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ABSTRACT. This paper obtains an asymptotic Gaussian power envelope
for tests of the null hypothesis of cointegration and proposes a feasible point
optimal cointegration test. The local asymptotic power function of the point
optimal test is close to the asymptotic Gaussian power envelope and the test
is found to perform well in a Monte Carlo experiment.
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1. INTRODUCTION
The concept of cointegration (Engle and Granger (1987)) has attracted considerable
attention in the literature and answers to a variety of questions concerning inference
in cointegrated systems have been provided. In particular, an asymptotic optimality
theory for the estimation of cointegrating vectors under normality has been developed
by Phillips (1991a) and several asymptotically efficient estimation procedures have
been proposed (see e.g. Hansen (1992b), Johansen (1988, 1991), Park (1992), Phillips
(1991b), Phillips and Hansen (1990), Saikkonen (1991, 1992) and Stock and Watson
(1993)). Moreover, an asymptotic Gaussian power envelope for tests of the unit root
assumption underlying these cointegration methods has been obtained by Elliott,
Rothenberg, and Stock (1996). In contrast, although numerous papers have consid-
ered the problem of testing the null hypothesis of cointegration against the alternative
of no cointegration (examples include Choi and Ahn (1995), Hansen (1992c), Harris
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and Inder (1994), Harris (1997), Jansson (2001a), Leybourne and McCabe (1993),
McCabe, Leybourne, and Shin (1997), Park (1990), Quintos and Phillips (1993),
Saikkonen and Luukkonen (1996), Shin (1994), Tanaka (1993), Xiao (1999) and Xiao
and Phillips (2002)), no asymptotic optimality theory for that testing problem has
been developed.

This paper obtains an asymptotic Gaussian power envelope for tests of the null
hypothesis of cointegration and proposes a feasible point optimal cointegration test.
By construction, the point optimal test attains the asymptotic Gaussian power en-
velope at a prespecified alternative. Against other alternatives, the local asymptotic
power of the point optimal test is close to the asymptotic Gaussian power envelope.
Moreover, the point optimal test is found to perform well in a Monte Carlo experi-
ment.

In terms of the methodology employed, the present paper is related to Elliott,
Rothenberg, and Stock’s (1996) and Saikkonen and Luukkonen’s (1993) studies of
unit root testing in autoregressive and moving average models, respectively. As do
Elliott, Rothenberg, and Stock (1996) and Saikkonen and Luukkonen (1993), this
paper develops asymptotic optimality results by obtaining limiting distributions of
optimal test statistics derived under a normality assumption. By accommodating
stochastically trending and (possibly) endogenous regressors, the results obtained
here generalize the fixed-regressor results of Saikkonen and Luukkonen (1993).

Section 2 presents the model. In Section 3, the asymptotic Gaussian power en-
velope is derived. Section 4 constructs a feasible point optimal test and Section 5
reports local asymptotic power results and investigates the finite sample performance
of the test proposed in this paper. Finally, Section 6 offers a few concluding remarks,
while all mathematical derivations are collected in an Appendix.

2. THE MODEL AND ASSUMPTIONS
Let z; be an observed m-vector time series generated by

2 = pi + 22, 1<t<T, (1)

where p? is a deterministic component and 2z is a zero-mean stochastic component.
For concreteness, the deterministic component is assumed to be a pth order polyno-
mial time trend:

Mf = a;dh (2)

where d; = (1,...,?)" and o, is a (p+ 1) x m matrix of parameters. The cases
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of particular interest are the constant mean and linear trend cases corresponding to
d; =1 and d; = (1,t)", respectively.

Partition z¥ into a scalar y? and a k-vector 20 (k =m — 1) as 20 = (3?,2%)" and
suppose z{ is generated by the potentially cointegrated system

yl? = ﬁlxg + Ut, (3)

0o _ x
Axt = U,

where v; is an error process with generating mechanism

Avy = uf — 0ul 4, 1<t<T. (4)

In (3) — (4), B € RF and 6 € (—1,1] are unknown parameters and u, = (u},u?)’
satisfies the following assumption.

