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Abstract

We show empirically a series of sharp patterns in stock market
fluctuations, trading activity and their contemporaneous relationships.
We link together and explain the following facts: (i) the cubic law of
returns: returns follow a power law distribution with exponent 3. This
“cubic” law seems to hold both across time and internationally. Stock
market “crashes” (e.g. the 1929 and 1987 crashes) are not outliers to
this law; (ii) the half cubic law of volumes: volumes follow a power law
distribution with exponent 3/2; (iii) the square root law of price impact
(the price impact of a volume V is proportional to V 1/2); (iv) Zipf’s
law for mutual funds: mutual funds size follow a power law distribution
with exponent 1. The model also makes predictions about the cross-
conditional relationships between various trading variables. They all
appear to be verified empirically. The model makes a series of other,
out of sample, testable predictions. Finally, it shows that a Tobin
tax, or circuit breakers, do not affect that size of extreme fluctuations.
However, a tax that increases with the size of the transactions does
reduce the magnitude of those very large fluctuations.
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1 Introduction: New facts and the need for an
explanation

1.1 New facts on the distribution of returns, volume, number
of trades

This paper offers a theory of the contemporaneous relationships and distri-
butions of volume and volatility. It draws on some known facts, and a series
of series of sharp, non-trivial and “universal” facts (see later) on volatility,
trading (volumes and number of trades), uncovered by the authors and col-
laborators1 (in a time-consuming project using data sets of up to 1 billion
points) and proposes a simple explanation for all of those facts. Hence, it
provides a precise, quantitative theory of the same-time features of stock
market volume and volatility2. It will explain all the facts that the reader
can already see in the figures of the paper.

Those facts are the following: (i) the cubic distribution of returns, (ii) the
half-cubic distribution of volumes, (iii) the square root law of price impact,
(iv) Zipf’s law for mutual fund sizes, (v) a series of 20 cross-conditional
expectations between measure of trading activity: relations of the type E[Y |
X], for X,Y=return, volume, volume imbalance, number of trades, “net”
number of trades (number of “buy” minus number of “sell” orders), and
at time functions of those. We will explain (i), (iii) and then show how it
implies (i), (ii). The model will also all the fact that go under (v).

The first four laws are the following.
(i) The cubic law of returns. Returns are found to have a power law

distribution with an exponent of 3. This is true at horizon of 15 min to 1 day
to 1 week – beyond that, the central limit theorem imposes convergence to
a Gaussian distribution3. More precisely, the distribution of return follows:

P (r > x) ∼ 1

xζr
with ζr ' 3 (1)

and we say that the “power law exponent” of returns is ζr = 3 (here as
in the rest of the paper ∼ means asymptotically equal, up to numerical

1The initial finding, the cubic distribution of return, was established by Gopikrishnan
et al. (1997).

2We postpone the time-series extension of our framework to future research. See e.g.
Gallant Rossi and Tauchen (199x) for interesting facts on the time-series structure of
volatility and volume.

3However, long-range correlations in volatility make the convergence slower than in the
central limit theorem.
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constants4). This can be visualized in Figure 1, where ln br is on the x−axis,
and lnP (r > br) is on the y−axis. The fact that the slope is -3 means that
we have lnP (r > br) = −3 ln br+constant, i.e. (1). There is no tautology
that implies that this graph should be a straight line, or that the slope
should be -3. A Gaussian would have a concave parabola, not a straight
line. Distribution (1) implies the well—known result that returns have “fat
tails” (their kurtosis is infinite), but expresses this in a much more precise
way. The surprise is that we can do this for individual stocks, stocks of
different sizes, and different time periods (see section 2 for a systematic
exploration), and we always find ζr ' 3. We will contend that this fact
deserves an explanation.

(ii) The half-cubic law of trading volume. By volume we mean the num-
ber of shares traded, or the dollar value traded — those measures yield sim-
ilar results. We find (Gopikrishnan et al. 2000a), that the density satisfies
f (V ) ∼ V −2.5, i.e. that the distribution is:

P (V > x) ∼ 1

xζV
with ζV '

3

2
. (2)

Figure 1 illustrates this (again, section 2 exposes this more systematically).
We can do the same for the number of trades, and find:

P
³
N > bN´ ∼ 1

xζN
with ζN ' 3.4 (3)

Again, those scalings seem to be stable across different types of stocks,
different time periods and time horizons etc. (see section 2).

(iii) The square root law of price impact. It says that the price impact
∆p of a trade of size V scales as:

∆p ∼ V γ with γ ' 1/2.
This stands against most microstructure models, which predict a linear

price impact.
(iv) Zipf’s law for institutional investors. Mutual funds follow also Zipf

law. As section 2.5 reports, the n−th largest (in dollar value of the assets
under management) mutual fund has a size 1/n (an explanation is proposed
in Gabaix, Ramalho and Reuter 2002)

P (S > x) ∼ 1

xζS
with ζS ' 1 (4)

4Formally f(n) ∼ g (n) means f (n) /g (n) tends to a positive constant (not necessarily
1) as n→∞.
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Figure 1: Empirical cumulative distribution of the absolute values of the
normalized 15 minute returns of the 100 largest companies in the TAQ
database for the 2-yr period 1994—1995. The solid line is a power-law fit in
the region 2 < x < 80. We find lnP (r > x) = −ζ lnx + b, with ζ = 3.1 ±
0.1.This means that returns are distributed with a power law P (r > x) ∼
x−ζ for large x.
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Figure 2: Probability density function of the number of shares q traded, nor-
malized by the average value, for all transactions for the same four actively
traded stocks. We find an asymptotic power-law behavior characterized by
an exponent ζq. Fits yield values ζq = 1.87± 0.13, 1.61± 0.08, 1.66± 0.05,
1.47 ± 0.04, respectively for each of the four stocks. Source: Gopikrishnan
et al. (2000a).

1.2 “Universal” laws in economics

The non-trivial challenge for a theory is not to explain some power law
behavior (many mechanisms generate power laws), but the precise (cubic or
half-cubic) value of the exponents. Are those remarkable coincidences, or
are those the signs of something important and deep about the formation of
prices in the market? We contend that it is the latter. Namely we think that
these “cubic” (and half cubic) regularities are part of the few “universal”
regularities in economics. Those are now well-documented. One of the oldest
is Zipf’s law for cities (Zipf 1949, Gell-Mann 1994, Gabaix 1999), which
states that, with the above ranking procedure, city number n has a size
(number of inhabitants) S(n) ∼ n−1. This applies in virtually all countries
in the world. As such, it qualifies as a “universal” regularity, and begs for an
explanation; moreover, because it holds for very different systems (e.g. both
in the US in 1990 and India in 1900), its explanation cannot depend on the
fine details of the production functions and the transportation costs: it thus
allows room for clean theorizing: many details simply cannot matter for the
explanations. Further evidence on the existence of universal relationships in
economics is provided by Robert Axtell5 (2001) has shown that Zipf’s law

5The difference of the Axtell study and previous ones (e.g. Ijiri and Simon 1976) is
that is has an essentially complete set of firms: the 5 million firms in the US census, as
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holds also for the size of firms (S(n) ∼ n−1).
We thus propose the following picture: the stock market has “universal”

properties with exponents of 3 and 1.5 for returns and volume (and approx-
imately 3 for the number of trades), and these deserve an explanation. We
will propose an explanation, which will be based on one power law: the
power law 1 of the size of mutual funds. This is the one that generates the
3 and 1.5.

1.3 Fact on conditional expectations of measures of trading

activity

Another set of facts will involve the joint distributions of returns, volumes,
and their variants. More precisely, we fix a time interval ∆t (for instance,
∆t =15 min, 1 day, 1 week). We will consider rt =the (log) return of the
assets:

rt = ln p (t)− ln p (t−∆t)
with the natural adjustment when there are dividends. We also define Nt to
be the number of trades in the interval (t −∆t, t], Vt (the trading volume)
to be the number of shares6 traded (the volume) in (t − ∆t, t]. We also
consider partitions of those quantities in buys and sells. Suppose each trade
i, happening at time i, see a quantity of shares exchanged qi, and set εi = +1
is the trade can be identified as buy initiated, εi = −1 if it was sell-initiated,
εi = 0 if no identification is possible7. We defineN 0 the net number of trades,
i.e. number of “buy” trades minus the number of “sell” trades, and finally

opposed to just the traded firms in Compustat.
6The dollar value of the shares traded, or the number of the shares traded over the

number of shares outstanding would give the same results.
7We identify buyer and seller initiated trades using the bid and ask quotes SB(t) and

SA(t) at which a market maker is willing to buy or sell respectively . Using the mid-value
SM(t) = (SA(t) + SB(t))/2 of the prevailing quote, we label a transaction buyer initiated
if S(t) > SM(t), and seller initiated if S(t) < SM(t). For transactions occurring exactly
at SM(t), we use the sign of the change in price from the previous trade to determine
whether the trade is buyer or seller initiated, while if the previous transaction is at the
current trade price, the trade is labelled indeterminate.
Following the procedure of Lee and Ready (1991), we use the prevailing quote at least

5 s prior to the trade (see also Ellis et al. 2000). Lee and Ready report that 59.3% of
the quotes are recorded prior to trade. They find that using the prevaling quote at least
5 s prior to the trade mitigates this problem. Quotes being recorded ahead of the trade
occurs when the specialist calls out the details of the trades and new quotes, and while the
trade is entered into the system by a stock exchange employee, the quotes are entered by
the specialist’s clerk. If the specialist’s clerk is faster, the quotes can be recorded before
the trade.
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V 0 =net volume=number of shares exchanged that come from a buy order
- number of shares exchanged that come from a sell order. Formally:

Nt =
X

trade #i happening in (t−∆t,t]
1

Vt =
X

trade #i happening in (t−∆t,t]
qi

N 0
t =

X
trade #i happening in (t−∆t,t]

εi

V 0t =
X

trade #i happening in (t−∆t,t]
εiqi

We plotted the graphs E [Y | X] for many combinations of X,Y = r,
V , V 0, N , N 0, N 0/N , V/N . (The choice was guided by an assessment of
how “meaningful such a graph would be”, and how non-trivial the shape
predicted by the theory would be). The model replicates all the shapes of
those graphs, as can be seen in Figures 5 through 9 below.

