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Abstract

This paper studies equilibrium asset pricing with time-varying illi-

quidity. It is shown that a security’s required return depends on its

expected illiquidity and on the covariances of its own return and illiq-

uidity with market return and market illiquidity. This gives rise to a

liquidity-adjusted capital asset pricing model (CAPM) with four betas

(covariances). Further, if a security’s liquidity is persistent, a shock

to its illiquidity results in low contemporaneous returns and high pre-

dicted future returns. The four-beta CAPM is tested cross-sectionally

using the daily return and volume data on NYSE and AMEX stocks

over the period 1963–1999. Robust evidence is presented in support

of the model.
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1 Introduction

Empirically, various measures of liquidity vary over time both for individual

stocks and for the market as a whole (Chordia, Roll, and Subrahmanyam

(2000), Hasbrouck and Seppi (2000), and Huberman and Halka (1999)).

Hence, investors face uncertainty about liquidity, which raises the question:

How does liquidity risk affect asset prices in equilibrium?

We answer this question by deriving explicitly a liquidity-adjusted capi-

tal asset pricing model (CAPM). The model shows that a security’s required

return depends on the sensitivity of its return and tradability to market

downturns as well as to liquidity crises. Specifically, a security’s required

return depends on its expected illiquidity and on the covariances of its own

return and illiquidity with market returns and market illiquidity. This gives

rise to a liquidity-adjusted CAPM with four betas (covariances). Addition-

ally, we show that returns co-move with liquidity and high illiquidity predicts

high future returns, if liquidity is persistent. The model provides a theoreti-

cal foundation for a rich set of existing empirical findings (discussed below)

and provides new testable implications. We test the model cross-sectionally

using the liquidity measure suggested by Amihud (2002) and employing the

daily return and volume data on NYSE and AMEX stocks over the period

1963–1999. We provide robust evidence that the model’s implications are

supported in data.

The existing theoretical literature on frictions and asset pricing has fo-

cused on various frictions with deterministic severity (for instance, Amihud

and Mendelson (1986), Constantinides (1986), Vayanos (1998), Vayanos and

Vila (1999), Gârleanu and Pedersen (2000)). This paper complements the
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literature by deriving pricing effects associated with the risk of changes in the

liquidity of an individual security as well as in market liquidity. We discuss

in turn the model’s three main predictions and their empirical relevance.

First, the model shows that investors require a return premium for a se-

curity that is illiquid when the market as a whole is illiquid. The potential

importance of this result follows from the empirically documented common-

ality in liquidity. In particular, Chordia, Roll, and Subrahmanyam (2000)

find significant commonality in liquidity using daily data for NYSE stocks

in 1992, Huberman and Halka (1999) find a systematic time-varying compo-

nent of liquidity using daily NYSE data from 1996, and Hasbrouck and Seppi

(2000) find weak commonality in liquidity for 30 Dow stocks over 15-minute

intervals during 1994. The effect of commonality of liquidity on required re-

turns has however not yet been tested. Empirically, we find support for this

prediction in univariate tests, but the effect seems small when we control for

the model’s other risk factors.

Second, the model shows that investors are willing to pay a premium

for a security that has a high return when the market is illiquid. Pastor

and Stambaugh (2001) find empirical support for this effect using monthly

data over 34 years with a measure of liquidity that they construct based on

the return reversals induced by order flow. Consistently, we find empirical

support for this prediction.

Third, the model implies that investors are willing to pay a premium for a

security that is liquid when the market is down. This is another new testable

prediction. It is supported empirically in most of our numerous specifications

and robustness tests. Further, we demonstrate that the risk premium arising
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from this effect is economically significant.

To summarize, a security’s required return depends on the sensitivity

(covariance) of its return and illiquidity to changes in market return and

market illiquidity. Over the period 1963-1999, the three covariances described

above contribute on average a difference in risk premium between stocks with

high expected illiquidity and low expected illiquidity of about 9.9% annually.1

Additionally, the model shows that, since liquidity is persistent,2 liquidity

predicts future returns. This is because a positive shock to illiquidity predicts

high future illiquidity, which raises the required return. This theoretical

prediction is consistent with the empirical findings of Amihud (2002) and

Jones (2001).

Finally, the model shows that liquidity co-moves with contemporaneous

returns if liquidity is persistent. A positive shock to illiquidity raises the

required return, which depresses current prices and lowers contemporane-

ous returns. In support of this prediction, Amihud (2002) finds a negative

relation between return and unexpected illiquidity for size portfolios, Chor-

dia, Roll, and Subrahmanyam (2001), Jones (2001), and Pastor and Stam-

baugh (2001) find a negative relation between market return and illiquidity,

and Amihud, Mendelson, and Wood (1990) find that stocks, whose liquidity

worsened more during the 1987 crash, had more negative returns.

The paper is organized as follows. Section 2 describes the economy, Sec-

tion 3 derives the liquidity-adjusted capital asset pricing model, Section 4

1As we show later, sorting stocks by expected illiquidity also produces a sorting on
these three covariances.

2The persistence of liquidity is documented empirically by Amihud (2002), Chordia,
Roll, and Subrahmanyam (2000, 2001), Hasbrouck and Seppi (2000), Huberman and Halka
(1999), Jones (2001), and Pastor and Stambaugh (2001).
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studies how liquidity predicts and co-moves with returns, Section 5 contains

our empirical results, Section 6 concludes, and proofs are in the Appendix.

2 Assumptions

The model assumes a simple overlapping generations economy in which a

new generation of agents is born at any time t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}

(Samuelson (1958)). Generation t consists of N agents, indexed by n, who

live for two periods, t and t+ 1. Agent n of generation t has an endowment

at time t and no other sources of income, trades in periods t and t+ 1, and

derives utility from consumption at time t+1. He has constant absolute risk

aversion An so that his preferences are represented by the utility function

−Et exp(−A
nxt+1), where xt+1 is his consumption at time t+ 1.

There are I securities indexed by i = 1, . . . , I with a total of S i shares of

security i. At time t, security i pays a dividend of Di
t, has an ex-dividend

share price of P i
t , and has an illiquidity cost of C

i
t , where D

i
t and C i

t are

random variables.3 The illiquidity cost, C i
t , is modeled simply as the per-

share cost of selling security i. Hence, agents can buy at P i
t but must sell at

P i
t − C i

t . Short-selling is not allowed.

Uncertainty about the illiquidity cost is what generates the liquidity risk

in this model. Specifically, we assume that Di
t and C i

t are autoregressive

3All random variables are defined on a probability space (Ω,F ,P), and all random
variables indexed by t are measurable with respect to the filtration {Ft}, representing the
information commonly available to investors.
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processes of order one, that is:

Dt = D̄ + γ(Dt−1 − D̄) + εt

Ct = C̄ + γ(Ct−1 − C̄) + ηt ,

where D̄, C̄ ∈ RI
+ are positive real vectors, γ ∈ [0, 1], and (εt, ηt) is an inde-

pendent identically distributed normal process with mean E(εt) = E(ηt) = 0

and variance-covariance matrices var(εt) = ΣD, var(ηt) = ΣC , E(εtη
>
t ) =

ΣCD, and var(εt − ηt) = Γ (= Σ
D + ΣC − ΣCD − (ΣCD)>).

Finally, we assume that agents can borrow and lend at a risk-free real

return of rf > 1, which is exogenous. This can be interpreted as an inelastic

world bond market, or a generally available production technology that turns

a unit of consumption at time t into rf units of consumption at time t+ 1.

The assumptions with respect to agents, preferences, and dividends are

strong. These assumptions are made for tractability, and, as we shall see,

they imply natural closed-form results for prices and expected returns. The

main result (Proposition 1) applies more generally, however. It applies with

arbitrary utility functions as long as conditional expected net returns are nor-

mal,4 it applies with arbitrary return distribution and quadratic utility, and

it can be viewed as a result of near-rational behavior (for instance, by using a

Taylor expansion of the utility function). See Huang and Litzenberger (1988),

Markowitz (2000), and Cochrane (2001). Our assumptions allow us, addi-

tionally, to study return predictability caused by illiquidity (Proposition 2)

4The normal returns assumption is an assumption about endogenous variables, which
is used in standard CAPM analysis (for instance, Huang and Litzenberger (1988)). This
assumption is satisfied in the equilibrium of the model of this paper, and may also be
satisfied in larger classes of models.
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and the co-movements of returns and illiquidity (Proposition 3), producing

insights that also seem robust to the specification.

The overlapping-generations model can capture investors’ life-cycle mo-

tives for trade (as in Vayanos (1998), and Constantinides and Donaldson

(2001)), or can be viewed as a way of capturing short investment horizons

(as in De Long, Shleifer, Summers, and Waldmann (1990)) and the large

turnover observed empirically in many markets.

