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Abstract

This paper studies risk premia in the term structure. We start with regressions
of annual holding period returns on forward rates. We find that a single factor,
which is a tent-shaped function of forward rates, can predict one-year bond excess
returns with an R2 up to 40%. Though the return forecasting factor has a clear
business cycle correlation, it does not forecast output, and business cycle variables
do not forecast bond returns. The return forecasting factor does forecast stock
returns, about as much as it would a 7 year duration bond. Its forecast power is
retained in the presence of the dividend price ratio and the yield spread.
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1 Introduction

This paper studies risk premia in the term structure of interest rates for maturities
between one and five years. We start by extending Fama and Bliss’ (1987) classic regres-
sions. Fama and Bliss found that the spread between forward rates and one-year rates
can predict excess bond returns. Campbell and Shiller (1991) also find that the slope of
the term structure forecasts bond returns. We find that one particular linear combination
of forward rates predicts excess bond returns even better. It raises the R2 in excess return
forecasting regressions from about 17% to as much as 40%. Furthermore, the same linear
combination of forward rates predicts bond returns at all maturities, where Fama and
Bliss relate each bond’s return to a separate forward-spot spread. In a horse race, our
return-forecasting factor completely drives out the separate forward-spot spreads used
by Fama and Bliss. It survives a number of subsample and real time robustness checks.

The return-forecasting factor is a tent-shaped linear combination of forward rates.
It is not a “curvature factor” in yields, though, as our tent-shaped function of forward
rates loads strongly on the 4 and 5 year yields. The return-forecasting factor has a
clear business cycle correlation. However, it does not forecast output, and business cycle
variables do not forecast bond returns. The return forecasting factor does forecast stock
returns, about as much as it would a 7 year duration bond. This forecast power is
retained in the presence of the dividend price ratio and the yield spread.

Our specification is similar to the “single index” or “latent variable” models used
by Hansen and Hodrick (1983) and Gibbons and Ferson (1985) to capture time-varying
expected returns. Stambaugh (1988) found a similar pattern in short maturity bond
forecasts, but rejected our single factor specification.

2 Fama-Bliss and beyond

2.1 Notation

We use the following notation for log bond prices:

p
(n)
t = log price of n year discount bond at time t.

We use parentheses to distinguish maturity from exponentiation in the superscript. The
log yield is

y
(n)
t = −1

n
p
(n)
t .

We write the log forward rate at time t for loans between time t+ n− 1 and t+ n as

f
(n−1→n)
t = p

(n−1)
t − p(n)t
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and we write the log holding period return from buying an n year bond at time t and
selling it as an n− 1 year bond at time t+ 1 as

hpr
(n)
t+1 = p

(n−1)
t+1 − p(n)t .

We summarize the excess return by

hprx
(n)
t+1 ≡ hpr(n)t+1 − y(1)t .

We use the same letters without n index to denote vectors across maturity and an inter-
cept, e.g.

yt =
h
1 y

(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t

i>
,

ft =
h
1 y

(1)
t f

(1→2)
t f

(2→3)
t f

(3→4)
t f

(4→5)
t

i>
.

2.2 Fama-Bliss regressions

Fama and Bliss (1987) run a regression of one-year excess returns on long-term bonds
against the forward-spot spread for the same maturity. The expectations hypothesis pre-
dicts a coefficient of zero — nothing should forecast bond excess returns. Table 1 updates
Fama and Bliss’ regressions to include more recent data. We see in the one-year return
regressions in the left hand panel that the forward-spot spread moves essentially one-for-
one with expected excess returns on long term bonds — the expectations hypothesis is
exactly wrong at the one year horizon.

Table 1. Fama-Bliss regressions

Maturity 1 year excess returns Change in y(1)

n const. β R2 const. b R2

2 0.04 0.94 0.14 −0.04 0.06 0.00
large T (0.30) (0.28) (0.30) (0.28)
small T (0.15) (0.34) [0.01,0.35]
EH [0, 0.14]

3 −0.14 1.24 0.14 −0.17 0.32 0.02
large T (0.54) (0.38) (0.61) (0.34)
small T (0.31) (0.44) [0.01, 0.36]
EH [0, 0.15]

4 −0.41 1.50 0.15 −0.44 0.56 0.06
large T (0.76) (0.50) (0.69) (0.21)
small T (0.45) (0.51) [0.01, 0.38]
EH [0, 0.15]

5 −0.11 1.10 0.06 −0.58 0.76 0.11
large T (1.05) (0.62) (0.82) (0.20)
small T (0.59) (0.70) [0, 0.28]
EH [0, 0.14]
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NOTE: The “1 year excess return” regression is

hprx
(n)
t+1 = α+ β

³
f
(n−1→n)
t − y(1)t

´
+ ε

(n)
t+1.

The “Change in y(1) regression” is

y
(1)
t+n−1 − y(1)t = a+ b

³
f
(n−1→n)
t − y(1)t

´
+ ε

(n)
t+n−1.

‘Large T’ standard errors (first rows of brackets) use the Hansen-Hodrick
GMM correction for overlap. ‘Small T’ standard errors (second rows of brack-
ets) are based on 50,000 bootstrapped samples from a VAR with 12 lags for
yields. Intervals below the R2 indicate 95% confidence intervals computed
from these bootstrapped samples. ‘EH’ imposes the expectations hypothesis
on the bootstrap. Details are in the Appendix. Data sample 1964:1-2001:12.

Fama and Bliss also run a regression of multi-year changes in the one-year rate against
forward-spot spreads. The expectations hypothesis predicts a coefficient of 1.0 — the
forward rate should vary one for one with the expected future spot rate. Corresponding
to the failure in the left hand panel, the right hand panel of Table 1 shows that the
1-year forward rate (from year one to year two, hence the n = 2 row) has essentially no
power to forecast changes in the 1-year rate one year from now. However, moving down
the rows in the right hand column, longer and longer forward rates correspond more
and more to changes in spot rates, so that a 4-year forward rate is within one standard
error of moving one-for-one with the expected change in the spot rates. The expectations
hypothesis seems to work better over longer horizons. This success for the expectations
hypothesis means that the 5-year forward-spot spread does not forecast the four year
return on 5-year bonds, though it does forecast the one-year return on such bonds.1

Fama and Bliss’ regressions are driven by robust stylized facts in the data. When
forward rates are higher than the 1-year rate, all rates often rise subsequently, as predicted
by the expectations hypothesis. However, this rise may take 3 years or more to happen;
there can be several years in which the forward rates are above the one-year rate before the
interest rate rise takes place. During these years, holders of long-term bonds make money.
The period since 1987 is a great out-of-sample success for Fama and Bliss. The regressions
have held up well since publication, unlike many other anomalies. In particular, Figure
1 shows that forward-spot forecasts were high in 1990-1993, but interest rates declined,
and so long-term bond holders made money. They lost money when interest rates rose
in 1994, and the forecast was in the wrong direction in 2000 and 2001, but Fama-Bliss
trading rule still made money on average in the post-publication sample.

While Fama-Bliss regressions seem to provide some evidence against the expectations
hypothesis, the evidence has been questioned because of poor small sample properties

1Here and below, we use Fama and Bliss’ start date of 1964:01, and we do not use the more recently
available 1952:6-1963:12 data. A visual inspection of the earlier data suggests a lot more measurement
error, which is natural given the thinner selection of bonds and less interest rate movement. The results
are quite different for this period — for example, the Fama-Bliss coefficients are all -1 rather than +1.

