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Abstract

This paper computes the change in welfare associated with the introduction of
incentives. Specifically, we calculate by how much the welfare gains of increased
output due to incentives outweigh workers’ disutility from increased effort. We
accomplish this by studying the use of incentives by a firm in the check-clearing
industry. Using this firm’s production records, we model and estimate the worker’s
dynamic effort decision problem. This allows us to determine that the firm’s in-
centive scheme has a large effect on productivity, raising it by 16% over the sample
period. Using our parameter estimates, we show that the cost of increased effort
due to incentives is equal to the dollar value of an 11% rise in productivity. Welfare
is measured as the output produced minus the cost of effort, hence the net increase
in welfare due to the introduction of the firm’s bonus plan is 5%.
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1 Introduction

Incentives are often used by firms to encourage their employees to work hard. The bonus
plans used vary widely, from complicated stock option offerings to simple employee-of-
the-month awards. But how well do incentive plans work? Most of the empirical work in
this literature addresses this issue by asking how much measured output changes due to
the introduction of incentives. Lazear (2000), for example, estimates that productivity
jumps 22% due to the incentive effects of a piece-rate compensation scheme at a wind-
shield repair firm. Little attention, however, is paid in quantifying the costs of this extra
output. In other words, by how much do the welfare gains of increased output due to
incentives outweigh workers’ disutility from increased effort? This is an important ques-
tion, as by not taking the cost of effort into account, we may overstate the importance
of incentives.

Our paper addresses this issue by studying the use of incentives by the Check Depart-
ment of the Federal Reserve Bank of Minneapolis. Given this firm’s production records,
we develop, solve and estimate a dynamic model of worker behavior. Using these esti-
mates, we measure by how much output and the disutility from effort increase due to
the firm’s incentive pay scheme. Comparing these welfare changes lets us compute how
much the firm’s bonus scheme raises overall welfare. '

'This case study is particularly interesting due to some special properties of the firm’s
incentive pay scheme that allow us to identify effort’s effect on output and the cost
of effort. Because of its structure, this bonus system creates a dynamic effect in the
worker’s problem. The firm’s bonus scheme is designed so that employees are only eligible
for incentive pay if their doily productivity is above a threshold level. Conditional on
being eligible, bonus pay is an increasing function of the distance between the worker’s
productivity and the threshold level. For any level of productivity below the threshold,
workers simply earn zero bonus pay. This kink in the bonus profile creates the perverse
incentive for a worker to quit working hard in the later part of the shift if the worker’s
measure of productivity is low (due, for example, to a bad shock) in the early part of the
shift. Under this bonus scheme then, the worker’s history within the day, and expectation
over the probability of the daily bonus pay, affect the worker’s effort decision.

This dynamic aspect of the worker’s problem is crucial in our model as it is the main
source of identification. Theory provides us with the intuitive result that a worker with
a small probability of earning incentive pay chooses a lower level of effort compared to
the case where the worker has a high probability, Hence, we know that after experienc-




ing a particularly unproductive morning, a worker’s chances of beating the firm’s daily
productivity threshold, and so being eligible for incentive pay, are small. Consequently,
the worker will exert a low level of effort. In contrast, if this worker had a productive
morning, the chances of earning a bonus are large enough that a high level of effort is
exerted. Knowing that a worker’s effort level differs under these two circumstances en-
ables us to identify both effort’s effect on output and the cost of effort to the worker. We
can identify that effort is costly, as workers with a low probability of earning incentive
pay will have an unexplained drop in productivity compared to those workers with a
high probability. In addition, we can identify effort’s effect on output by comparing the
difference in productivity between workers with low and high probabilities of earning a
bonus.

We are able to exploit this method of identification as the firm has provided with
us a detailed data set on worker productivity. We have the firm’s production records
for 15 full-time, experienced workers over a 15 month time period. These records are at
such a fine level of detail that we can track a worker’s productivity within the day. The
data also contain information on a large number of characteristics of the sorted checks.
In addition, the firm provided information on its incentive plan, allowing us to measure
how well a worker is performing relative to the firm’s benchmark productivity level. As
such, we can compute a worker’s chances of earning a bonus throughout a worker’s shift
and so take advantage of the avenue of identification described above.

We model the worker’s problem as having to make a number of effort decisions within
a day, where at the end of the shift the incentive pay formula computes the worker’s
bonus. We assume effort is a binary variable, and so allow workers to choose a low,
costless effort level or a high, costly one. When making an effort decision, the worker
knows the past history of events as well as the number of checks left to sort in the day.
This information allows the worker to determine how well the worker has performed
relative to the incentive pay scheme, and to compute the probability the worker will be
eligible for incentive pay at the end of the day. As the bonuses are calculated on a daily
basis, a worker starts each shift anew. In this framework, determining the effect of effort
on a worker’s expected bonus is complicated. A higher level of effort causes both a rise
in the level of a worker’s expected honus as well as in the probability of earning that
bonus. To simplify this analysis of the worker’s policy function, we consider the two

special cases where the probability of earning incentive pay is zero and one. We then
prove the intuitive result that the level of effort given the probability of earning a bonus




is one is greater than that worker’s level of effort given the zero probability case.