3 Liquidity-Adjusted Capital Asset Pricing

Model

This section shows that, under the stylized assumption of mean-variance

investors, a liquidity-adjusted version of the Capital Asset Pricing Model

(CAPM) applies which is characterized by four betas or covariances.

We are interested in how an asset’s expected (gross) return,

rit =
Di

t + P i
t

P i
t−1

,

depends on its relative illiquidity cost, defined as

cit =
C i
t

P i
t−1

,

on the market return,

rMt =

∑

i S
i(Di

t + P i
t )

∑

i S
iP i

t−1

,
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and on the relative market illiquidity,

cMt =

∑

i S
iC i

t
∑

i S
iP i

t−1

.

To determine equilibrium returns, consider first an economy with the same

agents in which asset i has a dividend ofDi
t−C i

t and no illiquidity cost. In this

imagined economy, standard results imply that the CAPM holds (Markowitz

(1952), Sharpe (1964), Lintner (1965), and Mossin (1966)). We claim that

the equilibrium prices in the original economy with frictions are the same

as those of the imagined economy. This follows from two facts: (i) the net

return on a long position is the same in both economies; (ii) all investors in

the imagined economy hold a long position in the market portfolio, and a

(long or short) position in the risk-free asset. Hence, an investor’s equilibrium

return in the frictionless economy is feasible in the original economy, and is

also optimal, given the more limited investment opportunities.

These arguments show that the CAPM in the imagined frictionless econ-

omy translates into a CAPM in net returns for the original economy with

illiquidity costs. Rewriting the one-beta CAPM in net returns in terms of

gross returns, we get a four-beta liquidity-adjusted CAPM which is the main

testable5 implication of this paper:

5Difficulties in testing this model arise from the fact that it makes predictions concern-
ing conditional moments as is standard in asset pricing. See Hansen and Richard (1987),
Cochrane (2001), and references therein. An unconditional version of (1) applies under
stronger assumptions as discussed in Section 3.1.
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Proposition 1 In the unique linear equilibrium, the conditional expected re-

turn of security i is

Et−1(r
i
t − rf ) = Et−1(c

i
t) + λt−1covt−1(r

i
t, r

M
t ) + λt−1covt−1(c

i
t, c

M
t )

−λt−1covt−1(r
i
t, c

M
t )− λt−1covt−1(c

i
t, r

M
t ), (1)

where λt−1 is the “market price of risk,”

λt−1 =
Et−1(r

M
t − cMt )− rf

vart−1(rMt − cMt )
= APM

t−1, (2)

and A =
(
∑

n
1
An

)−1
is the aggregate risk aversion.

Equation (1) is simple and natural. It states that the required excess return

is the expected relative illiquidity cost, Et−1(c
i
t), (as first found theoretically

and empirically6 by Amihud and Mendelson (1986)) plus four betas or co-

variances that depend on the asset’s payoff and liquidity risks. As in the

standard CAPM, the required return on an asset increases (linearly) with

the covariance between the asset’s return and the market return. This model

yields three additional effects:

First, the return increases with the covariance between the asset’s illiq-

6Empirically, Amihud and Mendelson (1986, 1989) find the required rate of return
on NYSE stocks to increase with the relative bid-ask spread. This result is supported
for amortized spreads for NYSE stocks by Chen and Kan (1996), and for Nasdaq stocks
by Eleswarapu (1997), but is questioned for NYSE stocks by Eleswarapu and Reinganum
(1993), and Chalmers and Kadlec (1998). Gârleanu and Pedersen (2000) find that adverse-
selection costs are priced only to the extent that they render allocations inefficient. The
ability of a market to allocate assets efficiently may be related to market depth, and,
consistent with this view, the required rate of return has been found to decrease with
measures of depth (Brennan and Subrahmanyam (1996) and Amihud (2002)). Easley,
Hvidkjær, and O’Hara (2000) find returns to increase with a measure of the probability
of informed trading.
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uidity and the market illiquidity (covt−1(c
i
t, c

M
t )). This is because investors

want to be compensated for holding a security that becomes illiquid when

the market in general becomes illiquid. The potential empirical significance

of this pricing implication follows from the presence of a time-varying com-

mon factor in liquidity, which is documented by Chordia, Roll, and Sub-

rahmanyam (2000), Hasbrouck and Seppi (2000), and Huberman and Halka

(1999). These papers find that most stocks’ illiquidities are positively re-

lated to market illiquidity, so the required return should be raised by the

commonality-in-liquidity effect.

In this model, the risk premium associated with commonality in liquidity

is caused by the wealth effects of illiquidity. Also, this risk premium would

potentially apply in an economy in which investors can choose which securi-

ties to sell. In such a model, an investor who holds a security that becomes

illiquid (that is, has a high cost cit) can choose not to trade this security and

instead trade other (similar) securities. It is more likely that an investor

can trade other (similar) securities, at low cost, if the liquidity of this asset

does not co-move with the market liquidity. Hence, investors would require

a return premium for assets with positive covariance between individual and

market illiquidity.

The second effect on expected returns is due to covariation between a

security’s return and the market liquidity. We see that covt−1(r
i
t, c

M
t ) affects

required returns negatively because investors pay a premium for an asset with

a high return in times of market illiquidity. Empirical support for this effect

is provided by Pastor and Stambaugh (2001), who find that “the average

return on stocks with high sensitivities to liquidity exceeds that for stocks
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with low sensitivities by 7.5% annually, adjusted for exposures to the market

return as well as size, value, and momentum factors.”

The third effect on required returns is due to covariation, covt−1(c
i
t, r

M
t ),

between a security’s illiquidity and the market return. This effect stems from

investors’ willingness to accept a lower expected return on a security that is

liquid in a down market. When the market declines, the ability to sell easily

is especially valuable. Hence, an investor is willing to accept a discounted

return on stocks with low illiquidity costs in states of poor market return.

In this model, the conditional CAPM holds for net returns, that is, returns

net of illiquidity costs. The analysis is, however, focused on gross returns.

The focus on gross returns is motivated by several considerations. First, most

empirical work uses some measure of gross returns. Second, illiquidity costs

are hard to measure empirically, and are measured in various different ways.

Third, the model shows interesting pricing implications of co-movements in

individual and market gross return and liquidity. Empirical work has doc-

umented that some of these interactions are significant (Chordia, Roll, and

Subrahmanyam (2000), Hasbrouck and Seppi (2000), and Huberman and

Halka (1999)) and priced (Amihud and Mendelson (1986), Amihud (2002),

and Pastor and Stambaugh (2001)). Fourth, a pricing relation for gross re-

turns and illiquidity, which is similar in spirit to (1), may hold in richer

models in which net returns are not sufficient state variables. As argued

above, some additional liquidity effects suggest risk premia of the same sign

for the covariance terms in (1). These additional liquidity effects also suggest

that the size of the risk premia need not be identical across the covariance

terms. To accommodate the possibility of a richer liquidity framework, we

11



consider the generalized relation:

Et−1(r
i
t − rf ) = αt−1 + λ0t−1Et−1(c

i
t) + λ1t−1covt−1(r

i
t, r

M
t ) (3)

+λ2t−1covt−1(c
i
t, c

M
t )− λ3t−1covt−1(r

i
t, c

M
t )− λ4t−1covt−1(c

i
t, r

M
t ).

Here, λ0 has been studied by Amihud and Mendelson (1986) and others (see

Footnote 6), there is a large literature that studies λ1 (see, for instance,

Cochrane (2001)), and λ3 is examined by Pastor and Stambaugh (2001). We

are not aware of any empirical work that considers all these interactions.

Within this framework, one can test the hypotheses that λ1 = λ2 = λ3 =

λ4 = λ and α = 0.

3.1 An Unconditional Liquidity-Adjusted CAPM

To estimate the liquidity-adjusted CAPM, we derive an unconditional ver-

sion. An unconditional result obtains, for instance, under the assumption

of independence over time of dividends and illiquidity costs. Empirically,

however, illiquidity and, to some extent, returns are persistent. Therefore,

we rely instead on the following two considerations.

First, we make the simplifying assumption that the market prices of risk,

α and λ0, . . . , λ4, are constant over time. To justify this assumption, we note

that the possible time-variation of these parameters is driven by constant

absolute risk aversion in our model.7 With constant relative risk aversion,

however, the market price of risk is approximately constant.8 See Friend and

7Constant market prices of risk means that the expected net return on the market is
constant. The expected gross return, however, is time-varying because of the time-varying
illiquidity.

8The (market wide) relative risk aversion could, of course, be time-varying because of
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Blume (1975).

