1 −R

. (7)

Repeat the conditions from Prop. 4.3:

U ′(c∗(t)) = (γ − γ̂)λ(t) (33)

λ̇/λ = ρ− γ < 0 (34)

s(0) = (γ − γ̂)
∫ ∞

t=0
e−γtc∗(t) dt. (35)

Equation (34) gives

λ(t) = e−(γ−ρ)tλ(0),
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so that from (7) and (33) we have

U ′(c∗(t))
U ′(c∗(0))

=
[
c∗(0)
c∗(t)

]R

=
λ(t)
λ(0)

= e−(γ−ρ)t,

or

c∗(t) = c∗(0) × exp
(
[γ − ρ]R−1 × t

)
.

Using this in (35) gives

s(0) = (γ − γ̂) c∗(0) ×
∫ ∞

t=0
exp(−γt) · exp (

[γ − ρ]R−1 × t
)
dt.

The integral on the right converges if:

γ >
γ − ρ

R
⇐⇒ (1 −R−1)γ > −R−1ρ.

This inequality is always satisfied when R−1 ≤ 1, i.e., when demand is
intertemporally inelastic. Otherwise, if R−1 > 1, convergence occurs
provided that:

γ < (R−1 − 1)−1R−1ρ,

i.e., the copying rate γ must be bounded above. When R−1 > 1, de-
mand is intertemporally elastic, so that overly high γ has consumption
constantly being postponed, falling to zero in the immediate present.
In either case, provided the integral converges, equilibrium consump-
tion at time 0 is:

c∗(0) = (γ − γ̂)−1
[
(1 −R−1)γ +R−1ρ

] × s(0).

When R−1 < 1, i.e., demand is inelastic, the limit of c∗(0) when γ ↑ ∞
is (1 − R−1) × s(0) ∈ (0, s(0)), so that U ′(c∗(0)) is strictly positive
and bounded. If R−1 = 1, then c∗(0) converges to 0 when γ ↑ ∞.
Finally, when demand is elastic, with R−1 > 1, then as the copying
rate increases, i.e., γ ↑ (R−1 − 1)−1R−1ρ, equilibrium consumption
c∗(0) ↓ 0. In either of the last two cases then, U ′(c∗(0)) grows without
bound, implying that q∗(0) = (γ − γ̂)−1U ′(c∗(0)) too increases to
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infinity. Aside from R = 1, however, this occurs when γ remains
finite, and so is not a description of infinite expansibility. Perhaps the
most that should be said of R−1 ≥ 1 is that competitive equilibrium
is not well defined when asset s is close to infinitely expansible. But
that is of course also the conclusion from Arrow (1962) and Nordhaus
(1969).

Proof of Prop. 5.2 The characterization is immediate from tech-
nology (12) and Defn. 5.1. Q.E.D.

Proof of Lemma 5.3 When U ′(c) = c−R,

∞∑
j=0

([γ + σ]β)j × U ′ ([γ + σ]t+j
)

=
∞∑

j=0

([γ + σ]β)j × (γ + σ)−(t+j)R

= (γ + σ)−tR ×
∞∑

j=0

(
[γ + σ]1−R × β

)j
.

The infinite sum on the right side of the last equation converges when

β < [γ + σ]R−1 . (36)

Since β < 1 and γ+σ ≥ γ > 1 condition (36) holds whenever R−1 ≤ 1.
Moreover, since the expression in condition C can now be rewritten:

([γ + σ]β)t ×
∞∑

j=0

([γ + σ]β)j × U ′ ([γ + σ]t+j
)

=
(
[γ + σ]1−R × β

)t ×
∞∑

j=0

(
[γ + σ]1−R × β

)j
,

condition (36) also implies the expression’s convergence to zero as
t→ ∞. Q.E.D.
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Proof of Prop. 5.4 Take first the firm’s decision. Increasing the
supply of c only expands the firm’s production set (12). At the hy-
pothesized prices, per unit revenue is

p∗t − q∗t+1σ = βtU ′(s∗t ) × µ ≥ 0.

Thus, the firm maximizes value by setting c∗ = s∗. Next, consider
the consumer. At time t the consumer’s problem has Lagrangean

Lt =
∞∑

j=0

βj
[
U(ct+j)−

(
q∗t+j+1st+j+1 + p∗t+jct+j

−q∗t+jst+j − q∗t+j+1σct+j

) × λt+j

]
,

for {λt+j }∞j=0 a sequence of non-negative multipliers. The first-order
conditions are:

U ′(ct+j) =
(
p∗t+j − q∗t+j+1σ

)
λt+j

λt+jq
∗
t+j+1 = βλt+j+1q

∗
t+j+1.