Using this model, we generate two kinds of results. First, we use non—parametric
techniques to test if implications of the model hold in the data. Second, we use a
maximum likelihood approach to estimate the model’s structural parameters.

We test the prediction of the model that a worker’s effort level differs when the
probability of earning a bonus is one versus zero. To see if this relationship holds in the
data, we test whether the unexplained portion of worker productivity is higher when the
worker’s probability of earning incentive is close to one, compared to the case when the
probability is close to zero. In support of our model, we find the difference between these
two groups of productivity residuals is large and statistically significant.

We then turn to estimating the structural parameters of the model. Qur estimation
method is the maximum likelihood approach, common in the discrete choice estimation
literature. This involves solving the worker’s problem for a given set of parameters to
obtain the worker’s policy function. Next, using these policy rules and the data, the
model generates a distribution of time taken to sort checks, which we use to compute
the model’s likelihood.

The parameter estimates from our estimation procedure show that effort significantly
affects worker output. Over the sample period, the firm’s bonus plan increased worker
productivity by 16%. Using our estimate of the cost of effort, we also compute the
dollar value of the disutility of workers due to the additional effort they exert under the
incentive scheme. We find that this utility cost to workers is equal to a 11% gain in
productivity, roughly two-thirds of the gain in output due to incentives. As welfare is
measured as the amount of output produced minus the cost of effort, our results show
the net increase in welfare from the firm’s bonus plan is 5%.

As previously mentioned, most of the existing empirical work on incentives has fo-
cused on quantifying how much output is affected by the introduction of incentives. The
results from this field of research vary widely, attributing an increase in productivity
from zero to over twenty percent due to the use of incentives!. In this literature, our
work is closest to Ferrall and Shearer (1999) in that we both use the structural esti-
mation approach?. They estimate the structural parameters of a principal-agent model,

Tazear (2000) and Paarsch and Shearer (2000) are two recent papers that quantify the relation-
ship between output and incentives. Blinder (1990) and Prendergast (1999) are good surveys on this

literature.
2Margiotta and Miller (2000) also uses the structural estimation approach to measure the cost of

moral hazard at the senior managerial level.




using the payroll records from the 1920’s of a mining firm. With a static model of ef-
fort, they analyze the classic tension between risk averse workers and the firm’s use of
incentives. We, on the other hand, develop a dynamic model of effort and abstract away
from risk aversion. Assuming risk neutrality simplifies the computation of the worker’s
policy function. In addition, while Ferrall and Shearer study a biweekly bonus scheme,
the incentive scheme we analyze is daily and only in effect for part of a worker’s shift.
As such, given that the gambles workers take are relatively small, using risk neutrality
provides us with a plausible apbroximation of worker behavior.

Two other papers related to our work are Asch (1990) and Oyer (1998). These two
papers describe data on the behavior of Navy recruiters and salespeople, respectively,
under incentive schemes. They both show that employees significantly alter their behav-
ior during a pay period, conditional on their history of events and future expectations.
Hence, they find that dynamic models of worker behavior, such as the one we use, are
significant improvements over their static counterparts. Our analysis also points to the
importance of dynamic models.

The rest of our paper is organized as follows. Section 2 describes the data. Section 3
lays out the model and derives the worker’s problem. Section 4 describes the estimation

procedure and reports results. Section 5 concludes.

2 Data Description

In this section, we describe our data set. We first explain the nature of the check-sorting
job and in which set of workers we are interested. We then describe the firm’s incentive
pay scheme and summarize workers’ performance under it. Finally, we conclude by
describing the firm’s goals.

Our data comes from the production and human resource records of the Check De-
partment of the Federal Reserve Bank of Minneapolis. This firm provided us with infor-
mation over a 15 month period (3/01/99 - 5/27/00) on its employees that sort checks in
the Low Speed Check Processing Department®. While these workers have several respon-
sibilities, their main task is to sort checks by running them through a sorting machine?.

3This Department processes all checks that are ‘rejected’ from the High Speed Check Processing
Department, Checks are first processed by the High Speed Department. But if the High Speed sorting
machines have any difficulty processing a check, that check is immediately diverted to the Low Speed
Department for further processing.

4A picture of this machine is attached at the end of the paper.




Ideally, this sorting machine would process checks without any worker input. However,
two events occur that require worker interaction: checks get jammed in the machine, and
fields on the check cannot be electronically read by the machine®. In the first instance,
workers clear the jammed checks and reset the sorting machine. In the second, workers
type in the field which the machine failed to read. Checks are processed by workers in
batches. We define a job as a batch of checks that needs to sorted. The production data
we received from the firm is at the job level and includes information on which worker
ran a job, what time it was run, how long it took, and its characteristics (e.g. the number
of jams that occurred).