4



1965 1970 1975 1980 1985 1990 1995 2000
-5

0

5
Forward(1->2)-spot spread 

1965 1970 1975 1980 1985 1990 1995 2000

5

10

15

Spot-rate

1965 1970 1975 1980 1985 1990 1995 2000
-10

-5

0

5

10
Excess holding period return on 2-year bond

Figure 1:

of standard errors and R2 (for example, see Bekaert, Marshall and Hodrick (1997)). We
therefore compute small sample standard errors and confidence intervals for R2 using
bootstraps. Table 1 shows that small T standard errors are indeed larger than their
asymptotic counterparts and that 95% confidence intervals for R2 contain the estimated
R2 even when we impose the expectations hypothesis on the data-generating process
from which the distributions are computed.

2.3 The return-forecasting factor emerges

While Fama and Bliss’ specification is the most sensible for exploring the expectations
hypothesis and its failures, we are more interested in characterizing expected excess bond
returns. For this purpose, there is no reason why only the 4-year forward rate spread
should be important for forecasting the expected returns on 4-year bonds. Other spreads
may matter. Table 2 follows up on this thought by regressing the one-year return on
long-term bonds on all of the forward rates separately.
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Table 2. Regressions of one year excess returns on all forward rates

n const. y(1) f (1→2) f (2→3) f (3→4) f (4→5) R2 R̄2 level R2

2 −1.96 −0.94 0.74 1.15 0.24 -0.91 0.34 0.33 0.38
large T (0.64) (0.18) (0.43) (0.30) (0.27) (0.18)
small T (0.81) (0.30) (0.50) (0.39) (0.30) (0.27) [0.20, 0.55]
EH [0, 0.18]

3 −3.28 −1.66 0.74 2.96 0.29 −1.90 0.34 0.34 0.37
large T (1.21) (0.32) (0.72) (0.49) (0.50) (0.32)
small T (1.43) (0.53) (0.88) (0.69) (0.54) (0.49) [0.22, 0.55]
EH [0, 0.17]

4 −4.57 −2.40 1.11 3.46 1.18 −2.78 0.37 0.36 0.39
large T (1.68) (0.46) (0.94) (0.62) (0.67) (0.42)
small T (1.91) (0.71) (1.18) (0.92) (0.72) (0.67) [0.24, 0.58]
EH [0, 0.17]

5 −5.78 −2.98 1.48 3.93 1.14 −2.88 0.34 0.33 0.36
large T (2.13) (0.58) (1.12) (0.73) (0.80) (0.53)
small T (2.36) (0.89) (1.46) (1.14) (0.89) (0.85) [0.21, 0.56]
EH [0, 0.17]

NOTE: The regression equation is

hprx
(n)
t+1 = β0 + β1y

(1)
t + β2f

(1→2)
t + ...+ β5f

(4→5)
t + ε

(n)
t+1

‘Large T’ standard errors (first rows of brackets) use the Hansen-Hodrick
GMM correction for overlap. ‘Small T’ standard errors (second rows of brack-
ets) are based on 50,000 bootstrapped samples from a VAR with 12 lags for
yields. Intervals below the R2 indicate 95% confidence intervals computed
from these bootstrapped samples. ‘EH’ imposes the expectations hypothesis
on the bootstrap. Details are in the Appendix. R̄2 reports adjusted R2. “level
R2” reports the R2 from a regression using the level, not log, excess return
on the left hand side, ehpr

(n)
t+1 − ey(1)t . Data sample 1964:1-2001:12.

These regressions pick far more than the matched forward-spot spread as the best
regressor for holding period returns. For example, the first line of Table 2 suggests that
the f (2→3)−f (4→5) spread is just as important as Fama and Bliss’ variable, the f (1→2)−y(1)
spread, for forecasting the one-year returns of two-year bonds. The top panel of Figure
2 graphs the regression coefficients as a function of the maturity on the right hand side
— each row of Table 2 is a solid line of the graph. (For now, ignore the bottom panel and
the dashed line in the top panel.) The plot makes the pattern clear — the same function
of forward rates forecasts holding period returns at all maturities. Longer maturities
just have greater loadings on this same function. The pattern of coefficients suggests
a common return-forecasting factor that is a tent-shaped linear combination of forward
rates.
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Figure 2: Coefficients in a regression of holding period excess returns on the one-year
yield and 4 forward rates. The top panel presents unrestricted estimates from Table 2.
The bottom panel presents restricted estimates from a single-factor model reported in
Table 4. The legend (2, 3, 4, 5) refers to the maturity of the bond whose excess return is
forecast. The x axis gives the maturity of the forward rate on the right hand side. The
dashed line in the top panel gives the negative of the regression coefficients of the one
year yield on the same right hand variables.

These regressions more than double the R2 from below 0.15 in Table 1 to 0.33-0.37
across all maturities. The 5-year rate R2 is particularly dramatic, jumping from 0.06 in
Table 1 to 0.34 in Table 2. One might worry that the rise in R2 comes from the larger
number of right hand variables. We report in Table 2 the conventional adjusted R̄2 as
well, and it is nearly identical. Of course, that adjustment presumes i.i.d. data which
is not valid in this case. We report correct test statistics below for the hypothesis that
the extra forecastability is spurious. Moreover, we compute 95% confidence intervals
for the R2. The R2 from the Fama-Bliss regressions do not lie within these confidence
intervals. Also, our regressions make a stronger case against the expectations hypothesis
than Fama-Bliss. When confidence intervals for R2 are computed under the null of the
expectations hypothesis, they do not contain the 0.33-0.37 point estimates from Table 2.
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One might worry about logs versus levels; that actual excess returns are not forecastable,
so the coefficients in Table 2 only reflect 1/2σ2 terms and conditional heteroskedasticity.2

We repeated the regressions using actual excess returns, ehpr
(n)
t+1 − ey(1)t on the left hand

side. The coefficients are nearly identical. The last column of Table 2 reports the R2

from these regressions, and they are in fact slightly higher than the R2 for the regression
in logs.

2.3.1 Short rate forecast

Fama and Bliss also run regressions of changes in short rates on forward-spot spreads.
Such regressions are important, since the two ingredients of any term structure model
are short rate forecasts plus risk premia. Table 3 presents regressions that forecast the
1-year rate using all the available forward rates.

Again, these results contrast strongly with the updated Fama-Bliss regressions in
Table 1. The R2 in Table 1 was essentially zero using the 2 year forward-spot spread as
a right hand variable. (The remaining rows in the right half of Table 1 look at horizons
longer than a year as well as using longer maturity forward rates as regressors.) Using
all of the forward rates in Table 3, the R2 jumps to a substantial 22%. Whereas it
appeared that the one-year change in the one-year rate was completely unpredictable, it
now appears that all the forward rates taken together have substantial power to predict
one-year changes in one-year rates.

The coefficient of one-year rate changes on the lagged one-year rate is close to zero.
There is a near-unit root in interest rates. Whether one runs the regression in levels or
changes makes no difference, of course, except for the interpretation and value of R2, and
by a difference of 1.0 on the coefficient on y(1)t .

Table 3. Predicting the short rate with all forward rates

lhv const. y
(1)
t f

(1→2)
t f

(2→3)
t f

(3→4)
t f

(4→5)
t R2

y
(1)
t+1 − y(1)t 1.96 −0.06 0.26 −1.15 −0.24 0.91 0.23
y
(1)
t+1 1.96 0.94 0.26 −1.15 −0.24 0.91 0.61

(0.64) (0.18) (0.43) (0.30) (0.27) (0.18)

NOTE: The regression equation is

lhvt+1 = β0 + β1y
(1)
t + β2f

(1→2)
t + ...+ β5f

(4→5)
t + εt+1

where lhv is either the level or the change in the one-year rate y(1)t+1 as indi-
cated. Standard errors in parentheses use the Hansen-Hodrick GMM correc-
tion for overlap and are the same for both regressions. Sample 1964:1-2001:12.

