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I use a new model in which population equilibrium depends on density,
consumption and intergenerational transfers to rework Hamilton’s classic
evolutionary theory of aging. The age specific force of selection on mortality is a
weighted average of the classic effect, proportional to remaining lifetime fertility,
and a new transfer effect, proportional to cumulative net investment per offspring
up to that age. The relative weight of the classic effect can be positive, negative, or
zero. At an optimal equilibrium, the evolution of senescent mortality depends only
on the transfer effect. The new theory explains mortality decline before sexual
maturity as well as extended post-reproduétive survival. A positive feedback loop
can select for reduced fertility, higher consumption, greater investments in
juveniles, and longer life. For many species, the evolution of aging is driven more by
age patterns of transferring surplus food provisions than by remaining fertility.
Human hunter-gatherer mortality corresponds poorly to the classic predictions, but

matches closely the transfer effect predicted by this new theory.




Introduction

The classic theory of the evolution of mortality and fertility 123 was formalized by
Hamilton', through analysis of the population renewal equation. The force of selection on
a mutation that reduces mortality at some particular age a is proportional to F(a), the
lifetime reproduction that remains after age a. Since F(a) declines only after reproduction
starts, selection should be equal at all ages up to sexual maturity™**. If reproduction
ends, F(a) is 0 and there is no selection for post-reproductive survival. The force of
selection on a mutation that raises fertility at age a is proportional to the probability of
surviving to that age. Although Hamilton’s work has been extended and qualified, it is

still the dominant paradigm for the evolution of aging™”.

The classic theory is simple and elegant, but it treats fertility and mortality as
functions of age alone. If we consider the resource costs of mortality in addition to age,
then we might expect that selection would rise at ages when cumulated parental
investments were greater, rather than remaining constant across the pre-reproductive
periods, and that selection would favor post-reproductive parental survival if parents
continue to provide care’. If a species has evolved an optimal strategy of low fertility and
heavy parental investment, then higher fertility would reduce reproductive fitness rather

than raise it, and we would not expect it to be positively selected.

As these considerations suggest, fertility and mortality are interdependent through
resource constraints in ways that invalidate Hamilton’s analysis of the renewal equation.
Age-specific fertility and mortality cannot be treated as varying independently. Higher

parental fertility might increase the mortality of juveniles, or reduce future parental

fertility. Higher adult mortality might raise the mortality of dependent juveniles. Lower




juvenile mortality at one age could raise mortality of juveniles at other ages by increasing

competition for food supplied by adults.

The theory proposed here is consistent with the large literature on the evolution of
life histories that considers trade-offs among allocations of resources to growth,
reproduction, repair and survival ®”*1°. That literature focuses on trade-offs in a single
organism. The theory proposed here instead emphasizes constraints, trade-offs and
selective forces arising from the relations among members of a group of related
organisms due to intergenerational resource transfers among them. Fertility is itself a
resource transfer, so intergenerational transfers occur within all mother-offspring sets.

However, with parental care or cooperative care, transfers have greater implications.

Here, I incorporate these ideas in a formal theory which builds on the classic
theory by adding a resource balance constraint: The population-weighted sum across all
ages of net transfers of food must be zero. This approach derives from economic and
demographic models of intergenerational transfers® building on Samuelson’s seminal
work” In the extended theory, the force of selection on mortality at age a is a weighted
average of the classic force, remaining fertility, F(a), and a new force, remaining
transfers to others, T(a) (or, equivalently, the cumulated net investment in an individual
up to age a). With parental care, T(a) first rises with age and then falls in altdulthood,
depending on transfer patterns in each species, and mortality should move inversely. The
weight on F(a) can be positive, zero or negative. In one important case, selection favors
lower fertility and higher juvenile mortality along with lower adult mortality, so as to
approach the optimal trade-off between numbers of offspring and investment in each. At

this optimal point, the force of selection on fertility is zero, and the age pattern of

selection on mortality depends solely on the transfer effect, T(a).