The human resource component of the data set provides us with information about
the tenure of the worker, as well as the worker’s wage-grade level. Using this informa-
tion, we selected those workers who were full-time, were employed in the check-sorting
department for at least 6 mounths before the beginning of our sample period, and contin-
ued working throughout the sample period. Excluding new workers allows us to ignore
the effects of learning-by-doing, simplifying our analysis. Of the original 52 workers,
only 15 met these three requirements. However, this group of workers completed 34,077
jobs in the data set, which account for roughly half of all checks sorted in the 15 month
sample period.

Looking at this subset of the data, we find there is a wide range in the number of
jobs a worker completed within a day (1-90) as well as the number of checks sorted by
job (1-9000). Typically however, workers run 9 jobs a day, where each one averages 660
checks in length and takes 18 minutes to complete. In addition, workers normally clear
9.3 jams and type in 128 fields per job. As the large number of jams and field corrections
indicate, worker input is a large determinant of how fast a job is completed.

The firm uses an incentive pay arrangement that rewards workers based on their daily
performance above and beyond their hourly wage. This mechanism works by using a
formula that provides a benchmark time for each worker, given the characteristics of the
jobs the worker ran that day. Some characteristics that the firm uses are the number of
checks sorted, the number of jams cleared, and the number of fields manually typed in.
Letting Z be a vector of C characteristics of a job, we denote this formula as a(2). This
formula is linear in job characteristics, having the following form:

o(Z)=po+p-z+...+pc 20 (1)

5An example of a field is the account number




If a worker completes N jobs in a day, and Zz, denotes the characteristics of job n, then
22;1 a(Z,) determines the overall time that a worker needs to beat in order to earn any
bonus pay. Conditional on achieving this, the amount of bonus pay a worker receives is
an increasing function of the difference between the worker’s actual and benchmark time.
Let 7,b e the actual time a worker spends on a job and define s = .7 _ [a(Z,) — 7).
The variable s is the amount of time a worker is behind or ahead the benchmark time
at the end of the day. Note that s is a function of all the jobs a worker completed in a
day. We can then write the firm’s bonus payment scheme as

be) = 0 if s <0 )

K -5 otherwise

where K > 0 is some constant. So given s > 0, the bonus amount that a worker earns
is a function of the total time s, in hours, by which the worker beat the benchmark
formula, multiplied by a wage K. The firm has provided us with the constant K as well
as its incentive pay formula, ¢, which enables us to reproduce the daily cutoff times each
worker faced.

An important aspect of this data set is a change in the incentive pay formula in
January of 2000, roughly two-thirds of the way through the sample period. Before the
switch, K = $7.17 for all employees. After the switch, K = $9.75 for workers with
a grade of 4 or 5 and K = $12.76 for those with a grade of 6 or 7.° In addition, the
parameters of the formula « and the set of job characteristics Z, were changed in order to
raise the threshold level of productivity. So the switch in the incentive scheme involved
two opposing effects: on one hand, it became harder to earn incentive pay, while on the
other hand, bonuses were potentially bigger as K was increased.

Table 1 contains the average bonus payments for workers under the two regimes, as
well as the percentage of total jobs where a positive incentive amount was earned. This
table demonstrates that after the switch, workers earned smaller bonus payments less
often. Notice that the average daily bonus of all workers decreased from $10.06 to $6.64.
In addition, the percent of days where a worker earned a bonus fell from 95% to 81%.

Table 1 also shows the large amount of heterogeneity in worker productivity. Worker
5 is one of the most productive workers in the sample, earning an average bonus of over
$16 under both bonus regimes. Also, this worker always earned a bonus. At the other

6Lower grade employees earn lower wages and are typically newer employees relative to their higher
grade counterparts




Table 1: Bonus Payments

First IP Regime Second IP Regime
Worker | Grade | Mean  (Std) | Prct | Mean  (Std) | Pret
Al n/a | $10.06 (3.54) | 0.95 | $6.64 (7.62) | 0.81
High grade | 6 & 7 | $10.85 (9.13) | 0.96 | $8.94 (8.75) | 0.86
Low grade | 4& 5 | $8.50 (6.94) | 0.92 | $3.47 (4.26) | 0.74
1 7 $14.60 (12.43) | 1.00 | $11.19 (11.30) | 0.96
9 7 | $852 (7.96) | 0.95 | $7.28 (6.33) | 0.93
3 7 | $9.74 (11.33) | 0.97 | $10.50 (8.80) | 0.92
4 6 $14.29 (10.03) | 0.98 | $14.04 (9.32) | 0.99
b) 6 $18.22 (6.48) | 1.00 | $16.13 (5.33) | 1.00
6 6 |$1523 (8.94) | 0.98 | $12.59 (8.88) | 1.00
7 6 $9.14 (4.78) | 1.00 | $2.75 (2.80) | 0.72
8 6 | $6.10 (6.33) | 093 | $5.44 (5.78) | 0.82
9 6 | $545 (3.98) | 0.84 | $0.22 (0.74) | 0.12
10 6 | $6.95 (6.38) | 0.05| $4.59 (4.58) | 0.85
11 5 $11.05 (8.14) | 0.98 | $4.67 (4.63) | 0.92
12 5 $5.35 (6.02) | 0.80 | $4.64 (3.31) | 0.89
13 5 |$1471 (6.24) | 1.00 | $5.30 (5.37) | 0.85
14 4 $5.27 (3.39) | 0.90 | $0.54 (1.07) | 0.33
15 4 | $540 (342) | 0.95 | $1.86 (2.32) | 0.76