Section 2 presents the “power law” empirical facts in more detail. Sec-
tions 3 and 4 expose the model we propose to explain them. Section 5,
the second main empirical section, shows how the model also explains the
many E [Y | X] graphs we have found. Section 6 relates our approach to
the literature. Section 7 concludes.

2 The empirical facts

2.1 Data used

We are primarily using the 1 billion points in the TAQ database: all the
trades (about 1000/day for each stock), for 1000 stocks, in 4 years (about
1000 trading days) (1994-1997). This represents 70 gigabytes total. We ag-
gregate them other different horizons: 15 minutes, 1 hr, 1 day, 1 week. (Over
longer horizon, most distributions converge to a Gaussian, as they should
as they have finite variance). Because we deal with power law exponents,

Trades occurring within the SB and SA or at the mid-quote SM arise when a market buy
and sell order occur simultaneously, or when the specialist or floor brokers with standing
orders respond to a market order by bettering the quote. According toLee and Ready
(1991) the latter is more often the case. In our case, an average of ≈ 17% of the trades is
left indeterminate. See also Harris (1989).
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we need lots of points to get enough resolution. There is a quite sizable dis-
persion of measured exponents from stock to stock, and this is why we need
so much data. The theory would predict this too. For instance, suppose
returns are distributed according to the density proportional 1/

¡
1 + r2

¢2,
looking at the top 1% of 40,000 points, the standard deviation of measured
exponents is about .5, for a mean of about 3.

To compare quantities across different stocks, we normalize them by
the second moments in they exist, otherwise by the first moments. For
instance, for a stock i, we consider the returns r0it := (rit − ri) /σr,i, where ri
is the mean of the rit and σr,i is their standard deviation. For the volume,
which has an infinite standard deviation, we consider the normalization:
V 0it := Vit/Vi, where Vi is the mean of the Vit. This is explained more
systematically in section 12.

2.2 The cubic law of price fluctuations: ζr ' 3
In the introduction, we argued that price fluctuations had an exponent 3:
ζr = 3. We show here the robustness of this finding.

Note that this exponent of 3 rejects Mandelbrot’s “Paretian” hypoth-
esis, as well as his explanation. Mandelbrot (1963) argued that we had
ζr ∈ (1, 2), and this seemed to be the case for cotton prices, and gave the
nice explanation that this came from a large number of shocks with infinite
variance: by Lévy’s theorem, this should give rise to a Lévy distribution of
price fluctuation, with (necessarily) an exponent ζr < 2. But here we firmly
reject ζr < 2.

We can look at other stock markets. Gopikrishnan et al (1999a) report
also the values of ζ for the daily returns of the NIKKEI index (1984-97) and
of the Hang-Seng index (1980-97), and find:

ζr =

½
3.05± .16 (NIKKEI)
3.03± .16 (Hang-Seng)

The cumulative distributions are plotted in (Fig 9 PRE Indices)

With 10 countries (Australia, Canada, France, Germany, Japan, Honk-
Kong, Netherlands, South Korea, Spain, United Kingdom), we find for the
mean ζr = 2.9 with a standard deviation of .10.[show a plot].

Having checked the robustness of the ζ = 3 finding across different stock
markets, we look at firms of different sizes. Small firms have a higher volatil-
ity than big firms, as is verified in Figure ??(a). But the same Figure also

10



Figure 3: Zipf plot for the daily fluctuations in the Nikkei (1984-97), the
Hang-Seng (1980-97), and the S&P 500 (1962-96). The apparent power-
law behavior in the tails is characterized by the exponents α ' 3.05± 0.16
(NIKKEI), α ' 3.03±0.16 (Hang-Seng), and α ' 3.34±0.12 (S&P 500). The
fits are performed in the region g>1. Source: Gopikrishnan et al. (1999).
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shows a similar slope. Indeed, when we normalize the distribution by a com-
mon standard deviation, we see that the plots collapse, and the exponents
are very similar, around ζ = 3 again.

(a) Cumulative distribution of the conditional probability P (r > x) of the
returns for companies with starting values of market capitalization S for
∆t = 1 day from the CRSP database. We define uniformly spaced bins on
a logarithmic scale and show the distribution of returns for the bins,

S ∈ (105, 106], S ∈ (106, 107], S ∈ (107, 108], S ∈ (108, 109].(b) Cumulative
conditional distributions of returns normalized by the average volatility σS

of each bin. The plots collapsed to an identical distribution, with
α = 2.70± .10 for the negative tail, and α = 2.96± .09 for the positive tail.

Source: Gopikrishnan et al. 1998.

2.2.1 Evidence on the cubic law from the foreign exchange mar-
ket

There exist many studies of the power law exponent of foreign exchange
fluctuations. The most comprehensive is probably Guillaume et al. (1997),
whose Table 3 we reproduce here in Table 2.2.1. The standard errors on
ζ are big, which makes any conclusion difficult. Someone skeptical of the
cubic law wouldn’t be more persuaded, but is still the ζ are tantalizingly
compatible with a true ζ = 3.
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Rate 10m 30m 1h 6h

USD DEM 3.11 ±0.33 3.35 ±0.29 3.50 ±0.57 4.48 ±1.64
USD JPY 3.53 ±0.21 3.55 ±0.47 3.62 ±0.46 3.86 ±1.81
GBP USD 3.44 ±0.22 3.52 ±0.46 4.01 ±1.09 6.93 ±10.79
USD CHF 3.64 ±0.41 3.74 ±0.82 3.84 ±0.77 4.39 ±4.64
USD FRF 3.34 ±0.22 3.29 ±0.47 3.40 ±0.69 4.61 ±1.21

FRF DEM 3.11 ±0.41 2.55 ±0.23 2.43 ±0.23 3.54 ±1.42
DEM NLG 3.05 ±0.27 2.44 ±0.08 2.19 ±0.12 3.37 ±1.43
DEM ITL 3.31 ±0.51 2.93 ±1.17 2.54 ±0.49 2.86 ±0.98
GBP DEM 3.68 ±0.35 3.63 ±0.42 4.18 ±1.17 3.22 ±0.79
DEM JPY 3.96 ±0.41 4.18 ±0.90 4.13 ±1.05 4.71 ±1.61

Table : Estimated tail exponent ζ for exchange rate fluctuations
Estimated tail exponent and its standard error for the main FX rates against the
USD and some of the main (computed) cross-rates against the DEM. The results
are taken from Dacorogna et al. (1994). The bias was estimated using a bootstrap
method. In contrast to quoted cross-rates, computed cross-rates are obtained via
the two bilateral rates against the USD. Their spread is thus approximately twice

the normal spread.

2.3 The half cubic law of volume: ζV ' 3/2
Trying to understand the origins of the cubic law for returns, in Gopikr-
ishnan et al. (2000a) we looked at the distribution of volume8, and found9

that we got an exponent around 1.5: ζV ' 1.5. (More precisely, we found
ζV = 1.53±.07). Figure 2 shows the density of of the volumes for four differ-
ent stocks. Note that a cumulative distribution of P (q > bq) ∼ bq−ζq implies
for a density function (the derivative of the cumulative) p (q) ∼ bq−ζq+1, so
that a slope of 2.6 in the density implies a power law exponent of 1.6 in
the cumulative. Maslov and Mills (2001) find likewise ζV = 1.4± .1 for the
volume of market orders.

8For stock i, we look at the fluctuations of Vit/Vi, where Vi is the mean volume Vit.
This makes stocks comparable, and the “number of shares” and “dollar volume” would
give equivalent measures of volume.

9Gopikrishnan et al. (2000a) establish the exponent of 1.5 via an other method, the
scaling of the moments of the volume, which is of generatl methodological interest.

13



2.4 The (roughly) cubic law of number of trades: ζN ' 3.4
In Plerou et al., we looked (among other things) at the distribution of the
number of trades N , and found an exponent ζN = 3.4± .05.Our theory will
predict the exponent of 3. However, interestingly, in the simulations even
under the null of our theory, an exponent large than 3 appears (typically,
we found an exponent around 3.2): this suggests that empirical exponents
will be biased upward. All in all, we consider that the empirical value of ζN
is around 3,

Figure 4: Cumulative distribution of the normalized number of transac-
tions n∆t = N∆t/ hN∆ti . Each symbol shows the cumulative distribution
P (n∆t > x) of the normalized number of transactions n∆t for all stocks in
each bin of stocks sorted according to size. An analysis of the exponents
obtained by fits to the cumulative distributions of each of the 1000 stocks
yields an average value ζn = β = 3.40± 0.05.

Cumulative distribution of the normalized number of transactions n∆t =
N∆t/ hN∆ti . Each symbol shows the cumulative distribution P (n∆t > x) of
the normalized number of transactions n∆t for all stocks in each bin of stocks
sorted according to size. An analysis of the exponents obtained by fits to the
cumulative distributions of each of the 1000 stocks yields an average value
ζN = β = 3.40± 0.05.
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2.5 The unitary (Zipf) law of the size distribution of mutual
funds: ζS ' 1

Looking for an explanation to the above “cubic” (and half-cubic) power
laws, we looked at the distribution of the size of the mutual funds. From
Morningstar one gets the size (dollar value of the assets under management)
of all the mutual funds10. Using the usual technique, we rank them by size
(the largest fund being fund #1), and do a “log rank vs log size” regression.
The distribution follows a power law, whose slope can be found by a linear
regression:

lnRank = −1.04 lnSize+constant
(.003)

R2 = .98

if we regression over funds the top 2000 funds. The slope of the regression
gives an estimate of the power law exponent of the distribution, and we
conclude

ζS = 1 (5)

This is the same exponent as the cities (Zipf 1949, Gabaix 1999) and business
firms (Axtell 2001).