Second, we use the fact that for any random variables X and Y , it holds

that

E(covt(X,Y )) = cov(X −Et(X), Y ) = cov(X −Et(X), Y −Et(Y )). (4)

Using the assumption of constant market prices of risk and the property

(4) of covariances, we get the relation:

E(rit − rft ) = α + λ0E(cit) + λ1β1i + λ2β2i − λ3β3i − λ4β4i , (5)

where

β1i = cov(rit, r
M
t − Et−1(r

M
t )) (6)

β2i = cov(cit − Et−1(c
i
t), c

M
t − Et−1(c

M
t )) (7)

β3i = cov(rit, c
M
t − Et−1(c

M
t )) (8)

β4i = cov(cit − Et−1(c
i
t), r

M
t − Et−1(r

M
t )) . (9)

4 Implications of Persistence of Liquidity

This section shows that persistence of liquidity implies that liquidity predicts

future returns and co-moves with contemporaneous returns.

Empirically, liquidity is time-varying and persistent (which means that

γ > 0).9 This model shows that persistent liquidity implies that returns are

habit formation, for instance. In order to keep the model relatively simple, we do not try
to capture such effects.

9See Amihud (2002), Chordia, Roll, and Subrahmanyam (2000, 2001), Hasbrouck and
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predictable. Intuitively, high illiquidity today predicts high expected illiquid-

ity next period, implying a high required return.

Proposition 2 Suppose that γ > 0, and that q ∈ RI is a portfolio10 with

γDq
t−1+(1−γ)E(D

q
t+P

q
t

∣

∣ Dq
t−1 = D̄q, Cq

t−1 = C̄q) > 0. Then, the conditional

expected return increases with illiquidity,

∂

∂Cq
t−1

Et−1(r
q
t − rf ) > 0. (10)

Proposition 2 relies on a mild technical condition, which is satisfied, for in-

stance, for any portfolio with positive current and mean dividend and positive

mean price. The proposition states that the conditional expected return de-

pend positively on the current illiquidity cost, that is, the current liquidity

predicts the return.

Jones (2001) finds empirically that the expected annual stock market

return increases with the previous year’s bid-ask spread and decreases with

the previous year’s turnover. Amihud (2002) finds that illiquidity predicts

excess return both for the market and for size-based portfolios.

Predictability of liquidity further implies a negative conditional covari-

ance between contemporaneous returns and illiquidity. Naturally, when illiq-

uidity is high, the required return is high also, which depresses the current

price, leading to a low return. This intuition applies as long as liquidity is

persistent (γ > 0) and innovations in dividends and illiquidity are not too

correlated (q>ΣCDq low for a portfolio q) as is formalized in the following

Seppi (2000), Huberman and Halka (1999), Jones (2001), and Pastor and Stambaugh
(2001).

10For any q ∈ RI , we use the obvious notation D
q
t = q>Dt, r

q
t =

∑

i qi(Di
t+P i

t )
∑

i qiP i
t−1

and so
on.
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proposition.

Proposition 3 Suppose q ∈ RI is a portfolio such that γ > rf q
>ΣCDq

q>ΣCq
. Then,

covt−1(c
q
t , r

q
t ) < 0.

Consistent with this result, Chordia, Roll, and Subrahmanyam (2001), Jones

(2001), and Pastor and Stambaugh (2001) find a negative relation between

the market return and measures of market illiquidity, Amihud (2002) finds a

negative relation between the return on size portfolios and their correspond-

ing unexpected illiquidity, and Amihud, Mendelson, and Wood (1990) argue

that the 1987 crash was in part due to an increase in (perceived) market

illiquidity.

5 Empirical Results

In this section, we estimate and test the liquidity-adjusted CAPM as specified

in Equation (5). We do this in four steps:

(i) We estimate, in each month of our sample, a measure of illiquidity, c,

for each individual security. (Section 5.1.)

(ii) We form a “market portfolio” and sets of 25 test portfolios sorted

based on illiquidity and size, respectively. For each portfolio and each month,

we compute its return and illiquidity. (Section 5.2.)

(iii) For the market portfolio as well as the test portfolios, we estimate

the innovations in illiquidity, cit − Et−1(c
i
t). (Section 5.3.)

(iv) Using these illiquidity innovations and the portfolios’ returns, we

estimate their liquidity betas. Finally, we consider the empirical fit of the

15



(unconditional) liquidity-adjusted CAPM by running cross-sectional regres-

sions based on the empirical methodology of Fama and MacBeth (1973). To

check the robustness of our results, we do the analysis with a number of

different specifications. (Section 5.4.)

5.1 The Illiquidity Measure

Liquidity is (unfortunately) not an observable variable. There exist, how-

ever, many proxies for liquidity. Some proxies, such as the bid-ask spread,

are based on market microstructure data that is available for less than a

decade. We want a longer time series in order to study the effect on expected

returns. Therefore, we follow Amihud (2002) in estimating illiquidity using

daily CRSP data only. In particular, Amihud (2002) defines the illiquidity

of stock i in month t as

ILLIQ i
t =

1

Di
t

Di
t

∑

d=1

|Ri
td|

V i
td

, (11)

where Ri
td and V i

td are, respectively, the return and dollar volume on day d

in month t, and Di
t is the number of days in month t.

The intuition behind this illiquidity measure is as follows. A stock is

illiquid — that is, has a high value of ILLIQ i
t — if the stock’s price moves

a lot in response to little volume. Amihud (2002) shows that this measure

is positively related to measures of price impact and fixed trading costs and

gives further justification.

Admittedly, this is a noisy measure of illiquidity, which makes it harder

for us to find an empirical connection between returns and illiquidity. This
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problem is alleviated in part, however, by considering portfolios rather than

individual stocks.

5.2 Portfolios

The data for our empirical analysis is obtained from CRSP (Center for Re-

search in Security Prices, University of Chicago). Specifically, we employ

daily return and volume data from July 1st, 1962 till December 31st, 1999

for all common shares (CRSP sharecodes 10 and 11) listed on NYSE and

AMEX.11

We form a market portfolio for each month t during this sample period

based on stocks with price, at beginning of month, between 5 and 1000, and

with at least 15 days of return and volume data in that month.

We form 25 illiquidity portfolios for each year y during the period 1964 to

1999 by sorting stocks with price, at beginning of year, between 5 and 1000,

and return and volume data in year y− 1 for at least 150 days. We compute

the annual illiquidity for each eligible stock as the average over the entire

year y − 1 of daily illiquidities (computed analogously to monthly illiquidity

calculation in (11)). The eligible stocks are then sorted into 25 portfolios,

p ∈ {1, 2, . . . , 25}, based on their year y − 1 illiquidities.

We also form 25 size portfolios, p ∈ {1, 2, . . . , 25}, for each year y during

the period 1964 to 1999 by ranking the eligible stocks (as above for illiquidity

Portfolios) based on their market capitalization at the beginning of year y.

For each portfolio p (including the market portfolio), we compute its

11Since volume data in CRSP for Nasdaq stocks is available only from 1982 and includes
inter-dealer trades, we employ only NYSE and AMEX stocks for sake of consistency in
the illiquidity measure.
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return in month t, as

rpt =
∑

i in p

wip
t r

i
t, (12)

where the sum is taken over the stocks included in portfolio p in month t,

and where wip
t are either equal weights or value-based weights, depending on

the specification.12

Similarly, we compute the illiquidity of a portfolio, p, as

ILLIQp
t =

∑

i in p

wip
t ILLIQ i

t, (13)

where, as above, wip
t are either equal weights or value-based weights, depend-

ing on the specification.

The model’s results are phrased in terms of value-weighted returns (and

value-weighted illiquidity). Several studies, however, focus on equal-weighted

return and illiquidity measures, for instance Amihud (2002) and Chordia,

Roll, and Subrahmanyam (2000). Further, computing the market return and

illiquidity as equal-weighted averages is a way of compensating for the over-

representation in our sample of large liquid securities, as compared to the

aggregate wealth portfolio in the economy. Hence, we estimate and test our

model with equally weighted average for the market portfolio and both equal

12The returns, ri
t, are adjusted for stock delisting to avoid survivorship bias, following

Shumway (1997). In particular, the last return used is either the last return available on
CRSP, or the delisting return, if available. While a last return for the stock of −100% is
naturally included in the study, a return of −30% is assigned if the deletion reason is coded
in CRSP as 500 (reason unavailable), 520 (went to OTC), 551–573 and 580 (various rea-
sons), 574 (bankruptcy) and 584 (does not meet exchange financial guidelines). Shumway
(1997) obtains that −30% is the average delisting return, examining the OTC returns of
delisted stocks. Amihud (2002) employs an identical survivorship bias correction.
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and value weighted averages for the test portfolios based on illiquidity and

size sorts.

5.3 Innovations in Illiquidity

Illiquidity is persistent. The auto-correlation of the market illiquidity, for

instance, is 0.942. Therefore, we focus on the innovations, cpt − Et−1(c
p
t ), in

illiquidity when computing liquidity betas (as explained in Section 3.1).