Pret: Percentage of days with positive bonus pay




extreme, Worker 9 received a mean bonus of $5.45 under the first regime and $0.22
under the second. Under second regime, this worker earned a bonus only 12% of the
time. Workers also differ in how they reacted to the change in incentives. Workers 3 and
7 both earned an average bonus payment of roughly $9 a day under the first incentive
pay regime. Under the second 'regime however, Worker 3’s average bonus increased to
$10.50 while Worker 7’s dropped to $2.75.

How important, though, are these bonus payments to workers? To check this, we
computed the mean of the ratio of bonus pay to total wages. As these workers performed
tasks throughout the day not under the purview of the incentive scheme, the focus of this
ratio is restricted to time spent on sorting machines. Total wages are thus computed as
the time spent on a sorter multiplied by the worker’s hourly wage plus the bonus amount.”
The mean value over all workers for this ratio was 0.25 under the first incentive scheme
and 0.18 for the second. The mean value by worker ranged from 0.10 to 0.34 and 0.003
to 0.33 for the first and second incentive schemes respectively. These results suggest
that when looking at the time spent sorting checks, incentives are indeed significant to
employees.

While incentives are beneficial in that they increase worker productivity, they also
have the disadvantage of adversely affecting the quality of output. In this check-sorting
environment, workers, in an attempt to increase productivity, could decrease quality by
entering incorrect numbers for the fields that cannot be electronically scanned. However,
there is another department within the firm that is able to detect when incorrect field
numbers have been entered. When a mistake is found, an analyst goes through the
records to fix the error and find the responsible worker. Due to the time this error-
checking process takes, the firm views such mistakes seriously. A worker who makes
such an error is docked pay, and repeat offenders are fired. By reviewing the payroll
records for workers over the sample period, we found that workers rarely made these
quality errors, and no worker continually made them over time. As such, in this paper
we do not model a quality trade-off.

3 The Model

In this section we layout the model and describe some theoretical predictions. We first
define the environment of the worker and derive the worker’s effort decision problem.

"Hourly wages for employees range from $8 to $14 an hour




Then we prove a theorem describing the worker’s policy function. Finally, we test whether
this implication holds in the data.

3.1 The Environment

Each day the firm needs to hire enough workers to sort N checks®. As in the standard
moral hazard model, we assume that the firm cannot determine the effort level exerted
by the worker®. We accomplish this by modelling the time it takes a worker to process a
check as a function 7 of three variables: the worker’s effort level and two random shocks.
We model effort as a binary choice, e € {0, 1}. The first random shock is a vector Z of the
characteristics of the check that are observed both by the firm and the econometrician.
An example of this characteristic would be whether or not a check jams the machine.
We assume that 2 is independent over checks and let F denote its cdf. The second shock
e is a characteristic of a check that is unobservable to the firm and the econometrician.
An example of this shock would be a particularly tricky jam or ripped check. This shock
is also independent over checks, and we assume it is distributed normally, with mean
and variance o?. Using these three variables, we can write the time it takes to complete
a job as as function 7(e, z,¢). Note that even though the firm knows 7 and observes Z,
it cannot determine the worker’s effort level because of the unobserved effects of .

The timing of events plays an important part in the model. We assume that workers
choose an effort level e before they process each check. Then, while the check is being
sorted, the two random shocks, (Z,¢), are realized. This implies that when the worker
makes an effort decision before sorting a check, all checks look identical. It is only after
the check has been sorted, after the realization of (Z,¢), that checks are distinguishable.

As this paper focuses on worker behavior, we take the contracts offered to workers
as exogenous. Hence, we do not model the firm’s problem. As discussed in section 2,
this contract includes a fixed wage w and a variable incentive component, the function
b (see equation 2). Note that the firm’s incentive scheme is how this model differs from
the standard moral hazard problem. Unlike in the standard model, workers in this firm
do not receive compensation after every effort decision, but rather at the end of the day
after sorting N checks and making N effort decisions. As shown in the following section,

8The assumption that workers know how many checks they will sort in a day is not unreasonable.
Each day, the workers’ supervisor makes out a schedule detailing the tasks workers are to perform during
their shift.