Define user cost p̃∗t = p∗t − q∗t+1σ so that the first-order conditions can
then be written:

∀ j = 1, 2, 3, . . . :
βjU ′(ct+j)
U ′(ct)

=
p̃∗t+j

p̃∗t
.

From the consumer’s budget constraint (13), write:

q∗t st = (p∗t − q∗t+1σ)ct + q∗t+1st+1 = p̃∗t ct + q∗t+1st+1

=
∞∑

j=0

p̃∗t+jct+j + lim
j→∞

q∗t+jst+j .

At the hypothesized CE prices and quantities, however,

q∗t s
∗
t = βt ×

[ ∞∑
j=0

βjU ′(s∗t+j)s
∗
t+j

]
× µ

= s0

[
([γ + σ]β)t ×

∞∑
j=0

([γ + σ]β)j × U ′ ([γ + σ]t+j × s0
)] × µ

→ 0 as t→ ∞
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by condition C, so that q∗t s∗t =
∑∞

j=0 p̃
∗
t+jc

∗
t+j . Substituting into the

above conditions the SE allocation c∗t = s∗t = (γ + σ)ts0 and prices
(p∗, q∗), we see that the SE allocation is affordable and maximizes
consumer preferences at the hypothesized CE prices. The collection{
p∗t , q∗t , c∗t , s∗t+1

}∞
t=0

is therefore a CE. Next, from condition C, the
value function is bounded, so that its derivative can be calculated
explicitly,

V ′(s0) =
∞∑

t=0

βtU ′(c∗t ) [γ + σ]t = s−1
0

∞∑
t=0

βtU ′(s∗t ) s
∗
t

= q∗0µ
−1 = q∗0. Q.E.D.

Proof of Prop. 5.5 Apply Prop. 5.4 and choose numeraire so that
µ there equals 1. With U ′(s) = s−R and R−1 ≤ 1, we have

∞∑
j=0

βjU ′(s∗t+j) × s∗t+j =
∞∑

j=0

βj
(
[γ + σ]js∗t

)−R × [γ + σ]js∗t

= (s∗t )
1−R ×

∞∑
j=0

(
[γ + σ]1−R × β

)j

= (s∗t )
1−R ×

[
1 − β

(γ + σ)R−1

]−1

.

From Prop. 5.4 we can write:

q∗t = (s∗t )
−1βt ×

[ ∞∑
j=0

βjU ′(s∗t+j)s
∗
t+j

]
,
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so that

q∗0 =
[
1 − β

(γ + σ)R−1

]−1

× s−R
0

q∗t = βt ×
[
1 − β

(γ + σ)R−1

]−1

× (s∗t )
−R

=
[

β

(γ + σ)R

]t

× q∗0.

Finally, by direct substitution,

p∗t =
[

β

(γ + σ)R

]t

× s−R
0 +

[
β

(γ + σ)R

]t+1

q∗0σ

=
[

β

(γ + σ)R

]t

×
[
s−R
0 + q∗0

σβ

(γ + σ)R

]
. Q.E.D.

Proof of Prop. 5.6 Define user cost to be p̃†t = p†t−q†t+1γ̂, and notice
that the problems consumers and firms solve here coincide with those
in Prop. 3.7, provided user cost p̃ is everywhere substituted for rental
price p. Thus, CE from Prop. 3.7 gives CE quantities and market-
clearing prices here, with p̃†t = p∗t . But then

p∗t = p∗t + q∗t+1γ̂ = p∗t + (γ − γ̂)−1γγ−1p∗t γ̂

=
[
1 +

γ̂

γ − γ̂

]
p∗t = (γ − γ̂)−1γp∗t = q∗t .

Finally, since preferences and society-wide technology—and therefore
feasible consumption C(s0) and the value function V—are unchanged
from Props.3.6–3.8, that asset prices q† remain at q∗ immediately
implies q†0 = V ′(s0). Q.E.D.
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Proof of Lemma 6.1 When U ′(c) = c−R,∫ ∞

r=0
e−(ρ−[γ+σ])rU ′

(
e[γ+σ](t+r)

)
dr

=
∫ ∞

r=0
exp [−(ρ− [γ + σ])r − [γ + σ](t+ r)R] dr

= exp [−(γ + σ)tR] ×
∫ ∞

r=0
exp [−(ρ− [γ + σ](1 −R))r] dr.

The integral on the right side of the last equation converges when

−ρ < [γ + σ](R − 1) . (37)

Since ρ, γ, and σ are all positive, condition (37) holds whenever
R−1 ≤ 1. Moreover, since the expression in condition C′ can now be
rewritten:

e−(ρ−[γ+σ])t ×
∫ ∞

r=0
e−(ρ−[γ+σ])rU ′

(
e[γ+σ](t+r)

)
dr

= e−(ρ−[γ+σ](1−R))t ×
∫ ∞

r=0
exp [−(ρ− [γ + σ](1 −R))r] dr,

condition (37) also implies the expression’s convergence to zero as
t→ ∞. Q.E.D.