For the purpose of this paper, one can take this distribution of the sizes
of mutual funds as a given. It is in fact not difficult to explain: one can
transpose the explanations given for cities (Gabaix 1999, updated in Gabaix
2001b) to mutual funds: a log normal process with small perturbation to
ensure convergence to a non-degenerate steady-state distribution explain the
power law distribution with an exponent of 1. Gabaix, Ramalho and Reuter
(2002) show that those assumptions are verified empirically.

It is only recently (say in the past 30 years) that mutual funds have
come to represent a large part of the marketplace. For the earlier periods,
the theory will work if the distribution of large agents still follow Zipf’s law.
We do not have direct evidence for this, but a very natural candidate would
be the pension funds of corporations. Axtell (2001) showed the distribution
of U.S. firms sizes follows Zipf’s law with ζS = 1. Takayasu (200x) has
shown this for Japan. It is very likely that the size of the pension fund of
a firm of S employees is proportional to S, so that their pension funds also
follow Zipf’s law with a slope of 1.
10The say 200 funds of Fidelity, for instance, count as 200 different funds, not as one

big “Fidelity” fund.
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2.6 The facts: conditionals

We plotted E [Y | X] for lots of X,Y = r, V , V 0, N , N 0, N 0/N , and powers
of those. The graphs are reported in section 5 later in the paper, when we
compare them to the theory’s predictions.

3 The theory, assuming the square root law of
price impact

3.1 Sketch of the theory

We understand the exponent of the size of mutual funds, ζS = 1 (a fact we
establish here empirically, and explained in Gabaix, Ramalho and Reuter
2002). We will show how it generates, through intelligent11 tactical behavior
of the traders, the exponents ζV = ζV 0 = 3/2 for the volume, and ζr = ζN =
ζN 0 = 3 for the return and number of trades.

Broadly speaking, the theory works like this: large volumes and large
returns are created by the decisions to trade of large agents. The power
law exponent is 1, and this is what gives rise to the cubic and half cubic
laws. When a large agents wants to trade (this is due to some news that
happened, or maybe results from a new “strategic orientation” he decided
to take), his desired quantity is sizable compared to say the daily turnover
(this is the case empirically, see section 4.4.2: say the 50th biggest mutual
fund, if it wants to increase its holdings of say Apple by 50%, will have to
absorb the whole daily turnover of Apple). Hence he knows that he will
move the market. He knows that, if he wanted to realize his trade (say,
a sell order) in the next 30 seconds, he would need to accept a big price
discount. However (for many possible reasons) he doesn’t want to wait too
long before realizing his trade. When, while paying attention not to pay
too many transactions costs over the year, he minimizes the waiting sum
of execution time and transactions costs, he will trade in such a way that
generates the exponent of 1.5 for volume, and an exponent of 3 for returns
and the number of trades.
11Our traders, though intelligent (they try to avoid too high trading costs), are not

necessarily hyperrational. They may trade too much, like in Daniel et al. (1999) and
Odean (2000).
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3.2 Linking the cubic exponent of returns and the half-cubic
law of volume: he square-root law of price impact

3.2.1 Theory

We will examine the view that prices move because of trades. If we hypoth-
esize a price impact function:

r = cV γ (6)

for some number c, and if we assume that large movements in prices are
caused by large trades, then we will have, by the formula (35) in Appendix
A:

ζr = ζV /γ (7)

Given empirically ζr = 3 and ζV = 3/2, we have led to hypothesize γ = 1/2,
i.e. a square-root price impact:

r = hV 1/2 (8)

For ease of reference, we gather this in the following

Proposition 1 Suppose that we have (i) the half-cubic law of volumes ζV =
3/2 and (ii) the square root law of price impacts. Then we have the cubic
law of returns:

ζr = 3.

Proof. As r = hV 1/2,

P (r > x) = P
³
hV 1/2 > x

´
= P

³
V > (x/h)2

´
∼

³
(x/h)2

´−3/2 ∼ x−3.

3.2.2 Evidence on the square root law of price impact

Starting with Hasbrouck (1991), the empirical literature finds an increasing
and concave price impact, i.e. supports γ ∈ (0, 1). This is qualitatively
encouraging, but our purposes require a more direct test of γ = 1/2. To
do this, we start from the benchmark were, in a given time interval, n i.i.d.
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blocks are sold, with volumes V1, ..., Vn, with i.i.d. signs εi = ±1, so that
the return in the period is:

r = h
nX
i=1

εiV
1/2
i

Then

E
£
r2 | V ¤ = h2E

 nX
i=1

Vi +
X
i6=j

εiεjViVj | V


= h2V + 0

i.e.
E
£
r2 | V ¤ = h2V (9)

We get a simple conclusion that E
£
r2 | V ¤ should be linear in V , at least

for large V 0s. A more precise prediction is possible. Equation (9) predicts­
r2
®
= h2 hV i, i.e.

E
£
r2i /σ

2
r | Vi

¤
= 1 · Vi/ hV i

i.e., in the graph E
£
r2 | V ¤ in normalized units (normalizing V by its

mean, r by its standard deviation, as we do throughout the empirical analysis
of this paper), the relationship should be roughly linear with a slope of 1.
Fig. ?? [insert it] shows the empirical result. Indeed we find a relationship
E
£
r2 | V ¤ = aV + b with a close to 1, and no clear sign of concavity or

convexity (which would respectively imply γ < 1/2 and γ > 1/2). We thus
name (8) as a good candidate for an empirical law, and dub it the “square
root law of price impact”.

We now a way to understand ζr = 3. It comes, we hypothesize, from
ζr = 3/2, and the square root price impact of trades (8). We now have to
try to explain each of those two regularities.

3.3 The main result

If each fund i of size Si traded, at random, a volume Vi proportional to
Si (we write this Vi = aiSi), then the distribution of individual volumes
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would follow ζv = ζS = 1. The trading volume in an interval ∆t would be
proportional to

V =
X

i who has traded

aiSi

hence, by summation properties mentioned in Appendix A, we would also
have ζV = ζS = 1. However, ζV = 3/2.

The distribution of volumes is less fat-tailed that the distribution of size.
This means that large traders trade less often than small traders, or that,
when they trade, they trade in volume less than proportional to their sizes.
Why would that be the case? Intuitively, a likely reason is that large traders
have large price impacts, and have to moderate their trading to avoid paying
too large costs of price impacts.

This suggest that an important quantity is the amount of transaction
costs paid by the funds (as a fraction of the portfolio), i.e.

c =
Amount lost by the fund in price impact

Value of the assets under management S of the fund

We call c (S) the average proportional amount of funds of size S. For
instance, if funds of size S pay on average 1% in price impact a year, c (S) =
1%.

This motivates our next:

Theorem 2 If the following conditions hold:

• (i) Zipf’s law for institutional investors: ζS = 1
• (ii) Square root price impact

∆p ∼ V 1/2

• (iii) Funds trade in volumes

V ∼ Sδ (10)

for some δ > 0

• (iv) Fund adjust trading frequency and/or volume so as to pay an
transactions costs

c (S) = C (11)

(homogenous willingness to pay transactions costs).
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Then returns and volumes are power law distributed with the cubic and
half-cubic exponents:

ζr = 3

ζV = 3/2

We comment on the hypotheses before proceeding to the proof.
We have discussed (i) above. Gabaix, Ramalho and Reuter (2002) show

this empirically. Random growth models (Gabaix 1999) offer an explanation
for Zipf’s law.

We have shown above the validity of (ii). In the next section we will
propose an explanation for it.

(iii) is given by virtually any model. The most natural guess would be
δ = 1. Later we present a model with δ = 2/3.

(iv) is newer. It means that large and small funds pay roughly similar
price impact costs a year, e.g. 1%. An alternative would be that c (S) would
increase with S, e.g. c (S) ∼ S. This would mean that if fund A is ten times
as big as fund B, and c (SB) = 1%, then A pays c (SA) = 10%/year in
transaction costs. We expect such a fund A to be eliminated by the market
after a couple of years. We think c (S) = C independent of S will be assured
by evolutionary forces12: a fund trading so much would likely be eliminated
from the market place, as most funds, in reality (see e.g. Carhart 1997) and
in this model, traders do not possess superior information or insight about
the markets. (Another, very related, reason might be due to “prudential
guidelines” in the fund — e.g. Vanguard’s funds).

We do not have direct evidence on (iv). Some indirect evidence can
be gathered by talking to traders: They know that large funds impact the
market more, and will have to be more “prudent” (reduce the size of their
trades, trade more slowly or more infrequently) to avoid moving the market
too much against them. Gabaix, Ramalho and Reuter (2002) provide some
indirect evidence, as they document that, except for very small fund, small
to large funds have the similar average returns.

We now proceed to the proof of the proposition.
Proof. Each time incurs a price impact proportional to V ·∆p. Given

(ii) and (10), this cost is V 3/2. If F (S) is the an annual frequency of trading,
the total annual dollar lost in transactions costs is F (S)·V 3/2, i.e. a fraction

c (S) = F (S) · V (S)3/2 /S (12)
12For lack of space, we do not offer a formal justification for this, though this could

easliy be done in a richer model.
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of the value S of this portfolio. Hypothesis (iii) gives that either V (S) or
F (S) will adjust so as to satisfy:

F (S) ∼ S · V −3/2. (13)

By (i), the number of traders with size bigger than S is G (S) ∼ 1/S. So
the density of traders of size S is ρ (S) = −G0 (S) ∼ 1/S2. We then observe
that volumes V > x correspond to traders of size S such that Sδ > x by
(iii); that there is a number ρ (S) ∼ S−2 of traders of size S ; and that they
trade with frequency F (S) given in (13); so:

P (V > x) ∼
Z
Sδ>x

F (S) ρ (S) dS ∼
Z
S>x1/δ

S1−3δ/2S−2dS.

∼
h
−S−3δ/2

i∞
x1/δ

=
³
x1/δ

´−3δ/2
= x−3/2.

so that we find a power law distribution of volumes with exponent:

ζV =
3

2
. (14)

Given Proposition 1, this completes the proof.