98ee Grossman and Hart (1983) and Holmstrom and Milgrom (1987).
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this change makes the worker’s problem dynamic, which is a departure from the standard
model. '

Workers’ utility depends upon their wage and how much effort they exert. We assume
there is a cost to effort to the worker, ¢(e), where c(1) > ¢(0). We further assume that
workers are risk-neutral and that there is no discounting. Utility is then separable in

wage and effort, and can be specified as

@+ b(i a(2n) — (€n, 2, 5n)) - Z]j: clen). (3)

where the summation is over the N checks a worker processed in a day. The first term
in the utility function is the workers’ base wage, the second term is their daily bonus,
and the last term the cost of effort over the entire day. The assumption that a worker is
risk neutral, as opposed to risk averse, simplifies the worker’s policy function and allows
us to directly compare the dollar gains from output with the cost of effort in our welfare
analysis. This assumption however, is not crucial for our results. As the variation in
a worker’s income due to bonuses is small and as the bonuses are paid out at a high
frequency, worker’s behavior under risk neutrality is a good first order approximation of
the worker’s behavior under risk aversion'®.

3.2 The Worker’s Problem

The worker’s problem is to decide, for every check, whether effort should be exerted.
Naturally, a worker’s decision is affected by the history of events in the day as well as
the number of checks left in the day. Both sets of information are needed by the worker
to form expectations of the bonus pay the worker will receive at the end of the day.
The history of events a worker observes is the triplet (e, z,¢) for all checks already
sorted. This information allows the worker to determine how well the worker is doing
with respect to the firm’s formula o. A sufficient statistic for this history is the variable
s, where s is the sum of the difference between a(z) and 7(e, Z, ) for all checks a worker
has already processed. Hence, s = 0 for the first job in the day. Letting (e, Z,£) be the
choice of effort and realizations of the two random shocks that occurred when sorting

10To provide a stronger basis for this claim, we computed the certainty equivalent of an agent with
a standard level of risk aversion when faced with the varying income stream of a typical worker in the
data. We found that the percentage difference between the certainty equivalence and the mean level of
income to be less than one-half of a percent for standard levels of risk aversion.
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the latest check, we can define the law of motion for s as ' = a(z) — 7(e, 7,€) + 5. The
number of checks a worker has left in the day to sort is simply denoted as n, where
ne€{0,1,2...,N}.

Using the two variables (s,n), we can write the worker’s problem recursively as an N
period stochastic dynamic problem. In this environment, the worker only gets paid at
the end of the day, n = 0, but incurs the cost of effort, e¢(e), each period. The worker’s

value function is

x{—cle) + E[V(n—-1,3(e,z,¢e,s ifn=4{1,2,...,N},
i — | 5 (O BV 0= 13062291 { )
@ + b(s) ifn=0,

(4)

where the expectation is taken over (z,¢) and
5(e,z,e,8) = s+ a(z) — 7(e, z,€).

To solve for the worker’s policy function é(n,s), we use backward induction and
determine for which values of s a worker will exert effort, in every period n . In deciding
whether or not to choose e = 1, the worker computes whether the expected value of the
bonus at the end of the day is larger than the cost of effort this period and the expected

cost of effort in future periods.

3.3 Theoretical Results

To better understand the worker’s problem, we analyze the comparative statics of the
worker’s policy function é(n,s). We first examine how é(n, s) changes with respect to
n, holding s fixed. Increasing n, or increasing the number of checks a worker has left to
sort, provides the worker with more opportunities to affect s. For a highly productive
worker, this increase in opportunities is beneficial as the worker has more chances to
increase s and so offset any bad draws of (Z,¢). Conversely, for an unproductive worker
who struggles to sort checks faster than the firm’s estimated time, increasing n is not
beneficial. More opportunities mean that this worker is less likely to have a positive s
at the end of the day, and so be eligible for incentive pay. Hence, without knowing the
productivity of a worker, we are unable to say whether &(n, s) is increasing or decreasing
in n.

Next, we turn to examining how é(n,s) changes with respect to s, for a fixed n.

12




At first glance, one might expect that é(n,s) is increasing in s. A higher s, after all,
weakly increases the worker’s expected bonus. This monotonicity result, however, only
holds under specific assumptions on the joint distribution of the random shocks, (Z, ¢).
The difficulty in showing this result comes from the fact that effort has two effects on
a worker’s bonus pay. A worker’s effort level has both a level effect on the bonus and
an effect on the probability of earning that bonus. This second ‘effect on the probability
of earning incentive pay is not monotone in s. As such, unless we impose a particular
structure on (Z, £), we are unable to determine if the worker’s policy function is monotone
in s for a fixed n.

To gain a better understanding of how the worker’s policy function varies in s, we
analyze two special cases. First, consider the case where the worker has probability
one of earning a bonus. The worker’s decision of whether to choose low or high effort
depends on the comparison of the difference in the costs of effort against the difference
in the expected bonus. In this case, the effort decision has no effect on the probability of
earning a bonus. So the difference in the expected bonus pay is simply the extra expected
time saved because of high effort, multiplied by K, the incentive pay wage parameter.
Formally, we write this as

D=K- /_ Z /Z (7(0,2,2) ~ 7(1,7,2) ) F(dz)®(de). (5)

We assume that
Assumption 1. D > ¢(1) — ¢(0).

