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Abstract 
 

Empirical researchers routinely encounter sample selection bias whereby 1) the regressor 
of interest is assumed to be exogenous, 2) the dependent variable is missing in a potentially 
non-random manner, 3) the dependent variable is characterized by an unbounded (or very 
large) support, and 4) it is unknown which variables directly affect sample selection but not 
the outcome. This paper proposes a simple and intuitive bounding procedure that can be used 
in this context. The proposed trimming procedure yields the tightest bounds on average 
treatment effects consistent with the observed data. The key assumption is a monotonicity 
restriction on how the assignment to treatment effects selection – a restriction that is 
implicitly assumed in standard formulations of the sample selection problem. 
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1 Introduction

It is well-known that the econometric identification of causal parameters of interest becomes even

more challenging when outcome data are unobserved in a non-random way. In some cases, outcome data is

“missing” due to non-response or sample attrition. In other cases, outcomes may not even be well-defined

for the entire population. For example, hourly or weekly wages are not defined for the non-working (Heck-

man, 1974). When the process determining observability of the outcome is related to determinants of the

outcome, an analysis that ignores the sample selection process will in general yield biased estimates of

the effects of the exogenous regressor of interest (Heckman, 1979). Even the most well-designed random-

ized experiment or the most compelling quasi-experiment is susceptible to selection bias due to missing

outcomes.

There are two general approaches to addressing the problem. One is to explicitly model the process

determining selection. In some cases, it involves assuming that data are missing at random, perhaps condi-

tional on a set of covariates (Rubin 1976). Alternatively, it involves assuming the existence of exogenous

variables that determine selection, but do not have its own direct impact on the outcome of interest. Such an

exclusion restriction is often utilized in parametric and semi-parametric models of the censored selection

process (Heckman 1979, 1990; Ahn and Powell 1993; Andrews and Schafgans 1998; Das, Newey, and

Vella 2000).

Researchers’ reluctance to rely upon specific exclusion restrictions motivates an alternative ap-

proach. This approach utilizes boundedness of the support of the outcome variable in order to construct

“worst-case” bounds for the treatment effect parameter – bounds that are still consistent with the data that

are observed. Horowitz and Manski (2000a) use this notion to provide a general framework for construct-

ing bounds for treatment effect parameters when outcome and covariate data are non-randomly missing in

an experimental setting. Others (Balke and Pearl 1997; Heckman and Vytlacil 1999, 2000a, 2000b) have

constructed such bounds to address a different problem – that of imperfect compliance of the treatment,

even when “intention” to treat is effectively randomized (Bloom 1984; Robins 1989; Imbens and Angrist,
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1994; Angrist, Imbens, and Rubin 1996). A limitation of these kinds of procedures is that when outcomes

are unbounded (or have very large support), finite (or reasonably informative) bounds for means cannot be

generated without some further restriction on the sample selection process (Manski 1995).

This paper proposes a procedure for bounding average treatment effects in the presence of non-

randomly missing outcomes, without relying on exclusion restrictions, even when the support of the out-

come variable is unbounded. A monotonicity restriction on the sample selection process allows one to

“trim” observed distributions of data in order to yield sharp bounds on average treatment effects. The two

key assumptions which justify the procedure are 1) “as good as” random assignment of treatment (inde-

pendence between the regressor of interest and the errors in the outcome and selection equations) and 2)

a monotonicity condition – whereby assignment to treatment impacts selection probabilities only in “one

direction”. The first assumption is commonly adopted by both the existing modeling and bounding ap-

proaches, and the second is also implicitly assumed in existing approaches that explicitly model the sample

selection process. The procedure can be directly applied, for example, to the analysis of randomized exper-

iments in which there is missing outcome data.

In addition, the discussion below makes it clear that, given unbounded outcomes, these two as-

sumptions are not sufficient for generating bounds on the average treatment effect for the entire population.

Bounds can only be generated for a specific sub-population: individuals whose outcomes will be observed,

irrespective of the assignment to treatment. As shown below, in some contexts, this effect may in fact be the

parameter of interest. However, when bounds of the effects for other sub-populations (e.g. those whose out-

comes will not be observed, irrespective of the assignment to treatment) are the objects of interest, further

restrictions on the sample selection process are necessary.

The paper is organized as follows. Section 2 describes the basic model and trimming procedure,

providing economic examples in which the above average treatment effect is the parameter of interest, and

in which the monotonicity condition will or will not hold. Section 3 describes how baseline covariates

can be used narrow the width of the bounds. Section 4 discusses some testable implications of the key

restrictions of the model for trimming, and Section 5 concludes. Throughout this paper, the treatment
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variable is assumed to be dichotomous, and always observed; hence, the analysis applies to censored and

not truncated samples.

2 Missing Outcomes in a Heterogeneous Treatment Effect Model

I begin by outlining conditions under which a trimming approach can produce bounds for average

treatment effects for a specific sub-population of interest. Consider the random variables (Y ∗1 , Y ∗0 , S1, S0,

D)where Y ∗1 and Y ∗0 are continuous and unbounded potential outcomes of interest whenD = 1 andD = 0,

respectively. S1 and S0 denote whether the outcome is observed whenD = 1 andD = 0, respectively. For

example, the realization S1 = 1, S0 = 0 implies that the outcome would be observed if D = 1, but would

be missing if D = 0. (Y, S,D) is observed, where Y = Y ∗1 D + Y ∗0 (1−D) if S = 1, Y is missing if

S = 0; also, S = S1D + S0 (1−D). Y ∗1 and Y ∗0 are never simultaneously observed, and S1 and S0 are

never simultaneously observed.

Assumption A

(Y ∗1 , Y
∗
0 , S1, S0) is independent ofD (1)

This assumption corresponds to the “as good as” random assignment of D. It is useful to consider this

assumption, as it means that any bias in identifying average treatment effects will be due to censored

selection, rather than to the usual confounding problem.

Furthermore, it is assumed that assignment to D, if it affects S at all, can affect S in only “one

direction”. This is a “monotonicity” assumption.