2We thank Ron Gallant for raising this important question.
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The one-year yield regression contains no information that is not already contained
in the holding period return regressions. The holding period return of two year bonds,
which are sold as one year bonds next year, contains a forecast of next year’s one-year
rate. Mechanically,

hprx
(2)
t+1 = p

(1)
t+1 − p(2)t − y(1)t = −y(1)t+1 − p(2)t + p

(1)
t = −y(1)t+1 + f (1→2)t . (1)

Thus, the regression of the one-year yield on our variables should give exactly the negative
of the coefficients of the two year holding period return on the same variables, with a
1.0 difference in the coefficient on f (1→2). We include in Figure 2 the negative of the
one-year yield forecasting coefficients from the second row of Table 3, and you can see
this pattern exactly.

More deeply, the identity (1) implies that the forward-spot spread equals the change
in yield plus the holding period excess return, and hence, using any set of forecasting
variables,

Et
³
y
(1)
t+1 − y(1)t

´
= f

(1→2)
t − y(1)t −Et

³
hprx

(2)
t+1

´
. (2)

(Fama and Bliss use this identity as well.) In Fama and Bliss’ regressions, the forward-
spot spread corresponds almost one to one to changes in expected returns — both compo-
nents on the right hand side vary, but they vary in equal amounts, so the one-year rate
is unpredictable. Now we have variables that forecast the holding period returns beyond
the forward-spot spread. Equation (2) implies that those variables must also forecast
changes in the spot rate. In this way, the forecastability of the spot rate documented
in Table 3 does not mean that the expectations hypothesis is working. It means that
the spot rate must be predictable precisely because the expectations hypothesis is not
working.

2.4 A single factor for expected bond returns

The pattern of coefficients in Figure 2 cries for us to describe expected excess returns of
bonds on all maturities in terms of a single factor, as follows,

hprx
(n)
t+1 = bn

³
γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t

´
+ ε

(n)
t+1. (3)

bn and γn are not separately identified by this specification, since you can double all the
bs and halve all the γs. We normalize the coefficients by imposing that the average value
of bn is one,

1

4

5X
n=2

bn = 1.

The specification (3) constrains the constants as well as the regression coefficients. We
show below that this restriction holds closely as well.
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With this normalization, we can fit (3) in two stages. First, we estimate γ by running
the regression

1

4

5X
n=2

hprx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t + ε̄t+1 (4)

= γ>ft + ε̄t+1.

The second equality introduces the notation γ, ft for corresponding 6× 1 vectors. Then,
we can estimate bn by running the four regressions

hprx
(n)
t+1 = bn

¡
γ>ft

¢
+ ε

(n)
t+1, n = 2, 3, 4, 5.

This procedure is consistent. While one can estimate the parameters with somewhat
greater asymptotic efficiency (essentially, using the estimated 24× 24 covariance matrix
to find a weighted sum in (4)) we prefer the clarity and robustness of the two-stage OLS
procedure.

This is a restricted model. We describe the [4 maturities × (5 right hand variables +
1 intercept)] = 24 unrestricted regression coefficients with (4 bs + 6 γs - 1 normalization)
= 9 parameters. The essence of the restriction is that a single linear combination of
forward rates γ>ft is the state variable for time-varying expected returns of all maturities.

Table 4 presents the estimated values of γ and b and standard errors. The γ1 − γ5
estimates are just about what one would expect from inspection of Figure 2. The loadings
bn of expected returns on the common return-forecasting factor γ>f increase smoothly
with maturity. The R2 in Table 4 are essentially the same as in Table 2. This fact
indicates that the cross-equation restrictions implied by the model (3) — that bonds of
each maturity are forecast by the same portfolio of forward rates — do no damage to the
forecast ability.

Table 4. Estimates of the common return-factor

γ0 γ1 γ2 γ3 γ4 γ5 R2

−3.90 −2.00 1.02 2.87 0.71 −2.12 0.35
large T (1.41) (0.38) (0.79) (0.53) (0.56) (0.36)
small T (1.62) (0.60) (1.00) (0.79) (0.61) (0.57) [0.22, 0.56]
EH [0, 0.17]

s. e.
n bn GMM OLS small T R2 small T
2 0.47 (0.05) (0.06) (0.02) 0.32 [0.19, 0.53]
3 0.87 (0.03) (0.12) (0.02) 0.34 [0.21, 0.55]
4 1.23 (0.02) (0.18) (0.02) 0.37 [0.24, 0.58]
5 1.43 (0.04) (0.23) (0.03) 0.34 [0.21, 0.55]
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NOTE: The top panel regression is

1

4

5X
n=2

hprx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t + ε̄t+1

γ0 has units of annual percent return. ‘Large T’ standard errors (first rows
of brackets) use the Hansen-Hodrick GMM correction for overlap. ‘Small T’
standard errors (second rows of brackets) are based on 50,000 bootstrapped
samples from a VAR with 12 lags for yields. Intervals below the R2 indi-
cate 95% confidence intervals computed from these bootstrapped samples.
‘EH’ imposes the expectations hypothesis on the bootstrap. The lower panel
reports each excess return’s loading on the return-forecasting factor. The
regression is

hprx
(n)
t+1 = bn

¡
γ>ft

¢
+ ε

(n)
t+1.

γ is the parameter estimate from the upper panel, and f denotes the vec-
tor of all forward rates. GMM standard errors correct for the fact that γ is
estimated, by considering this estimate together with the regression in the
top panel as a single GMM estimation. OLS standard errors gives conven-
tional standard errors including the Hansen-Hodrick correction for overlap,
i.e., treating γ as fixed. ‘Small T’ standard errors are based on the boot-
strapped samples from the upper panel. Sample 1964:1-2001:12.

The standard errors that correct for the fact that γ is a generated regressor are much
smaller than the “s.e. OLS” conventional (equation-by-equation) standard errors that
treat γ as a fixed number. The second set of regressions, each holding period return on
the common factor, cannot impose the restriction 1>4 bn = 4, where 14 denotes a 4 × 1
vector of ones. That restriction is imposed in sample by the first regression. Imposing
that restriction in sample removes (places on γ) the largest, common, source of sample
variation in bn. Therefore, the correct standard errors for estimates that impose the
restriction 1>4 bn = 4 in each sample are smaller than the standard errors that would
occur if γ were known, in which case the restriction 1>4 bn = 4 would not hold in each
sample. The OLS and GMM standard errors for the first regression are identical.

The bottom panel of Figure 2 plots the coefficients of expected returns on each of the
forward rates implied by the restrictedmodel, i.e. for each n, it presents

£
bnγ1 · · · bnγ5

¤
.

Comparing this plot with the unrestricted estimates of the top panel, you can see that the
one factor model almost exactly captures the unrestricted parameter estimates. Figure 3
plots the restricted and unrestricted estimates of the constant, and you can see similarly
that the estimates are very close. Standard errors around estimates in Figures 2 and 3
can be obtained from standard errors for β in Table 2 or from those of (γ, b) in Table 4.
(More precisely, the standard errors under the null are computed with the delta-method
applied to the variance of (γ, b) underlying the standard-error calculations in Table 4.)
Confidence intervals constructed as β± 1× se contain both the unconstrained β and the
constrained bγ> estimates.
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(n)
0 in the regressions hprx(n)t+1 = β0

(n) + β1y
(1)
t + . . .β5f

(4→5)
t + εt+1. The

restricted estimate is b(n)γ0 in hprx
(n)
t+1 = b

(n)
³
γ0 + γ1y

(1)
t + . . .+ γ5f

(4→5)
t

´
+ εt+1.