To understand T(a), consider a simplified example. Parents have resources W to
invest in offspring, and invest 7(x) per surviving juvenile at age x. Fitness is the number
of offspring surviving to maturity. Under these assumptions, the force of selection on
mortality at age a is proportional to the cumulative survival-weighted net investment,
T(a), which rises with age, contrary fo the classic theory. A death is more costly when

more has been invested in the juvenile that dies, that is when T(a) is greater.
The Basic Model: Population Renewal and Transfer Balance

Consumption of food at age x, ¢(x, ), depends on both age and the general level of
consumption ¥ with de(x, y/dy>0 for all x. This formulation allows complicated changes
in consumption by age to be described by variations in a single parameter, % Two
examples are c(x, ) = ¥(x) and c(x, Y=h(x)+Y(x). In the first, consumption always varies
proportionately at all ages. In the second, consumption might vary more or less than
proportionately at some ages, and in particular food shortage could fall most severely on
juveniles. Fertility, denoted m(x, %), depends on ywith dm/dy>0. The force of mortality,
denoted y(x, 3, depends inversely on consumption of food: d/dy<0. Consequently,
survivorship, /(x), depends positively on y. The form of c(x, ) affects the forms of all the
functions that depend on % and this could be made explicit by writing them as functions

of ¢(x, ) rather than yalone.

Two equations must hold for a population in steady state. The first is Lotka’s

renewal equation.

(1.1) 1= [e(xy)m(x,7)dx.

I will call the integral R for Renewal. R=1 implicitly defines r, the stable population

growth rate, as a function of % r = ra(y with rz=drg/dy>0. 1 will call rg(} the renewal




curve. When consumption at all ages is greater, more organisms survive, and fertility is

higher, so the population growth rate, r, is higher.

The second equation is key to all that follows. It states that provisioning (food
acquired) minus consumption at each age, weighted by the stable population-age
distribution, must sum to zero, assuming that all food acquired at a given time is also

consumed at that time. Straightforward modification would allow wastage or storage?®.

Provisioning at age x depends on ¥ y(x, §,d y/dy>0. Food intake affects energy
available for foraging, and lifetime consumption affects body size and age at attaining
maturity, which in tumn affects provisioning success. Provisioning also depends on
population density through the function 7{4/N) which indicates the ease of acquiring
food. 4 reflects the natural resource base in a specific area and N is the size of the
population in this area, assuming negligible migration: d7wdN<0, d7/dA>0. For
simplicity, population pressure depends on the total population size, but a complete
treatment would include age-specificity in the denominator of 4/N as well®. The full

expression for age-specific provisioning is 7(4/N)y(x, Y (or, more generally, y(x, 7 ).

(12) o=Te-’v(x,y)[n(z%\,)y(x,y)—c(x,y)]dx

I will call this integral B, for Balance. Lee® analyzes this equation more generally, and it
enters Kaplan-Robson’s''theory of human evolution, in both cases without density
dependence or . B=1 implicitly defines r=rg(%7) as a function of yand 7, but I will

often suppress the argument 7, simply writing (. I call this the balance curve.

For given ¥, higher population density reduces 7, which reduces food provisioning
at every age, requiring a higher ratio of adults to juveniles to achieve B=0. To achieve

this higher ratio, the population growth rate must be lower. Therefore, greater population




size and density shift the balance curve rg(%) downward, and drz(7 m(A/N) ))/AN=
(drg/d ) *d /dN<0.

The net transfer made or received by a surviving individual at age X 1s
T, y m)=n(A/N)y(x, 1) — c(x, . For biologically relevant cases, 7(x) willbe <Oup to a
certain age of economic maturity, and positive thereafter. Only for humans does it

sometimes turn negative again at old ages'>".

If there is no care of offspring, or if only the mother provides it, then the no-
wastage, no-storage assumption locks together the fertility schedule and the mother’s
transfer schedule in a way that could not hold as y varies, given the rigid specification of
the age schedules in the model. In nature, this rigidity would be relaxed through varying
maternal body reserves, differential treatment by birth order,‘ varyiﬁg infant mortality, and
so on. A fuller model would allow for individual variations in effort and consumption in
response to changing circumstances and allow bodily reserves to be built up or depleted.

However, I believe that the conclusions of this simpler model would continue to hold.

The balance curve rz(%7) reflects many influences. 7 and yjointly determine
provisioning, consumption, and net transfers at each age via 7(x, 75 . The value of y also
determines the death rate and survival function at each age. The survival function
influences the population-age distribution: higher mortality means fewer adults per
juvenile unless it is entirely limited to the juvenile ages, depending on the £(x, ) function.
With all these functions fixed, we can solve for the population growth rate r that satisfics
the balance equation. In a stable population, the age distribution is proportional to ¢ I(x).
When r is high, the population is younger and the adults/juveniles ratio is lower. If net
transfers are negative for juveniles and positive for adults, with no negative transfers m

old age, then a unique r will satisfy B=0. In this way yand 7 determine r, given implicitly

by rs(% 7).