Assumption B

Pr [S1 = 0, S0 = 1] = 0 (2)

This assumption precludes the possibility that within a population of interest, some individuals are induced

to drop out of the sample because of the treatment. It is important to note that the choice of imposing

Pr [S1 = 0, S0 = 1] = 0 rather than Pr [S1 = 1, S0 = 0] = 0 is innocuous. I consider this case for exposi-

tional purposes, and a parallel argument to that presented below is valid if the latter assumption is imposed

instead. This assumption is analogous to the monotonicity assumption in studies of imperfect compliance
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of treatment (Imbens and Angrist 1994; Angrist, Imbens, and Rubin 1996).

Assumptions A and B imply that the difference between the means of the sample-selected treatment

and control groups is

E [Y |D = 1, S = 1]−E [Y |D = 0, S = 1] (3)

=
Pr [S0 = 0, S1 = 1|D = 1]

Pr [S = 1|D = 1] E [Y ∗1 |S0 = 0, S1 = 1]

+
Pr [S0 = 1, S1 = 1|D = 1]

Pr [S = 1|D = 1] E [Y ∗1 |S0 = 1, S1 = 1]

−E [Y ∗0 |S0 = 1, S1 = 1]

In general, this will be biased for a particular parameter of interest: E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1] = E[Y ∗1 |

S0 = 1, S1 = 1]− E[Y ∗0 |S0 = 1, S1 = 1], the average treatment effect for the subpopulation whose

outcome data will be observed irrespective of treatment status. While the weights Pr[S0=0,S1=1|D=1]Pr[S=1|D=1] and

Pr[S0=1,S1=1|D=1]
Pr[S=1|D=1] can be identified from the observed data, E [Y ∗1 |S0 = 0, S1 = 1] and E[Y ∗1 |S0 = 1,

S1 = 1] cannot be identified without further restrictions.

However, without further restrictions, the observed data can yield upper and lower bounds E and

E such that E ≤ E[Y ∗1 |S0 = 1, S1 = 1] ≤ E. It follows that there exist bounds such that

E −E [Y |D = 0, S = 1] ≤ E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1] ≤ E −E [Y |D = 0, S = 1] (4)

for the average treatment effect for this subpopulation.

The approach in this paper is to construct these bounds by trimming the lower or upper tails of

the observed distribution of Y for the treatment group, by a proportion given by Pr[S=1|D=1]−Pr[S=1|D=0]Pr[S=1|D=1] :

the proportion of the selected treatment group that is induced to have a non-missing value of the outcome

because of the assignment to treatment.

Proposition 1 Suppose Assumptions A and B hold, and Pr [S = 1|D = 0] 6= 0. Denote the observed den-
sity and cumulative distribution of Y , conditional on D = 1 (and S = 1), as f (y) and F (y), respectively.
Then

E ≡ 1

1− p
Z F−1(1−p)

−∞
yf (y) dy ≤ E [Y ∗1 |S0 = 1, S1 = 1]

and
E ≡ 1

1− p
Z ∞

F−1(p)
yf (y) dy ≥ E [Y ∗1 |S0 = 1, S1 = 1]
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where
p =

Pr [S = 1|D = 1]− Pr [S = 1|D = 0]
Pr [S = 1|D = 1]

Also, E
¡
E
¢
is equal to the smallest (largest) possible value for E [Y ∗1 |S0 = 1, S1 = 1] that is consistent

with the distribution of observed data on (Y, S,D).

Given Assumption B, E [Y ∗0 |S0 = 1, S1 = 1] equals E [Y |D = 0, S = 1], which can be computed

from the observed data from the control group.

Corollary 2 Given Assumptions A and B and Pr [S = 1|D = 0] 6= 0
E −E [Y |D = 0, S = 1] ≤ E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1] ≤ E −E [Y |D = 0, S = 1]

where the lower bound (upper bound) is the smallest (largest) possible value for the average treatment
effect,E[Y ∗1 −Y ∗0 |S0 = 1, S1 = 1], that is consistent with the distribution of the observed data on (Y, S,D).

The “monotonicity” assumption is crucial to this approach. It ensures that subpopulation of the

control group for whom we observe outcomes consists only of those for whom S0 = 1, S1 = 1 – that

is, those who will always have non-missing outcome data, irrespective of the assignment to treatment.

Without monotonicity, the control and treatment groups could consist solely of the sub-populations for

whom S0 = 1, S1 = 0 and S0 = 0, S1 = 1, respectively. This would imply no “overlap” between the two

sub-populations, making it impossible to make a comparison that could be interpreted as a causal effect.

The independence assumption is also important, since it is what justifies the contrast between the trimmed

population of the treatment group and the control group.

The following are two economic examples of when the parameter E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1] is

of economic interest. In the first, the monotonicity condition could be expected to hold, and in the second,

economic reasoning suggests that monotonicity would probably not hold.

Example 1 Labor supply with a Negative Income Tax, experimental variation in tax rate

Consider a static labor supply setting, where we are interested in the intensive margin response

of hours of work to a change in marginal tax rates. Subjects are randomized into treatment and control

groups. Both groups are given the same guaranteed income subsidy of G, which is taxed away at rates tt

and tc(> tt), for the treated and control, respectively. Suppose we are interested in the average treatment

effect of the experimental variation in the tax rate on Y , the natural logarithm of hours worked. Obviously,
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Y will be undefined for the nonworking, and we might expect the treatment (a higher effective wage) to

induce some individuals to work, causing a potential sample selection bias.

Under the assumption of optimizing behavior given a complete, transitive, and strictly monotone

preference relation over leisure and consumption (l and c), any consumer who would work positive hours

facing tax rate tc would work positive hours facing tt. To see this, consider any individual who works

positive hours under tc. Denote the optimal hours as exp (Y ∗0 ) = h0 > 0. The bundle of consumption and

leisure (G+w (1− tt)h0, T − h0) , (where T is total time available), which is a bundle that is feasible

given the treatment, is strictly preferred to (G+w (1− tc)h0, T − h0), which itself is preferred to (G, T )

(the bundle attained by not working) by hypothesis. By transitivity, (G, T ) cannot be the optimal choice for

the consumer facing tt.