We need a test of the one-factor model and a test of the constant restrictions. The
underlying moments are the regression forecast errors multiplied by forward rates (right
hand variables),

E (εt+1 ⊗ ft) = 0 (5)

where εt+1 denotes the 4 × 1 vector of holding period return regression residuals, and
ft denotes the 6× 1 vector of a constant, the one-year yield, and four available forward
rates. The unconstrained regression of Table 2 sets all of these moments to zero in each
sample.

The single factor model sets only some combinations of these moments to zero

γ : E
£¡
1>4 εt+1

¢⊗ ft¤ = 0 (6)

b : E
£
εt+1 ⊗

¡
γ>ft

¢¤
= 0 (7)

(We have indicated which parameter is identified by each moment before the colon.) We
used the moments (6) and (7) to compute the second set of standard errors in Table 4.
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For the restricted model, we can compute the χ2 test that the remaining moments in (5)
are zero, a JT test. (Details are in the appendix.) We have not yet been able to produce
a JT test because the asymptotic covariance of the same mean of g (βft) is not invertible
when we compute it using Newey-West or other large-T methods, or when we compute
it from the bootstrapped samples. From the confidence bounds implied by Tables 2 and
4 it should be clear, however, that the single factor model is not rejected by the data.

Stambaugh (1988) ran similar regressions of 2-6 month bond excess returns on 1-6
month forward rates. Stambaugh’s coefficients are quite similar to the pattern in Figure
2. (See Stambaugh’s Figure 2, p. 53.) In the basic regression, Stambaugh found that
the matched-maturity forward-spot spread rate — the Fama-Bliss variable — remained
the single strongest predictor for excess returns in this multiple regression. However,
Stambaugh rightly suspected measurement error — if a bill has a bad price, then the
spurious “spread” gives rise to a spurious “return” in the next period. Stambaugh then
used a slightly different bill as predictor and predicted variable. This specification resulted
in estimates that look a lot like Figure 2. Unlike us, Stambaugh soundly rejected a one
or two factor representation of this forecast.

2.5 Checks, extensions and objections

2.5.1 Contest with Fama-Bliss spreads

If γ>ft really is the single factor for expected excess returns, it should drive out other
forecasting variables, and the Fama-Bliss slope variables in particular. Table 5 presents
a multiple regression. In the presence of the Fama-Bliss forward-spot spread, the coef-
ficients and significance of the regression on the return-forecasting factor from Table 4
are unchanged. The R2 is also unaffected, meaning that the addition of the Fama-Bliss
forward-spot spread does not help to forecast bond returns. On the other hand, in the
presence of the return-forecasting factor, the Fama-Bliss slope is destroyed as a forecast-
ing variable. The coefficients decline from 1 or even more to almost exactly zero, and
are insignificant. Clearly, the return-forecasting factor subsumes all the predictability of
bond returns captured by the Fama-Bliss forward-spot spread.

Table 5. Horse race between γ>f and Fama-Bliss

n an σ (an) bn σ(bn) cn σ(cn) R2

2 0.13 (0.25) 0.47 (0.03) −0.05 (0.19) 0.33
3 0.13 (0.52) 0.88 (0.10) −0.07 (0.37) 0.34
4 −0.03 (0.67) 1.22 (0.15) 0.05 (0.46) 0.37
5 −0.31 (0.75) 1.42 (0.17) 0.15 (0.35) 0.34

NOTE:Multiple regression of holding period returns on the return-forecasting
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factor and Fama-Bliss slope. The regression is

hprx
(n)
t+1 = an + bn

¡
γ>ft

¢
+ cn

³
f
(n−1→n)
t − y(1)t

´
+ ε

(n)
t+1.

Standard errors use the Hansen-Hodrick GMM correction for overlap.

2.5.2 Historical performance

Figure 4 plots the forecast of the holding period excess returns on three year bonds
implied by the Fama-Bliss regression of Table 1 (top), the forecast from the regression on
the return-forecasting factor from Table 4 (middle, i.e. b3

¡
γ>ft

¢
) and the actual holding

period returns (bottom). The forecast made at time t − 1 for time t is plotted at time
t, so you can directly compare the forecast with its outcome. For many episodes, the
return-forecasting factor and the forward-spot spread agree. This pattern is particularly
visible in the three swings from 1975 to 1982. The return-forecasting factor is correlated
with the forward-spot spread. However, the figure shows the much better fit of the
return-forecasting factor in the middle. In particular, the fit is much better through the
turbulent early 1980s, end 1980s, and the mid 1990’s. The improved R2 is not driven
by spurious forecasting of one or two unusual data points. Both the return forecasting
factor and the Fama-Bliss regression badly miss the last two years of the sample — they
predict slightly negative returns where instead bond returns have been strongly positive
as interest rates declined.

2.5.3 Additional Lags

We investigated whether additional lags of forward rates help to forecast bond returns.
One additional monthly lag does enter with both statistical and economic significance.
Table 6 reports the R2 of this regression, in the rows labeled “ft, ft−1/12.” The R2 rise by
about 0.05 to 0.38-0.43. (Adjusted R2 are about 0.01 lower than unadjusted R2, though
again the conventional R2 adjustment assumes i.i.d. data.) A χ2 test overwhelmingly
rejects the hypothesis that the coefficients on the additional lag of forward rates are zero.
Figure 5 plots the coefficients from these regressions. You can see that the shape of the
coefficients is roughly the same at the first and second lag.

Table 6. Additional lags of forward rates

Maturity n of lhv
rhv 2 3 4 5
ft 0.34 0.34 0.37 0.34
ft, ft−1/12 0.39 0.41 0.43 0.41
ft+ft−1/12

2
0.39 0.40 0.43 0.41

NOTE: “ft” reports the adjusted R2 from the regression of excess returns
on all forward rates in Table 2. “ft, ft−1/12” reports the adjusted R2 from
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Figure 4: Fitted and actual holding excess returns of three year bonds. Top: Fitted value
using Fama-Bliss regression, 3 year forward-spot spread. Middle: Fitted value using the
restricted regression on all forward rates. Bottom: ex-post excess returns. The forecasts
in the top two lines are graphed at the date of the return; the forecast made at t − 1
is graphed at year t to line up with the ex-post return at year t. The top and bottom
graphs are shifted up and down 15% for clarity.

a regression with an additional monthly lag of all right hand variables in
the regression equation, “(ft + ft−1/12)/2” reports the adjusted R2 from a
regression using a one-month moving average of right hand variables.

The data seem to want a one-month moving average of forward rates to predict
bond returns. We ran a regression with this restricted specification, i.e. hprx(n)t+1 on³
y
(1)
t + y

(1)
t−1/12

´
/2,

³
f
(1→2)
t + f

(1→2)
t−1/12

´
/2, etc. Figure 5 includes a plot of the coefficients,

and Table 7 includes the R2 in the row “
¡
ft + ft−1/12

¢
/2.” The R2 is the same, and the

restriction is not rejected statistically, so this seems a good way to include the lagged
information.