For sufficiently high values of % rp =drz/dy<0. In this case, increases in the level
of consumption require a higher adult/juvenile ratio, and therefore a lower population
growth rate. For some species, this may be true across the entire range of %, and I
speculate this is true for opportunistic species. For other species there may be one or
more lower ranges of yin which >0, so that higher levels of consumption can be
accommodated by higher population growth rates with lower adult/juvenile ratios. In this
case the balance curve, rz(3, would be hump shaped over some range of % and at some

7, r would reach a (possibly local) maximum.

The balance curve might slope upward for two reasons. First, higher yraises
survival, particularly of juveniles, so wastage of resources is avoided, and with lower
mortality the adult/juvenile ratio will rise. Second, higher yraises productivity through
larger body size and increased energy. Consequently, it may be possible to accommodate
a higher population growth rate at a higher level of consumption. This will be true
whenever there is an intermediate optimal brood size or birth interval, with corresponding
optimal investment, which is the case for many species”’ 1511 Optimality requires that
slightly lower fertility and greater investment, or slightly higher fertility and lower
investment would lead to a lower population growth rate. This requires that the balance
curve have a hump. The hump summarizes the outcome of allocational trade-offs for the

organism'".

The equations apply to é particular species at a particular point in its evolution,
for a particular region around the equilibrium values. General shapes of the curves might
reflect broad features of taxa, such as primates or mammals, or ecological types, such as
opportunistic or equilibrating species. Mutations may change the position and shape of

the curves in ways discussed in later sections.




The model can be made sex-specific. In that case, (1.1) refers to one sex and the
balance in (1.2) holds for the sum of both sexes, while the balance for males or females

separately may be nonzero, albeit with identical ’s.
Population Equilibrium: Density, Age Distribution, and Transfers

Figure 1 plots rg(y and rg(%7) for the case of a downward sloping balance curve, rg<0.
For 7=, equations (1.1) and (1.2) determine steady state levels of » and vy at the
(arbitrarily drawn) intersection of the solid lines at point X. Because 7>>0, the population
increases over time to a higher density where 7 = 7 is lower. Here, balance requires a
higher ratio of adults to juveniles, so r at each level of Y must be lower. The balance

curve now intersects the renewal curve at Z, where population equilibrates at r=0, y=7*.

Z is simply where the renewal curve intersects the line =0, y*=rg™(0), so its
location is determined without reference to the balance curve, which therefore seems
superfluous. However, without the balance equation we would not know the population
size corresponding to y=%*. This value depends on the distance that the balance curve
must shift to intersect the renewal curve at »=0. The balance curve translates density into
age-standardized consumption v, reflecting the rich set of biological and demographic
relationships incorporated in B. Sometimes, lower equilibrium yis associated with higher
density as we would expect. Other times, equilibrium yvaries while density remains
constant, and sometimes yand density increase together, as shown later. That is why the
classic theory can mislead, and why the full model is essential for comparative statics,

such as the force of selection on mutations.

The Age-Independent Component of Selection
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Following Hamilton!, I take r (the Malthusian parameter) to measure fitness, with the
force of selection on a mutation assumed to be proportional to its effect on . In many
circumstances this assumption is incorrect™'® because reproduction typically involves two
sexes. However, according to Rose’ it is a “reasonable working assumption for the
evolution of most populations.” Further work on this theory is needed to deal better with
diploid sexual reproduction in antagonistic pleiotropy, and with mutation accumulation

and balance™'®.

Let us consider the effect of a mutation that reduces mortality at some specific age
(Figure 2). The original population equilibrates where the solid lines (superscript 1) cross
at Z, with =0 and 7=%;*. The mutation raises the renewal curve for the mutant line to
rg’ (%) by the vertical difference between Z and V. The size of this vertical shift depends
on the specific age and is equal to the force of selection at this age in Hamilton’s analysis.
However, in the extended theory, lower mortality also raises the balance curve for the
mutant line to 5°(3), drawn here as a smaller shift. The intersection of the new curves,
shown as dashed lines (superscript 2), occurs at point X, and the vertical distance
between Z and X is the actual force of selection on this mutation (again depending on
age). The balance equation constraint has reduced the Hamilton effect of the mutation on
the growth rate, because the reduction in mortality makes the age distribution younger as
the population growth rate rises (higher growth rate wili typically dominate the
countervailing effect of longer life on the age distribution). The younger age distribution
requires lower consumption for the mutant line. The selection effect, equal to the vertical
increase from Z to X, depends on both the size of the shifts in the two curves and the
slopes of the two curves, as will be seen formally in the mathematical analysis later. The
shifts in the curves need not be parallel as drawn here. Selection will also act on