Thus, in this economic context, the monotonicity assumption (B) is rationalized by optimizing

behavior given a fairly standard preference relation. The trimming procedure described above can be used to

generate bounds on the percentage change in hours of labor supply induced by a marginal tax rate reduction,

accounting for the presence of non-random sample selection that results from labor supply behavior on the

extensive margin of employment.

Example 2 Labor supply with a Negative Income Tax, experimental variation in tax rate and guaranteed
subsidy

Consider the same setting as above, except that in addition to different tax rates, different levels

of the guaranteed subsidy Gt > Gc are offered to the treatment and control groups, respectively. Again,

consider the control group individual who optimally chooses positive hours of work by choosing the com-

bination (Gc +w (1− tc)h0, T − h0). Without further information about preferences, we cannot rule out

the possibility that (Gt, T ) is strictly preferred by this individual, and that it would have been the optimal

choice under the treatment assignment. In other words, we cannot rule out the possibility that treatment

induces some individuals to stop working. We also cannot rule out that the treatment induces other indi-

viduals to work positive hours (in other words, that (Gt +w (1− tt)h1, T − h1), h1 > 0, is preferred to

(Gt, T ) (which, in turn, is preferred to (Gc, T )). In this example, economic reasoning cannot be used to

6



justify Assumption B.

It should also be noted that the independence and monotonicity conditions are implicitly assumed

within typical latent-variable formulations of the sample selection process (as in Heckman 1979). Consider

the system of equations

Y ∗ = β0 + β1T + U (5)

Z∗ = γ0 + γ1T + V

where Y ∗ is an outcome of interest, T takes on the values 0 or 1, β1 is the treatment effect of interest. Y

is observed and equals Y ∗ if Z∗ ≥ 0, but is missing if Z∗ ≤ 0. It is often assumed (for example, in maxi-

mum likelihood estimation of parametric selection models) that (U,V ) is independent of T . In addition, if

γ1 ≥ 0, then it is possible to use the bounds proposed above to assess missing outcome bias. To see this, note

that this system implies Y ∗1 = β0 + β1 + U , Y ∗0 = β0 + U , S1 = 1(V ≥ −γ0 − γ1), S0 = 1 (V ≥ −γ0),

where 1 (A) is an indicator variable that equals 1 in the event of A (0 otherwise), and D = T . The inde-

pendence of T implies Assumption A, and if γ1 ≥ 0, then Pr (V < −γ0 − γ1, V ≥ −γ0) = 0, implying

that Assumption B holds also. It should be noted that the proposed bounding procedure is applicable to

a more general “heterogeneous treatment effect” version of the above latent-variable formulation. This

is because the independence and monotonicity assumptions are equivalent to a generalized latent index,

threshold-crossing model (Vytlacil 2000).

An important implication of Assumptions A and B is that as p vanishes, so does the sample selection

bias. The intuition is that if p = 0, then under the monotonicity assumption, the population with observed

outcome data – whether in the treatment or control group – is comprised of individuals whose sample

selection was unaffected by the assignment to treatment (those for whom S0 = 1, and S1 = 1). These

individuals can be thought of as the “always-takers” sub-population (Angrist, Imbens, and Rubin 1996),

except that “taking” is not the taking of the treatment, but rather selection into the sample. One example

of a practical implication of this is that when analyzing randomized experiments, if the “drop-out” rates in

the treatment and control groups are similar, and if the monotonicity condition is believed to hold, then a
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comparison of the treatment and control means is a valid estimate of an average treatment effect.

The notion that there is no sample selection bias when the probability of selection is the same in

the treated and control groups can also be seen by examining the dichotomous treatment case within the

frameworks that condition on an unknown function of the probability of selection (as in Heckman and Robb

1986; Heckman 1990; Ahn and Powell 1993; Angrist 1997; Andrews and Schafgans 1998; Das, Newey,

and Vella 2000). However, in these studies, it is clear that when the treated and control group selection

probabilities are different, point identification is lost without imposing an exclusion restriction on auxiliary

variables that determine selection. Thus, the bounding or “sensitivity” analysis proposed here can be viewed

as an alternative to hypothesizing the existence of such auxiliary variables, that are needed to achieve point

identification.

It is instructive to highlight the primary features of the proposed trimming procedure that distin-

guish it from existing bounds approaches in the literature. First, the model and procedure proposed here can

produce finite bounds when the outcome has unbounded support. This should be contrasted to a method

that addresses missing outcomes by essentially assigning the values of upper and lower bounds of support

to missing data to bound parameters of interest (Horowitz and Manski 1998, 2000a).

This advantage of trimming, however, does not come without a cost. The second distinctive feature

(and disadvantage) of the model proposed above is that it relies crucially on an unverifiable assumption

about the selection process. For example, the model assumes that every control (treatment) group individual

who reported an outcome would have reported outcome if they had been assigned treatment (to the control

group) – a conjecture that simply cannot be verified one way or another. The appropriateness of this

“monotonicity” assumption may or may not be “plausible” depending on the particular application, as

illustrated in the economic examples above.

A third distinctive feature is that the bounds can only be generated for the average treatment ef-

fects for a specific sub-population: those individuals whose outcomes will be observed, irrespective of

the assignment to treatment. Sometimes, that parameter may be of interest (as in the economic exam-

ples described above), but in other situations, one may be interested in average treatment effects for the
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other two sub-populations: 1) those that were “induced” to yield valid outcome data because of the treat-

ment, E [Y ∗1 − Y ∗0 |S0 = 0, S1 = 1], and 2) those that will always have missing outcomes, irrespective of

the treatment status, E [Y ∗1 − Y ∗0 |S0 = 0, S1 = 0]. In those cases, it is clear that the independence and

monotonicity conditions will not be sufficient for generating informative bounds for those effects. Further

stochastic restrictions would be necessary.