Al w =>7,Ciery, where {e; : t € Z} is ivi.d. (0,1,,), > oy C; has full rank and

Yoot |Ci|l < oo, where [|-|| denotes the Euclidean norm.
The system is initialized at ¢t = 0 with vy = 4 = 0 and z3 = 0. The moving average
specification (4) implies that y? and 29 are cointegrated if and only if § = 1. Under
A1, z? is a non-cointegrated integrated process and the cointegration between ¢ and
x) is regular (in the sense of Park (1992)) when 6 = 1.
Conformably with z?, partition 2z, and . as z;, = (y, 7)) and a, = (o, a) .

Defining o = o, — o, 3, the model can be written in triangular form as

vy = ody+ Bz + vy, Avy = ul — 0u?_,,
Ar; = oL Ady+uf.

This paper considers the problem of testing

Hy:0=1 vs. Hy:0<1, (P)

treating o and § as unknown nuisance parameters. Section 3 derives an asymptotic
power envelope under the following strengthening of Al.

Al*. uy ~ii.d. N (0,%), where X is positive definite.

As a by-product of the analysis, a point optimal test statistic is obtained. Section 4

relaxes A1* and constructs a feasible point optimal test which is applicable whenever
A1 holds.
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3. AN AsyMPTOTIC GAUSSIAN POWER ENVELOPE

Under A1*, the model is fully parametric and the principle of invariance (e.g. Lehmann
(1994, Chapter 6)) can be used to develop optimality theory for the testing problem
(P) . In particular, it is possible to construct an upper bound on the local asymptotic
power of a class of cointegration tests. The objective is to find an upper bound which
is attainable for any value of «a, 3, a, and ¥ without knowledge of these nuisance
parameters and covers a class of tests which is as large as possible.

For now, suppose «, and ¥ are known so that the only unknown nuisance para-

meters are « and 3. Define the matrices Y = (y1,...,yr), X = (21,...,27) and
D = (dy,...,dr)" . The testing problem (P) is invariant under transformations of the
form

where a € RPT! and b € R¥. It therefore seems natural to restrict attention to
tests that are invariant under (G). All previously proposed tests (of which the au-
thor is aware) are invariant under this group of transformations, so the class of
tests that are invariant under (G) is quite large. A maximal invariant under (G)
is (RY) ,vec(X )'),, where R is a matrix whose columns form an orthonormal
basis for the orthogonal complement of the column space of R = (X, D).

Partition ¥ in conformity with u; as

/
> = Oyy Umy
Ozy E:B:B

and for any 0%, define Wy = \11%2\1%{2'7 where

1 0 0

\11;12: 1—-0 1
: .. .. 0
1—-6° .. 1—-6* 1

is a T' x T matrix with ones on the diagonal and 1 — " below the diagonal. Under
Al*,

vee (X) ~ N ((a, @ It)vec (D), Xy @ ¥y)

while
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Y~ N (0 (qu/gl/QX) S 100y, Ty (R’L%RL))

conditional on X, where oy, , = 0y, — 0%, X 04, Apart from an additive term that

does not depend on #, minus 2 times the log density of the maximal invariant can
therefore be written as

Lo (0) = log |[RVG'R| + 0, Yy (05" = 05 R (RO R) ™ R ) Yo, (5)

where Y- =Y —60"- 0, V2 x Y L0, and the derivation of (5) makes use of the relations

Ry (R VR R, =W, — U, R(RU,'R) ™ RV}

and

R\ p-R\| = |RUR| V|- |RR|™ = |RYU,'R|-|RR|™".

The expression (5) differs from its fixed-regressor counterpart (e.g. King (1980),
King and Hillier (1985)) in two respects. In fixed-regressor settings, the term corre-
sponding to log }R’ v, 1R| is non-random and can be omitted. Moreover, the definition

of Yy reflects the fact that correlations between Y and X must be taken into account
when X is random. As in the fixed-regressor case, the term

Yy (vt - v R (RY;'R) T R ) Y

in (5) can be interpreted as the weighted sum of squared residuals from a GLS re-
gression (of Y on R using the covariance matrix Wy).