Another problem with ILLIQ is that it is measured in “percent per dol-

lar,” whereas the model in specified in terms of “dollar cost per dollar in-

vested.” To adjust for this, we scale the illiquidity measure by the market

index, PM
t−1, in the previous period. Specifically, P

M
t−1 is the ratio of the capi-

talizations of the market portfolio at the end of month t−1 and of the market

portfolio at the end of July 1962. Hence, to predict illiquidity, we run the

following regression for each portfolio as well as for the market:

ILLIQp
t P

M
t−1 = a0 + a1ILLIQp

t−1 P
M
t−1 + a2ILLIQp

t−2 P
M
t−1 + ut . (14)

We use the same date for the market index (PM
t−1) in all terms of the regression

in order to make sure that we are measuring innovations only in illiquidity,

not changes in PM . The residual, u, of this regression is interpreted as the

standardized liquidity innovation, cpt − Et−1(c
p
t ), that is,

cpt − Et−1(c
p
t ) = ut . (15)

Figure 1 shows the innovations in (equal-weighted) market illiquidity,

cMt − Et−1(c
M
t ), scaled to have unit standard deviation. These innovations
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appear to be serially uncorrelated and are close to iid. The measured inno-

vations in market illiquidity are high during periods that anecdotally were

characterized by liquidity crisis, for instance, in 11/1973, 10/1987, the oil

crisis and the stock market crash, respectively. Also, there is a string of

relatively large shocks in 6–10/1998, the period in which Russia defaulted

and Long-Term Capital Management suffered large losses. The correlation

between this measure of innovations in market illiquidity and the measure

of innovations in liquidity used by Pastor and Stambaugh (2001) is −0.33.13

(The negative sign is due to the fact that Pastor and Stambaugh (2001) mea-

sure liquidity, whereas we follow Amihud (2002) in considering il liquidity.)
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Figure 1: Standardized innovations in market illiquidity from 1962-1999.

13We thank Pastor and Stambaugh for providing their data on innovations in market
liquidity.
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5.4 How Liquidity Risk Affects Returns

In this section, we estimate the liquidity-adjusted CAPM (5) using the port-

folios based on the sorting by illiquidity. The properties of these portfolios

are reported in Table 1. The four betas or the covariances, β1i, β2i, β3i and

β4i, for each portfolio are computed as per Equation (6) using the entire

time-series, i.e., all monthly return and illiquidity observations for the port-

folio and the market portfolio from the beginning of year 1964 till end of year

1999. Similarly, average illiquidity E(c) for a portfolio is computed using the

entire time-series of monthly illiquidity observations for the portfolio.

We see from Table 1 that the sort on past illiquidity successfully produces

portfolios with monotonically increasing average illiquidity from portfolio 1

through portfolio 25. We further see that stocks that are illiquid — that is,

have high values of E(c) — also tend to have a small market capitalization

and a low turnover.

Further, illiquid stocks tend to have high liquidity risk : they have large

values of β2p and large negative values of β3p and β4p. This is an interesting

result on its own. It says that a stock, which is illiquid in absolute terms

(c), also tends to have a lot of commonality in liquidity with the market

(cov(ci, cM)), a lot of return sensitivity to market liquidity (cov(ri, cM)), and

a lot of liquidity sensitivity to market returns (cov(ci, rM)).

This result is confirmed by considering the correlation among the betas,

reported in Table 2. This correlation of betas is not just a property of the

liquidity-sorted portfolios, it also exists on an individual stock level, as is

seen in Table 3. While this correlation is theoretically intriguing, it makes

it hard to empirically distinguish the separate effects of illiquidity and the
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individual liquidity betas, as discussed further below.14

Using the portfolios’ betas and the illiquidity, we estimate our model (5),

and subsets of its coefficients, by running cross-sectional regression using the

method of Fama and MacBeth (1973). To be precise, in each month over the

period 1964–1999, we run a cross-sectional regression of the excess returns

on the 25 test portfolios with explanatory variables being the portfolio char-

acteristics, and the estimated coefficients are averaged over all months. We

consider different specifications by employing combinations of these charac-

teristics.

The results are reported in Table 4. We see that the λ’s, i.e., the respec-

tive market prices of liquidity risks have signs that are consistent with the

model’s prediction. In particular, a security’s required return is increasing in

its level of β2 and decreasing in its level of β3 and β4. The market prices of

liquidity risks are significant at conventional levels in univariate regressions.

The statistical significance is reduced as more coefficients are estimated si-

multaneously, but some betas remain significant. For instance, the coefficient

related to β4 is significant whenever it is included. This lack of ability to iden-

tify all the coefficients jointly may be due, at least in part, to the co-linearity

of the different kinds of illiquidity risk. Of course, we must also entertain the

possibility that not all the risk factors are empirically relevant.

The effect of liquidity risk on required returns seems economically impor-

14We have not been able to construct portfolios which allow us to better identify the
separate beta effects. For instance, we have considered portfolios based on predicted
liquidity betas, similar to the approach taken by Pastor and Stambaugh (2001). These
results are not reported as they produce similar results to those from the illiquidity and
size portfolios. Using these portfolios does not, however, improve statistical power. We
attribute this, in part, to the difficulty of predicting liquidity betas, and, in part, to the
co-linearity of the liquidity betas.
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tant. To get a perspective on the magnitude of the effect, we consider first the

univariate coefficients from Table 4. The difference in annualized expected

return between portfolio 1 and 25 that can be attributed to a difference in

β2, i.e., in the covariance, covt−1(c
i
t, c

M
t ), between the portfolio illiquidity and

the market illiquidity, is

λ2(β2,p25 − β2,p1) · 12 = 8.2%.

Similarly, the annualized return difference stemming from the difference in

β3, i.e., in the covariance, covt−1(r
i
t, c

M
t ), between the portfolio return and

the market illiquidity, is

λ3(β3,p25 − β3,p1) · 12 = 6.2%,

and the effect of β4, i.e., in the covariance, covt−1(r
i
t, c

M
t ), between the secu-

rity’s return and the market illiquidity, is

λ4(β4,p25 − β4,p1) · 12 = 8.8%.

Of course, we cannot believe all the univariate effects at the same time.

The multivariate regression in Table 4 shows that, controlling for β3 and

β4, the effect of β2 becomes insignificant. The effects of β3 and β4 remain,

however, economically significant, with annualized effects of 2.7% and 7.2%,

respectively, a total effect of 9.9%.

Further, as predicted by the model and consistent with the findings of

Amihud (2002), absolute illiquidity E(c) contributes a positive and significant
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risk premium in the univariate specification. Its effect, however, becomes

insignificant when it is included in the specification along with β4.

To test the robustness of our results, we estimate the model with a number

of different specifications. We control for size and volatility (Table 5), we

consider annual data (Table 6), we use monthly data excluding the month

of January (Table 7), we consider the sub-period 1964–1981 (Table 8), and

the sub-period 1982–1999 (Table 9), and finally value-weighted portfolios

(Table 10).15 We see that the signs of the beta coefficients are stable across

all specifications of the model. We find some, but not all, beta coefficients

that are significant at conventional levels in almost all specifications.

To further test the robustness of results, we re-estimate our model with

size-based portfolios. Table 11 shows the properties of equal-weighted size-

based portfolios confirming that small sized stocks are illiquid (in absolute

terms as measured by E(c)) and also have high liquidity risk (as measured

by the three betas β2p, β3p and β4p). Table 12 shows the results of Fama-

MacBeth regressions with equal-weighted portfolios and Table 13 shows the

results with value-weighted portfolios. Again, the results are generally consis-

tent with the model, although weaker. With the size portfolios, the strongest

effect is that related to β3.

15The subsets of the model that we estimate depend on the specification. This is because
of the severity of the co-linearity problem depends on the specification. For example, in
Table 4, β1 and β3 are not employed together since their correlation across 25 equally
weighted illiquidity portfolios is as high as −0.98, and in addition, in Table 10, β2 and
β4 are not employed together since their correlation across 25 value weighted illiquidity
portfolios is greater than 0.95 (not reported).
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6 Conclusion

This paper considers the effect of liquidity risk. The paper develops a simple

pricing formula that shows that investors should worry about a security’s

performance and tradability both in market downturns and when liquidity

“dries up.” Said differently, the required return of a security i is increas-

ing in the covariance, covt−1(c
i
t, c

M
t ), between its illiquidity and the market

illiquidity, and decreasing in the covariance, covt−1(r
i
t, c

M
t ), between the se-

curity’s return and the market illiquidity, and decreasing in the covariance,

covt−1(c
i
t, r

M
t ), between its illiquidity and market returns.

The model also shows why high illiquidity predicts high future returns,

and why contemporaneous liquidity and returns co-move.