3 Trimming Using Baseline Covariates

Researchers often possess “baseline” characteristics of both the treatment and control subjects.

When analyzing randomized experiments, these covariates are typically used to assess whether or not the

randomization “failed”, and if successful randomization is not rejected by the data the covariates are often

included in the analysis to reduce the sampling variability of the estimates. These covariates can be used

in a modified trimming method that will lead to tighter bounds on E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1] than that

constructed without the covariates. I suppose that there is no missing data on these baseline covariates, in

contrast to the generalized bounds analysis of Horowitz and Manski (2000a).

Suppose there exists a vector of baseline covariates X, where each element has discrete support,

so that this vector can take on one of a finite number of discrete values. Focus on the values {x1, . . . , xJ},

such that for each j = 1, . . . , J , Pr (X = xj |D = 0, S = 1) 6= 0.

Assumption C

(Y ∗1 , Y
∗
0 , S1, S0, X) is independent ofD (6)

Assumption C would hold if D were randomly assigned, and X were pre-determined, relative to the point

of random assignment.

Under this assumption, an upper (lower) bound for E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1] can also be con-

structed by trimming the lower (upper) tails of distributions of y, conditional onD = 1 andX, by a propor-

tion given by pj = Pr[S=1|D=1,X=xj ]−Pr[S=1|D=0,X=xj ]
Pr[S=1|D=1,X=xj ] . The overall mean of the truncated distributions of

the sub-groups of the treated is computed by averaging across values ofX.

Proposition 3 Suppose Assumptions B and C hold, and Pr [S = 1|D = 0] 6= 0. Denote the observed
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density and cumulative distribution of Y , conditional on D = 1 (and S = 1) and X = xj , as f (y|xj) and
F (y|xj), respectively. Then

E∗ ≡
JX
j=1

Pr [X = xj |S = 1,D = 0] 1

1− pj

Z F−1(1−pj |xj)

−∞
yf (y|xj) dy ≤ E [Y ∗1 |S0 = 1, S1 = 1]

and

E
∗ ≡

JX
j=1

Pr [X = xj|S = 1,D = 0]
1

1− pj

Z ∞

F−1(pj |xj)
yf (y|xj)dy ≥ E [Y ∗1 |S0 = 1, S1 = 1]

where
pj =

Pr [S = 1|D = 1,X = xj ]− Pr [S = 1|D = 0, X = xj ]

Pr [S = 1|D = 1,X = xj ]

Also,E∗
³
E
∗´ is equal to the smallest (largest) possible value forE [Y ∗1 |S0 = 1, S1 = 1] that is consistent

with the distribution of observed data on (Y, S,D,X)

Corollary 4 Given Assumptions B and C and Pr [S = 1|D = 0] 6= 0
E∗ −E [Y |D = 0, S = 1] ≤ E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1] ≤ E∗ −E [Y |D = 0, S = 1]

where the lower bound (upper bound) is the smallest (largest) possible value for the average treatment
effect, E[Y ∗1 − Y ∗0 |S0 = 1, S1 = 1], that is consistent with the distribution of the observed data on
(Y, S,D,X).

Intuitively, Assumption C implies that the assumptions used to justify the trimming procedure will

also justify trimming, conditional on X. Given bounds for E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1, X = xj ], it is

possible to average across values of X to produce bounds for E [Y ∗1 − Y ∗0 |S0 = 1, S1 = 1].

The motivation for this modified trimming procedure is that using the covariates in this way will

lead to tighter bounds on the treatment effect parameter of interest.

Proposition 5 If Assumptions B and C hold and Pr [S = 1|D = 0] 6= 0 , then E∗ ≥ E and E∗ ≤ E.

Intuitively, this is true because a lower-tail truncated mean of a distribution will always be larger

than the average of lower-tail truncated means of sub-groups of the population, provided that the proportion

of the entire population that is eventually truncated remains fixed. An implication of Proposition 5 is that in

general, using more baseline covariates will lead to producing tighter bounds on E[Y ∗1 − Y ∗0 |S0 = 1, S1 =

1].

It is interesting to relate these trimming bounds to the estimand that would result from a “match-

ing on observables” approach to addressing missing outcome bias. Matching on the baseline covariates

would dictate computing the quantity
PJ
j=1Pr [X = xj|S = 1, D = 0] {E [Y |D = 1, S = 1, X = xj ]−
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E [Y |D = 0, S = 1,X = xj]}. A comparison with the comparable quantity in the Corollary above makes

it clear that this quantity will lie strictly in between the upper and lower “trimming” bounds.

4 Testable Implications

While it is clear that the assumptions of the model proposed above are fundamentally unverifiable,

it is important to examine whether the restrictions generate any testable implications, however weak they

might be. As is well known, the independence assumption (C), which corresponds to random assignment,

has the implication that the baseline pre-determined characteristicsX be distributed identically between the

treatment and control groups.

The monotonicity assumption (B) is restrictive enough to generate a testable restriction. In par-

ticular, Assumption B implies that there exists no j, such that Pr [S = 1|D = 1,X = xj ] < Pr[S =

1|D = 0, X = xj]. Essentially, the monotonicity restriction is inconsistent with the existence of j0

and j00 such that Pr [S = 1|D = 1, X = xj0 ] < Pr[S = 1|D = 0, X = xj0 ] while at the same time

Pr [S = 1|D = 1, X = xj00 ] > Pr [S = 1|D = 0,X = xj00].