It follows from the Neyman-Pearson Lemma that the test which rejects when
L7 (1) — Ly (0) is large is the most powerful invariant test of § = 1 vs. § =6 < 1.
An asymptotic analogue of that optimality result can be obtained by deriving the
limiting distribution of L7 (1) — Lr (9) under a local-to-unity reparameterization of
0 and 0 in which A =T (1—6) > 0 and A = T (1 —0) > 0 are held constant as T
increases without bound. A formal statement is provided in Theorem 1, the proof of
which represents the limiting distribution of L7 (1) — L7 (8) in terms of the random
functional
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P (MA) =

1 1
2) /0 VRdvr — X /0 (1)’
" </0 Q*d@/ (/o QAQ&): ( /0 @AdV?) ~ log /0 e
_(/OleVA) (/;QQ) (/OleVA>+bg /OlQQ,

Y

where

VA (s) = / NGV (E), VA (s) =V (s) + A / V(1) dt,
0 0
G = [0, Q)= (LW )
0
and V and W are independent Wiener processes of dimensions 1 and k, respectively.

Theorem 1. Let z; be generated by (1) — (4) and suppose A1* holds. An upper
bound on the local asymptotic power of any invariant test of 0 = 1 against 0 = 0 =
1 —T7'Xis given by 7° (A\) = Pr [p (A A) > ¢ (N)] , where 6 is the asymptotic level
of the test, ¢® (\) satisfies Pr [¢ (0; X) > ¢® (A\)] = ¢ and invariance is with respect to
transformations of the form (G) .

Under the reparameterization employed in Theorem 1, the null and alternative
hypotheses are A = 0 and A > 0, respectively. The upper bound provided by the
Gaussian power envelope is sharp in the sense that 7° (\) can be attained for any given
A by the test which rejects for large values of the corresponding point optimal test
statistic, viz. L7 (1)—Lz (1 — T~!\). Indeed, previous research on special cases of the
testing problem considered here (e.g. Saikkonen and Luukkonen (1993), Rothenberg
(2000)) suggests that a test based on L7 (1) — L1 () should have a local asymptotic
power function close to 7% (+) if  is chosen appropriately. The function 7° (-) therefore
constitutes a useful benchmark against which the local power function of any invariant
test of the null hypothesis of cointegration can be compared.

The power envelope depends on p, the order of the deterministic component,
and k, the dimension of z;. On the other hand, although the form of the point
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optimal test statistic depends on 3, the power envelope does not depend on the
covariance matrix of the underlying errors u;. In particular, the power envelope does
not depend on the extent to which the regressors are endogenous in the sense that Ax;
is correlated with the latent error . Jansson (2002) derives the asymptotic Gaussian
power envelope in a model isomorphic to the present model under the assumption that
[ is known. That power envelope depends on a;yl J;yEQjml Oy, the squared coefficient of
multiple correlation between u{ and u}, and substantial power gains over conventional
(univariate) tests are available when the correlation is non-zero. In contrast, it follows
from Theorem 1 that it is impossible to exploit any correlations between Az and )
when testing the null hypothesis that y; and z; are cointegrated with an unknown
cointegrating vector [3.

4. FEASIBLE POINT OPTIMAL TESTS

This section constructs a test statistic which can be computed without knowledge of
any nuisance parameters and has a limiting distribution of the form ¢ ()\; )\) under

Al. Let 2, [ and ) denote estimators of

T
S o= limpae T (u))
t=1

T t-1
I = limp 7" Z Z E (ugul),
t=2 s=1
and
T T
Q =limp_ o T7" Z Z E (uul),
t=1 s=1
respectively. Let [, = (’ywy,f’m), Qyye = KQ and Vype = #'Tk, where & =

(1, —@;ny:g), and the matrices I’ and Q have been partitioned in conformity with

uy. Moreover, let Xp = MpX and Yp = MpY, where Mp = I — D(D’D)f1 D'