Following up on these unconstrained regressions, we run bond returns on additional
lags of the state variable γ>ft. Table 7 presents the results. Regression 1 repeats the
regression of holding period excess returns on

¡
γ>ft

¢
from Table 4 for comparison. In the
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Figure 5: Coefficients in a regression of bond excess returns on the one year yield and 1 to
4 year forward rates, including an extra one-month lag. The top panel plots the coefficients
of hprx(n)t+1 on forward rates at time t, while the middle panel plots the coefficients on
forward rates at time t− 1/12. The bottom panel presents the coefficients of hprx(n)t+1 on
a one month moving average of forward rates at t and at t− 1/12. Sample 1964-2001.

second regression, we add an additional lag
¡
γ>ft−1/12

¢
. The adjusted R2 now goes up to

0.38-0.41, nearly equal to the 0.38-0.42 values from the unconstrained two-lag regression
in Table 4. Once again, the single factor seems to capture all of the information in all 5
forward rates. The coefficients in the second regression are about half of the coefficients
in the first regression, and the new coefficients have the same pattern across maturities.
The data again suggest γ>

¡
ft + ft−1/12

¢
/2 as a state variable, and the third regression

checks this specification. The additional constraint on the coefficients makes no difference
whatever to the R2, and the coefficients themselves are very close to the value in the first
regression. Adding a one-year lag (not reported) or another one-month lag (also not
reported) does essentially nothing for the R2 of the regression.

16



Table 7. Additional lags of the return-forecasting factor

(1) (2) (3)

γ>ft R2 γ>ft γ>ft−1/12 R2
γ>(ft+ft−1/12)

2
R2

hprx
(2)
t+1 0.46 0.33 0.26 0.27 0.38 0.53 0.38

hprx
(3)
t+1 0.86 0.34 0.50 0.47 0.39 0.97 0.39

hprx
(4)
t+1 1.23 0.37 0.74 0.66 0.41 1.40 0.41

hprx
(5)
t+1 1.45 0.34 0.74 0.94 0.40 1.68 0.40

NOTE: Estimate of each excess return’s loading on the return-forecasting
factor. The left hand variable is shown in each row heading and the right
hand variables are shown in the column headings. γ are the estimates from
Table 4. OLS on overlapping monthly data 1964-2001.

Additional lags are uncomfortable forecasting variables for bond yields. Term struc-
ture models are usually Markovian: period t’s bond yields are sufficient statistics for the
evolution of future bond yields. This occurs precisely because bond prices are period
t expected values of future discount factors. Building a term structure model around
a VAR representation for bond yields with many lags does not seem like a promising
way to address the patterns in the data. Instead, the pattern of regression coefficients
suggests an ARMA(1,1) model for monthly yields induced by Markovian prices contam-
inated with i.i.d. measurement error. In the interests of space, we leave the construction
of a measurement error model and integration of the forecast patterns we have found
here with a Markovian term structure model for future work, and despite the forecast
power of the first monthly lag, we focus the rest of the analysis on forecasts using only
the most current forward rates.

2.5.4 Subsamples

Table 8 reports a breakdown by subsamples of a regression of average holding period
returns 1

4

P5
n=2 hprx

(n)
t+1 on yields and forwards. The first set of columns run the average

return on the yields and forwards separately. The second set of columns runs the average
return on γ>f where γ are estimated from the full sample. This regression moderates
the tendency to find spurious forecastability with 5 right hand variables in short time
periods.

The first row reminds us of the full sample result — the pretty tent-shaped coefficients
and the 0.35 R2. Of course, if you run a regression on its own fitted value you get a
coefficient of 1.0 and the same R2.

The second row shows the effect on the results of the last two disastrous years in
the sample, in which γ0f and the Fama-Bliss regression both forecast negative expected
excess returns, but in fact long term bonds did well. Without these last two years, the
R2 rises to 0.4!
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The third set of rows examine the period before, during, and after the momentous
period 1979:8-1982:10, when the Fed changed operating procedures, interest rates were
very volatile, and inflation became much less volatile. The broad pattern of coefficients
is the same before and after. The 0.73 R2 looks dramatic in the experiment, but this
period really only has three data points and 5 right hand variables. When we constrain
the pattern of the coefficients in the second set of columns, the R2 is the same as the
earlier period. It is comforting that the forecasts are so similar in the vastly different
regimes of the pre and post experiment periods.

The fourth set of rows break down the regression by decades. Again, we see the
pattern of the coefficients is quite stable. The R2 is worst in the 70s, a decade dominated
by inflation. This suggests that the forecast power derives from changes in the real rather
than nominal term structure. The R2 rises to a dramatic 0.71 in the 90s, and still 0.51
when we constrain the coefficients γ to their full sample values. The first two years
of the 2000 decade are too little to say anything meaningful about the unconstrained
regression, but the regression on to γ0f reveals the terrible performance in these two
years — the forecast was small, and the outcome was large.

Table 8. Subsample analysis

γ0 γ1 γ2 γ3 γ4 γ5 R2 γ>f R2

1964:01-2001:12 −3.9 −2.0 1.0 2.9 0.7 −2.1 0.35 1.00 0.35
1964:01-1999:12 -4.4 −2.0 0.9 2.9 0.8 -2.1 0.40 1.05 0.40
1964:01-1979:08 −5.4 −1.3 1.3 2.5 -0.1 −1.7 0.32 0.78 0.28
1979:08-1982:10 −32.6 0.8 0.5 1.2 0.6 −0.7 0.78 0.84 0.29
1982:10-2001:12 −3.5 −1.0 1.1 1 1.7 −2.1 0.27 0.88 0.23
1964:01-1969:12 0.6 −1.3 0.2 2.0 0.5 −1.9 0.31 0.71 0.24
1970:01-1979:12 −9.7 −1.4 0.5 2.4 0.3 −0.6 0.22 0.71 0.17
1980:01-1989:12 −11.9 -2.2 1.5 2.6 1.0 −1.8 0.42 1.15 0.37
1990:01-1999:12 −13.8 -1.6 0.5 4.3 1.5 −2.5 0.71 1.83 0.51
2000:01-2001:12 0.09 0.005

NOTE: Subsample analysis of average return forecasting regressions. For each
subsample, the first set of columns present regression

1

4

5X
n=2

hprx
(n)
t+1 = γ>ft + εt+1

The second set of columns report the coefficient estimate b from

1

4

5X
n=2

hprx
(n)
t+1 = b

¡
γ>ft

¢
+ εt+1

using the γ parameter from the full sample regression as presented in the top
row. Overlapping annual forecasts using monthly data 1964-2001.
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2.5.5 Real time forecasts

A trader in, say, 1982, does not have access to our full sample to estimate the parameters
of the return forecasting model, so he will not forecast as well. How well can one forecast
bonds using real time data? Of course, the conventional rational-expectations answer to
this question is that traders have access to historical information and rules of thumb that
come from far longer time series than our data set, so their estimates of the coefficients
will have converged long before ours. Still, it is an interesting robustness exercise to see
how well a trader could do who has to estimate the forecasting rule based only on our
data from 1964 up to the time the forecast must be made, and it would be discomforting
if the full sample estimate was required to see any forecast power.

Figure 6 contrasts the full sample and the real-time forecasts. The top line, marked
“full sample” presents the fitted value of the regression hprxt+1 = γ>ft + εt+1 using
the full sample 1964:1-2001:12 to estimate the parameters γ. The bottom line presents
the same fitted values, but at each time t, the regression is reestimated using data from
1964:1 to time t only.

The full sample and real time forecasts are quite similar. Even though the regression
only starts the 1970s with 6 years of data, it still captures the same pattern of bond
expected returns. By the big forecasts of 1987, the full sample and real time forecasts are
essentially identical. The only significant discrepancy is in the 1983-1984 period. Here,
the real time forecast is a good deal lower than the full sample forecast.