Hence, the model helps explain the existing empirical evidence related to

liquidity risk. Further, its novel predictions are consistent with our empirical

findings. In particular, we find, in a variety of specifications, that certain,

though not all, liquidity risks are priced. To summarize, over the period

1963-1999, the three covariances described above contribute on average a

difference in risk premium between stocks with high expected illiquidity and

low expected illiquidity of about 9.9% annually.

While the model gives clear predictions that seem to have some bearing in

the data, it is decidedly simplistic. The model and the empirical results are

suggestive of further theoretical and empirical work. In particular, it would

be of interest to answer questions such as: What explains the time-variation

in liquidity? Why are stocks that are illiquid in absolute terms also more

sensitive to liquidity risk, in the sense of high values of all three liquidity

betas? How does dynamic trading affect the pricing of liquidity risk?
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A Appendix

Proof of Proposition 1:

We first solve the investment problem of any investor n at time t. We assume,

and later confirm, that the price at time t+ 1 is normally distributed condi-

tional on the time t information. Hence, the investor’s problem is to choose

optimally the number of shares, yn = (yn,1, . . . , yn,I), to purchase according

to

max
yn∈RI

+

(

Et(W
n
t+1)−

1

2
An vart(W

n
t+1)

)

,

where

W n
t+1 = (Pt+1 +Dt+1 − Ct+1)

>yn + rf (ent − P>t y
n),

and ent is this agent’s endowment. If we disregard the no-short-sale constraint,

the solution is

yn =
1

An
(vart(Pt+1 +Dt+1 − Ct+1))

−1 (Et(Pt+1 +Dt+1 − Ct+1)− rfPt
)

.

We shortly verify that, in equilibrium, this solution does not entail short

selling. In equilibrium,
∑

n y
n = S, so equilibrium is characterized by the

condition that

Pt = Et(Pt+1 +Dt+1 − Ct+1)− A (vart(Pt+1 +Dt+1 − Ct+1)S) ,
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where A =
(
∑

n
1
An

)−1
. The unique stationary linear equilibrium is

Pt =
1

rf − 1

(

rf (1− γ)

rf − γ
(D̄ − C̄)− A

(

rf

rf − γ

)2

ΓS

)

(A.1)

+
γ

rf − γ
(Dt − Ct),

where S = (S1, . . . , SI) is the total supply of shares.

With this price, conditional expected net returns are normally distributed,

and any investor n holds a fraction A/An > 0 of the market portfolio S > 0 so

he is not short selling any securities. Therefore, our assumptions are satisfied

in equilibrium.

Finally, since investors have mean-variance preferences, the conditional

CAPM holds for net returns. See, for instance, Huang and Litzenberger

(1988). Rewriting in terms of net returns yields the result stated in the

proposition. ¤

Proof of Proposition 2:

The conditional expected return on a portfolio q is computed using (A.1):

Et−1(r
q
t ) = Et−1

(

B + rfDq
t − γCq

t

B + γDq
t−1 − γCq

t−1

)

=
B + rf (1− γ)D̄q + rfγDq

t−1 − γ(1− γ)C̄q − γ2Cq
t−1

B + γDq
t−1 − γCq

t−1

,

where,

B =
rf − γ

rf − 1
q>

(

rf (1− γ)

rf − γ
(D̄ − C̄)− A

(

rf

rf − γ

)2

ΓS

)

.
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The conditional expected return depends on Cq
t−1 in the following way:

∂

∂Cq
t−1

Et−1(r
q
t − rf )

=
γ

(rf − γ)2P 2t−1

[

− γ
(

B + γDq
t−1 − γCq

t−1

)

+
(

B + rf (1− γ)D̄q + rfγDq
t−1 − γ(1− γ)C̄q − γ2Cq

t−1

)

]

=
γ

(rf − γ)P 2t−1

[

γDq
t−1 + (1− γ)E(Dq

t + P q
t

∣

∣ Dq
t−1 = D̄q, Cq

t−1 = C̄q)

]

.

This partial derivative is greater than 0 under the conditions given in the

proposition. ¤

Proof of Proposition 3:

The conditional covariance between illiquidity and return for a portfolio q is:

covt−1(c
q
t , r

q
t ) =

1

(P q
t−1)

2
covt−1(C

q
t , P

q
t +Dq

t )

=
1

(P q
t−1)

2(rf − γ)
covt−1(C

q
t , r

fDq
t − γCq

t )

=
1

(P q
t−1)

2(rf − γ)
(rf q>ΣCDq − γ q>ΣCq),

which yields the proposition. ¤
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Table 1: Properties of illiquidity portfolios. This table reports the proper-

ties of the odd–numbered portfolios from the 25 equally-weighted illiquidity port-

folios formed for each year y during the period 1964 to 1999. The portfolios are

formed by sorting on their annual illiquidities the common shares listed on NYSE

and AMEX with price, at beginning of year, between 5 and 1000, and return and

volume data in year y − 1 for at least 150 days. The annual illiquidity for each

eligible stock is the average over the entire year y − 1 of daily illiquidities (com-

puted analogously to monthly illiquidity calculation in Equation (11)). The four

betas or the covariances, β1p, β2p, β3p and β4p, are computed for each portfo-

lio as per Equation (6) using the entire time-series, i.e., all monthly return and

illiquidity observations for the portfolio and the market portfolio over the sample

period. The monthly innovations in portfolio illiquidity and market illiquidity are

computed using an AR(2) specification for the standardized illiquidity series as

described in Section 5.3. The monthly innovations in market portfolio return are

computed using an AR(2) specification for the raw (not standardized) market re-

turn series that also employs available market characteristics at the beginning of

the month. The average illiquidity E(cp), the average return, E(rp), the turnover,

and the market capitalization (size), are computed analogously for each portfolio

as averages of the respective monthly characteristics over the entire sample period.

Finally, the standard deviation of returns for a portfolio, σ(rp), is the average of

the standard deviation of daily returns for the portfolio’s constituent stocks com-

puted each month. The characteristics have been scaled as indicated in the table

for ease of reporting.

β1p β2p β3p β4p E(rp) σ(rp) E(cp) turnover size
(* 103) (* 1015) (* 109) (* 109) (%) (%) (* 106) (ml $)

1 1.99 0.02 −0.96 −0.01 12.30 1.61 0.01 2.37 972.05
3 2.28 0.02 −1.16 −0.03 11.77 1.72 0.04 2.55 179.10
5 2.54 0.04 −1.35 −0.08 13.84 1.85 0.08 2.60 96.29
7 2.69 0.04 −1.45 −0.10 14.53 1.99 0.13 2.68 59.07
9 2.78 0.14 −1.53 −0.23 16.25 2.04 0.23 2.54 38.44
11 2.88 0.22 −1.57 −0.40 16.00 2.13 0.36 2.58 26.32
13 2.89 1.36 −1.63 0.59 16.15 2.16 0.57 2.37 18.96
15 3.00 0.67 −1.65 −1.03 17.75 2.24 0.90 2.17 14.01
17 2.95 0.69 −1.73 −1.22 17.71 2.29 1.45 2.02 10.04
19 2.95 1.08 −1.79 −2.29 18.26 2.37 2.40 1.86 7.29
21 2.98 2.30 −1.78 −3.39 20.97 2.43 4.32 1.71 5.02
23 2.99 4.29 −1.79 −5.29 21.91 2.60 8.88 1.56 3.17
25 2.97 12.14 −1.73 −10.47 24.39 3.32 42.83 1.40 1.32



Table 2: Beta correlations for illiquidity portfolios. This table reports

the correlations of the four betas or the covariances, β1p, β2p, β3p and β4p, for the

25 equally-weighted illiquidity portfolios. The portfolios are formed for each year y

during the period 1964 to 1999 by sorting on their annual illiquidities the common

shares listed on NYSE and AMEX with price, at beginning of year, between 5

and 1000, and return and volume data in year y − 1 for at least 150 days. The

annual illiquidity for each eligible stock is the average over the entire year y − 1

of daily illiquidities (computed analogously to monthly illiquidity calculation in

Equation (11)). The four betas are computed for each portfolio as per Equation (6)

using the entire time-series, i.e., all monthly return and illiquidity observations

for the portfolio and the market portfolio over the sample period. The monthly

innovations in portfolio illiquidity and market illiquidity are computed using an

AR(2) specification for the standardized illiquidity series as described in Section

5.3. The monthly innovations in market portfolio return are computed using an

AR(2) specification for the raw (not standardized) market return series that also

employs available market characteristics at the beginning of the month.