Naturally, a worker will only exert effort if this assumption holds. As shown in a
separate appendix, in our model this special case occurs when s goes to infinity. The
intuition is that as s gets increasingly large, the probability of receiving bad enough
shocks of (Z, &) such that a worker is no longer eligible for a bonus goes to zero.

The second special case we consider is when the probability of earning incentive pay
is zero. Obviously, if the worker has no chance of earning incentive pay, there is no point
in exerting a high level of effort. We show in a separate appendix, that in our model this
special case holds when s goes to negative infinity.

To formalize the above intuition, let G(n, s) be the difference in the utility gain from

13




high versus low effort. Hence defining the expected gain from effort e as
Va(n, s) = cle) + / / Vin 1,5, 2., 5)) F(dz)®(de), (6)
-mJZ

we know that G(n, s} = Vi(n,s) — Vo(n, s). We then have the following theorem.

Theorem 1. Under assumptions on T and «, given in a separate appendiz,

lim G(n,s) =c(0) —c(1) + K - D, (7)

=00

where D is defined in equation 5, and

lim G(n,s) = ¢(0) — ¢(1). (8)
Proof. The proof is available upon request. g

The assumptions on 7 and « are simply technical assumptions that insure that the
difference Vi(n,s) — Vo(n,s) does not go to infinity as s goes to infinity. Equation 7
formalizes the intuition discussed above for the case when the probability of earning
incentive pay is one. In the limit, the return from high versus low effort is the difference
in the cost of effort plus the term D. Equation 8 shows that the return from high versus
low effort as s goes to negative infinity is simply the difference in the cost of effort.

These limit results show that the lim G(n,s) is higher then lim G(n,s). Clearly,
low effort is exerted when the probabilist;ogf earning incentive pay :; z_eol?o. In addition, as
we assume that D > ¢(0)—c(1), we know that effort will be exerted when the probability
of earning incentive is one. Determining how G(n, s) varies for intermediate values of
s is complicated, as this variation is a function of the joint distribution of (Z,). The
difficulty arises in that the difference in the increase in the probability of earning incentive
pay when high effort is exerted versus low effort is not monotone in s. In the two limits
cases, neither low nor high effort change the probability. But for intermediate values of
s, high effort does increase the probability of earning the bonus by more than low effort.
Without more specific assumptions, we are unable to determine the magnitude of this
non-monotonicity, and so show if G(n, s) is monotone in s. When estimating our model,
however, we calculate G(n,s) for all relevant values of s and n. Figure 1 illustrates
how G(n,s) varies with s, given our functional form assumptions and the estimated
parameters of our model. It plots G(n = 2, s) over a range of s, showing that this ‘gain
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Figure 1: A Plot of G(n, s)
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from effort’ function, for the estimated parameter values, is monotone and non-linear.
We also examine how G(n, s) varies with n. We find that for all workers in the sample,

G(n, s) is increasing in n.

3.4 Empirical Tests

The theorem provides a way for us to perform a non-parametric test of our model. It
implies that for a fixed n, a worker’s effort level given a high probability of earning
incentive pay is higher than the worker’s effort level given a low probability of earning
a bonus. To test this implication and to quantify the effect of a high level of effort on
the time taken to sort checks, we conduct the following experiment. In the data, we can
compute a worker’s state variables, (n, s), for every job (i.e. for every observation). We
then run a productivity regression, where the dependent variable is the time taken to
complete a job, and the independent variables are the -job’s observable characteristics,
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day effects, worker dummy variables, and the worker’s state variable n. Recall that T
denotes the time taken to sort a job j, Z; are a job’s characteristics, and n; is the number
of checks in the day that the worker processing job j has left to sort, including those
checks in job j. Let JJ be the day in which the job was processed, and 7; be the worker
who processed the job. Note there are 320 days and 15 workers in the sample. The
regression we ramn is

320 15
In(ry) = l”(ﬁlzj) + Zfl l_g, + an gz Fvomg +gy, 9)
1=1 k=1

where (3 is a vector of coefficients and 1,_., is a dummy variable equal to 1 when z =
y*. As effort is unobserved, its effect on time is captured by the residual term of this
regression. We then turn to calculating the probability of earning incentive pay for
every observation. The theory states that this probability is a non-linear function of
the worker’s state variables and characteristics. To approximate this relationship, we
run a probit model where the dependent variable is 1 if the worker earned a bonus that
day and O otherwise. The independent variables are worker dummy variables, s, n,
and higher ordered terms of s and n. Combining the probit and regression results, we
have, for every job, the worker’s probability of earning incentive pay and a residual term
capturing the effect of the worker’s effort. The theory implies that when the probability
of earning incentive pay is high, the residual should be low, as effort is high. Conversely,
when the probability is low, the residual should be high due to low effort. We test this
implication by computing the mean of the residuals conditional on the probability of
earning incentive pay being over 95% and then being under 5%. Table 2 contains the
results.