mutation-driven changes in the slopes, so both the shape and level respond to changes in

the fertility and mortality functions.
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The mutant and original populations each produces and consumes separately
according to its own equations, but they share the resource base and provisioning ease;
for both is subject to the same A4/N). N is the sum of the original population and the
mutant population. At X, the mutant line is growing while the original population is
stationary at Z. As the mutant population size and therefore total population increases, 7
falls, shifting the mutant balance curve down to 5 (% (shorter dashes, change shown by
arrow), where it intersects the mutant renewal curve rz’(3 at U, with ¥=%*. The rising
density also shifts the balance cﬁrve for the original population downward, so that it has
negative growth. Eventually the mutant line becomes 100% of the population and reaches
a new equilibrium at =0 and »* at point U. A mutation raising fertility has similar
effects, except that initially only the renewal curve is shifted while the balance curve
remains in its original position. As density eventually increases, the balance curve will be

shifted down in this case as well.

Although the balance curve in Figure 2 does not have a hump as drawn, we can
imagine that intersections Z and X are on the right of a hump which has a peak out of
sight to the left. Then selection on new mutations affecting mortality or fertility would
eventually move the equilibrium to the peak of the hump, where r3*=0. Density
dependent adjustment of the balance curve would drop it down until the crest of the hump

touched the line 7=0 at a single point of tangency, which I call the optimum equilibrium.

Selection in the region to the left of the peak can be counterintuitive. In Figure 3,
the life history of the species is such that rz’ (3 and r5’ (p intersect on the left slope of a
hump at equilibrium Z with 7=0, y=y*. A mutation that shifts the renewal curve upward
or leftward (not shown in the figure) would intersect the original balance curve r5' (% at a
negative growth rate, and such a mutation would be selected out of the population. This

effect shows that a mutation that raised fertility or lowered mortality would be negatively
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selected. In other words, the classic selection results are reversed here. By contrast, a
mutation that reduced fertility, shifting the renewal curve downward (or to the right), as
shown by rz’ (7 would raise r and be positively selected. A mutation that raises mortality
would also be positively selected, to the extent that it shifted the renewal curve
downward. However, it would be negatively selected to the extent that it shifts the
balance curve downward. Selection favors higher juvenile mortality but lower adult
mortality on the left of the hump (this point will be discussed in more detail below). A

mutation that shifted the balance curve up to 75’ (% would be positively selected.

Through selection on fertility and mortality, the life history is guided toward the
optimal equilibrium at the peak of the balance curve, which is therefore an evolutionary
and ecologically stable equilibrium with r5*=0. If mutations shift the renewal curve
slightly upward, intersection with the balance curve moves slightly to the left, reducing y
for the mutant line although population density is unchanged. Then ¥ declines only
because the mutation shifts the life history away from the optimal equilibrium, and
reduced efficiency lowers yfor this mutant line at the given density level. Because its r is
reduced, the mutant line goes extinct. The classic selection effects vanish at the optimal
equilibduﬁ. Nonetheless, mutations shifting the balance curve upward by reducing
mortality will still be positively selected. Here, mortality selection is driven entirely by

the transfer effects from the balance function.

As mutation and selection move the life history to the peak from the left, both ¥
and density increase. We know density is increasing because the selected mutations raise
the population growth rate and the balance curve shifts down. Figure 3 shows that yis
increasing as well. Selection leads to a more efficient life history, permitting the species
to equilibrate at a higher density by investing more in each offspring (higher 7), and in

this way crowds out the original population even though it can achieve r=0 at a lower
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level of ¥ These strange and counterintuitive results to the left of a peak represent the
positive feedback loop mentioned earlier, and may help explain the evolution of primates
and other kinds of species with low fertility, heavy investment in offspring, and long
adult life. This theory generates the positive feedback cycle under very general

conditions.
The Age-Specific Force of Selection

I examine the effect on  of a mutation that increases fertility at age a by introducing an
age-specific shifter term £(@) into the fertility equation, so that fertility is m(x, Y+ &(a).
Because the change occurs only at age @, &a) is 0 except at x=a. Now differentiate both
(1.1) and (1.2) with respect to &a). (View the renewal equation as a Stieltjes integral in
which cumulative fertility has a step at age a.) Equating dyd&(a) from the two equations
and solving for dr/dg(a), we arrive at equation (3.1), provided that the slopes of the
renewal and balance curves are not equal (see Appendix). {OR (Supplementary material

can be found at www.nature.com). }

a1 -2 =e-ml(a)( frl;,).