β1p β2p β3p β4p

β1p 1.000 0.426 −0.979 −0.475
β2p 1.000 −0.475 −0.879
β3p 1.000 0.564
β4p 1.000



Table 3: Beta correlations for individual stocks. This table reports the

correlations of the four betas or the covariances, β1i, β2i, β3i and β4i, for the

common shares listed on NYSE and AMEX during the period 1964–1999. The

correlations are computed annually for all eligible stocks in a year and averaged

over the sample period. A stock is included in year y if it has price, at beginning

of year, between 5 and 1000, and return and volume data in year y− 1 for at least

150 days. The four betas are computed for each stock as per Equation (6) using

the entire time-series, i.e., all monthly return and illiquidity observations for the

stock and the market portfolio over the sample period. The monthly innovations in

market illiquidity are computed using an AR(2) specification for the standardized

illiquidity series as described in Section 5.3. The innovations in stock illiquidity

are computed using a similar AR(2) specification as for the market illiquidity but

with AR(2) coefficients that are estimated for the market illiquidity. The monthly

innovations in market portfolio return are computed using an AR(2) specification

for the raw (not standardized) market return series that also employs available

market characteristics at the beginning of the month.

β1i β2i β3i β4i

β1i 1.000 0.093 −0.640 −0.114
β2i 1.000 −0.145 −0.634
β3i 1.000 0.134
β4i 1.000



Table 4: Return and liquidity risk. This table reports the results of the

Fama and Macbeth (1973) type regressions employed to test the liquidity-adjusted

CAPM specified in Equation (5). It presents the means of the estimated coeffi-

cients from the monthly cross-sectional regressions over the period 1964–1999 of

portfolio excess returns (%) for the 25 equally-weighted illiquidity portfolios with

explanatory variables being the portfolio characteristics: the four betas or the co-

variances, β1p, β2p, β3p and β4p, and the average portfolio illiquidity, E(cp). For

ease of reporting the estimated coefficients, these characteristics are multiplied by

103, 1015, 109, 109 and 106, respectively. The t-statistics reported in the paren-

theses are estimated using the standard Fama and Macbeth (1973) method. The

reported R2 for a specification is the average of the R2’s from the monthly cross-

sectional regressions for that specification. The 25 illiquidity portfolios are formed

for each year y during the period 1964 to 1999 by sorting on their annual illiq-

uidities the common shares listed on NYSE and AMEX with price, at beginning

of year, between 5 and 1000, and return and volume data in year y − 1 for at

least 150 days. The annual illiquidity for each eligible stock is the average over the

entire year y− 1 of daily illiquidities (computed analogously to monthly illiquidity

calculation in Equation (11)). The four betas are computed for each portfolio as

per Equation (6) using the entire time-series, i.e., all monthly return and illiquidity

observations for the portfolio and the market portfolio over the sample period.

constant β1p β2p β3p β4p E(cp) R2

1 −0.661 0.495 0.270
(−1.350) (2.560)

2 0.615 0.056 0.190
(2.420) (3.660)

3 −0.324 −0.670 0.290
(−0.870) (−2.700)

4 0.588 −0.070 0.230
(2.320) (−3.720)

5 −0.015 0.041 −0.420 0.380
(−0.050) (3.680) (−1.910)

6 0.139 −0.310 −0.056 0.410
(0.440) (−1.400) (−3.810)

7 0.137 0.003 −0.310 −0.053 0.440
(0.430) (0.280) (−1.400) (−3.200)

8 0.648 0.018 0.160
(2.530) (3.850)

9 −0.045 0.018 −0.450 0.009 0.430
(−0.140) (1.580) (−2.020) (2.320)

10 0.152 −0.300 −0.059 −0.001 0.460
(0.490) (−1.340) (−2.600) (−0.250)

11 0.157 0.004 −0.290 −0.057 −0.002 0.490
(0.510) (0.450) (−1.330) (−2.540) (−0.370)



Table 5: Return and liquidity risk: with control variables. This table

reports the results of the Fama and Macbeth (1973) type regressions employed to

test the liquidity-adjusted CAPM specified in Equation (5) but augmented with

control variables ln(size) and σ(rp) for each portfolio. It presents the means of the

estimated coefficients from the monthly cross-sectional regressions over the period

1964–1999 of portfolio excess returns (%) for the 25 equally-weighted illiquidity

portfolios with explanatory variables being the portfolio characteristics: the four

betas or the covariances, β1p, β2p, β3p and β4p, the average portfolio illiquidity,

E(cp), the natural log of the portfolio’s market capitalization at the beginning of

the year, ln(size), and the monthly average of the standard deviation of returns

for the portfolio over the previous year, σ(rp). For ease of reporting the estimated

coefficients, these characteristics are multiplied by 103, 1015, 109, 109, 106, 10−6

(size) and 102, respectively. The t-statistics reported in the parentheses are esti-

mated using the standard Fama and Macbeth (1973) method. The reported R2

for a specification is the average of the R2’s from the monthly cross-sectional re-

gressions for that specification. The 25 illiquidity portfolios are formed for each

year y during the period 1964 to 1999 by sorting on their annual illiquidities the

common shares listed on NYSE and AMEX with price, at beginning of year, be-

tween 5 and 1000, and return and volume data in year y− 1 for at least 150 days.

The annual illiquidity for each eligible stock is the average over the entire year

y − 1 of daily illiquidities (computed analogously to monthly illiquidity calcula-

tion in Equation (11)). The four betas are computed for each portfolio as per

Equation (6) using the entire time-series, i.e., all monthly return and illiquidity

observations for the portfolio and the market portfolio over the sample period.

constant β1p β2p β3p β4p E(cp) ln(size) σ(rp) R2

1 0.560 −0.075 0.135 0.370
(1.240) (−1.820) (0.960)

2 2.626 −0.504 −0.200 −0.015 0.450
(3.170) (−2.130) (−3.310) (−0.110)

3 0.807 0.014 −0.084 0.019 0.430
(1.920) (1.230) (−2.020) (0.130)

4 2.440 0.720 −0.216 −0.018 0.430
(3.170) (2.040) (−3.280) (−0.130)

5 1.240 −0.058 −0.096 −0.237 0.450
(3.150) (−3.030) (−2.290) (−1.510)

6 2.262 0.004 0.640 −0.205 −0.037 0.470
(2.870) (0.350) (1.870) (−3.110) (−0.250)

7 1.451 0.150 −0.053 −0.119 −0.193 0.480
(2.060) (0.510) (−2.680) (−2.010) (−1.220)

8 1.542 −0.003 0.200 −0.054 −0.130 −0.203 0.520
(2.060) (−0.270) (0.640) (−2.670) (−2.090) (−1.230)

9 1.287 0.009 −0.111 −0.145 0.440
(3.000) (1.770) (−2.740) (−0.780)

10 2.026 0.001 0.380 0.007 −0.177 −0.141 0.510
(2.680) (0.100) (1.110) (1.200) (−2.700) (−0.750)

11 1.459 0.130 −0.052 0.001 −0.120 −0.188 0.530
(2.100) (0.410) (−2.220) (0.170) (−2.000) (−1.040)

12 1.496 −0.002 0.150 −0.053 0.002 −0.126 −0.205 0.560
(2.030) (−0.170) (0.450) (−2.320) (0.250) (−2.020) (−1.110)



Table 6: Return and liquidity risk: annual data. This table reports the

results of the Fama and Macbeth (1973) type regressions employed to test the

liquidity-adjusted CAPM specified in Equation (5). It presents the means of the

estimated coefficients from the annual cross-sectional regressions over the period

1964–1999 of portfolio excess returns (%) for the 25 equally-weighted illiquidity

portfolios with explanatory variables being the portfolio characteristics: the four

betas or the covariances, β1p, β2p, β3p and β4p, and the average portfolio illiquidity,

E(cp). For ease of reporting the estimated coefficients, these characteristics are

multiplied by 103, 1015, 109, 109 and 106, respectively. The t-statistics reported

in the parentheses are estimated using the standard Fama and Macbeth (1973)

method. The reported R2 for a specification is the average of the R2’s from

the annual cross-sectional regressions for that specification. The 25 illiquidity

portfolios are formed for each year y during the period 1964 to 1999 by sorting

on their annual illiquidities the common shares listed on NYSE and AMEX with

price, at beginning of year, between 5 and 1000, and return and volume data in

year y − 1 for at least 150 days. The annual illiquidity for each eligible stock is

the average over the entire year y − 1 of daily illiquidities (computed analogously

to monthly illiquidity calculation in Equation (11)). The four betas are computed

for each portfolio as per Equation (6) using the entire time-series, i.e., all monthly

return and illiquidity observations for the portfolio and the market portfolio over

the sample period.

constant β1p β2p β3p β4p E(cp) R2

1 −14.272 8.847 0.360
(−1.842) (2.490)

2 8.702 0.912 0.210
(2.477) (3.320)

3 −8.163 −11.860 0.380
(−1.545) (−2.600)

4 8.226 −1.167 0.270
(2.396) (−3.390)

5 −3.566 0.604 −8.230 0.470
(−0.792) (3.640) (−2.080)

6 −1.006 −6.280 −0.860 0.490
(−0.236) (−1.690) (−3.940)