3.4 A model that illustrates Theorem 2

We gather the theory as it looks so far. Managers have i.i.d. “illumina-
tions”. There are uncorrelated across managers. They think that there is a
mispricingM , i.e. that the asset will have excess returns of sizeM.We here
takeM > 0, so that the manager want to buy the asset. The same reasoning
would go through withM < 0, and then the managers would like to sell this
asset. Those illuminations arrive Fmax times a year and managers trade on
them F ≤ Fmax times a year.

The dollar profit from a trade of size V is: V (M −∆p). As the manager
trades F times a year, the annual profit is F · V (M −∆p). Note that here
we abstract from the time to execute the trade, a consideration we’ll focus
on later. We also use the “Homogenous transaction costs” constraint (11)
and (12), which becomes our constraint (16), so that the trader’s program
is:

max
F,V,∆p

F · V (M −∆p) (15)

s.t. F ·∆p · V/S ≤ C (16)

F ≤ Fmax (17)

∆p = hV 1/2
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The solution is given by

Proposition 3 The solution of the problem gives V ∼ Sδ with δ = 2/3 in
Theorem 2, hypothesis (iii).

Proof. Immediate. Constraint (16) binds, and the square root law give
F · V 3/2 = CS, i.e. V ∼ S2/3.

Other models could predict different values of δ in (10). For instance,
if M (F ) = F−α (if one trades less frequently, one trades only on the best
opportunities), then one can get any V = Sδ with δ ∈ [2/3, 1].
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4 A stylized microstructure model yielding a square
root law of price impact

We have argued that the hypothesis of Theorem 2 are valid empirically. We
have economic rationales for them, except hypothesis (iii), the square root
price impact (8). The basic microstructure models (e.g. Kyle 1985) give
a linear13 price impact ∆p ∼ V . Virtually all the empirical evidence (e.g.
Hasbrouck 1991), however, shows a concave price impact. In this section,
we propose an explanation for (8). It is fairy independent of the rest of the
theory.

Put succintly, the argument is the following. In our model, a trader who
is willing to wait for an amount of time T to realize his trade will incur a
price impact:

∆p =
V

T
(18)

so that Kyle’s linearity of the price impact in V holds, but for a given T .
But more patient traders, who are willing to wait for a larger time T , will
be have a lower price impact. Suppose that asset’s price is increasing at a
rate µ. The total benefit from the trade of size V will be:

B = V (M − µT −∆p) (19)

as the trader will enjoy the excess return µ for a time L − T , and will pay
a price concession ∆p. The optimal T satisfies

max
∆p

B s.t. (18)

so that

∆p = argmax
∆p

V

µ
M − µ V

∆p
−∆p

¶
which gives

∆p ∼ V 1/2
and T ∼ V 1/2. In words, Hence the price impact of a trade of size V scales
like less than V , as large traders are willing to pay more in time to execution
to moderate the time to execution. When a linear cost of time to execution,
we get a price impact (8). To execute a trade of size V , people are on average
more patient, and wait for a time T ∼ V 1/2, so that (18) gives (8).

We now proceed to fleshing out the model that gives (18).
13A concave price-volume is given by Seppi (1990), Barclay and Warner (1993), and

Keim and Madhavan (1996). Those models do not predict a square root, however.
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4.1 A stylized microstructure model, for a given large target
volume

At a given point in time, a trader can be in one of 3 different states: an
“active”, “causal” [find better name] trader, or a liquidity provider to an
active trade, or he may just be dormant — i.e. not participating in the
market.

To keep it tractable, our model is very “stylized”, and highlights the
role of heterogeneous sizes of the agents. Other, much more refined models,
include Bertsimas and Lo (1998), He andWang (1995), Saar (2001), Vayanos
(2001).

The behavior of liquidity providers A liquidity provider is willing
to supply a number q of shares, for a price increase ∆p, with the supply
function:

q = α · s ·∆p (20)

with α some proportionality factor. We can give two justifications for this
kind of rule:

(i) This is a plausible rule, which might be derived as the first order term
of the Taylor expansion of the solution of a complex optimization problem

(ii) It turns out that there is a clean justification from portfolio theory:
Suppose that the provider of size s is at his optimum holding of stocks. If
he sells a quantity q of shares, he will be off by an amount q, which causes,
in standard portfolio theory, a second order loss of value (a dimensionless
constant times) (q/s)2, which gives a dollar equivalent of (q/s)2 s = q2/s. In
the transaction however, he makes a profit ∆pq. He is indifferent if q2/s =
q∆p, i.e. q = s∆p, which is the supply curve above14.

To complete the model, we need to take a stand on the “permanent”
part of the price impact. If the price was $1, and the new trading price
was $1+∆p, what is the next “reference price” (for instance the mid quote
price?). In general this would depend on assumption about the information
and the rationality of the traders. Here, to close the model in a simple way,
we will just assume the new reference price will be p0 = p+ b ·∆p for some
14This assumes that traders are, largely, close to their optimum holding. But after a

big target trade has been absorbed by the market, this cannot be the case any more. In
practice, liquidity providers, over the next few weeks or months, readjust their portfolio.
We will not explicitly formalize this in the model — it would add a lot of complexity to
the model and would be largely a side show.
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(possibly stochastic) b with E [b] > 0 and b has not too fat15 tails (ζb ≥ 3).
For instance, the new reference price could be the last trading price (b = 1)
or say be p0 = p + .9∆p (b = .9). We will not seek here to endogenize this
as an optimal response to information revealed by the trade16, though that
would be an interesting question for future research.

The behavior of active traders Consider a big, “active” trader A who
wants to make a trade of size V , and for that uses a limit order (maybe in
the upstairs market). We will determine the optimal limit order, but for
this we first have to describe the trading environment.

Say that this is a buy order for concreteness. It happens at time 0.
Liquidity providers indexed by i emerge stochastically from their dormant
state [another interpretation is: the active trader A has, perhaps via his
broker, to call successively potential buyers, which takes some time: after a
time t, one could call a number proportional to t of potential traders], and
so are happy to sell the active trader a quantity qi = αsi∆p. So after a time
t, the active traders A can buy

Q(t) =
X

traders i that have appeared between 0 and t

αsi∆p.

The search process stops when the desired quantity is reached, i.e. at the
smallest t such that Q(t) ≥ V.

The execution will require a time T such thatX
i arrives between 0 and T

αsi∆p = V (21)

(rigorously, it will be the smallest T such that in the equation above the
left hand side is no smaller than the right hand side). Taking expectations
given ∆p, V on both sides of (21), with f being the (Poisson) frequency of
arrival of liquidity providers: fE [T | ∆p, V ]E [s] = V , so the average time
15 Indeed, if b had extremely fait tails (b < 3), then the biggest fluctutations of returns

would be due to fluctuations in b: we would have ζr = ζb < 3.
16 Indeed, we leave open the possibilty that those price adjustment are not a rational

response to some “information” that the trader would have. A simpler interpretation
might be that, given the difficulty of assessing what the “fair” price of say IBM is, to
within say a 20% accuracy, using the last trade price as a benchmark is simply a good
rule of thumb, or maybe focal point for the coordination of where future prices might go.
These issues would obvisouly benefit from a separate treatment.
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required will be

T =
V

αfhsi∆p (22)

T ∼ V

∆p
. (23)

Remark: to increase descriptive realism, we could assume that the Pois-
son arrival rate f itself increases with the price offered |∆p|, as in f (∆p) .
It is easy to verify that our results for the power laws will not change if
the function f increases, for large |∆p|, like less than a power law (e.g.
the arrival rate tends to saturation maximal value as |∆p| → ∞, or say
f (∆p) ≤ a ln (b+ |∆p|)k for some finite a, b, k).

Traders will, in practice, want to minimize two quantities: the execution
time E [T | ∆p, V ], and the execution cost |∆p|. From above, their objective
function for the given trade is:

B = V (M − µT −∆p) (24)

Indeed, as above, the trader expects the asset to have excess returns µ for
up to time L. But he will be able to enjoy this excess return only up from
time T to L. The total dollar profit B is the realized excess return µ (L− T )
minus the price concession ∆p, times the dollar volume transacted V . Given
(24) and (23)

∆p = argmin
∆p
∆p+ µ

V

∆p
. (25)

We see that ∆p ∼ V 1/2. We gather this in the following:

Proposition 4 In the above setting, we get the square root law of price
impact:

∆p ∼ V 1/2, (26)

will wait for an amount of time

T ∼ V 1/2,

and will trade with a number of liquidity providers

N ∼ V 1/2
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The full expressions are:.

∆p =

µ
µV

αfhsi
¶1/2

(27)

E [T | V ] =
µ

V

αfµhsi
¶1/2

(28)

E [N | V ] =
µ
fV

αµhsi
¶1/2

. (29)

Proof. The loss function (21) gives:

∆p =

µ
µ

fhsiV
¶1/2

The expression forE [T | V ] comes from (22), and given that liquidity providers
arrive with process with Poisson frequency f we haveE [N | V ] = fE [T | V ] .

So big traders create big price impacts, and have to accept a delay in the
execution of their trades: this, qualitatively, is congruent with the experience
of traders, as well as the stylized facts found in the empirical literature :
the price impact |∆p| is an increase and concave function of the trade size
V (Hasbrouck 1991, Holthausen et al. 2000, who find that a large part
of the impact is permanent), impatient traders (high cost of time µ) will
have a bigger price impact ∆p (Chan and Lakonishok 1993, 1995, Keim
and Madhavan 1996, 1997, Lo, MacKinlay and Zhou 1997, Breen Hodrick
Korajczyk 2001). The theory here gives a precise quantitative hypothesis
for this price impact and delay: is it proportional to V 1/2, the square root of
the volume. Future research might examine directly whether those square
root predictions (for large trades) hold in the data.