In this table, all the means of the residuals are highly significant, except for the mean
of -0.0003 in the second incentive pay regime. More importantly, the difference between
the means within an incentive pay regime are highly significant and have the anticipated
sign. The size of difference in the regimes is about 0.09 under the first regime and 0.05
under the second. As the productivity regression used the natural log of time, these
differences in residuals are in percents. As such, these results indicate that a high level
of effort reduces the time taken to sort a job by 5 to 10 percent.

An interesting aspect of Table 2 is the number of observations in each category. Under

11We re-ran our computations using different specifications of this regression, and found there were
no significant changes in the final results

16




Table 2: Conditional Means of Residuals

Obs Mean Std Error
1% IP High Prob { 21,569 -0.0059 0.0018
Low Prob 91 0.0892 0.0375
9nd [P High Prob | 5,644 -0.0003 .  0.0038
Low Prob 464 0.0487 0.0158

Note: ‘High Prob’ is defined as the probability being over 95%
‘Low Prob’ is defined as the probability being under 5%

the first incentive pay regime, it is hard to find observations where a worker has a low
probability of earning a bonus. There were only 91 out of 23,098 jobs in the first incentive
pay regime where the probability of earning incentive pay was under 5%. Recall from
Table 1, that under this regime workers earned a bonus 95% of the time. To check the
sensitivity of our results to the number of observations, we re-computed our results using
a 10% cutoff for the probability. There were no significant changes in our results. In
first incentive pay regime, for the ‘Low Probability’ category, the number of observations
increased to 126 and the new mean of the residuals was 0.0859.

4 Estimation

In this section, we describe how we estimate the structural parameters of this model. We
begin by stating and justifying our functional form specifications. Then we show how
the model is identified and summarize our estimation technique. Finally, we report our

parameter estimates and discuss their implications.

4.1 Specification

In order to estimate this model, we need to know the functional form of 7 and the
distributions of (Z,¢). In specifying the functional form of 7, there are three main issues
that we consider. First, workers are heterogenous in their productivity, as demonstrated
by the wide range in mean bonus payments listed in Table 1. To capture this, we assume
there are I types of workers, who differ by a productivity parameter 7;. This parameter
proportionately affects 7. A worker’s type is not assigned a priori, but rather the model
assigns types to worker so as to maximize the model’s likelihood. To determine the total
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number of types of workers, we re-estimated the model for an increasing number of types
until there are no significant changes in the parameter estimates.

The second issue we consider is which characteristics of a job are important in de-
termining how long a job takes to finish. We have previously mentioned three observed
characteristics of jobs, the number of jams cleared, fields corrected, and checks sorted.
There are, however, a number of other characteristics in the data, such as the area of
the country from which the checks originated and which sorting machine was used, that
may help determine 7. To find the set of characteristics that are important predictors
of time spent processing a job, we regressed all observable characteristics in the data on
time. The end result is that three characteristics - the number of jams, the number of
fields corrected, and the number of checks sorted - explain 90% of the variation in time.
Other characteristics either do not add any explanatory power or only have a marginal
effect. :

In our specification of 7, we only include the number of jams and fields corrected
as a job’s observable characteristics. We do this because of a problem computing the
worker’s policy functions. We found that solving the worker’s problem for a large number
of checks, IV, took a prohibitively long time. As such, we decided to approximate the
model by assuming that workers made an effort decision every 1000 checks!?. This,
however, raised a problem with the structure of our data. As discussed in the Data
Description (Section 2), an observation in our data set is a job, where a job ranges
from 1 to over 8000 checks. To bring the model specification and data into line, we
re-arranged the data to construct observations of 1000 checks. We accomplish this by
first chronologically lining up the jobs for every worker in a day. Then, starting at the
end of the day, we cut and spliced jobs together to make new jobs of uniform length.
Depending on their number, the residual checks left at the beginning of the day were
either discarded or expanded into a 1000 check job. Under this modification, the number
of checks per job in the data is constant and so can be captured by 7’s intercept term,.
Consequently, we construct the random variable Z of a job’s characteristics, as a 2 x 1
vector, where z; is the number of jams that occurred and z; is the number of fields
corrected.