de(a) A, \r-n

The first ratio on the right is Hamilton’s' force of selection on fertility at age a,
where A is the average age of childbearing in the stable population. The second ratio is a
weighting factor that is independent of age, the effect of which was explored in the
preceding diagrams. If the balance curve has no hump, then its slope is always negative,
and this weighting factor is always positive. In this case the force of selection is
proportional to that in Hamilton’s result. Now suppose the balance curve does have a

hump, and denote consumption at its peak by #. Then the weighting factor ranges from

negative to positive values as yvaries, and passes through 0 at # where r3 =0 by the first
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order condition for a maximum. Left of the peak (y<y#) selection favors reduced fertility
in its approach to the optimum. At the peak (=) the force of selection is zero. Since
higher fertility is selected to the right of the peak, and lower fertility to the left of the

peak, selection will adjust fertility so as to reach the peak at m(x, ).

Now consider a mutation that reduces the force of mortality at age a by &a), so
that the force of mortality is given by u(x, - &a). Differentiate (1.1) and (1.2) with
respect to &(a), a procedure we can make formal by considering a step of &a) at age a in
the cumulative mortality hazard. We then equate dyd&a) in the two equations, and solve
for dr/dd(a) (see Appendix) finding:

6y 9 =F(a)( ’—r;,] T(a) (r,; )

+
dé(a) A, \rz—1 C(Ay—AC) Yo7,

The first ratio on the right is Hamilton’s result, where F(a) is the share of fertility
remaining after age a, weighted by survival and discounted. This ratio is multiplied by
the same factor as was the Hamilton effect for fertility in (3.1). The next ratio is a new
selection effect that is proportional to 7(a), the transfer effect. T(a) is the cgmulative net
investment (transfers) up to age a per birth or, equivalently, the remaining lifetime
transfers made after age a per newborn. (Equivalence follows from the balance equation,
which must integrate to 0, so the parts above and below any particular age must be equal,
but of opposite sign.) It is divided by a number analogous to 45, and which does not vary
by age. C is the discounted and survival-weighted lifetime consumption per birth, equal
to similarly defined 7Y when B=0. 4, and 4. are the average ages of producing and
consuming in the stable population. When 4, is greater than 4., the net direction of

intergenerational transfers is downward across age, from older to younger, as is probably

the case for all species with the exception of humans living in modern industrial
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societies'®. The full selection effect is the weighted average of the Hamilton effect and

the transfer effect, with weights summing to unity.

There are five cases: a) The balance curve has no hump, so its slope is always
negative, and consequently both weighting factors are always positive. Both are reflected
in the total selection effect, with relative weights that vary with ¥ b) On the right side of
a hump (¢ both weights are positive. Selection on both fertility and mortality moves
the life history towards the peak at ##. The relative weight of the Hamilton effect goes to
zero as the peak is approached, and that of the transfer effect goes to umty. c¢) On the left
side of a hump (7<), any intersection at which Orz/0y=<0rp/071is unstable, because any
mutation in fertility or mortality would lead to a non-intersection of the two curves in that
region, and extinction of the lineage. There will also be a second intersection of the
curves to the right, with drr/0y:>0rp/07 which is the one that will be observed. It falls into
either case b) or case d). d) On the left side of a hump (p<#) with Ore/0y>0rp/07, the
weight on the Hamilton effect is negative and the weight on the transfer effect is greater
than unity. The negative weight on the Hamilton effect means an age pattern of mortality
increase is selected so as to reduce the number of births, and to move the life history
towards the optimum equilibrium at 3. Higher juvenile mortality is a poor substitute for
lower fertility, but it nonetheless enhances fitness by raising r if equilibrium consumption
is below the optimal level. At the same time, an age pattern of mortality reductions
(proportional to 7(a)) that economize on invested resources is positively selected; this
effect also moves the life history toward the optimum consumption at y#. e) At the peak
of the hump, drs/0=0 (first order condition for a maximum of r5(%)). The Hamilton
effect gets zero weight, and the age pattern of the force of selection on mortality is
entirely determined by the transfer effect, T(a). While there is zero selection on fertility at