4.2 The distribution of individual trades q

Theorem 2 gave reasons to generate a distribution of target volumes ζV =
3/2. The “upstairs” mechanism above give a way to divide them into smaller
trades of size qj , with a mean size hqji ∼ V 1/2. One might expect ζq = 2ζV =
3. But this is not the case, as large volumes creates also a large number of
trades. This is summarized in:
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Proposition 5 With the process above, with target volumes with a distrib-
ution ζVT > 1, the distribution of individual trades follows

ζq = ζV . (30)

Proof. Here VT is the target volume. To get the latter, observe that
the individual trades during a trading round are due to target volume V are
qi = si∆p = siV

1/2, where si is the size of the individual liquidity provider.
Individual trades of size q come from large target trades of size V > q.
There is a density V −(ζV +1) of them. Each large target volume V generate
a number V 1/2 of trades. So we get:

P (qi > q) ∼
Z
V >q

V −(ζV +1) · V 1/2P
³
siV

1/2 > q
´
dV.

As the liquidity providers have size ζs = 1, P
¡
siV

1/2 > q
¢ ∼ V 1/2/q and

P (qi > q) ∼
Z
V >q

V −(ζV +1)V 1/2
³ q

V 1/2

´−1
dV

= q−1
Z
V >q

V −ζV dV ∼ q−1 · q−(ζV −1) = q−ζV

so we get ζq = ζV .

4.3 A model that incorporates the mechanisms above

During the search of the block trade, the price increases at a rate µ + ν,
where ν represents the rate of “leakage”, hence should be included in the
cost. There is “leakage”when an investor B who have heard that the large
trader A is looking to buy shares, and investor A buys shares himself.. For
instance B can think that A has perceived a mispricing. Suppose that with
a probability π “liquidity provider” i above price engage in this activity. i
will trade, and will have a price impact hI (si)i. The the price pressure
associated with shopping of the block is an increase of the price equal to ν
per unit of time where:

ν = π hI (si)i f
with, as above, f is the number of liquidity providers contacted per unit of
time. The fact that ν > 0 is important, but the exact expression of ν does
not matter.

In the trader’s opinion, the dollar profit from a trade of size V is:
V (M − (µ+ ν)∆p). So the annual profit is:F · V (M − (µ+ ν)∆p). We
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also introduce the “Homogenous transaction costs” constraint (11), so that
the trader’s program reads:

max
F,V,∆p

F · V (M − (µ+ ν)T −∆p) (31)

s.t. F · (νT +∆p) · V/S ≤ C (32)

F ≤ Fmax

Hence, the price impact includes not only ∆t, but also the price incre-
ment due to leakage νT.

The solution is given by:

Proposition 6 The solution of problem above gives V ∼ Sδ with δ = 2/3.
Thus, using Theorem 2 and Proposition 5, we have the cubic laws stock
market activity:

ζr = 3, ζV = 3/2, ζq = 3/2, ζN = 3

and the square root law of price impact:

∆p ∼ V 1/2

in this model.

Proof. Immediate, using the results above (to type in). First, we get
the square root law, and then the cubic laws.

4.4 Some comments on the model

4.4.1 Arbitrage

If volume moves prices without necessarily informational reasons, this model
requires limited arbitrage. We do not view this as a lethal problem. There
is plenty of evidence that arbitrage is limited (see e.g. Barberis and Thaler
2001 and Shleifer 2000). The cleanest examples are probably the rejection
of the basic arbitrage relationship in equity carve-outs (Lamont and Thaler
2001) and in twin stocks17 (Dabora and Froot 1999). There are also good
17 Incidently, our model would predict that if we regressed:

rShellt − rRoyal Dutcht = α+ βrUK Index
t − γrDutch indext + εt

to control for stock-market wide movements, then the residual εt would behave
very much like the returns rt of our model, in particular would have a shape

E
h
|εt| |V Shell

t + V Royal Dutch
t

i
close to the E [|rt| |Vt] graphs of our model. The same would

be true with signed volumes if they were available.
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theoretical reasons for the existence of the limits to arbitrage (Shleifer and
Vishny 1997).

4.4.2 Is this reasonable? Being more concrete about daily turnovers

The literature finds a big impact of big traders: Chan and Lakonishok (1993,
1995) find a range of 30-100 bps, Keim and Madhavan (1996), looking at
small stocks, find a rather astonishing 400 bps. To see that if makes sense
that a large fund will absorb a substantial liquidity of the market, and is
likely to move prices, take a typical stock. Its yearly turnover is 50% (Lo
and Wang 2001), so that with 250 trading days per year, its daily turnover
is .5/250=0.2% of the shares outstanding. Take a moderate size fund, e.g.
fund #25 (fund #1 = biggest). In June 2000, it had $8 billion, i.e. roughly
0.1% of market. So, on average, it will hold .1% of the capitalization of
a given stock. Now suppose if it wants to sell its holdings, or double its
holdings of this stock: it will create an additional .1% in turnover of stock,
while the regular turnover is .2%/day. So, the size of the desired trade of this
fund is quite sizable compared to the normal turnover. This supports the
idea that big funds are indeed big for liquidity of the market, and supports
the assumption that big traders will pay attention to their trading strategy
to moderate their price impact.

5 Assessing some further empirical predictions of
the model

The above model proposes an explanation for the power laws of financial
market activity. We now show how it correctly explains another series of
patterns in trading activity.

Because of analytical complexity, we recourse here to simulations to de-
rive most of the other properties of the model. We compare the predictions
of the model from a distribution of the data for various quantities: the
return r, the volume V and the net volume V 0, the number of trades N
and the net number of trades N 0,and possibly combinations of them, like
N 0/N, V/N, r2. We compare the empirical and theoretical conditional ex-
pectations E [Y | X], for X,Y = V,N, V 0, N 0, r,N 0/N, r2, V/N . In principle
we could have done it for all 8 · 7 = 56 pairs; but given each graph takes
takes a very long time to prepare, we opted to do that only for a dozen of
those graphs. First, we need a word about the simulations.
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5.1 Observables over a given amount of time: Aggregation
over different target volumes

In practice, in a given time interval, there will be several “rounds” where a
big trader creates one or more trades. Now, imagine that in the period ∆t
considered, there are J such trading rounds indexed by j = 1, ..., J . (J is, in
general, a random variable). Each of them gives rise to rj , Vj , Nj , V 0j , N

0
j ,

and individual trades (qji)1≤i≤Ni . The quantities we have calculated in the
statistical analysis are (calling εj =sign(rj))

r =
JX
j=1

rj =
JX
j=1

εjV
1/2
j (33)

V =
JX
j=1

Vj

N =
JX
j=1

Nj

V 0 =
JX
j=1

εjVj

N 0 =
JX
j=1

εjNj

and again we have E [Nj ] = V
1/2
j up to numerical prefactors.

Of course, in reality, observed r will be the r above, plus some noise due
e.g. to news and other market events outside the model. However, those
extraneous events do not affect the big events.

Proposition 7 As soon as the number of events J does not have too fat
tails (ζJ ≥ 3), the results of Theorem 2 still hold the time intervals with
different target volumes.

Proof. As the formulaire in the Appendix A shows, power law exponents
are conserved under finite addition. This extends to thin-tailed addition.

To sum up: the previous model explains the three power laws we set out
to explain. Still it had somewhat ad hoc (in the view of the authors, not
outrageously so) assumptions, so that some other way to validate the model
would be welcome. This is what we present in the following section.
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5.2 Conditional expectations: E [Y | X]graphs
In Figures 5 through 9 we present the empirical values on the left panel,
and on the right the theoretical prediction of the model. We obtained the
theoretical prediction in the Monte Carlo simulations detailed in Appendix
E.

It was very heartening for the authors to see that the model matches
all the E [Y | X] we empirically constructed. Take for instance “Hasbrouck
graph” E[r | V 0], which is plotted in Figure 5. We replicate in the left panel
the increasing, concave shape (in the positive region) found by Hasbrouck
(1991). Plotting the symmetrical version, E [V 0 | r], yields a surprising find-
ing: we see that the empirical graph, in Figure 6 is now linear. The model
matches this in the right panel of Figure 6.

The model predicts that periods of high volume are periods when big
traders execute trades in smaller pieces, so that, for a big buy trade, one
observes lots of “buy” smaller trades. A compact way to say that is that N
is high, and |N 0/N | is high too when the volume is high18. This is expressed
in Figure 7.

In an earlier paper (Plerou et al. 2001) we reportE [N | N 0] andE [N | V 0] :
we see that the model matches those curves quite well (Figures 8 . We tested
a few other graphs, and in all cases the model matched the empirical curves
quite well19 (here, we report the curves with the most “interesting” shapes).
Given that the model was not tailored to match those facts, we view this
as a very reassuring feature of the model. [insert comments on the ecnomic
meaning of the graphs. Insert analogues with Kyle model]

18A very different relationship would happen under another a priori (but not a posteriori)
plausible model: suppose that there are N trades with i.i.d. signs (εi)i=1...N and sizes
(qi)i=1...N , so that V

0 =
PN

i=1 εiqi. Then a large N corresponds to an N 0 =
PN

i=1 εi =

O
³√
N
´
, so that N 0/N = O

³
1/
√
N
´
is small. Likewise [check] a large V 0 corresponds

(in part) to a large N , and a small |N 0/N |, counterfactually.
19The graphs we tested where E [V | r], E [N | r], E [r | V ], E [V 0 | N 0], E [N 0 | V 0],

E [V/N | r], and empirical finding and theory matched very well. We do not report the
results here, but they are available from the authors upon request. The printout of the 56
theoretical relationships E [Y | X] involving V,N, V 0,N 0, r,N 0/N, r2, V/N is also available
from the authors.
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Figure 5:

Figure 6:

In Figures 5 through 9, the left panel (solid dots) displays the
empirical values, and the right panel (line) the theoretical

prediction.
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Figure 7:

Figure 8:
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Figure 9:

5.3 Some untested predictions

The model makes a number of untested predictions, which we gather here:

• The expressions (27)-(29) for the price impact, the time to execution,
and the number of trades (Proposition 4). In particular, it would
be interesting to test their “square root” dependence in S, and the
differential impact of µ (the impatience of the trader), α, f, hsi.

• The fact that a big fund of size S will do “aggressive”, “price moving”
trades20 with a frequency declining in the size (if δ > 2/3) as S1−3δ/2.