The forecasts are similar, but are they similarly successful? Figure 7 compares them
with a simple calculation. The figure calculates “trading rule returns” as

hprxt+1 ×Et(hprxt+1) = hprxt+1 ×
¡
γ>ft

¢
,

and then cumulates these returns so that the different calculations can be more easily
compared. (If one follows a linear trading rule to invest $1 × Et(Rt+1) in each end
of a zero - cost portfolio with excess return Rt+1, then the profit from this strategy
is Rt+1 × Et(Rt+1). Our regression uses logs rather than levels, hence quotes around
“trading rule.” The calculation is also T times the covariance of the forecasted variable
hprxt+1 with the forecast, which is zero if there is no forecastability, so it has a purely
statistical interpretation as well.) For the Fama - Bliss calculations, the figure calculates
the expected excess return of each bond from its matched forward-spot spread, and then
finds the average expected excess return across maturities. The full sample lines use full
sample estimates of the regressions. The real time lines use regression estimates only up
to time t to calculate Et(hprxt+1).

The full sample line shows vividly the character of this return forecasting exercise:
it produces occasional spectacular gains, as in 1983, 1987, and 1994, while producing
nearly nothing (and recommending small positions) for long periods. The last two years
of the sample lost a little money, as the forecast was for slightly negative bond returns,
while in fact long term bonds made money as interest rates declined.

The real time forecast overall produces only about half of the cumulative profits as
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Figure 6: Comparison of full sample and real time forecasts of average (across bond
maturities) one year excess returns. “Full sample” is the fitted value of the regression
hprxt+1 = γ0ft+εt+1 using 1964:1-2001:12 data to estimate the parameter γ. “Real time”
uses data from 1964:1 to time t only to estimate the same regression.

does the full sample estimate. Inspecting the graph, however, this underperformance
essentially all comes from the 1983 period. The real time forecast had not quite settled
on the coefficients that would let it forecast the spectacular return obtained by the full
sample estimate in this period. This finding mirrors the difference in forecast for 1983
shown in Figure 6. At this point, the regression has had only 19 years to estimate the 6
γ from collinear forward rates. However, the real time forecast captures almost all of the
impressive gains of the 1987 and 1994 episodes. Interestingly, neither the Fama-Bliss full
sample or real time estimates capture this 1983 episode either. In fact they lose money
here.

Overall, we conclude that while the forecasts do degrade somewhat using real-time
data (and the limitations of our particular data set), the overall pattern remains. It does
not seem to be the case that the forecast power, or the improvement over the Fama-Bliss
forecasts, requires the use of ex-post data.
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Figure 7: Cumulative profits from linear ‘trading rules’ using full sample and real
time information. Each line plots the cumulative value of hprxt+1 × Et(hprxt+1) where
hprxt+1 is the average (across maturities) one year log excess return on long term bonds.
Et(hprxt+1) are formed from regression forecasts using the full 1964-2001 sample or data
from 1964-t as marked. The CP lines use the forecast hprxt+1 = γ>ft where ft consists
of a constant, the one year rate and 1-5 year forward rates. The FB (Fama-Bliss) lines
forecast each holding period excess return from the corresponding maturity forward-spot
spread, and then average the forecasts across maturities.

2.5.6 Other data

Fama-Bliss data are interpolated zero-coupon yields. To check whether the predictability
results are generated by the interpolation scheme, we run the regressions with McCulloch-
Kwon data, which use a different interpolation scheme to derive zero-coupon yields from
treasury data. Table 9 shows the R2s and γ-estimates using McCulloch-Kwon and Fama-
Bliss data over the McCulloch-Kwon sample (1964:1-1991:2). The R2 are very similar
across the two datasets. Interestingly, the low R2 for the excess holding period return
of the 5-year bond may be an artifact of the Fama-Bliss data, as the McCulloch-Kwon
data gives a 0.12 R2 for the Fama-Bliss regression where the Fama-Bliss data only gives
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a 0.05 R2. Looking at the lower panel of Table 9, the tent-shape of γ estimates is even
more pronounced in McCulloch-Kwon data than in the Fama-Bliss data.

Table 9. Comparison with McCulloch-Kwon data

f
(n−1→n)
t − y(1)t ft γ>ft

n McC-K F-B McC-K F-B McC-K F-Bs
2 0.16 0.15 0.39 0.39 0.39 0.38
3 0.15 0.16 0.37 0.39 0.37 0.40
4 0.13 0.17 0.36 0.41 0.36 0.42
5 0.12 0.05 0.35 0.37 0.35 0.38

γ0 γ1 γ2 γ3 γ4 γ5
McCulloch-Kwon −5.11 −2.52 1.78 3.19 1.94 −3.82
Fama-Bliss −4.73 −1.84 0.95 2.98 0.52 −2.10

NOTE: The data used are McCulloch-Kwon and Fama-Bliss zero-coupon
yields starting 1964:1 until the end of the McCulloch-Kwon dataset, 1991:12.
McCulloch-Kwon data can be downloaded from
http://www.econ.ohio-state.edu/jhm/ts/mcckwon/mccull.htm. The upper panel
shows R2 from running hprx(n)t+1 on the regressors indicated on top of the ta-
ble: forward-spot spread, all forwards ft, and γ>ft. The lower panel shows
the estimated γs using the two datasets.

2.5.7 Interpretation

It is tempting to look at our tent-shaped function of forward rates, and to conclude
that the return-forecasting factor is a ‘curvature’ factor in the yield curve one recovers
from yields, say by an eigenvalue decomposition of their conditional or unconditional
covariance matrices. However, our tent-shaped function is a function of forward rates.
Forward rates and yields span the same bond prices of course, so we can express the
forecasting factor γ>f as a function of yields — the forecasts are exactly the same. The
top of Figure 8 plots the results — equivalent to a regression of holding period excess
returns on all yields rather than all forward rates. The bottom of Figure 8 plots the
loadings of the first 3 principal components of yields. The third principal component is
‘curvature’. The return-forecasting factor is clearly not a ‘curvature’ factor in yields. The
correlation coefficient between changes in γ>f and curvature is only 39.9%. The return
forecasting factor is also not a ‘level’ or ‘slope’ factor. The corresponding correlation
coefficients are 7.4% and 49.5%. At best, one can interpret it as long the 3-2 spread and
short the 5-4 spread, but the interpretation in terms of forward rates seems cleaner.
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Figure 8: The top graph shows coefficients γ∗ in a regression of average (across maturities)
holding period returns on all yields, 1
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The bottom graph shows the loadings of the first three principal components of yields
labelled ‘level factor’, ‘slope factor’ and ‘curvature factor’. Sample 1964:1-2001:12.

3 Macroeconomics and bond return forecasts

Figure 4 already shows that the return-forecasting factor is highly correlated with the
slope of the term structure, which is well known to be associated with recessions (Fama
and French 1989) and to forecast output growth (Harvey 1989, Stock and Watson 1989,
Estrella and Hardouvelis 1991, Hamilton and Kim 1999).

We discover a surprising difference between the return forecasting factor and the
term structure slope. The return forecasting factor, like the slope, is highly correlated
with business cycle measures. However, the forecasting relations are lost. Business cycle
measures have no power alone, and even less in competition with the return forecasting
factor, to forecast bond returns. Worse, the return forecasting factor loses the slope’s
ability to forecast output. Apparently, the component of the slope of the term structure
that forecasts excess returns has nothing to do with the component that forecasts output.
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Figure 9: Return forecasting factor γ0ft and unemployment rate. Both series are trans-
formed to [xt−E(x)]/σ(x) so that they fit on the same graph. The teeth at the bottom
represent NBER business cycles.

3.1 Correlation between the return forecast and business cycles

Figure 9 presents the return forecasting factor together with the unemployment rate and
the NBER peaks and troughs. The return-forecasting factor is closely associated with
business cycles, high in bad times and low in good times. The graph shows the very nice
correlation between the return forecasting factor and recessions. As Fama and French
(1989) document for the yield curve slope, the time-varying expected return is clearly
related to business cycles.

