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Abstract

Financial data display rather striking scale-free characteristics that have been

a topic of considerable interest. We propose a model of the microbehavior of

financial markets that accounts for two empirically-observed facts, the power

law distribution of returns with exponent 3, and the power law distribution of

trading volume with exponent 1.5. We also show that the model is consistent

with a number of additional empirically-found results, including equal-time

codependences among return, volume, and number of trades.

Useful for quantifying earthquake risk is the empirical fact that the number of earth-

quakes larger than a given magnitude decreases as a power law of the magnitude [1—3].

Useful in quantifying economic risk is the empirical fact that in a given time interval ∆t, the

number of stock price fluctuations larger than a fixed magnitude decreases as a power law

of the magnitude. The exponent value that characterizes this power law appears to be the

same for quite different countries, different size of markets, and for different market trends

(e.g., bull or bear markets). There is no satisfactory explanation of why there should be a

power law decay, of why the exponent characterizing this decay should have an apparently

“universal” value, or of why the exponent value should be approximately three [4,5]. Here
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we propose and develop a model that explains this empirical law, explains other power laws

characterizing large movements in market activity, and explains a number of codependences

characterizing the fluctuations of different quantities. The model is based on a plausible set

of assumptions, and its quantitative predictions are in accord with known empirical facts.

We define pt as the price of a given stock, and the stock price “return” rt as the change

in the logarithm of stock price, rt ≡ ln pt/pt−∆t. The probability that a return is in absolute
value larger than x is found to be

P (|rt| > x) ∼ x−ζr with ζr ≈ 3. (1)

This “inverse cubic law” holds over as many as 80 standard deviations for some stock

markets, for ∆t ranging from one minute to one month, across different sizes of stocks,

different time periods, and also for different stock market indices [6—9]. Mechanisms based

on shocks of infinite variance cannot account for stock market fluctuations, as they imply

ζr ≤ 2 [10,11]. Moreover, the most extreme events – including the 1929 and 1987 market

crashes – conform to this law [12], demonstrating that crashes do not appear to be outliers

of the distribution (1).

Power laws also describe the distributions of other fluctuating quantities. Emprical

studies show that the distribution of trading volume Vt obeys [13,14]

P (Vt > x) ∼ x−ζVt with ζVt ≈ 1.5, (2)

while for the individual trade sizes [15] qt

P (qt > x) ∼ x−ζq with ζq ≈ 1.5, (3)

and for the number of trades Nt [16]

P (Nt > x) ∼ x−ζN with ζN ≈ 3.4. (4)

We will base our model on the distribution of the largest market participants, mutual

funds [17]. Motivated by the fact that size distributions of several economic variables dis-

play power-law distributions (examples include incomes [18], cities [19] and firms [20]), we
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hypothesize that the tail of the distribution of mutual fund size S is also described by a

power law

P (S > x) ∼ x−ζS , (5)

where S denotes the market value of the managed assets. To test this hypothesis, we use

the Center for Research in Security Prices database to calculate ζS for the top 10% of the

mutual funds for each year in the period 1961-1999, and find–using the Hill estimator–an

average value ζS = 1.05 ± 0.02. Exponent values of approximately 1 have also been found
for the cumulative distributions of city size and firm size, and the origins of this “Zipf”

distribution are becoming better understood [21]. For the following derivation of the inverse

cubic law, we use the value ζS = 1.

A second important empirical fact motivating our model is that large traders have large

price impacts [22,23]. A typical stock has a turnover (fraction of shares exchanged) of

approximately 50% a year [24], which implies a daily turnover of approximately 50%/250 =

0.2%–i.e., on average 0.2% of outstanding shares change hands each day. The 30th largest

mutual fund owns about 0.1% of such a stock [25]. If its fund manager sells its holdings

of this stock, the sale will represent half of the daily turnover, and so will impact both the

price and the total volume [26,27].

The gist of our theory is that managers of large mutual funds receive “intuitions” about

the future direction of the market and trade on them, while avoiding too much in annual

transaction costs. The resulting outcomes are the power law distributions of returns and

volume with exponents 3 and 1.5 respectively.