• The model predicts many E [Y | X] graphs that we did not build21
(as carefully determining them empirically is a delicate and time-
consuming activity). It would be nice to know whether the model
holds in the data.

The model also has some untested assumptions, in particular:

• The linear supply function (20), saying that a trader willing to wait
an amount of time T and to pay a price increment ∆p, will get an

20So looking at the fund turnover will not be the right thing to do (and indeed, fund
turnover is largely independent of size): to avoid looking like a “closet indexer” a large fund
will maintain a fairly large turnover, though the “real” “strategical” trades will indeed
happen less often (as they move prices a lot).
21The printout of the 56 theoretical relationships E [Y | X] involving

V,N, V 0,N 0, r,N 0/N, r2, V/N is available from the authors upon request.
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amount of shares S (∆p, T ) that will be proportional to ∆p · T in the
limit of large ∆p and T.

• More generally, we anticipate the values of the 5 trading exponents α,
β, γ, δ and κ in Appendix B to be 0, 1, 1, 1, and 0.

We leave the investigation of those values to future research.

6 Related literature

6.1 Some alternative theories

The general theme is that most theories (and certainly all that have been
written until now) don’t explain (and cannot explain with a simple modi-
fication) the cubic and half-cubic laws. They have free parameters, so one
tune them to replicated the ζ = 3, but this is not an explanation.

6.1.1 The public news based (efficient markets) model

One would need to assume lots of things to make this model fit the power
laws. First, because returns reflects news, we have to assume that the
distribution of news has ζr = 3.

This is not the only difficulty. In the benchmark where volumes don’t
move prices, there is no reason for big traders to trade less than small ones.
With no price impact, essentially all models that traders should trade in
amount proportional to their sizes, so that the volume Vi traded by trader
i will be equal to Vi = aiSi for ai a random variable that do not scale with
size. Then, we would get

ζV = ζS = 1

This prediction of ζV = 1 is one of the major difficulties with the news
approach. We have to somehow assume ζV = 1.5 (for instance, for some
reason left unexplained, a trader of size s trades with probability22 s−1/2,
or trades magnitudes proportional to s2/3)..
22The fact that traders of size s do “aggressive trades” only with frequency s−1/2, in

our model, the natural outcome of their (fractional) trading costs being proportional to
s1/2. But in the “public news model”, where trading costs are 0 or proportional to the
amount traded, there is no reason any more why the frequency should be s−1/2.
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6.1.2 A mechanical “price reaction to trades” model

This model is: desired trades are i.i.d., in a given periodN trades are desired,
with a quantity εiqi for the ith trade (εi is the sign of the trade). The price
has a reaction f (εiqi) to each trade. So:

r =
NX
i=1

r (εiqi) (34)

V =
NX
i=1

qi

V 0 =
NX
i=1

εiqi

N 0 =
NX
i=1

εi

An advantage of this model (a simple variant of our preferred model) is
that it will tend to generate qualitatively right E [Y | X] curves. However
there are problems with this model: (i) We need to assume ζV = 1.5. The
natural prediction (given ζS = 1) would be ζV = 1. (ii) we need to assume
ζN ' 3 : it could be any other value. (iii) We also need to assume r(V ) =
V 1/2 to get the shape of E[r | V ].

6.1.3 Random bilateral matching

This has been proposed by Solomon and Richmond (2001). The model says
that two traders of size S, S0 meet, and the resulting volume is max(S, S0)
and the price impact is min(S, S0).

Problem: as the initial size distribution is ζS = 1, ζmin(S,S0) = 2, so that
one would predict ζV = ζr = 2. The authors rely on a scaling exponent of
the size of agent ζS = 1.5, as is approximately the case in the US and the UK
in the late 90s, but not in other periods (Feenberg and Poterba 1993 show
that the exponent for the wealth of U.S. individuals had large variations
from 1.5 to 2.5 in the last 30 years). They didn’t look at the distribution
of mutual funds with ζS = 1, which trumps, because of its fatter power law
(smaller power law coefficient), the distribution of wealth.
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6.2 Related empirical findings

6.2.1 Other distributions for returns

The empirical literature has proposed other distributions. In short, the rea-
son why we are more confident about our findings is that we have more data
points, hence quantify better the tails. And we can also explain previous
findings in light of ours.

Andersen et al. (2001a, 2001b) propose a lognormal distribution of re-
turn. In independent work Liu et al. (1999) show that this is true in a stock
market context too, but only in the central part of the distribution: while
the center is log normal, the tails are power law. We reproduce in Figure 10
one of their findings.

Gopikrishnan et al. (1999) also report how, with a small sample that
looks only at the center rather than the tails of the distributions, one would
find Lévy (as Mandelbrot 1963) or truncated Lévy (Mantegna and Stanley
1995) distributions.

Finally Ané and Geman (2000) propose a model which is in essence:

rt = σ
NtX
j=1

ui

with a constant σ and ui are standard normal shocks (this is Clark’s model,
with the clock being driven by number of trades, not volume), and argue for
a good fit of the model. But this has a very important empirical problem:
from ζN ≥ 3, as |r| ∼ N1/2 in this model, we conclude ζr = 2ζN ≥ 6, so
the model misses the cubic law by a large amount. In fact, in our model,
results similar to Ané-Geman would be found: for instance, E[r2 | N ] looks
almost linear (though it is not really linear). So we can see how, even under
the null of our model, they would find results similar to what they report,
though our mechanism is more accurate: simply put, their model is a pretty
good, though ultimately inexact (in the null of our model, and according to
the value of ζr and ζN ) approximation of reality.

6.2.2 Buy / Sell asymmetry

Our basic model has built-in full symmetricity between positive and negative
tails. This is not a bad approximation of reality: the exponents are roughly
identical, around 3. However, it is true that the exponents are slightly lower
(fatter tails) in the negative tail that in the positive one. More generally,
one finds a bit more skewness in the negatives.
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Figure 10: (a) Probability distribution of the volatility on a log-log scale
with different time windows T with ∆t =30 min. The center part of
the distribution shows a quadratic behavior on the log-log scale. The as-
ymptotic behavior seems consistent with a power law. (b) Center of the
distribution: The volatility distribution for different window sizes T us-
ing the log-normal scaling form

√
ν exp (a+ ν/4)P (vT ) as a function of

(lnVT − a) /
√
πν, where a and ν are the mean and the width on a logarith-

mic scale. The scaled distributions are shown for the region shown by the
box in (a). By the scaling, all curves collapse to the log-normal form with

a = 0 and ν = 1, exp
h
− (lnx)2

i
(solid line). Source: Liu et al. 1999.
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We sketch here a simple hypothesis suggested by our framework. Sup-
pose the frequency of arrival f of liquidity providers is higher for desired sells
(so the liquidity providers have to buy the asset) than buys. The “Street”
explanation for this (reported in Chan and Lakonishok 1993) is that for
buys, the liquidity providers have to already own the asset (if short selling
is time / cost consuming). So

f+ < f−

where f+ =frequency of arrival of liquidity providers that are willing to be
counterpart of a buy order, f− =same for a sell order. By plugging f+
or f− in (33) we see that |∆p+| > |∆p−| , i.e. the theory predicts higher
price movements for buys than for sells, but that the exponents are the same
(which they are, to a good approximation, as shown above). Saar (2001)
provides an alternative explanation.

6.3 Link with the microstructure literature

The literature to which this paper is closest is perhaps the microstructure
literature. This literature is extremely vast (for reviews see e.g. O’Hara 1997
and Biais et al. 2002), so we will only mention the most directly relevant
pointers. Our theory makes predictions above the relationships between
volume and price impact, and we reviewed in section ?? the papers directly
pertaining to our theory. Other relevant papers, that show a long run impact
of trading on prices, include Evans and Lyons (2001), Lyons (2002), Easley,
Hvidjkaer and O’Hara (2001), and the analysis of volume in Wang 1994,
Campbell et al. 1993, Lo and Wang 2000. We adopted a fairly stylized
view of trading institutions (in part, this was motivated by the fact that the
cubic exponents arise for market structures, so that our explanation should
not depend too finely on a specific market structure), as opposed to the
fine analysis proposed in the literature, e.g. Madhavan 1992, Madhavan and
Cheng 1997).

Here we want to explain the cubic power laws, and the patterns in trad-
ing activity at a fairly high degree of aggregation (1/2 hour as opposed to
trade by trade). Hence we highlight some traits of reality — mainly the het-
erogeneity between the size of agents, and the trade-off between execution
cost and execution time — that are typically not central to the microstruc-
ture literature. (Another feature is that we are agnostic about the impor-
tance of information asymmetry in the determination of asset prices). We
highlight more “macro” phenomena that arise from aggregation, rather the
detailed understanding of micro situations that tend to be the focus of the
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microstructure literature. Hence, our model and the models of this liter-
ature look quite different. Still, it would be desirable, in further research,
to put together the rich informational and institutional understanding from
the microstructure literature and the more macro approach of the present
paper.

6.4 Link with the “economics and statistical physics” liter-
ature

This paper is part of a broader movement utilizing tools from physics in
for the study of economic issues. This literature was pioneered by Man-
delbrot (1963, 1997). Mantegna and Stanley (1999) provide an overview.
Antecedents include Bak et al. (1993), Bouchaud and Potters (2000), Cal-
vet, Fisher and Mandelbrot (1997), Canning et al. (1998), Gabaix (2001a)
Plerou et al. (1999), Lux and Sornette (2001), Levy, Levy and Solomon
(2000), Stanley et al (1999).

7 Conclusion

This paper does two things. First it presents a series of evidence on the dis-
tribution of trading activity (the variables r, V,N, V 0,N 0 and various com-
binations of them), both the the power law exponents and their “cubic”
nature, and the joint distributions in the form of E [Y | X] graphs. Then it
provides a simple model (with some assumptions, but, we contend, a very
high “number of predictions over number of assumptions” ratio). The model
seems to match the evidence we gathered.