Interestingly, the correlation between the return forecasting factor and unemployment
is also evident at lower frequencies than usual business cycles. The return forecasting
factor increases throughout the 70s and decreases throughout the 80s, mirroring the
unemployment rate as it does many measures of a decade long drop in productivity dur-
ing that period. The bond return forecasting factor is a “level” variable rather than a
“growth rate” variable. It is high when the level of unemployment is high, or the level of
income is low, rather than being high during recessions defined as periods of poor GDP
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growth. The return forecasting factor is correlated with many other recession indicators
as well, including industrial production growth, Lettau and Ludvigson’s (1999) consump-
tion/wealth ratio, the investment/GDP ratio, and so on. It is much less correlated with
inflation. We present the graph for unemployment as it has the highest correlation among
the cyclical indicators we examined.

3.2 Macroeconomic forecasts of bond returns

Given the high correlation between the return factor and the unemployment rate, a
natural question is whether we can use unemployment or other macro variables to forecast
excess returns on bonds. The answer is no, or at least “not among the variables we have
tried so far.”

This is an unfortunate result for economic interpretation. It would be much nicer
if we could understand the return forecasting factor as a simple mirror of macroeco-
nomic conditions. It appears instead that the bond market uses additional information
beyond that available in macroeconomic aggregates to forecast bond returns. On the
other hand, it is a fortunate result for our empirical analysis: it means we can stick to
the model Et (hprxt+1) = γ>ft with great accuracy, even in VAR systems that include
macroeconomic variables.

Table 10 contrasts regressions of the average one year bond excess return 1
4

P5
n=2 hprx

(n)
t+1

on the return forecasting factor γ>f , on the unemployment rate U and other macroeco-
nomic variables. The first part of the table reminds us of the 0.35 and 0.40 R2 when we
forecast bond excess returns from γ>f . Despite its beautiful correlation with the return
forecasting factor, unemployment forecasts bond excess returns with an R2 of only 0.05.
In a multiple regression it does not affect the size and significance of the γ>f coefficient,
and only raises the R2 to 0.38.

The Stock-Watson (1989) leading index is designed to forecast output growth at a
6 month horizon. Alas, it forecasts bond excess returns with an even lower R2 of 0.01
and has no effect in a multiple regression. Lettau and Ludvigson’s (2001) consumption-
wealth ratio, which forecasts income growth and stock returns, does no better. Finally,
CPI inflation is just as useless as the variables. A large variety of macroeconomic variables
do no better.

Table 10. Macro forecasts of bond returns

γ>f γ>f−1 R2 γ>f U R2

1 0.35 0.54 0.05
(7.2) (1.5)
0.56 0.59 0.40 1.19 -0.50 0.38
(6.0) (5.3) (7.6) (-1.6)
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γ>f XLI R2 γ>f cay R2 γ>f cpi R2

-0.11 0.01 0.44 0.02 −0.24 0.03
(-0.6) (1.03) (−0.84)

1.01 -0.14 0.36 1.01 −0.08 0.35 0.99 −0.20 0.37
(6.8) (-1.2) (7.8) (−0.2) (7.6) (−1.0)

Table 10. Forecasts of average bond returns 1
4

P5
n=2 hprx

(n)
t+1. Ut = the

unemployment rate. XLI = Stock-Watson leading indicator. cay = the
Lettau-Ludvigson consumption-wealth ratio using end of period wealth. cpi is
inflation, the one-year growth in the CPI index. We estimate γ>f by running
the regression 1

4

P5
n=2 hprx

(n)
t+1 = γ>ft + εt+1 in a first stage. Overlapping

annual forecasts, 1964:01-2001:12. Standard errors corrected for overlap and
heteroskedasticity by GMM.

3.3 Term structure forecasts of output growth

The slope of the term structure slope forecasts output growth as well as bond returns.
How does the return forecasting factor γ>f forecast output growth? Table 11 presents
regressions. The left hand panel forecasts industrial production, while the right hand
panel forecasts growth in Stock and Watson’s coincident index. The table verifies that
the term structure slope y(5)−y(1) forecasts both output growth measures, with statistical
significance and R2 of 0.14. The Stock-Watson leading index, which includes term struc-
ture variables as well as a variety of other macroeconomic variables, does even better,
with stunning t statistics and R2 of 0.35-0.41.

Surprisingly, though, the return forecasting factor is a miserable failure at forecasting
output growth. The coefficients are tiny and insignificant, the R2 almost vanish. The
return factor is correlated with the yield spread, and the return factor forecasts bond
returns much better, but it nonetheless loses any ability to forecast output growth. Ap-
parently, the component of the yield spread that forecasts output growth is uncorrelated
with the component that forecasts bond excess returns.

Table 11. Term structure forecasts of output growth

industrial production coincident index
γ>f y(5) − y(1) LI R2 γ>f y(5) − y(1) LI R2

0.11 0.01 0.09 0.004
(0.34) (0.41)

-0.76 0.14 -0.54 0.14
(-2.66) (-2.3)

0.86 0.35 0.66 0.41
(9.4) (10.4)

0.38 -0.64 0.70 0.41 0.27 -0.43 0.55 0.46
(1.9) (-2.84) (7.2) (2.4) (-2.8) (6.9)

26



Table 11. Regression forecasts of one-year industrial production growth
and one-year growth in the Stock-Watson coincident index on the bond re-
turn forecasting factor γ>f , the term spread y(5)−y(1), and the Stock-Watson
leading index. Overlapping annual forecasts, 1964:01-2001:12. Standard er-
rors corrected by GMM.

3.4 Forecasting stock returns

The slope of the term structure forecasts stock returns, as emphasized by Fama and
French (1989). Table 12 evaluates how well our return forecasting factor forecasts stock
returns.

The first 4 regressions remind us of return forecastability from the dividend price ratio
and term spread. Regressions 1 and 2 study the dividend price ratio. Until the 1990s,
the dividend price ratio was a strong return forecaster, with a 14% R2. The long boom of
the 1990s cut down this forecastability dramatically, especially in our rather short sample
(for these purposes) starting only in 1964. Of course, one good crash will restore the d/p
forecastability. The term spread in the third regression forecasts the VW stock return
with a 4.2 coefficient — one percentage point term spread corresponds to 4.2 percentage
point increase in stock return. The R2 is only 5% however. The fourth regression shows
that the term spread and dividend price ratio forecast different components of returns,
since the coefficients are unchanged in multiple regressions and the R2 increases, though
to a still low 8%.

Table 12. Forecasts of excess stock returns

Regression d/p y(5) − y(1) γ>f R2

1 2.51 0.03
(1.18)

2 7.08 0.14
(2.43)

3 4.16 0.05
(1.68)

4 2.50 4.15 0.08
(1.25) (1.84)

5 2.10 0.10
(3.00)

6 1.00 1.89 0.10
(0.38) (2.54)

7 1.09 1.94 0.11
(0.56) (2.86)

8 y
(1)
t , f

(1→2)
t , f

(2→3)
t , f

(3→4)
t , f

(4→5)
t 0.13

Table 12. Stock return forecasts. The left hand variable is the one-year
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return on the value-weighted NYSE stock return, less the one year bond yield.
The right hand variables are as indicated in the column headings. Overlapping
monthly observations of annual returns, 1964-2001, except regression 2 from
1964-1989 The dividend price ratio is based on the return with and without
dividends for the preceding year. T statistics in parentheses. Standard errors
are corrected for overlap.

The fifth regression introduces the return forecasting factor. It is significant, which
neither d/p (in this sample) nor the term spread are, and at 10%, its R2 is slightly higher
than that of the term spread and d/p combined. The coefficient is 2.10. The return
forecasting factor is the average expected return across 2-5 year bonds. The 5-year bond
in Table 4 had a coefficient of 1.43 on the return forecasting factor. Thus, the stock
return coefficient is just about what would expect of a 6 or 7 year duration bond, which
is perfectly sensible.