7 −0.981 −0.043 −6.270 −0.902 0.520
(−0.228) (−0.310) (−1.680) (−3.700)

8 9.266 0.285 0.170
(2.567) (3.390)

9 −4.019 0.261 −8.610 0.128 0.520
(−0.877) (1.440) (−2.130) (1.920)

10 −0.340 −5.760 −1.064 −0.061 0.560
(−0.076) (−1.500) (−3.090) (−0.760)

11 −0.315 0.022 −5.740 −1.054 −0.065 0.590
(−0.071) (0.140) (−1.490) (−3.170) (−0.710)



Table 7: Return and liquidity risk: without January. This table reports

the results of the Fama and Macbeth (1973) type regressions employed to test the

liquidity-adjusted CAPM specified in Equation (5). It presents the means of the

estimated coefficients from the monthly cross-sectional regressions (excluding the

month of January) over the period 1964–1999 of portfolio excess returns (%) for

the 25 equally-weighted illiquidity portfolios with explanatory variables being the

portfolio characteristics: the four betas or the covariances, β1p, β2p, β3p and β4p,

and the average portfolio illiquidity, E(cp). For ease of reporting the estimated

coefficients, these characteristics are multiplied by 103, 1015, 109, 109 and 106,

respectively. The t-statistics reported in the parentheses are estimated using the

standard Fama and Macbeth (1973) method. The reported R2 for a specification

is the average of the R2’s from the monthly cross-sectional regressions for that

specification. The 25 illiquidity portfolios are formed for each year y during the

period 1964 to 1999 by sorting on their annual illiquidities the common shares listed

on NYSE and AMEX with price, at beginning of year, between 5 and 1000, and

return and volume data in year y − 1 for at least 150 days. The annual illiquidity

for each eligible stock is the average over the entire year y− 1 of daily illiquidities

(computed analogously to monthly illiquidity calculation in Equation (11)). The

four betas are computed for each portfolio as per Equation (6) using the entire

time-series, i.e., all monthly return and illiquidity observations for the portfolio

and the market portfolio over the sample period.

constant β1p β2p β3p β4p E(cp) R2

1 0.131 0.106 0.260
(0.280) (0.590)

2 0.391 0.020 0.180
(1.520) (1.430)

3 0.200 −0.150 0.270
(0.550) (−0.640)

4 0.383 −0.024 0.220
(1.490) (−1.380)

5 0.344 0.019 −0.030 0.370
(1.060) (1.810) (−0.150)

6 0.405 0.010 −0.025 0.390
(1.300) (0.070) (−1.790)

7 0.402 0.004 0.010 −0.021 0.420
(1.290) (0.440) (0.060) (−1.280)

8 0.401 0.007 0.150
(1.560) (1.620)

9 0.328 0.007 −0.040 0.004 0.410
(1.010) (0.620) (−0.220) (1.210)

10 0.005 −0.150 −0.049 −0.003 0.430
(0.020) (−0.650) (−1.850) (−0.480)

11 0.389 0.003 0.000 −0.017 0.001 0.480
(1.280) (0.290) (0.010) (−0.780) (0.250)



Table 8: Return and liquidity risk: 1964–1981. This table reports the

results of the Fama and Macbeth (1973) type regressions employed to test the

liquidity-adjusted CAPM specified in Equation (5). It presents the means of the

estimated coefficients from the monthly cross-sectional regressions over the period

1964–1981 of portfolio excess returns (%) for the 25 equally-weighted illiquidity

portfolios with explanatory variables being the portfolio characteristics: the four

betas or the covariances, β1p, β2p, β3p and β4p, and the average portfolio illiquidity,

E(cp). For ease of reporting the estimated coefficients, these characteristics are

multiplied by 103, 1015, 109, 109 and 106, respectively. The t-statistics reported

in the parentheses are estimated using the standard Fama and Macbeth (1973)

method. The reported R2 for a specification is the average of the R2’s from

the monthly cross-sectional regressions for that specification. The 25 illiquidity

portfolios are formed for each year y during the period 1964 to 1999 by sorting

on their annual illiquidities the common shares listed on NYSE and AMEX with

price, at beginning of year, between 5 and 1000, and return and volume data in

year y − 1 for at least 150 days. The annual illiquidity for each eligible stock is

the average over the entire year y − 1 of daily illiquidities (computed analogously

to monthly illiquidity calculation in Equation (11)). The four betas are computed

for each portfolio as per Equation (6) using the entire time-series, i.e., all monthly

return and illiquidity observations for the portfolio and the market portfolio over

the sample period.

constant β1p β2p β3p β4p E(cp) R2

1 −2.255 1.042 0.290
(−3.160) (3.400)

2 0.478 0.092 0.200
(1.210) (3.740)

3 −1.464 −1.350 0.320
(−2.770) (−3.430)

4 0.436 −0.114 0.260
(1.120) (−3.740)

5 −1.061 0.053 −1.030 0.410
(−2.310) (3.280) (−3.010)

6 −0.885 −0.900 −0.070 0.430
(−2.030) (−2.730) (−3.240)

7 −0.892 0.011 −0.900 −0.059 0.460
(−2.040) (0.850) (−2.730) (−2.490)

8 0.537 0.028 0.170
(1.340) (3.750)

9 −1.099 0.025 −1.060 0.011 0.450
(−2.370) (1.650) (−3.080) (1.960)

10 −0.899 −0.910 −0.065 0.001 0.470
(−2.080) (−2.760) (−2.090) (0.200)

11 −0.887 0.011 −0.900 −0.060 −0.001 0.500
(−2.060) (0.820) (−2.750) (−1.950) (−0.070)



Table 9: Return and liquidity risk: 1982–1999. This table reports the

results of the Fama and Macbeth (1973) type regressions employed to test the

liquidity-adjusted CAPM specified in Equation (5). It presents the means of the

estimated coefficients from the monthly cross-sectional regressions over the period

1982–1999 of portfolio excess returns (%) for the 25 equally-weighted illiquidity

portfolios with explanatory variables being the portfolio characteristics: the four

betas or the covariances, β1p, β2p, β3p and β4p, and the average portfolio illiquidity,

E(cp). For ease of reporting the estimated coefficients, these characteristics are

multiplied by 103, 1015, 109, 109 and 106, respectively. The t-statistics reported

in the parentheses are estimated using the standard Fama and Macbeth (1973)

method. The reported R2 for a specification is the average of the R2’s from

the monthly cross-sectional regressions for that specification. The 25 illiquidity

portfolios are formed for each year y during the period 1964 to 1999 by sorting

on their annual illiquidities the common shares listed on NYSE and AMEX with

price, at beginning of year, between 5 and 1000, and return and volume data in

year y − 1 for at least 150 days. The annual illiquidity for each eligible stock is

the average over the entire year y − 1 of daily illiquidities (computed analogously

to monthly illiquidity calculation in Equation (11)). The four betas are computed

for each portfolio as per Equation (6) using the entire time-series, i.e., all monthly

return and illiquidity observations for the portfolio and the market portfolio over

the sample period.

constant β1p β2p β3p β4p E(cp) R2

1 0.934 −0.052 0.240
(1.440) (−0.230)

2 0.615 0.056 0.190
(2.420) (3.660)

3 −0.324 −0.670 0.290
(−0.870) (−2.700)

4 0.588 −0.070 0.230
(2.320) (−3.720)

5 −0.015 0.041 −0.420 0.380
(−0.050) (3.680) (−1.910)

6 0.139 −0.310 −0.056 0.410
(0.440) (−1.400) (−3.810)

7 0.137 0.003 −0.310 −0.053 0.440
(0.430) (0.280) (−1.400) (−3.200)

8 0.648 0.018 0.160
(2.530) (3.850)

9 −0.045 0.018 −0.450 0.009 0.430
(−0.140) (1.580) (−2.020) (2.320)

10 0.152 −0.300 −0.059 −0.001 0.460
(0.490) (−1.340) (−2.600) (−0.250)

11 0.157 0.004 −0.290 −0.057 −0.002 0.490
(0.510) (0.450) (−1.330) (−2.540) (−0.370)



Table 10: Return and liquidity risk: value weighted. This table reports

the results of the Fama and Macbeth (1973) type regressions employed to test the

liquidity-adjusted CAPM specified in Equation (5). It presents the means of the

estimated coefficients from the monthly cross-sectional regressions over the period

1964–1999 of portfolio excess returns (%) for the 25 value-weighted illiquidity

portfolios with explanatory variables being the portfolio characteristics: the four

betas or the covariances, β1p, β2p, β3p and β4p, and the average portfolio illiquidity,