We view the model presented here as a prototype, reduced-form setup,
rather than a definitive model23 with impeccable microfoundations. On the
substantive front, our model provides one possible quantitative theory of
excess volatility in asset markets: it is simply due to the desire to trade of
large traders (perhaps stimulated by news). More precisely is the power law
1 of the distribution of sizes that generates, through an intelligent though not
hyperrational (people trade too much) trading process, the power laws of 3 in
23 In particular, our model has very little time-series dimension. We presented it as a

series of independent trading decisions. This model is silent about the time-correlations
in market activity. It is straightforward to propose simple extensions of it, such as an
GARCH-type model for J , so as to qualitatively account for the well-known long term
memory in volatility (where Jt+1 depends positively on past J 0ts and |rt|). The proper
analysis of this, however, is outside the objectives of this paper. We investigate this in
ongoing research.
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returns and 3/2 in volume. We propose the following criterion: matching, as
we do, the quantitative regularities established here (in particular explaining
the exponents of 3 and 3/2, not merely assuming them), in particular the
cubic laws, would be a sine qua non criterion for the admissibility of a of
volume and volatility. We hope that the regularities we established will
sharply constrain, and guide, future theorizing. Given its empirical success
and its simple structure, the present model might a useful point of departure
to think about those issues.
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8 Appendix A: Some power law mathematics

We present here some basic facts about power law mathematics, and show
how their great aggregation properties makes them especially interesting for
both theoretical and empirical work.

We say that a random variable X has power law behavior if there is a
ζX > 0 such that:

P (X > x) ∼ 1

xζX

so that the probability density f (x), as (minus) the derivative of the cumu-
lative distribution, follows:

f (x) ∼ 1

xζX+1

A more general definition is that there is a “slowly varying”24 function
L (x) and a ζX s.t.

f (x) ∼ L (x)

xζX+1

so that the tail follows a power law “up to logarithmic” (by some abuse of
language) corrections.

ζX < ζY means that X has fatter tails than Y , hence the large X 0s are
(infinitely, at the limit) more frequent than large Y 0s.

The definition implies that (with n ∈ R+) E [|X|n] = ∞ for n > ζX ,
and E [|X|n] < ∞ and for n < ζX . As an example, if for returns ζr = 3,
then E [|r|n] for n > 3. In particular, the kurtosis of returns in infinite25,
and their skewness borderline infinite.

By extension, given they die out faster than power laws, the power law
exponent would be ζY =∞ for Y =normal, lognormal, exponential.
24L (x) is said to be slowly varying if

lim
x→∞

L (tx) /L (x) = 1 for all t > 0.

The prototypical example would be lnx.
25This makes the use of the kurtosis invalid, not to speak of the 5th and 6th mo-

ments, that some papers use. As the theoretical kurtosis is infinite, empirical measures
of it are essentially meaningless. As a symptom, according to Paul Lévy’s theorem (see
e.g. Durrett 1996, p.153), the median sample kurtosis of T i.i.d. demeaned variables

r1, ..., rT , with κT =
³PT

i=1 r
4
i /T

´
/
³PT

i=1 r
2
i /T

´2
, increases to +∞ like T 1/3, as the

sample size T increases. (The general formula would be Tmin(4/ζ−1,1) for ζ < 4). The
use of kurtosis should banished. As a simple diagnostic for having “fatter tail than from
normality”, we would recommend, rather than the kurtosis, quantile measures such as
Pr (|(r − hri) /σr| > 1.96) /.05− 1, which is positive if tails are fatter than a normal.
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A major property is that they have great aggregation properties. The
property of being power law is conserved under addition, multiplication, poly-
nomial transformation, min, max. The motto is that, when we combine two
power law variables, “The biggest (fattest=smallest exponent) power law
dominates”

Indeed, for X,Y independent variables, we have the formulaire:

ζX+Y = power law of fattest variable, i.e.

ζX+Y = min (ζX , ζY )

ζX·Y = min (ζX , ζY )

ζmax(X,Y ) = min (ζX , ζY )

ζmin(X,Y ) = ζX + ζY

For instance, if X is a power law for ζX <∞, and Y is power law vari-
able with an exponent ζY ≥ ζX , or even normal, lognormal or exponential
variable (so that ζY = ∞), then X + Y,X · Y , max (X,Y ) are still power
laws with the same exponent ζX . So multiplying by normal variables, adding
non fat tail noise, summing over i.i.d. variables preserves the exponent. So
(i) this makes theorizing with power law very streamlined; (ii) this lets the
empiricist hope that those power laws can be measured, even if there is a
fair amount of noise in the data. One doesn’t need to carry around the
additional noise, because though it will affect variances etc, it will not af-
fect the power law exponent. PL exponent carry over the “essence” of the
phenomenon: smaller order effects do not affect the PL exponent.

For instance, say a theory, for instance ours, gives a mechanism for R,
with ζR = 3. Other things are going on, so that in reality, we observe:

frit = fait eRit +fbit
For instance, the liquidity of the market varies, so that fait is random, and
new can affect prices fbit without affecting volume. But even then, we will
have ζr = ζR = 3 if ea,eb are smaller order effects, i.e. have thinner power
laws (ζa, ζb ≥ 3). If the theory of Rit capture the 1st order effects (i.e. those
with dominating power law), its predictions for the power law tails or the
“noise up” empirical counterpart frit will still be true.

Proof. See Sornette (2000) for a more systematic treatment.
For ζmin(X,Y ), we have:

P (min (X,Y ) > x) = P (X > x and Y > x) = P (X > x )P (Y > x)

=
k

xζX

k0

xζy
=

kk0

xζX+ζY
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For ζmax,

P (max (X,Y ) > x) = 1− P (max (X,Y ) < x) = 1− P (X < x and Y < x)

= 1− P (X < x )P (Y < x)

= 1−
µ
1− k

xζX

¶µ
1− k0

xζy

¶
∼ k00

xmin(ζX ,ζY )

where k00 = k if ζX < ζY , k
00 = k0 if ζX > ζY , and k = k + k

0 if ζX = ζY .
This generalizes to a finite number of independent PL variables:

ζX1+...+Xk = min
¡
ζX1 , ..., ζXk

¢
ζX1·...·Xk = min

¡
ζX1 , ..., ζXk

¢
ζmax(X1,...,Xk) = min

¡
ζX1 , ..., ζXk

¢
ζmin(X1,...,Xk) = ζX1 + ...ζXk

[extend to random k, with ζk ≥ ζX ].
Finally, a useful formula is:

ζXα =
ζX
α
for α > 0 (35)

Proof. P (Xα > x) = P
¡
X > x1/α

¢ ∼ ¡x1/α¢−ζX = x−ζX/α.
9 Appendix B: The model with general trading

exponents

We present here the general structure of the model. It allows to see which
assumptions are crucial to get the “cubic” exponents. Also, natural quan-
tities, the “exponents of trading”, emerge. Their direct measurement is an
interesting task for future research.

We call ζS and ζL the Pareto exponents of the large traders and the
liquidity providers respectively. We make the following assumptions, about
the behavior of the variables in the large S, |∆p|, and T limit:

• A large trader of size S will make large position of size V = Sδ at an
annual frequency S−φ.

• If a large traders makes an order at a price concession ∆p, then the
frequency of arrival of liquidity traders is f = ∆pα, and each liquidity
provider of size s supplies a number of shares q = s ·∆pβ.
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• A trader of size S will adjust the trading frequency so as to pay a
proportional amount of transactions costs Sκ.

• We assume that the large trader, in a given trade of size V , wants to
minimize a loss function:

∆p+ T γ

where T is the mean time needed to find enough liquidity providers to com-
plete the trade.

So the original model corresponds to:

ζS = ζL = 1

α = 0

β = 1

γ = 1

δ = 1

κ = 0

After a time t, the large trader has received on average ∆pα+βt shares.
So the mean time needed to realize a trade of size V is:

T =
V

∆pα+β

so that the objective function is:

min
∆p
∆p+

V γ

∆pγ(α+β)

which yields

∆p = V ηp with (36)

ηp =
γ

(α+ β) γ + 1
(37)

and the number of trades is N = V/∆pα, i.e.

N = V
αγ+1

(α+β)γ+1 . (38)

The probability that a target volume is > V is:

P (Target volume > V ) =
Z
Sδ>V

S−1−ζSS−φdS = V −
ζS+φ

δ
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so that the distribution of target volumes is:

ζV T =
ζS + φ

δ
. (39)

Combining with (36)—(38) we get:

ζr = ζp =
ζS + φ

δ

γ

(α+ β) γ + 1
(40)

ζN =
ζS + φ

δ

αγ + 1

(α+ β) γ + 1
(41)

The distribution of individual trades is more involved. An individ-
ual trade > q involves a target volume V > q, and a fraction equal to
P
¡
si∆p

β > q,
¢
of the N (V ) liquidity traders who meet his demand: (here

we call ∆p (V ) = V ηp , and recall that N (V ) = V/∆pβ) :

P (qi > q) =

Z
V >q

V −1−ζV ·N (V ) dV ·
Z
si∆p(V )

β>q
s
−1−ζL
i dsi

=

Z
V >q

V −1−ζV
V

V βηP

µ
V β·ηP
q

¶ζL

dV

= q−ζL
Z
V >q

V −ζV −βηp+ζL·β·ηp

= q−ζV −(ζL−1)(1−βηp)

so that:

ζq = ζV + (ζL − 1)
¡
1− βηp

¢
(42)

= ζV + (ζL − 1)
αγ + 1

(α+ β) γ + 1

Given total annual transactions costs will be (as each transaction costs

V∆p (V ) = V 1+ηp = Sδ(ηp+1))

S−φ · Sδ(1+ηp) = S1+κ

we will have:
φ = δ

¡
1 + ηp

¢− κ− 1 (43)

The reader can verify that with our special assumptions, we get the
“cubic” exponents. It would be interesting to measure the exponents α, β,
γ, δ and κ directly.
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The above exercise can give interesting comparative statics. Going back
to the case ζS = 1 (which seems true empirically), κ = 0 (which seems
plausible a priori), we get:

ζr =
ζS + φ

δ

1

ηp

=
1 + δ

¡
1 + ηp

¢− 0− 1
δηp

=
1 + ηp
ηp

= 1 +
1

γ
+ α+ β

So if a regulator wanted to lower the fat-tailness of returns, i.e. increase
ζr, a cap (or a tax on large transactions) on individual transactions would
be ineffective: this would correspond to a value of δ lower than 1, say, and
one sees that the expression of ζr does not depend on δ. Economically, this
means that with a curb on large trades, big institutions would do few large
trades, but they would do them more often, and in the end ζr is not affected.
If somehow (this seems very difficult, short of an outright cap on the size
of a fund, given the strength of the forces that give rise to Zipf’s law) the
regulator could make the distribution of funds less skewed, and increase ζS ,
however, ζr would increase and there would be fewer extreme returns.