Define Rt — (D,X— Ui*lf;,), where U = (YD — XpB, \1151/2XD) and B =

(X1, Xp) " X} Yp. Finally, let ;i =Y — 60 - AXQ; 10, — US'TY, 3 for any 6.
The proposed test statistic is

Pr(A) =L5(1) =Ly (1-T7X) —2\&,, .5 (6)

yy.meyy..T?

where A > 0 is a prespecified constant and
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L7 (0) =log |RTUL R+, Y,V (\11 ' U RT (RTUIRT) T R+’\If9‘3> Yt

Under the assumptions of Theorem 1, Pr (5\) is asymptotically equivalent to
Lr(1)—Lr (9) . As Theorem 2 shows, Pr (5\) has a limiting distribution of the form
% ()\; 5\) even when u,; exhibits serial correlation of the form permitted under Al.
This robustness property, not shared by Lr (1) — Lr (9) , 1s achieved by employing
two serial correlation corrections. The first correction, employed in the construction
of Y, and R", is similar to the correction proposed by Park (1992) in the context
of estimation of a cointegrating regression. Indeed, the purpose of this correction is
to remove ”serial correlation bias” from the limiting distribution of the estimator of
(3 appearing in £, (§*). The second correction term, —2)\wyy +Vyyzr 0 (6) resembles
the correction term in Phillips’s (1987) Zy test for an autoregressive unit root and
accommodates serial correlation in uf — w’ Q- lu

Ty zz U

Theorem 2. Let z; be generated by (1) — (4), suppose Al holds and suppose 0 =
Or =1 — T\ for some \ > 0. If (f] r Q) » (2,1,Q), then Pr (5\) —q © ()\; 5\) )

A consistent estimator of ¥ is & = T-10'U , while I' and €2 can be estimated
consistently by means of conventional (possibly prewhitened) kernel estimators (e.g.
Andrews (1991), Andrews and Monahan (1992)). Primitive sufficient conditions (on
the kernel, the bandwidth sequence and the prewhitening procedure) for consistency
can be found in previous work by the author (Jansson (2001b), Jansson and Haldrup
(2001) and Jansson (2002)). Suffice it to say that the consistency requirement of
Theorem 2 is met by a variety of estimators 3, T and Q.

To implement the feasible point optimal test, a value of A\ must be specified.
Following Elliott, Rothenberg, and Stock (1996), the approach advocated here is
to choose X in such a way that the asymptotic local power against the alternative
0 = 1—T"'\ is approximately equal to 50% when the 5% test based on Pr (1)) is used.
That is, the recommendation is to use the test which is (asymptotically) 0.50-optimal,
level 0.05 in the sense of Davies (1969). Table la tabulates the recommended values
of X for k=1,...,6 regressors in the constant mean (p = 0) case and reports selected
percentiles of the asymptotic null distributions of the corresponding Pr (5\) statistics.
These percentiles were computed by generating 20, 000 draws from the discrete time
approximation (based on 2,000 steps) to the limiting random variables. Table 1b
contains similar information about the linear trend (p = 1) version of Pr ().

| TABLES 1a-1b ABOUT HERE |
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5. POWER PROPERTIES

| FIGURE 1 ABOUT HERE |

5.1. Local Asymptotic Power.

Figure 1 plots the 5% asymptotic Gaussian power envelope 7°% (-) along with the
local asymptotic power functions of two feasible cointegration tests in the constant
mean case with scalar x;. The power envelope and the power functions were computed
by generating 20,000 draws from the discrete time approximation (based on 2,000
steps) to ¢ (A\;A), ¢ (X;9) and the limiting distribution of Sy for various values of
A. Results for vector-valued x; are qualitatively similar and have been omitted to
conserve space. The two feasible tests, denoted Pr (9) and Sz, are the tests proposed
in Section 4 and the test due to Shin (1994), respectively. The latter test appears to
be the most widely used cointegration test in applications. Moreover, St is known
to enjoy local optimality properties under the assumptions of Theorem 1 (Harris
and Inder (1994), Saikkonen and Luukkonen (1996)). In addition, previous research
(Jansson and Haldrup (2001), Jansson (2001a)) indicates that none of the tests due
to Choi and Ahn (1995), Hansen (1992c), Park (1990), Xiao (1999) and Xiao and
Phillips (2002) dominate Shin’s (1994) test in terms of local asymptotic power. For
these reasons, it seems natural to use the performance of St as a benchmark when
evaluating new tests such as Pr(9) .