We present the theory in three steps.

(A) Square root price impact. The price impact ∆p of a trade of size V has been es-

tablished to be increasing and concave [28,29], and we hypothesize its functional form to

be

r = ∆p ∼ V 1/2. (6)
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We investigate empirically the equivalent relation E [r2 | V ] ∼ V [30]. Figure 2 shows

empirical values of the quantity E [r2 | V ], which we find is affine in V for large V [31].

Relationship (6) implies [32]

ζr = 2ζV . (7)

Hence the cubic law of return (1) can be explained by the half-cubic law of volumes (2) and

the square root price impact (6). It remains to explain (2) and (6 ).

(B) Explaining the half-cubic law distribution of returns (2). Call V the size of the block

a trader wants to trade, and Vt the aggregate volume which is comprised of individual blocks

Vt =
PJ
j=1 Vj. Hence ζVt = ζV . If each fund i of size Si were to trade, at random, a volume Vi

proportional to Si (which we write as Vi = aiSi), then the distribution of individual volumes

will follow ζV = ζS = 1. However, ζV > 1 empirically, i.e. the distribution of volumes is

less fat-tailed that the distribution of size. An intuitive reason for this fact is that large

traders have large price impacts, and must moderate their trading to avoid paying too large

costs of price impacts. The trader will also be careful to moderate his annual transaction

costs, suggesting that an important quantity is the average proportional amount of funds of

size S, defined to be the amount of transaction costs paid by the funds (as a fraction of the

portfolio)

c (S) =
Annual amount lost by the fund in price impact

Value S of the assets under management of the fund
. (8)

For example, if funds of size S pay on average 1% in price impact a year, then c (S) = 0.01.

The preceding consideration motivates the following theorem.

Theorem. If the following conditions hold (i) Zipf’s law for institutional investors ζS = 1;

(ii) Square root price impact (6); (iii) Funds trade in typical volumes V ∼ Sδ with δ > 0;

(iv) Funds adjust trading frequency and/or volume so as to pay transactions costs c (S) = C

approximately independently of S, then returns and volumes are power law distributed with

tail exponents

ζr = 3, ζV = 3/2. (9)
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The validity of conditions (i) and (ii) was shown above, while condition (iii) is given by

virtually any model–e.g. the model discussed in the [33, sup]. Condition (iv) implies that

large and small funds pay roughly similar annual price impact costs (say 1%). An alternative

is that c (S) increases with S. If, e.g. c (S) ∼ S, then if fund A is ten times larger than fund
B, and c (SB) = 1%, then A pays c (SA) = 10%/year in transaction costs. Such a fund A

would soon be eliminated from the market. Thus it is plausible that c (S) ≈ C, independent
of S, will be assured by evolutionary forces. Indeed, a fund trading so much would likely be

eliminated from the market, because most funds do not seem to possess superior information

or insight about the markets [34].

To prove the theorem, we start by noting that with each block trade, the fund incurs a

price impact proportional to V ·∆p. From condition (ii), this cost is V 3/2. If F (S) is the

annual frequency of trading, then the annual loss in transactions costs is F (S) · V 3/2, i.e. a
fraction

c (S) = F (S) · (V (S))3/2 /S (10)

of the value S of this portfolio. Condition (iii) implies that either V (S) or F (S) will adjust

in order to satisfy

F (S) ∼ S · (V (S))−3/2 . (11)

Condition (i) implies that the number of traders with size larger than S is G (S) ∼ S−1,
so the density of traders of size S is ρ (S) = −G0 (S) ∼ S−2. By condition (iii), volumes
V > x correspond to traders of size S such that Sδ > x. There is a number ρ (S) ∼ S−2 of
traders of size S and they trade with frequency given F (S) in (11). Hence

P (V > x) ∼
Z
Sδ>x

F (S) ρ (S) dS ∼
Z
S>x1/δ

S1−3δ/2S−2dS ∼ x−3/2. (12)

which leads to a power law distribution of volumes with exponent ζV = 3/2. From (7), it

follows that ζr = 3.
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The structure of the above result is quite general, and does not depend on many details of

the trading strategy, such as specific values of δ. Rather, it relies on the empirically-grounded

relation (6). We next propose an explanation for this relation.