this optimum equilibrium, selection for lower mortality in proportion to 7(a) continues. I

expect that this is the relevant case for many species.
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The force of selection on mutations which alter the age-shape of y(x, 9 and c(x, )

can be analyzed in exactly the same way. For y(x, 9, let ¢(a) be a perturbation at age a:

dar _ e"l(a) v
G- d¢(a)_C(Ay—AC)/ﬂ[r;—r;)

and similarly for c(x, % but of opposite sign. When survival to older ages is low, there will
be low selection to increase transfers from that age. As higher survivorship to a evolves,
the selective pressure for making larger transfers at age a will increase. As these transfers
increase, T(a) is raised, and there is a feedback to greater pressures to select lower
mortality at this age and above. The functions governing fertility, mortality, provisioning,

consumption, and transfers all evolve in interactive and path-dependent ways.

Some Implications of the Theory

T(a) can be interpreted either as transfers received up to age a, or as transfers made after
age a, because the balance equation tells us these must be equal. Because transfers are
often closely related to fertility itself, particularly for species without parental cére, T(a)
will often look much like Hamilton’s F(a) and have similar implications for the intensity
of selection on mortality across age. The greatest differences occur when there is parental
care, which makes T(a) rise after birth and remain positive post-reproductively so long as
transfers continue. The theory predicts falling juvenile mortality and continuing post-
reproductive survival in this case. Cooperative breeding'” will also make T(a) and F(a)
diverge. The average infant in an Efe hunter-gatherer group is cared for by 11 people in

addition to its parents'®, and food sharing is common among hunter-gatherer groups.

T(a), F(a) and mortality in Figures 4 and 5 are calculated for the Ache, a well-

studied human forager group in Paraguay'>'**. The force of selection for mortality is a

weighted average of the classic and transfer effects, shown in Figure 4 for a range of
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weights. The bold curve is T(a), corresponding to the force at the optimal equilibrium.
F(a) has a positive weight if there is no hump and to the right of a hump, and a negative
weight to the left. The curve for this last case shows the combination of positive selection

for higher early juvenile mortality and lower late juvenile and adult mortality.

Species that have evolved an optimal balance between quantity-quality in
reproduction and investment will be sitnated at the optimal equilibrium, so their age
pattern of mortality should be driven entirely by T(a). Since a high force of selection
should correspond to low mortality, Figure 5 compares T(a) and F(a) with the inverse of
the age-specific death rates. Inverse mortality for the Ache and (to a lesser degree) the
18" century Swedes correspond strikingly with 7(a) and not with F(a). The contrast is

particularly strong for pre- and post-reproductive age ranges.

For non-humans, we can distinguish several types of cumulative transfer
functions, that is, the sum to a of 7(x) before survival-weighting or discounting. a)
Semelparous with no parental care (e.g., annual plants): The cumulative transfer
functions are rectangular, receiving an investment all at once when born, and paying it
back all at once when they reproduce. Constant force of mortality. b) Iteroparous with no
parental care (e.g., perennials, trees, many animals): The cumulative transfer function
starts with a step upward, then, after sexual maturity, returns towards zero in a series of
smaller steps reflecting each year’s investment in fertility. c) Rising force of mortality:
Iteroparous with parental care up to maturity (¢.g., many insects, birds, mammals,
particularly primates). The cumulative transfer fanction rises prior to sexual or economic
maturity, falls over the course of reproduction, and continues to fall as transfers to
offspring continue even after biological reproduction has stopped. Force of mortality falls

until sexual maturity, then rises gradually with no necessary acceleration towards end of

reproduction. d) Cooperative breeding (e.g. some birds, humans): The cumulative transfer
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function reflects transfers made to the offspring of others, including by younger siblings.

This is similar to ¢), but depends on details of transfers.

In each case, predictions about the age pattern of mortality can be derived and,
where life tables exist, tested. For species that make no investment in offspring after
birth, the transfer function and the fertility function coincide, and the predictions of the

classic theory and the present theory are identical (except for prepartum mortality).