As might be expected, the local asymptotic power of St is close to the envelope
for small values of A (smaller than 5, say). For larger values of A, on the other hand,
the local asymptotic power of the locally optimal test is well below the envelope. In
contrast, the local asymptotic power of Pr (9) is close to the envelope for all values of
A. In particular, the local asymptotic power properties of Pr(9) are similar to those
of Sy for small values of A (when the latter is optimal) and Pr (9) dominates St in
terms of local asymptotic power for larger values of A\. As is apparent from Figure
2, the situation is similar in the linear trend case although the magnitude of the
differences is smaller.

| FIGURE 2 ABOUT HERE |

5.2. Finite Sample Evidence.

To gauge the extent to which the predictions from the asymptotic power results of
Section 5.1 can be expected to be borne out in sample sizes encountered in practice,
a small Monte Carlo experiment is conducted. Samples of size T" = 200 are generated
according to the bivariate version of (1) — (4) under A1*. The parameters «, 3 and
o, are normalized to zero and the variances o,, and o,, are normalized to one. The
covariance o, is 0,0.2 or 0.5, while the parameter of interest, ¢, takes on values in
the set {1,0.975,0.95,0.925,0.90} .
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The matrix X is estimated by 3 = T-10'U. Based on the recommendations of
Andrews (1991), the parameters I' and € are estimated by means of a kernel estimator
using the QS kernel along with a plug-in bandwidth. The plug-in bandwidth is 1.3221-
T'/% max (min (a'/?, 5) ,0.05) , where a is computed from Andrews’s (1991) equation
(6.4) and the censoring involved in the construction of the bandwidth guarantees
consistency of the test. Table 2 reports observed rejection rates (based on 5,000
replications) of 5% level tests using the constant mean and linear trend versions of
the test statistics Pr (5\) and S7. To facilitate comparisons, the Pr (5\) and St test
are implemented using the same estimation strategy. That is, both tests use the
same estimators 3 and [' and both tests are based on a correction in the spirit of
Park (1992). The version of St constructed in this fashion is described in Choi and
Ahn (1995), where it is denoted SBDHj.

| TABLE 2 ABOUT HERE |

Rejection rates are reasonably close to 5% under the null with Pr (5\) exhibiting
slightly larger size distortions than St. The power of the point optimal test is com-
parable to the power of the locally optimal test for values of 6 close to unity. Against
more distant alternatives, the point optimal test dominates the locally optimal test.
These power results are consistent with the asymptotic results of Section 5.1. In
particular, the simulation evidence is favorable to the feasible point optimal test and
suggests that nontrivial power gains can be achieved by employing the test proposed
in this paper.

6. CONCLUSION
An asymptotic Gaussian power envelope for tests of the null hypothesis of cointegra-
tion was obtained and a feasible point optimal cointegration test was proposed. The
local asymptotic power function of the point optimal test is close to the asymptotic
Gaussian power envelope and the test was found to perform well in a simple Monte
Carlo experiment.
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7. APPENDIX: PROOFS

Throughout the Appendix, |-| denotes the integer part of the argument and all func-
tions are understood to be CADLAG functions defined on the unit interval (equipped
with the Skorohod topology). Lemma 3, adapted from Jansson (2002), will be
used to derive limiting distributions of sample moments of GLS transformed data
v 1/ 2 YJr 1y and W 1T2 s 7 from limiting distributions of sample moments of
Y+ 1y and R*. Indeed, the following relation, in which {FTt( ) 1<t < T} is
expressed in terms of {Fry : 1 <t < T}, motivates the transformations considered in
Lemma 3:

(FTl (5\) 7FT2 (E\)a"wFTT (5\))/ = \I/;jévQ—1j\ (FTlaFT27"'7FTT>I-

Lemma 3. Let {Fr;:0<t<T,T>1} and {gry: 1 <t <T,T > 1} be triangu-
lar arrays of (vector) random variables with Fro = 0 for all T. Let A > 0 be
given and define Fr, (5\) = AFp + (1 — T*15\) Fri (5\) and gry (5\) = Agr: +
(1 — T*15\) 9Tt—1 (5\) with initial conditions Fr (5\) = Fro and g1 (5\) =gr. If

s F()
T_l Zttz.lj gt G () .
B Zt q FTtht e I F S dG (s) +Tpa () |’ (7)
ZLTJ (Zz 1 gTz) 97 Jo G (s)dG (s) +Taa ()

where F' and G are continuous semimartingales and ' p and I' ¢ are continuous, then

Friry(A) Fi()
gr\T) ~ 9T (A A AG5 (°) (8)
T3 Fre (V) ome (V) “1 i Fa(s)dGs (s )+ Tral) |
1Zt:1 (th th( )) 974 (fo Gy (s)dG (s) +Tga ())

where F; (s —)\foexp( A(s—1t))dF (t) and Gy (s) = X [ exp (=X (s — t)) dG (1) .
Joint convergence in (7) and (8) also applies.

Proof of Theorems 1 and 2. Under the assumptions of Theorem 1, I' = 0 and
> = (). Theorem 1 therefore follows from the Neyman-Pearson Lemma, Theorem 2
and the fact that the distribution of ¢ (A, ) is contlnuous

Next, to prove Theorem 2, let § = 07 = 1 — T\ and for 9* € {1 9}
(yi (07),...,y7 (0%)) =YL Let o) =z, — FI.E Gy, where (tiy, ..., a7) = U. Now,
y; (6%) can be written as

C07) = a(07) di+ Baf +of (07),
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where a(@*) satisfies o (0%) dy = (a + o, Q way (1 —0)) dy — 60°0, Q) el Ad, and

T~ T wy rr —x

v (6%) = v T +0 T (07), where v T = (1 —0) X!, wl®+0ul”, ul® = uf —w', Q]

5= zybrg U
and ;" (07) = (9*9 10y — 00 wxy) - <ﬂ B—(1-6)Q; 1%1,) {is. More-
over, 7 =z T+2; ", where 27T = 2, — [, X tu, and 277 = (F »loT, 2*1) U+
0,57 (uy — @) . Similarly, i = (d},2;7) = rf* + 7", where 7 = (d}, 2 ') and

it = (0,a7").
By proceeding as in the proof of Jansson and Haldrup (2001, Lemma 6), standard

weak convergence results for linear processes (e.g. Phillips and Solo (1992), Phillips
(1988), Hansen (1992a)) can be used to show that the following hold jointly:

TV, T T = T1/2TT7" +0p( ) —aq Q (") 9)

. [T-]
TS el (0) =Ty 0t o, (1) —awy V), (10)

t=1

[T

TTZr:rU;r(G* TTZT T+ 0, (1)
=1

Y / Q(s)dV (s)

(12)

for 0" € {1,@} , where

diag (T-1/2,..., T~ F1/2) 0
Tr = < —T_IQ;;,}/ZCM’ T—IQ;;/Q )

T
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Since L7 (9") is invariant under transformations of the form Y;I — Y;f +D-a+X"-b,
Pr (X) can be written as P7 (A) + P (A) + P3 (X)), where

Pr(X) = log|RYR*|—log | R7V'R*|,
Py (5‘) - d)z;ylw (Vi - ‘/E?+I\II(9_1‘/:§+ - 25‘;)/1/@/-1:) ’

PE(N) = &, VU R (R, RY) T R,V

~A—1 ‘/'1+/R+ (R-&-/R-O-)*l R+/V'1-&-7

_wyy.m

and Vi = (vf (07),...,v5 (07)) for 0" € {1,0}.
Using (9) , Lemma 3, the continuous mapping theorem (CMT) and standard ma-
nipulations,