(C) Price impact of trades. We consider the behavior of one stock, A, whose original

price is 1 USD, so that the new price is 1 USD +b∆p, where ∆p is the proportional price

increase in the trade, and b is some real number [36]. The manager of a large mutual fund

who wants to make a buy trade of size V offers a price increment ∆p to realize his trades,

and his broker contacts potential suppliers of shares. The number of liquidity providers

available after he has waited a time T is of course a non-decreasing function of T , and we

will take it to be proportional to T [37]. A liquidity provider i of size si is willing to supply

qi shares, for a price increase ∆p, with the supply function qi ∼ si∆p.
After a time T , the active trader can buy a quantity of shares proportional to hsi∆p T .

The search process stops when the desired quantity is reached, i.e., when hsi∆p T = V .

Hence, the time needed to find the shares is

T =
V

hsi∆p ∼
V

∆p
. (13)

There is a trade-off between cost of execution ∆p, and the time to execution T if the trader

wants to realize his trade in a short amount of time T , he will have to pay a large price

impact ∆p ∼ V/T .
We consider the managers’ trading problem. Let us assume that fund managers receive

independent and identically distributed “intuitions” that tell them that a given stock is

mispriced by an amount M , i.e., the difference between the fair value of the stock and the

traded price is M . It does not matter whether these hunches reflect genuine insight, or the

overconfidence of the traders in their judgement [35]. Consider, e.g., M > 0. During the

time interval that the trader is trying to purchase the stock, the price of the stock continues

to increase, in part because some of the liquidity providers will “front run” (purchase the

stock themselves, in anticipation of the price impact of the large trader). So the price of the

stock goes up at a rate µ [38]. The trader’s goal is thus to maximize B, the perceived dollar
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benefit from trading [39],

B = V (M −∆p− µT ) . (14)

The validity of (14) can be seen by observing that the trader expects the asset to have excess

returns M , but after a delay of T , the price has increased by µT , so that the remaining

mispricing is only M − µT . The total dollar profit per share B/V is the realized excess

return M − µT minus the price concession ∆p, which gives (14).

The optimal price impact ∆p maximizes B with, according to (13), T = aV/∆p, i.e., ∆p

maximizes V (M −∆p− µaV/∆p), which gives

∆p ∼ V 1/2. (15)

The time to execution is T ∼ V/∆p ∼ V 1/2, and the number of “chunks” in which the block
is divided is N ∼ T ∼ V 1/2 [40,41]. This last relation gives

ζN = 3 (16)

which is close to the empirical value of 3.4 [42].

The model’s predictions for power law exponents are robust to additional sources of

noise. To see this, we observe that while the model provides a mechanism for a source of

return Rit which has ζR = 3, it is plausible that the observed return is rit = aitRit + bit,

where ait and bit are independent stochastic disturbances. For example, bit captures news

that affect prices and not volume. Because of the general properties of power laws, we have

ζr = min (ζR, ζa, ζb). So if our theory of Rit captures the first order effects (i.e. those with

dominating power law, so that ζa, ζb ≥ ζR), its predictions for the power law exponents of

the “noised up” empirical counterpart frit will still be true, as we have ζr = ζR = 3.

The proposed model provides an explanation for the tail behavior of returns, volume

and number of trades, taken individually. It also makes predictions for the joint behavior of

these variables. We now use the Trades and Quotes data base [43] to test these predictions.

We estimate empirically the conditional relationships between returns and several measures
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of trading activity. To generate their counterparts in the proposed model, we use Monte-

Carlo simulations. In a given time interval ∆t, there will be J “rounds” where a big trader

creates one or more trades. Each round creates a volume Vj, a return ±V 1/2j and a number

of trades V
1/2
j . Then total volume, number of trades, and returns, will be the sum of these

individual quantities [44] V ≡ PJ
j=1 Vj, N ≡

PJ
j=1 V

1/2
j and r ≡ PJ

j=1 εjV
1/2
j , with εj = ±1.