The sixth and seventh regressions compare the bond return forecasting factor with
the term spread and d/p. The bond return factor’s coefficient and significance are hardly
affected in this multiple regression, while the d/p and term coefficients are cut more
than in half and rendered insignificant. It seems that the bond return forecasting factor
subsumes most of the term spread and d/p’s power to forecast stock returns.

Last, we ask whether a regression of stock returns on all forward rates produces a
better fit than on the return forecasting factor, and whether such a regression recovers
the tent-shaped pattern of coefficients all on its own. Of course, this estimate will be
noisy, since stock returns are more volatile than bond returns. All forward rates together
produce an R2 of 13%. Figure 10 graphs the coefficients, along with the return fore-
casting factor coefficients γ, and two standard error bands. The stock return forecasting
coefficients have the same general tent shape, though not exactly the same as those of
the return forecasting factor. The 2-1 forward spread seems to enter more than it does
for the return forecasting factor.

4 Conclusions

One-year expected excess returns in the Fama-Bliss (1987) data follow a one-factor struc-
ture almost exactly. The single factor is a tent-shaped function of forward rates, γ>ft.
Then, expected excess returns on bonds of maturity n are Et(hprx

(n)
t+1) = bn(γ

>ft).

Regressions of excess returns on this common factor show a much improved R2. In
contrast to Fama and Bliss’ R2 of about 15%, the R2 on the common factor is about
35%, and as much as 40% if we use a one-month moving average of the common factor
γ0(ft+ft−1) to attenuate measurement error. (Ignoring the last two years these numbers
jump to 40-45%).

The single factor γ>f drives out the separate forward-spot spreads in predicting excess
bond returns. The forecast works well across subsamples since 1964. It is somewhat

28



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-15

-10

-5

0

5

10

15

20

Maturity

C
oe

ffi
ci

en
t

Figure 10: Coefficients in a regression of one-year value weighted NYSE stock excess
returns on all forward rates (dashed line, triangles) and average bond excess returns on
all forward rates (solid line, circles). Error bars are +/- two standard errors.

stronger in the latter part of the sample in which real interest rate movements dominate
the term structure, than in the earlier part of the sample in which much interest rate
movement reflects expected inflation.

The return forecasting factor γ>f has a strong contemporaneous correlation with
business cycle measures, especially the unemployment rate. However, macro variables
do not forecast bond returns, either alone or in competition with the return forecasting
factor. Curiously, the return forecasting factor does not forecast output, unlike the slope
of the term structure. Apparently, the part of the slope that does forecast output is the
part that does not forecast bond returns. The bond return forecasting factor does forecast
stock returns, with a coefficient about what one would expect of a 7 year duration bond.
Its forecast power is maintained in competition with a term spread and dividend price
ratio.
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5 Appendix

5.1 Small sample distributions

Data-generating process

The data-generating process is taken to be a vector autoregression with 12 lags for
the vector of yields

yt = A0 +A1yt−1/12 + . . .+A12yt−1 + εt.

Vector autoregressions based on fewer lags (such as one or two) are unable to replicate
the long-horizon forecastability of the short rate documented in Table 3.

Imposing the expectations hypothesis

The data-generating process in this case is taken to be an AR(12) for the short rate

y
(1)
t = a0 + a1y

(1)
t−1/12 + . . .+ a12y

(1)
t−1 + εt

and long yields are computed as

y
(n)
t =

1

n
Et

Ã
nX
i=1

y
(n)
t+i−1

!
, n = 2, . . . , 5.

5.2 GMM approach to the factor model for expected bond re-
turns

Restricted and unrestricted model

The unrestricted regression is

hprxt+1 = βft + εt+1

where hprx is the 4 × 1 vector of excess returns, ft =
h
1 y

(1)
t f

(1→2)
t ... f

(4→5)
t

i0
is the 6 × 1 vector of forward rates and β is a 4 × 6 matrix of unrestricted regression
coefficients. The moment conditions of the unrestricted model are

gT (β) = E(εt+1 ⊗ ft) = 0. (8)

The restricted model is β = bγ> where b is a 4× 1 vector and γ is a 1× 6 vector of
coefficients. Since b and γ are only separately identified up to a constant (double b, halve
γ), we normalize to b>14 = 4.

Efficient estimate and test
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The efficient estimate of the restricted model is

JT = min
{γ,β:104b=4}

gT (bγ
>)0S−1gT (bγ>)

where S is the spectral density matrix corresponding to the moments (8). The standard
errors of the efficient estimate are given by Hansen’s (1982) theorem 3.1

var

µ·
b̂
γ̂

¸¶
=
1

T
d−1Sd−1

where d ≡ ∂gT/∂
£
b> γ>

¤
is calculated below. We can test the restricted model with the

usual JT test statistic

TJT˜χ
2(15).

There are 15 degrees of freedom. There are 6 × 4 = 24 moments and 6(γ) + 4(b) −
1(normalization) = 9 restrictions. Any inefficient estimate can only produce a larger
value for the objective function and therefore for the JT statistic, which means that we
tend to overreject the null.

Inefficient 2-step estimate

We focus instead on a 2-step OLS estimate of the restricted model — first estimate
average (across maturities) returns on f , then run each return on γ̂>f .

1

4

5X
n=2

hprx
(n)
t+1 = γ>ft + ε̄t+1

hprxt+1 = b
¡
γ̂>ft

¢
+ εt+1

The estimates satisfy 1>4 b = 4 automatically.

We focus on the 2-step procedure in this case, as OLS is often better in small samples
than GLS. We experienced a lot of difficulty with the 24 × 24 spectral density matrix,
using 24 lags, and formed from the highly cross-correlated regression errors ε multiplied
by the even more cross-correlated and highly serially correlated forward rates. It is often
singular or nearly so, so using it to weight estimates is likely not to work well in small
sample.

Standard errors for 2-step estimate and another test

To provide standard errors for the two-step estimate, we append the average excess
return equation to the unrestricted moments

egT = µ E (εt+1 ⊗ ft)
E (εt+1 × ft)

¶
,

which gives us 4×6 + 6 = 30 equations. The two-step OLS regressions set some linear
combinations of these moments equal to zero, so that we are left with only 10 equations
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for b and γ :

aTegT = 0, aT = µ I4 ⊗ γ> 04×6
06×24 I6

¶
.

It is initially troubling to see a parameter in the a matrix. Since we use the ols γ estimate
in the second stage regression, however, we can interpret γ in aT as its OLS estimate,
γ = ET (ff

>)−1ET (hprx f). Then aT is a random matrix that converges to a matrix a
as it should in the GMM distribution theory. (I.e. we do not choose the γ in aT to set
aTegT (γ, b) = 0.)
The GMM formula for the standard error of the estimates now is

1

T
(aTd)

−1 aTSa>T (aTd)
−1> ,

with

d = −
·
I4 ⊗E

¡
ft
¡
γ>ft

¢¢
b⊗E ¡ftf>t ¢

06×4 E
¡
ftf

>
t

¢ ¸
.

An alternative test of overidentifying restrictions can therefore be constructed from
the covariance matrix of the sample moments

cov(gt) =
¡
I − d(ad)−1a¢S ¡1− d (ad)−1 a¢> .

The χ2-distributed test statistic is

T eJT = Teg>T cov (egT )+ egT ,
where + refers to a pseudoinverse, since the covariance matrix is singular. The degrees
of freedom is the rank of cov (egT ) .
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