Pj (X) =log |TrRY R Y| —log |YrRT W, R,

/0 00 /0 0,

Similarly, using (10), (12), (@yy.0r Yyye) —p (Wyy.or Vyye) » Lemma 3 and CMT,

—q log — log
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PR (A) =@y MV = VOV =209,
' _
= 2@;3}33 ((‘/fr - \Ijé 1/2‘/@+) ‘/1+ - )"?yy.m)
~1/2 ! ~1/2
e (Vi =92V (Vi = w20
— oy ((v++ \I’_I/QV++)/V++ W )
yy:B 0 YY.T
!
ny <V++ \Ijgl/Qv++) <V++ _ \I/gl/QVJrJr) + 0, (1)
! 2 [ 2
—q 2\ / V2dVA — X / ()7,
0 0
where VI = (vf .. v}*) :

Finally, using (9), (11) Wyy.we —p Wyy.z, Lemma 3 and CMT,

P (N = W(TTR+’\1/ W (YrRTY;IRTY) T (YrRY WSV
(CrRYVE) (YrRYRYYE) T (YrRYVY)

yym

wo(fems) ([oe) ([ o)
“([an) ([e) ([ o)

14

The convergence results in the preceding displays hold jointly. Combining these

results, Theorem 2 follows. |
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8. TABLES

TABLE 1a

PERCENTILES OF Pr ()
CONSTANT MEAN: d; =1

k=1 k=2 k=3 k=4 k=5 k=6

A 9 10.5 12.5 14 16 17.5
90% 0.71 0.81 0.80 0.83 0.87 0.89
95% 1.70 1.82 1.82 1.87 1.88 1.91

97.5% 2.71 2.77 2.81 291 2.87 2.97
99% 3.93 4.20 4.03 4.27 4.34 4.40

TABLE 1b

PERCENTILES OF Pr ()
LINEAR TREND: d; = (1,t)

k=1 k=2 k=3 k=4 k=5 k=6

A 13.5 15.5 16.5 18 20 21.5
90% 0.84 0.82 0.94 0.98 1.01 1.09
95% 1.88 1.95 2.01 2.03 2.14 2.27

97.5% 2.87 3.04 3.12 3.03 3.28 3.29
99% 4.09 4.52 4.39 4.45 4.76 4.67
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TABLE 2

MONTE CARLO REJECTION RATES
5% LEVEL TEsTS, T = 200

Constant Mean

Linear Trend

O'a;y 0 PT (9) ST PT (135) ST
1.000 9.5 5.5 4.8 5.3

0.975 22.8 22.0 114 12.6

0 0.950 53.8 44.8 31.6 30.3
0.925 75.2 61.8 56.7 50.4

0.900 86.8 72.1 74.8 66.1

1.000 4.7 5.1 5.0 5.4

0.975 224 21.3 10.9 12.4

0.2  0.950 04.8 45.3 30.0 30.0
0.925 75.9 62.3 53.1 48.3

0.900 87.0 73.4 72.1 64.1

1.000 3.5 4.8 3.2 5.1

0.975 18.6 20.3 7.7 11.2

0.5  0.950 49.3 44.3 24.9 28.8
0.925 T1.7 60.7 48.3 48.0

0.900 84.2 71.7 67.7 64.1
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1 T

0.8

0.7

0.2

/ —— Envelope
0.1r ) P.9) 7

R S_r

0 ! ! ! ! \
0 5 10 15 20 25 30

A

FIGURE 1: POWER CURVES

5% LEVEL TESTS, CONSTANT MEAN, SCALAR .



0.9

0.8

0.7

0.3

0.2

0.1

PoINT OPTIMAL COINTEGRATION TESTS

22

S

—— Envelope
PT(13.5)

T

0 5 10 15 20 25

A
FIGURE 2: POWER CURVES

5% LEVEL TESTS, LINEAR TREND, SCALAR .

30