As a measure of trade imbalance, we use N 0, the number of buyer-initiated trades minus the

number of seller-initiated trades [45], and V 0, the number of shares exchanged that come

from a buy order minus the number of shares exchanged that come from a sell order.

In Fig. 3(A) we compare the price impact function E[r|V 0] produced by the model against
the data, and the agreement is satisfying. We observe that aggregation over several trades

flattens the shape of the price impact function.

We study a variant of Figure 3(A) in Figure 3(B), which plots E[V 0|r]. Somewhat

surprisingly, the shape is now roughly linear, a feature matched by the model. The cause is

again the aggregation over several trades. Figure 3(C), E[N |V 0], tests the model prediction
that periods with large volume imbalance V 0 are periods where a large numberN of trades are

made. One sees that the data display relationships that are very similar to those predicted

by the model. Figures 3(A), (B), and (C) support the view that large returns and large

numbers of trades go together with large volume imbalances V 0.

It is an important feature of the proposed model that large desires to trade create many

trades. Indeed in the proposed model, we have

|N 0| ∼ N (17)

in the extreme events they are dominated by one large trader who wants to trade a volume

Vj, and creates a number V
1/2
j of orders, so that Nj, N , |N 0

j| and |N 0| have the same order of
magnitude, Vj. Relation |N 0| ∼ N expresses that most trades have the same sign, i.e., move

the price in the same direction, the desired direction of the large trader. This contrasts with

a simple alternative model where each desire to trade would create only one trade, as in a

competitive market. In this alternative model we would have
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N 0 =
NX
i=1

εi (18)

where εi = ±1, leading to |N 0| ∼ N1/2 in the tail events. We investigate relation (17)

directly in Figure 3(D), which plots E[N |N 0]. We indeed find E[N |N 0] ∼ |N 0| while the
alternative model (18) would counterfactually predict E[N |N 0] ∼ N 02. Figure 3(E) probes

our view that in periods of high volume imbalance, most trades change the price in the same

direction, Eq. (18). Indeed, in this figure the data and the model exhibit a similar sharp

transition of N 0/N as V 0 changes sign.

Thus the proposed model agrees with the empirical facts presented in Figure 3. Existing

theories need special assumptions that will make them posit relations between return, volume

and number of trades that are close to the predictions of the proposed model. Further,

existing theories do not account for the empirical values of the power law exponents. For

instance, in the efficient market view [46,47], prices reflect news about fundamentals. Hence

the efficient market theory can only assume that it is the nature of news to have an exponent

equal to 3. Similarly, given that the power law exponent of mutual fund size is 1, simple

models of trading would predict a volume proportional to fund size, hence an exponent of 1

for volume, in contrast to the value of approximately 1.5 found in the empirical data.
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FIGURES

FIG. 1. Cumulative distributions of the normalized 15-minute absolute returns of the 1000

largest companies in the Trades and Quotes database for the 2-year period 1994—1995. Regression

fit yields P (|rt| > x) ∼ x−ζr with ζr = 3.1± 0.1.

FIG. 2. Conditional expectation of the squared return r2 given the volume V . The bands

represent 95% confidence intervals, using the techniques of [31]. The theory predicts a relation

E[r2|V ] = aV + b, the “square root” price impact of volume.

FIG. 3. Conditional expectations for (A) E[r|V 0], (B) E[V 0|r], (C) E[N |V 0], (D) E[N |N 0], and

(E) E[N 0/N |V 0]. We form, for each interval ∆t = 15 min the following quantities r returns, VB

(resp. VS) number of shares exchanged in a buyer (resp. seller) initiated trade, NB number of

buyer (resp. seller) initiated trades, V 0 ≡ VB − VS, and N 0 ≡ NB −NS . The left panel shows the

empirical values for the 116 most frequently traded stocks in the Trades and Quotes database for

the 2-year period 1994—1995. Variables are normalized to unit variance after setting the mean to

zero; for variables such as volume for which the variance is divergent, we have normalized by the

first moment instead. The right panel shows the model’s predictions.
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