E(cp). For ease of reporting the estimated coefficients, these characteristics are

multiplied by 103, 1015, 109, 109 and 106, respectively. The t-statistics reported

in the parentheses are estimated using the standard Fama and Macbeth (1973)

method. The reported R2 for a specification is the average of the R2’s from

the monthly cross-sectional regressions for that specification. The 25 illiquidity

portfolios are formed for each year y during the period 1964 to 1999 by sorting

on their annual illiquidities the common shares listed on NYSE and AMEX with

price, at beginning of year, between 5 and 1000, and return and volume data in

year y − 1 for at least 150 days. The annual illiquidity for each eligible stock is

the average over the entire year y − 1 of daily illiquidities (computed analogously

to monthly illiquidity calculation in Equation 11). The four betas are computed

for each portfolio as per Equation (6) using the entire time-series, i.e., all monthly

return and illiquidity observations for the portfolio and the (equally-weighted)

market portfolio over the sample period.

constant β1p β2p β3p β4p E(cp) R2

1 −0.764 0.606 0.260
(−1.750) (3.230)

2 0.678 0.073 0.180
(2.930) (3.270)

3 −0.368 −0.800 0.260
(−1.110) (−3.300)

4 0.641 −0.101 0.210
(2.790) (−3.480)

5 −0.166 0.032 −0.630 0.350
(−0.550) (1.930) (−2.820)

6 −0.048 −0.520 −0.054 0.350
(−0.160) (−2.370) (−2.340)

7 0.707 0.015 0.150
(3.040) (3.000)

8 −0.250 −0.700 0.006 0.340
(−0.810) (−3.090) (1.510)



Table 11: Properties of size portfolios. This table reports the properties of

the odd–numbered portfolios from the 25 equally-weighted size portfolios formed

for each year y during the period 1964 to 1999. The portfolios are formed by sort-

ing on beginning of year market capitalizations the common shares listed on NYSE

and AMEX with price, at beginning of year, between 5 and 1000, and return and

volume data in year y − 1 for at least 150 days. The four betas or the covari-

ances, β1p, β2p, β3p and β4p, are computed for each portfolio as per Equation (6)

using the entire time-series, i.e., all monthly return and illiquidity observations

for the portfolio and the market portfolio over the sample period. The monthly

innovations in portfolio illiquidity and market illiquidity are computed using an

AR(2) specification for the standardized illiquidity series as described in Section

5.3. The monthly innovations in market portfolio return are computed using an

AR(2) specification for the raw (not standardized) market return series that also

employs available market characteristics at the beginning of the month. The av-

erage illiquidity E(cp), the average return, E(rp), the turnover, and the market

capitalization (size), are computed analogously for each portfolio as averages of

the respective monthly characteristics over the entire sample period. Finally, the

standard deviation of returns for a portfolio, σ(rp), is the average of the standard

deviation of daily returns for the portfolio’s constituent stocks computed each

month. The characteristics have been scaled as indicated for ease of reporting.

β1p β2p β3p β4p E(rp) σ(rp) E(cp) turnover size
(* 103) (* 1015) (* 109) (* 109) (%) (%) (* 106) (ml $)

1 3.13 10.10 −1.77 −8.13 23.27 2.93 6.35 2.10 0.78
3 3.11 4.76 −1.81 −7.78 19.58 2.75 2.57 2.12 2.10
5 3.17 9.94 −1.82 −2.23 19.47 2.62 1.53 2.26 3.63
7 3.08 1.38 −1.80 −1.81 20.29 2.46 0.98 2.16 5.64
9 3.07 0.98 −1.78 −1.48 16.49 2.40 0.65 2.43 8.34
11 3.01 0.47 −1.74 −0.94 16.21 2.28 0.43 2.37 11.92
13 2.98 0.38 −1.69 −0.58 16.16 2.17 0.31 2.44 17.13
15 2.79 0.27 −1.54 −0.35 14.76 2.06 0.21 2.33 24.97
17 2.59 0.17 −1.42 −0.29 15.49 1.94 0.15 2.27 37.20
19 2.57 0.07 −1.42 −0.16 14.63 1.85 0.09 2.27 57.78
21 2.39 0.04 −1.26 −0.08 14.05 1.76 0.05 2.17 97.16
23 2.13 0.01 −1.09 −0.04 12.88 1.64 0.03 2.00 186.96
25 1.75 0.00 −0.83 −0.01 12.97 1.50 0.01 1.52 971.87



Table 12: Return and liquidity risk. This table reports the results of the

Fama and Macbeth (1973) type regressions employed to test the liquidity-adjusted

CAPM specified in Equation (5). It presents the means of the estimated coefficients

from the monthly cross-sectional regressions over the period 1964–1999 of portfolio

excess returns (%) for the 25 equally-weighted size portfolios with explanatory

variables being the portfolio characteristics: the four betas or the covariances, β1p,

β2p, β3p and β4p, and the average portfolio illiquidity, E(cp). For ease of reporting

the estimated coefficients, these characteristics are multiplied by 103, 1015, 109, 109

and 106, respectively. The t-statistics reported in the parentheses are estimated

using the standard Fama and Macbeth (1973) method. The reported R2 for a

specification is the average of the R2’s from the monthly cross-sectional regressions

for that specification. The 25 size portfolios are formed for each year y during

the period 1964 to 1999 by sorting on beginning of year market capitalizations

the common shares listed on NYSE and AMEX with price, at beginning of year,

between 5 and 1000, and return and volume data in year y − 1 for at least 150

days. The four betas are computed for each portfolio as per Equation (6) using

the entire time-series, i.e., all monthly return and illiquidity observations for the

portfolio and the market portfolio over the sample period.

constant β1p β2p β3p β4p E(cp) R2

1 −0.127 0.301 0.330
(−0.340) (1.900)

2 0.644 0.036 0.190
(2.590) (2.120)

3 0.051 −0.420 0.330
(0.170) (−1.890)

4 0.625 −0.048 0.220
(2.530) (−2.190)

5 0.169 0.019 −0.330 0.410
(0.610) (1.720) (−1.580)

6 0.220 −0.280 −0.028 0.430
(0.810) (−1.380) (−1.820)

7 0.226 0.007 −0.280 −0.022 0.470
(0.840) (0.770) (−1.360) (−1.560)

8 0.641 0.019 0.180
(2.560) (2.570)

9 0.181 −0.011 −0.310 0.017 0.460
(0.660) (−1.050) (−1.530) (3.210)

10 0.171 −0.320 0.013 0.017 0.480
(0.630) (−1.550) (0.720) (3.010)

11 0.154 −0.010 −0.340 0.012 0.020 0.510
(0.570) (−1.000) (−1.630) (0.660) (3.120)



Table 13: Return and liquidity risk: value weighted. This table reports

the results of the Fama and Macbeth (1973) type regressions employed to test

the liquidity-adjusted CAPM specified in Equation (5). It presents the means of

the estimated coefficients from the monthly cross-sectional regressions over the

period 1964–1999 of portfolio excess returns (%) for the 25 value-weighted size

portfolios with explanatory variables being the portfolio characteristics: the four

betas or the covariances, β1p, β2p, β3p and β4p, and the average portfolio illiquidity,

E(cp). For ease of reporting the estimated coefficients, these characteristics are

multiplied by 103, 1015, 109, 109 and 106, respectively. The t-statistics reported

in the parentheses are estimated using the standard Fama and Macbeth (1973)

method. The reported R2 for a specification is the average of the R2’s from the

monthly cross-sectional regressions for that specification. The 25 size portfolios

are formed for each year y during the period 1964 to 1999 by sorting on beginning

of year market capitalizations the common shares listed on NYSE and AMEX with

price, at beginning of year, between 5 and 1000, and return and volume data in

year y− 1 for at least 150 days. The four betas are computed for each portfolio as

per Equation (6) using the entire time-series, i.e., all monthly return and illiquidity

observations for the portfolio and the (equally-weighted) market portfolio over the

sample period.

constant β1p β2p β3p β4p E(cp) R2

1 −0.279 0.378 0.320
(−0.790) (2.480)

2 0.670 0.066 0.200
(2.720) (2.840)

3 −0.074 −0.540 0.320
(−0.250) (−2.500)

4 0.644 −0.085 0.240
(2.660) (−2.690)

5 0.092 0.034 −0.400 0.420
(0.350) (2.120) (−1.990)

6 0.113 −0.380 −0.040 0.420
(0.440) (−1.890) (−1.760)

7 0.062 0.048 −0.430 0.021 0.470
(0.240) (1.970) (−2.080) (0.600)

8 0.672 0.030 0.200
(2.730) (2.840)

9 0.092 0.033 −0.400 0.001 0.460
(0.350) (0.410) (−2.000) (0.010)

10 0.050 −0.440 0.026 0.023 0.480
(0.200) (−2.120) (0.670) (1.960)

11 0.055 0.024 −0.430 0.025 0.012 0.510
(0.220) (0.300) (−2.120) (0.630) (0.300)