Finally, suppose Pr [S = 1|D = 1] = Pr [S = 1|D = 0]. As mentioned earlier, in this case, As-

sumptions B and C imply that there is no sample selection bias, and that a simple contrast between

E [Y |D = 1, S = 1] − E [Y |D = 0, S = 1] is valid for identifying a meaningful causal parameter. 0 =

Pr [S = 1|D = 1]− Pr [S = 1|D = 0] =PJ
j {Pr [X = xj |D = 0] (Pr[S = 1|D = 1, X = xj ]− Pr[S =

1| D = 0,X = xj ])} because of Assumption C. Since Pr [X = xj|D = 0] > 0 for all j = 1, . . . , J , and

Assumption B implies that Pr [S = 1|D = 1,X = xj]−Pr [S = 1|D = 0, X = xj ] ≥ 0 for j = 1, . . . , J ,

then it must be true that Pr [S = 1|D = 1, X = xj ]− Pr [S = 1|D = 0,X = xj] = 0 for j = 1, . . . , J . It

can then be shown, using Assumption C and Bayes’ Rule, that this implies Pr [X = xj |S = 1,D = 1] =

Pr [X = xj|S = 1, D = 0] for j = 1, . . . , J . Therefore, if Pr [S = 1|D = 1] = Pr [S = 1|D = 0], then

Assumptions B and C imply that the distributions of the baseline covariates between the selected treatment

group and the selected control group are identical, which is testable given the observed data.
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5 Conclusions and Extensions

In many situations, researchers may be willing to entertain the possibility that treatments are “as

good as randomly assigned” but are at the same time considerably less confident about the underlying pro-

cess that determines whether outcomes are missing. A potentially useful alternative to specifying exclusion

restrictions is a bounding analysis that takes generates “worst-case” sample selection biases. In the con-

text of outcomes with essentially unbounded support, existing nonparametric bounding approaches (e.g.

Horowitz and Manski 1998, 2000a) of unbounded outcomes immediately suggest there will be no finite

bounds on average treatment effects. This can be informative in the sense that it suggests that any finite

bounds on treatment effects in this context will necessarily be a consequence of some further stochastic re-

striction on the data generating process (Horowitz and Manski 2000b). The question then becomes Which

restrictions have relatively large benefits and/or small costs?

This paper has proposed a simple and intuitive trimming procedure that is justified under the added

restriction of monotonicity of the censored selection process. The main benefit from imposing this restric-

tion is that it allows one to generate finite bounds even when the outcome variable has unbounded support.

The main cost of the restriction is that such a behavioral assumption may or may not be plausible, depending

on the particular context of the selection problem. This paper has described two economic contexts: one in

which the monotonicity assumption could be considered plausible, and another where economic reasoning

suggests the assumption is unwarranted.

The following are potentially useful avenues for future research. First, it would be interesting to

apply the proposed trimming procedure to appropriate applied contexts, and to compare the bounds to

estimates obtained from other parametric and semi-parametric modeling approaches and other bounding

procedures. Second, since the number of baseline covariates may be so large as to create a “small cell”

problem, it would be helpful to generalize the procedure to utilize continuous covariates. Third, it seems

possible to generalize the procedure in various directions. For example, it could be extended to apply to

1) the case of an endogenous regressor of interest with a valid instrument (or imperfect compliance of a
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treatment whose “intention-to-treat” is randomized), 2) the case of a continuous treatment variable, or 3)

the case of more than one sample selection process (e.g. sample attrition as distinct from the labor force

participation decision). Finally, it would be interesting to explore what additional plausible assumptions,

beyond the monontonicity restriction, would lead to tighter bounds on average treatment effects.
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Appendix A.

Lemma 6 Suppose the probability density f∗ (y) is a mixture of two probability densities, m∗ (y) and
n∗ (y) such that f∗ (y) = p∗m∗ (y) + (1− p∗)n∗ (y), where p∗ ∈ [0, 1) is fixed. Let F ∗ (y) be the
cumulative distribution function corresponding to f∗ (y). Consider the truncated density g∗ (y) which
is equal to 1

1−p∗ f
∗ (y) on

£
F ∗−1 (p∗) ,∞¤, 0 otherwise. Then R∞−∞ yg∗ (y)dy ≥ R∞−∞ yn∗ (y) dy.

Proof of Lemma 6. First consider p∗ ∈ (0, 1). Let N∗ (y) be the cumulative distribution function corre-

sponding to n∗ (y). First, compare the truncated density, g∗ (y) to an arbitrarily chosen n∗ (y) that is not

identical to g∗ (y).
R∞
−∞ yg

∗ (y) dy− R∞−∞ yn∗ (y) dy = R∞F ∗−1(p∗) y
³

1
1−p∗

´
f∗ (y) dy− R∞−∞ yn∗ (y) dy =R∞

F ∗−1(p) y
h³

1
1−p∗

´
f∗ (y)− n∗ (y)

i
dy− R F∗−1(p∗)

−∞ y· n∗ (y)dy. Multiplying both sides by 1
N∗(F ∗−1(p∗))

yields 1
N∗(F∗−1(p∗))

nR∞
−∞ yg

∗ (y) dy − R∞−∞ yn∗ (y)dyo = 1
N∗(F−1(p∗))

R∞
F∗−1(p∗) y[

³
1

1−p∗
´
f∗ (y)−

n∗ (y)]dy− 1
N∗(F∗−1(p∗))

R F ∗−1(p)
−∞ yn∗ (y)dy. By definition n∗ (y) = f∗(y)−p∗m∗(y)

1−p∗ , so for any y on£
F ∗−1 (p∗) ,∞¤ , 1

1−pf
∗ (y) − n∗ (y) ≥ 0. If n∗ (y) 6= g∗ (y), then it can be shown that 1

N∗(F ∗−1(p∗))h³
1

1−p∗
´
f∗ (y)− n∗ (y)

i
defined on

£
F ∗−1 (p∗) ,∞¤ and 1

N∗(F−1(p))n
∗ (y) defined on

£−∞, F ∗−1 (p∗)¤
are each proper probability densities that integrate to 1. The support of the former is strictly above the

support of the latter. Therefore, 1
N∗(F∗−1(p∗))

nR∞
−∞ yg

∗ (y) dy − R∞−∞ yn∗ (y) dyo > 0. Second, consider
the case that n∗ (y) = g∗ (y). Then

R∞
−∞ yg

∗ (y)dy − R∞−∞ yn∗ (y) dy = 0.
Now consider p∗ = 0. Then g∗ (y) = f∗ (y) = n∗ (y), so

R∞
−∞ yg

∗ (y)dy =
R∞
−∞ yn

∗ (y)dy.