10 Appendix C: “Crashes” are not outliers to the
cubic law

Does the cubic law apply also to the most extreme events, i.e. to the crashes?
The approach we take is the following. Consider the negative returns, take
their absolute value, and order them by size: We take the daily Dow Jones
returns in the sample 1925-1999. Consider the returns rt, and take absolute
value of the negative returns. Order them by size: they are r(1) = 25%,
r(2) = 13.7%, r(3) = 12.3%,..., r(10) = 7.4%, r(100) = 3.9%. There would be
“crashes” if, for instance, r(1) or r(2) where “too big”. Here “too big” means
“too big compared to what would be predicted by the cubic law”.

The following proposition establishes a convenient representation for the
extreme movements in the stock market under the cubic law

Proposition 8 If the returns are i.i.d. and follow the law P (rt > r) =
k/rζ, for some k, we have:¡

ζ
¡
ln r(i) − ln r(i+1)

¢¢
1≤i≤n =

d
³ui
i

´
1≤i≤n

(44)
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where the ui’s are i.i.d. exponential variables: P (ui > u) = e−u for u ≥ 0.

Proof. As P (rt > r) = kr−ζ , we have P (ζ ln rt > x) = P
¡
rt > e

x/ζ
¢
=

ke−x, so that ζ ln rt are i.i.d. exponential distributions. We then apply the
Rényi representation theorem on ordered statistics (see Reiss 1989, p.36-37).

For instance, we can write:

ln r(1) − ln r(2) =
1

ζ
u1

ln r(2) − ln r(5) =
1

ζ

4X
i=2

ui/i

where the ui are i.i.d. exponential variables with density e−u1{u≥0}.
Proposition 8Taking a 5% probability cutoff, this would show up as:

p1,2 = P
¡
ln er(1) − ln er(2) > empirical value of ln r(1) − ln r(2)¢

= P
¡
ln er(1) − ln er(2) > ln r(1) − ln r(2)¢

= e−ζ(ln r(1)−ln r(2)) = e−3(ln .25−ln .137) = .15 > .05

so we cannot reject the hypothesis of “no crash” within a 5% confidence.
We can do the same for

pm,n = P
¡
ln er(m) − ln er(n) > empirical value of ln r(m) − ln r(n)¢ (45)

We find:

p1,10 = .21 > .05

p1,100 = .34 > .05

p2,3 = .83 > .05

p2,10 = .48 > .05

p2,100 = .76 > .05

p3,10 = .36 > .05

p3,100 = .72 > .05

We conclude that there is no evidence for abnormally large negative
returns, in excess to what the cubic law would predict.
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11 Appendix D: Cubic laws and the Tobin tax

Suppose that a regulator would like to dampen extreme price fluctuations;
what kind of tax might he use? We will see that a Tobin tax (a simple
proportional tax on transactions) is ineffective. However, a tax that af-
fects more than proportionally large trades that go “in the direction of the
market”, and with large price impact, would work.

Dampening extreme price movement will mean, here, increasing ζr :
there are fewer large price movements when ζr is higher. We shall not here
examine the legitimacy of objective, but will just examine some means of
achieving it.

First, observe that a “Tobin tax”, a simple proportional tax on trans-
actions, would be ineffective as it would not change ζr. Indeed, with a tax
Tobin tax τ independent of ∆p and V , the objective function of the trader is
min∆p∆p+µV/∆p+τ , so that his policy ∆p ∼ V 1/2 does not change. With
V ∼ Sδ, for some unimportant δ, the frequency of trading large positions,
F now satisfies F

¡
S3δ/2 + τSδ

¢
= κS, so we still have F ∼ S1−3δ/2 for

large traders. By the reasoning in the paper we get ζV = 3/2 and ζr = 3.
Economically, the Tobin tax does not work because for large traders, the
proportional tax τ is a negligible fraction of their true cost, which is the
price impactV 1/2. For large traders, hence large volumes, V 1/2 À τ .

A more appropriate tax would discourage large trades that go in the
direction of the markets (e.g. large sell trades when the market is going
down). Specifically, consider a tax per share τ = τ1V

ξ (∆p)ρ, perhaps ap-
plying only above a total amount traded V or a total ∆p, so that only the
largest transactions in the most volatile environment are taxed. The large
trader’s objective is now min∆p∆p+µV/∆p+τ1V

ξ (∆p)ρ with ξ, ρ ≥ 0 and
ρ+ 2ξ > 1 for the tax to be effective. This yields

∆p ∼ V (1−ξ)/(1+ρ) (46)

and condition F (∆p+ τ)V = κS now gives

F ∼ S

V (∆p+ τ)
∼ S

V 1+ξ+ρ(1−ξ)/(1+ρ)

i.e. with V ∼ Sδ
F (S) ∼ S1−δ 1+2ρ+ξ1+ρ .

The probability that a volume is > x is now:

P (V > x) =

Z
Sδ>x

ρ (S)F (S) dS
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with a density ρ (S) ∼ S−2 of mutual funds (Zipf’s law), i.e.

P (V > x) ∼
Z
S>x1/δ

S−2S1−δ
1+2ρ+ξ
1+ρ dS

∼ x−
1+2ρ+ξ
1+ρ

i.e.

ζV =
1 + 2ρ+ ξ

1 + ρ
. (47)

And (46) gives (using the fact, derived in Appendix A, that ζXα = ζx/α):

ζr =
1 + 2ρ+ ξ

1− ξ
. (48)

While we keep ζr = 3 without taxes (ξ = 0, ρ = 1), now we can get any
value ζr > 3 by adjusting the tax exponents ξ, ρ. Like in all tax schemes,
details of implementation and enforcement would be crucial in the use of
the tax we have outlined. Still the lesson that one should tax large trades
that go in the direction of the market, with a large price impact, is a robust
one.

12 Appendix E: A simplified algorithm for the
simulations

We will simulate T time intervals: for a given t = 1, ..., T (representing, in
our real data, some interval ∆t of trading activity)

1. One fixes an integer value Jt drawn at random. We took Jt =Integer
part of 10eut , with ut Normal(0,1).

2. One draws

vt = e
.5ut

ηt = e
.5nt

where u, n are i.i.d. standard normal variables. And for j = 1...Jt, one
draws Vt with ζV = 1.5. One also draws εj = ±1 with probability 1/2,
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and sets (this is an approximation of the model, but this simplifies a
lot the simulations)

rj := εjνtη
−1
t V

1/2
j (49)

Nj := νtηtV
1/2
j (50)

N 0
j := εjNj (51)

Note that νt, ηt are constant across the Jt rounds j of the time interval.

3. Applying (33), one gets a five values (r, V,N, V 0, N 0), which get stored
as (rt, Vt,Nt, V 0t ,N 0

t) .

Then, we do the statistical analysis (e.g. calculations of E [N | V 0] etc.)
on the data set made up of those values (Vt, Nt, V 0t , rt = N 0

t)t=1...T .−after
rescaling of all those variables.

A few remarks are in order.
- Equations (49) and (50) are intended to be the analogues to the the-

oretical (27) and (29) resp. r and N vary like V 1/2, but there are varying
“market conditions” νt = (αhsi)−1/2 (a measure of the “depth” of each liq-
uidity provider of the market at the given point in time), and ηt = µ

1/2 (the
arrival rate of liquidity providers). While those quantities must have some
randomness, we do not have strong prior on the extent of their randomness,
and any way they play only a minor role in the model. So, largely arbitrarily
(but the results are largely insensitive to that choice), we chose make them
equal to e.5u, with u a normal(0,1). The “.5” factor captures a relatively
“small” randomness.

- The value of J around 10 was so that the average number of trades in
a given half hour match roughly the empirical one, which depends on the
stock, and is around 30 for large stocks). No further effort to “calibrate”
the model was done here.

- Because of simplicity considerations, we do not simulate the “full”,
“nanoscopic” part of the model and the search process: in particular we
did not simulate the gradual arrival of the liquidity suppliers, do did not
simulate the full stochasticity of N . Rather, we took it to be its mean value
V
1/2
t .
- We implicitly assume that the number of big “causal” orders in a given

∆t (think of an hour, or a day), is independent of the size of those. This
choice was made again to simplify the Monte Carlos.
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To facilitate comparisons, we rescale the variable — demean them, and
divide them by their standard deviation if this standard deviation exists26,
otherwise by their absolute mean27.

This means, for instance, for the normalized volume, that we take:

bVt := Vt −E [Vt0 ]
E [|Vt0 −E [Vt00 ]|]

and the normalized number of trades:

bNt := Nt −E [Nt0 ]
E
h
(Nt0 −E [Nt00 ])2

i1/2

26So we took the 1st moment for N,N 0, r,N 0/N , and the second moment for
V, V/, r2, V/N.
27 [technical note to suppress in final draft] Rescaling: the variables of interest are the

component of D =
¡
V,N, V 0,N 0, r,N 0/N, r2, V/N

¢
. Call ni =normalization for compo-

nent i = 2nd moment of Di if the 2nd moment exists, otherwise 1st moment. More
explicitly:

ni = stddev (Di) for i = 2, 4, 5, 6 (52)

= E
h¯̄̄
Di −E

h
Di
i¯̄̄i

for the other i0s

and one defines: bDit =
Dit −E [Di]

ni
(53)
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