Although the evolutionary implications of this theory might be difficult to test,
cross-species empirical analysis could be useful’®. The theory also has strong
implications for relationships among observable age schedules of fertility, mortality, and
transfers for any species. When age-specific birth and death rates are known, along with
patterns of investment in young, comparisons like those for humans in Figure 5 might be

revealing.
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Mathematical Appendix

Let R’and B’ be partial derivatives with respect to v, holding r constant; let ry” and 8’ be

partial derivatives with respect to v, holding 7 constant for 18"

@n =X =ij‘"e-*x {Mm(x)+9m—(ﬂz(x)}dx

ay oy

s = C(A A) C(4, A)T malaxry[ (S n-eten]es
+_(!-e_”‘l(x 7[ (/%v)ay %.7) aca);?/):l X

(4.2)

A, and Ay are calculated A.:

Txe"*l(x, 7)e(x,y)dx

43) 4=L

C Ie_”‘l (x,7)e(x,y)dx

0

The denominator in (4.3) is C, the discounted life time value of consumption, which must

equal the similarly calculated Y.

Define F(a), remaining fertility above age a:

@) F(a)=[e(ny)m(x )

a

And similarly T(a), cumulative survival weighted and discounted transfers received up to

age a per new born:

@5 T(a)=] —”‘1 xy[ (44 ) (x y)]

0
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Fertility: differentiate R=1 and B=0, and simplify to find

dr - , ady
4. = e Sr—
(4.6) de(@) ¢ l(a)/Af+er8(a)
@.7) dr , dy

de(a) " de(a)
Substitute out dy/ds(a) and solve for dr/de(a) to find (3.1).

Mortality: differentiate R=1 and B=0, and simplify to find

a _ dy

(4.8) 8a) dé'(a)r'; +F(a)/ 4,
4.9) d;(ra) =T(a)/C(4,-4.)+ d;{a) r

Substitute out dy/dd(a) and solve for dr/dd(a) to find (3.2).




Figure 1. Equilibrium of density and intergenerational transfers. Initial equilibrium
is at X, which satisfies both renewal and balance equations at a positive r.
Population density increases until it reduces productivity from nt4 to m2, and then

the balance curve intersects the renewal curve at Z, where r=0.
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Figure 2. The effectonrand y of a mortality-reducing mutation when the balance
curve is downward sloping. The initial equilibrium is at Z. The mortality-reducing
mutation gives the new intersection at X. The density adjustment of the balance
curve restores a zero growth equilibrium at U. The vgrtical distance between Z

and V is the classical effect. The need for transfer balance reduces this distance

to that between Z and X.
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Figure 3. Selection of mutation on the left of a hump reverses the classical

effects, moving toward the optimal equilibrium at the peak of the hump. Lower
fertility or higher mortality shifts renewal down to r; (y) to intersection at U at

higher r, and is selected. Lower mortality shifting balance up to r2(y) to intersect
at V is also selected. Both simultaneously lead to X. The balance curve will then

shift down for optimal equilibrium at r=0, not shown.
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Figure 4. The force of selection on a mutation that reduces mortality at a specific
age is a weighted average of the fertility effect and the transfer effect. Weights
vary with slope of balance curve. The fertility effect équals F(a)/As. The transfer
effect equals T(a)/[[C(A,-Ac)]. Based on data for Ache hunter-gatherer-
horticulturalists (10, 11,16). When the balance curve is downward sloping, the
weights on the fertility effect and the transfer effect are both positive, which is the
case on the right side of a hump, and selection for juvenile survival is
emphasized. When the balance curve is upward sloping, on the left side the
weight on fertility is negative, and selection for adult survival is emphasized. At
the peak, the fertility weight is zero, and only the transfer effect (bold line)

matters.
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Figure 5. Comparison of actual inverted rﬁortality schedules with the age-specific
force of selection on mortality as given by the classical theory (remaining fertility,
F(a)) and cumulated net investments or remaining transfers,T(a). Based on data
for Ache hunter-gatherer-horticulturalists (10, 11,16). The chart plots F(a), T(a),
and 1 divided by each age-specific death rate based on data for the forest-
dwelling Ache, a well-studied contemporary hunter-gatherer-horticulturalist group
(10,11,16). Also plotted is 1 divided by the age-specific death rates for 18th
century Sweden. For theoretical force of selection, F(a) and T(a) are plotted. All
curves are adjusted to have the same maximum at 1.0, since only shape is being

compared.
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