Proof of Proposition 1. Assumption A and B implies that p = Pr[S=1|D=1]−Pr[S=1|D=0]
Pr[S=1|D=1] =

Pr[S0=0,S1=1|D=1]
Pr[S=1|D=1] . p is strictly less than 1 by assumption. Assumption B also implies that f (y) = pm (y)+

(1− p)n (y), where m (y) denotes the density of Y ∗1 , conditional on D = 1, S0 = 0, S1 = 1, and

n (y) denotes the density of Y ∗1 , conditional on D = 1, S0 = 1, S1 = 1. By Assumption A, n (y) is

also the density of Y ∗1 , conditional on S0 = 1, S1 = 1. By Lemma 6, E ≡ 1
1−p

R∞
F−1(p) yf (y)dy ≥R∞

−∞ yn (y)dy = E [Y
∗
1 |S0 = 1, S1 = 1].

To show that E equals the maximum possible value for E [Y ∗1 |S0 = 1, S1 = 1] that is consistent with the

distribution of the observed data on (Y, S,D), note first that the observed data can be completely de-

scribed by 1) f (y), 2) the density of Y conditional on S = 1, D = 0, and 3) the probability function

Pr [S = s,D = d], s, d = 0, 1. By Assumptions A and B, the density of Y conditional on S = 1,D = 0

14



is equal to the density of Y ∗0 conditional on S0 = 1, S1 = 1. Set n (y) equal to the density 1
1−pf (y)

defined on
£
F−1 (p) ,∞¤, and m (y) equal to the density 1

pf (y) defined on
£−∞, F−1 (p)¤ where p ≡

Pr[S=1|D=1]−Pr[S=1|D=0]
Pr[S=1|D=1] = 1 −

³
1+Pr[S=0,D=1]

Pr[S=1,D=1]

´
³
1+Pr[S=0,D=0]

Pr[S=1,D=0]

´ ; there is only one p consistent with the probability func-
tion Pr [S = s,D = d], s, d = 0, 1. These choices for n (y) andm (y) are consistent with f (y) satisfying

f (y) = pm (y) + (1− p)n (y). Then E [Y ∗1 |S0 = 1, S1 = 1] will equal 1
1−p

R∞
F−1(p) yf (y)dy ≡ E, and it

has already been shown that E ≥ E [Y ∗1 |S0 = 1, S1 = 1].

An argument parallel to that made above can be made for E.

Proof of Proposition 3. Given Assumption C, this implies that Assumption A holds, conditionally on X.

It is given that for each j, Pr [X = xj |D = 0, S = 1] 6= 0. So Pr [S = 1|D = 0] 6= 0 implies, using Bayes’

Rule, that Pr [S = 1|D = 0,X = xj] 6= 0 for all j = 1, . . . , J . Thus, by the Proposition 1, it can be shown

that 1
1−pj

R∞
F−1(pj |xj) yf (y|xj) dy ≥E [Y ∗1 |S0 = 1, S1 = 1, X = xj ] for j = 1, . . . , J . It follows thatE

∗ ≥PJ
j=1 Pr [X = xj |S = 1,D = 0]E [Y ∗1 |S0 = 1, S1 = 1,X = xj]. The latter quantity equals

PJ
j=1{Pr[X

= xj |S0 = 1, S1 = 1]E [Y ∗1 |S0 = 1, S1 = 1,X = xj ]} = E [Y ∗1 |S0 = 1, S1 = 1] by Assumptions B and

C.

To show that E∗ is equal to the largest possible value for E [Y ∗1 |S0 = 1, S1 = 1] that is consistent with

the distribution of observed data on (Y, S,D,X), note first that the data can be completely described by 1)

f (y|xj) , j = 1, . . . , J , 2) the densities of Y conditional on S = 1,D = 0,X = xj , 3) the probability func-

tion Pr [S = s,D = d|X = xj ] , s, d = 0, 1, and 4) the probability function Pr [X = xj], j = 1, . . . , J .

Since Assumptions A and B hold conditionally on X, by Proposition 1, 1
1−pj

R∞
F−1(pj |xj) yf (y|xj)dy is

equal to the largest possible value for E [Y ∗1 |S0 = 1, S1 = 1, X = xj ] consistent with the observed data on

(Y, S,D), conditional onX = xj , for each j = 1, . . . , J .

Pr [X = xj|S0 = 1, S1 = 1] = Pr[X = xj|S = 1, D = 0], by assumptions B and C, and Pr[X = xj|S =

1,D = 0] is uniquely determined by the probability functions Pr [S = s,D = d|X = xj ] , s, d = 0, 1, and

Pr [X = xj], j = 1, . . . , J since Pr[X = xj |S = 1,D = 0] = Pr[S=1,D=0|X=xj ] Pr[X=xj ]PJ
k=1 Pr[S=1,D=0|X=xj ] Pr[X=xk] by Bayes’

Rule. Therefore E∗ is equal to the largest possible value for
PJ
j=1 Pr [X = xj |S = 1,D = 0]E[Y ∗1 |S0 =

1, S1 = 1, X = xj] =
PJ
j=1 Pr [X = xj |S0 = 1, S1 = 1]E [Y ∗1 |S0 = 1, S1 = 1,X = xj ] = [EY

∗
1 |S0 =
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1, S1 = 1] that is consistent with the observed data on (Y, S,D,X).

An argument parallel to that made above can be made for E∗.

Proof of Proposition 5. As shown in the beginning of the proof of Proposition 3, Assumptions B and

C and Pr [S = 1|D = 0] 6= 0 implies that Pr [S = 1|D = 0,X = xj ] 6= 0 for all j = 1, . . . , J. There-

fore pj ∈ [0, 1) for j = 1, . . . , J . Let g (y|xj) = 1
1−pj f (y|xj) on

£
F−1 (pj|xj) ,∞

¤
, 0 otherwise.