Proof of Prop. 6.2 Take first the firm’s decision. Increasing the
supply of c only expands the firm’s production set (12′). At the
hypothesized prices, revenue flow per unit of c supplied is

p∗(t)− q∗(t)σ = e−ρtU ′(s∗(t)) × µ ≥ 0.

Thus, the firm maximizes value by setting c∗ = s∗. Next, rewrite the
consumer’s budget constraint (13′) as

ṡ = −
(
p− qσ

q
c+

q̇

q
s

)
. (38)
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At time t the consumer’s problem has Hamiltonian

H = e−ρt

[
U(c(t)) −

(
p(t) − q(t)σ

q(t)
c(t) +

q̇(t)
q(t)

s(t)
)
× ν(t)

]

for some non-negative time profile {ν(t) : t ≥ 0}. The first-order
conditions ∂H/∂c = 0 and ∂H/∂s = − d

dt

[
e−ρtν(t)

]
imply:

U ′(c) = [p− qσ] × ν

q

ν̇/ν = ρ+ q̇/q =⇒ ν(t)
q(t)

= eρt ν(0)
q(0)

.

Together, these imply

p(t)− q(t)σ
p(0) − q(0)σ

=
e−ρtU ′(c(t)
U ′(c(0))

. (39)

Integrate the flow budget constraint (13′) to get

q(t)c(t) =
∫ ∞

r=0
[p(t+ r) − q(t+ r)σ]× c(t+ r) dr

+ lim
r→∞ q(t+ r)c(t+ r).

Substitute in (39), evaluate the result at c = s∗, and apply condition
C′ to get

q(t)s∗(t) =
[
p(0) − q(0)σ
U ′(s(0))

]
e−ρt

×
[∫ ∞

r=0
e−ρrU ′(s∗(t+ r))s∗(t+ r) dr

]
.

For any positive constant µ, set

p(0) − q(0)σ = U ′(s(0)) × µ.

Then the previous equation gives

q(t) = s∗(t)−1e−ρt ×
[∫ ∞

r=0
e−ρrU ′(s∗(t+ r))s∗(t+ r) dr

]
× µ.
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The consumer’s plans are, therefore, feasible at the hypothesized CE
prices p∗ and q∗. Evaluate (39) at those prices and verify that c = s∗

satisfies the consumer’s first-order conditions. Thus, at the hypoth-
esized prices the allocation c = s∗ maximizes the consumer’s pref-
erences across affordable allocations. Prices (p∗, q∗) together with
c∗(t) = s∗(t) = e[γ+σ]ts(0) therefore constitute CE. Next, from con-
dition C′, the value function is bounded, so that its derivative can be
calculated explicitly,

V ′(s(0)) =
∫ ∞

t=0
e−ρtU ′(e[γ+σ]ts(0)) e[γ+σ]t dt

= s(0)−1

∫ ∞

t=0
e−ρtU ′(s∗(t)) s∗(t) dt

= q∗(0)µ−1 = q∗(0). Q.E.D.

Proof of Prop. 6.3 Apply Prop. 6.2 and choose numeraire so that
µ there equals 1. With U ′(s) = s−R and R−1 ≤ 1, we have∫ ∞

r=0
e−ρrU ′(s∗(t+ r)) × s∗(t+ r) dr

=
∫ ∞

r=0
e−ρr

(
e[γ+σ]rs∗(t)

)−R × e[γ+σ]rs∗(t) dr

= s∗(t)1−R ×
∫ ∞

r=0
e−(ρ+[γ+σ](R−1))r dr

= s∗(t)1−R × [ρ+ (γ + σ)(R− 1)]−1 .

From Prop. 6.2 we can write:

q∗(t) = s∗(t)−1e−ρt ×
[∫ ∞

r=0
e−ρrU ′(s∗(t+ r))× s∗(t+ r) dr

]
,

so that

q∗(0) = [ρ+ (γ + σ)(R − 1)]−1 × s(0)−R

q∗(t) = e−ρt × [ρ+ (γ + σ)(R − 1)]−1 s∗(t)−R

= e−[ρ+(γ+σ)R]t × q∗(0).
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Finally, by direct substitution,

p∗(t) = e−[ρ+(γ+σ)R]ts(0)−R + e−[ρ+(γ+σ)R]tq∗(0)σ

= e−[ρ+(γ+σ)R]t × [
s(0)−R + q∗(0)σ

]
. Q.E.D.