Let h (y|xj) = 1 (pj > 0) · 1pj f (y|xj) on
£−∞, F−1 (pj|xj)¤, 0 otherwise. By construction, f (y) =PJ

j=1 Pr [X = xj |S = 1,D = 1] f (y|xj) =
PJ
j=1 Pr [X = xj |S = 1,D = 1] pjh (y|xj) +

PJ
j=1 Pr[X

= xj|S = 1,D = 1] (1− pj) g (y|xj). Let bp =PJ
j=1 Pr [X = xj |S = 1, D = 1] pj ; since pj ∈ [0, 1) for

j = 1, . . . , J , bp also lies on [0, 1). Then f (y) can be re-written as bpm∗ (y)+(1− bp)n∗ (y), wherem∗ (y) =
1bpPJ

j=1{Pr [X = xj |S = 1,D = 1] · pjh (y|xj)} and n∗ (y) = 1
1−bpPJ

j=1 Pr [X = xj |S = 1, D = 1] ·

(1− pj) g (y|xj).

Consider first bp ∈ (0, 1). Since m∗ (y) and n∗ (y) are both probability densities that integrate to 1,

Lemma 6 applies: 1
1−bp R∞F−1(bp) yf (y)dy ≥ R∞

−∞ yn
∗ (y) dy. All that needs to be shown is that 1) bp =

p, 2) n∗ (y) =
PJ
j=1 Pr [X = xj |S = 1,D = 0] g (y|xj). If these two statements are true, then E =

1
1−bp R∞F−1(bp) yf (y)dy ≥ R∞−∞ yn∗ (y)dy = E∗.
The definition of pj implies bp =PJ

j=1{Pr[X = xj| S = 1,D = 1](1− Pr[S=1,D=0,X=xj ] Pr[D=1,X=xj ]
Pr[D=0,X=xj ] Pr[S=1,D=1,X=xj ]

)}.

Simplifying, and by assumption C, bp = 1−PJ
j=1

Pr[S=1,D=0,X=xj ] Pr[D=1]
Pr[S=1,D=1] Pr[D=0] = 1− Pr[S=1,D=0]Pr[D=1]

Pr[S=1,D=1]Pr[D=0] =

1− Pr[S=1|D=0]
Pr[S=1|D=1] = p.

Now, it is true that n∗ (y) =
PJ
j=1Pr [X = xj|S = 1, D = 1] 1−pj1−p g (y|xj). Using definitions of p and pj ,

this is equal to
PJ
j=1{Pr[X = xj |S = 1,D = 1]

Pr[S=1,D=0,X=xj ]Pr[D=1,X=xj ]
Pr[D=0,X=xj ]Pr[S=1,D=1,X=xj ]

Pr[S=1,D=0] Pr[D=1]

Pr[D=0] Pr[S=1,D=1]

g (y|xj)}. Applying Assump-

tion C, this becomes
PJ
j=1 Pr [X = xj |S = 1,D = 1] Pr[S=1,D=0,X=xj ] Pr[S=1,D=1]Pr[S=1,D=1,X=xj ] Pr[S=1,D=0]

g (y|xj). Simplifying

further yields
PJ
j=1

Pr[X=xj ,S=1,D=0]
Pr[S=1,D=0] g (y|xj) =

PJ
j=1 Pr [X = xj|S = 1,D = 0] g (y|xj).

Now consider the case bp = p = 0. This means Pr [S = 1|D = 1] = Pr [S = 1|D = 0]. 0 = Pr[S = 1|D =
1]− Pr [S = 1|D = 0] =PJ

j {Pr [X = xj |D = 0] (Pr[S = 1|D = 1, X = xj]− Pr[S = 1| D = 0, X =

xj ])} because of Assumption C. Since Pr [X = xj |D = 0] > 0 for all j = 1, . . . , J , and Assumption B

implies that Pr [S = 1|D = 1,X = xj] − Pr [S = 1|D = 0, X = xj ] ≥ 0 for j = 1, . . . , J , then it must
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be true that Pr [S = 1|D = 1, X = xj ] − Pr [S = 1|D = 0,X = xj ] = 0 for j = 1, . . . , J , which means

that pj = 0 for j = 1, . . . , J . So no trimming is done at either the aggregate level or by values of X. It

can then be shown, using Assumption C and Bayes’ Rule, that this implies Pr [X = xj |S = 1,D = 1] =

Pr [X = xj|S = 1, D = 0] for j = 1, . . . , J . Then E ≡
R∞
−∞ yf (y)dy =

PJ
j=1{Pr[X = xj |S = 1,D =

1]
R∞
−∞ yf (y|xj)dy} =

PJ
j=1 Pr [X = xj |S = 1,D = 0]

R∞
−∞ yf (y|xj)dy = E

∗.
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Table 1A: MFIP Impact Estimates: Single-Parent, Long-term Recipients

Quarter Relative to Treatment Control Impact
Random Assignment Obs Mean Obs Mean Diff. Std. Error

Employment

-2 846 0.215 934 0.251 -0.035 (0.02)
-1 846 0.229 934 0.261 -0.032 (0.02)
0 846 0.243 934 0.272 -0.028 (0.02)
1 846 0.299 934 0.288 0.011 (0.02)
2 846 0.409 934 0.324 0.085 (0.02)
3 846 0.461 934 0.349 0.112 (0.02)
4 846 0.442 934 0.324 0.118 (0.02)
5 846 0.483 934 0.335 0.148 (0.02)
6 846 0.515 934 0.365 0.150 (0.02)
7 846 0.512 934 0.381 0.131 (0.02)
8 846 0.521 934 0.419 0.103 (0.02)
9 846 0.533 934 0.429 0.104 (0.02)
10 846 0.553 934 0.449 0.105 (0.02)

Total Earnings

-2 846 213 934 245 -32 (32)
-1 846 239 934 291 -53 (36)
0 846 271 934 321 -50 (39)
1 846 303 934 340 -37 (38)
2 846 452 934 420 32 (45)
3 846 637 934 536 101 (54)
4 846 741 934 579 162 (59)
5 846 877 934 672 205 (67)
6 846 969 934 769 199 (71)
7 846 1040 934 880 161 (78)
8 846 1126 934 957 169 (81)
9 846 1265 934 1129 136 (90)
10 846 1367 934 1243 123 (91)



Table 1B: MFIP Impact Estimates: Single-Parent, Long-term Recipients

Quarter Relative to Treatment Control Impact
Random Assignment Obs Mean Obs Mean Diff. Std. Error

Earnings Conditional on Employment

-2 427 286 332 470 -184 (66)
-1 427 314 332 568 -254 (71)
0 427 349 332 622 -274 (78)
1 230 1114 254 1249 -135 (105)
2 328 1167 286 1373 -206 (103)
3 375 1437 305 1641 -204 (111)
4 366 1713 289 1871 -158 (121)
5 394 1883 307 2044 -161 (130)
6 427 1919 332 2164 -245 (130)
7 424 2076 347 2367 -292 (138)
8 433 2200 384 2328 -128 (137)
9 447 2394 388 2718 -324 (145)
10 464 2492 412 2818 -327 (137)

Trimmed Earnings Impacts (Upper Bound)

1 230 1114 254 1249 -135 (105)
2 259 1436 286 1373 63 (108)
3 276 1867 305 1641 226 (114)
4 261 2270 289 1871 398 (123)
5 278 2493 307 2044 449 (133)
6 300 2551 332 2164 387 (134)
7 314 2664 347 2367 296 (141)
8 347 2663 384 2328 335 (138)
9 351 2950 388 2718 233 (147)
10 373 3012 412 2818 194 (138)

Trimmed Earnings Impacts (Lower Bound)

1 230 1114 254 1249 -135 (105)
2 259 701 286 1373 -672 (87)
3 276 821 305 1641 -821 (98)
4 261 1008 289 1871 -864 (108)
5 278 1111 307 2044 -933 (115)
6 300 1104 332 2164 -1061 (115)
7 314 1293 347 2367 -1075 (121)
8 347 1549 384 2328 -779 (124)
9 351 1643 388 2718 -1074 (129)
10 373 1792 412 2818 -1026 (123)



Table 2A: MFIP Impact Estimates: Single-Parent, Recent Applicants

Quarter Relative to Treatment Control Impact
Random Assignment Obs Mean Obs Mean Diff. Std. Error

Employment

-2 1916 0.567 2133 0.555 0.012 (0.016)
-1 1916 0.563 2133 0.543 0.020 (0.016)
0 1916 0.552 2133 0.548 0.005 (0.016)
1 1916 0.551 2133 0.547 0.004 (0.016)
2 1916 0.483 2133 0.469 0.014 (0.016)
3 1916 0.518 2133 0.481 0.037 (0.016)
4 1916 0.528 2133 0.495 0.033 (0.016)
5 1916 0.554 2133 0.522 0.032 (0.016)
6 1916 0.563 2133 0.519 0.044 (0.016)
7 1916 0.566 2133 0.529 0.037 (0.016)
8 1916 0.586 2133 0.540 0.047 (0.016)
9 1916 0.577 2133 0.538 0.039 (0.016)
10 1916 0.585 2133 0.549 0.036 (0.016)

Total Earnings

-2 1916 1489 2133 1458 31 (66)
-1 1916 1427 2133 1349 78 (62)
0 1916 1308 2133 1260 48 (58)
1 1916 900 2133 892 7 (44)
2 1916 854 2133 948 -94 (48)
3 1916 1125 2133 1182 -57 (57)
4 1916 1258 2133 1328 -70 (62)
5 1916 1405 2133 1447 -41 (65)
6 1916 1529 2133 1525 4 (68)
7 1916 1664 2133 1653 11 (72)
8 1916 1731 2133 1718 13 (73)
9 1916 1798 2133 1793 5 (75)
10 1916 1970 2133 1936 35 (80)



Table 2B: MFIP Impact Estimates: Single-Parent, Recent Applicants

Quarter Relative to Treatment Control Impact
Random Assignment Obs Mean Obs Mean Diff. Std. Error

Earnings Conditional on Employment

-2 1062 1821 1088 1881 -60 (95)
-1 1062 1785 1088 1744 41 (90)
0 1062 1684 1088 1715 -30 (86)
1 1028 1677 1139 1671 6 (65)
2 903 1813 982 2060 -247 (81)
3 973 2215 1002 2516 -301 (89)
4 986 2445 1037 2732 -288 (93)
5 1041 2586 1092 2826 -239 (93)
6 1062 2759 1088 2991 -232 (96)
7 1068 2985 1115 3161 -177 (99)
8 1105 3001 1126 3254 -253 (99)
9 1093 3153 1130 3385 -232 (99)
10 1108 3407 1158 3566 -159 (104)

Trimmed Earnings Impacts (Upper Bound)

1 1023 1685 1139 1671 13 (65)
2 882 1854 982 2060 -206 (82)
3 900 2385 1002 2516 -131 (91)
4 931 2582 1037 2732 -150 (94)
5 980 2739 1092 2826 -87 (94)
6 977 2986 1088 2991 -4 (97)
7 1001 3174 1115 3161 13 (100)
8 1011 3264 1126 3254 10 (100)
9 1015 3380 1130 3385 -4 (100)
10 1040 3618 1158 3566 53 (104)

Trimmed Earnings Impacts (Lower Bound)

1 1023 1638 1139 1671 -33 (63)
2 882 1672 982 2060 -388 (75)
3 900 1845 1002 2516 -672 (80)
4 931 2125 1037 2732 -607 (83)
5 980 2251 1092 2826 -575 (84)
6 977 2333 1088 2991 -658 (87)
7 1001 2607 1115 3161 -555 (89)
8 1011 2525 1126 3254 -729 (88)
9 1015 2746 1130 3385 -639 (90)
10 1040 3013 1158 3566 -553 (94)