Reducing the vector of characteristics z to two dimensions is advantageous as it
decreases the computation burden of solving the worker’s problem. However, it also

12We are planning to estimate the model where workers make an effort decision every 500 checks to
check our model’s sensitivity in this respect.
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complicates the problem of computing a worker’s expectations over a(z). The firm’s
actual incentive pay formula uses a number of characteristics other than jams and fields
corrected. As such, when we compute the worker’s expectations over the state variable
s in the next period, we use an approximation the firm’s actual incentive pay formula.
Like the firm’s actual formula, the approximation we use is a linear function of jams and
fields corrected??. ‘

Finally, the last issue we consider with respect to 7’s specification is how e, z, and ¢
interact with one another. The result mentioned above, that a linear regression of the
job’s observable characteristics on time has an R-squared of 90%, is strong evidence for a
linear specification of 7 in Z. To check the magnitude of a non-linear relationship between
the observable characteristics and time, we re-ran the above regression adding squared
terms of the observable characteristics to the set of regressors. The estimated coefficients
on these squared terms are insignificant, adding to the credibility of 7 being linear in Z.
Lastly, with regard to effort, our observations in the workplace and conversations with
workers lead us to believe that effort has a direct effect on how quickly jams are cleared
and fields are entered. Consequently, the effort term in 7 needs to interact with both
elements of z. With these issue in mind, we specify 7 as

(e, 3,€) = [ﬂo + (61 — s -e) sz + (ﬁz — By e) . 22] -exp(n;) - exp(e), (10)

 where 33,8, > 0, ¢ ~ N(0,0%) and j = 1,...,J. Taking logs, we get the form of the

equation we actually estimate,
In(ri(e,z,6) = In[fo+ (B~ ) -2t (B=Bu-e) 2| +m+e (1)

In this specification, the heterogeneity in workers is captured by adjusting the coefficients
Bothro ugh B34 by a fraction n;. Rather than specify exogenously which worker belonged
to which type j, we assigned worker’s types so as to maximize the model’s likelihood
given the parameter values.'* We constrain the coefficients 33 and B4to be greater than
zero as our prior is that effort lowers the time it takes to complete a job. This also
reduces the parameter space and so speeds up the estimation algorithm.

13We estimated the coefficients and intercept term of this function using ordinary least squares. The
R-squared for this regression under the first regime is 0.70 while under the second regime it is 0.98. The
lower R-squared under the first regime is concerning. We plan on improving upon this approximation.

1 Another way we considered introducing worker heterogeneity is by having differing costs of effort,
¢;j(e). We are planning to re-estimate the model with heterogenous costs.
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Having specified 7 and the distribution of ¢, we are left with F, the cdf of z. As
we have data on realizations of z, we use these observations to construct an empirical
distribution of F. Finally, we normalize the cost of low effort, ¢(0), to zero, and let
¢(1) = 7. Notice that v is the same for all workers, and so workers are only heterogeneous
in;m .

With these functional forms, we can compute the likelihood of the model. We have
a panel data set of I individuals, where for each individual we have T; observations.
Individuals are heterogenous in that they can be of different types {#;}. In this data set,
we have information on the job’s observable characteristics, 2;¢, the number of checks
left to sort in the day, 7,;, the time taken to sort jobs, 7, and the benchmark times
computed by the firm, &;;. The likelihood is then

L(ﬁo: By Bz, Bay Ba, 7, {771'}5 U|{£’i,t7ﬁi,t, &i,t’+i,t}) =
I T;
H%a% [H P(ln(’fi,t)|{5i,t, figy Qig}y Bo, - -+ Bay ¥, s ‘7)} - (12)
i=1 7 L=

From equation 11, we know that the likelihood of the observation In(#; ), conditional on

the data and parameters specified above, is d)(m—(ﬁ*#ﬁi), where

0itj = In [50 + (ﬁl — 3 - ei,t,j) -3+ (52 — Ba - €i,t,j) . 212,:} + 7. (13)

The variable e; ; is the effort level exerted by worker i, while sorting a job at time ¢
when the worker is type j. We compute which effort level a worker chooses by solving the
worker’s dynamic problem given the parameter values and obtaining the worker’s policy
function. This policy function depends upon the worker’s state variables (n,s). We
observe n directly in the data, 7, and can compute s from the two sequences {&;, 7. }-

We assign workers’ types so as to maximize the likelihood. We do this by calculating
the likelihoods associated with a worker being each possible type {7,;}. We then compare
likelihoods across types, and assign each worker the type with the largest corresponding
likelihood.

4.2 Identification

The general identification issue in this check-sorting environment is determining if effort
significantly affects the time taken to sort checks. The main source of identification
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comes from the incentive effects of the firm’s kinked bonus system. Looking back at the
incentive pay program defined by equation 2, note that this formula generates a bonus
wage profile that is flat at $0 dollars for all negative values of the state variable s. Then,
for positive values of s, the wage profile is linearly increasing in s. This kink at 0 creates
a perverse incentive for workers to quit working hard once they have fallen too far behind
in terms of s. In Theorem 1, we prove this intuitive result, showing for large, positive
values of s, a worker will choose high effort while for values of s that are negative and
large in absolute value, workers will choose low effort. So theory predicts that workers
with low, negative values of s will have low productivity (high 7), while those with large
positive values of s will have high productivity (low 7). Conversely, in an environment
where incentives did not matter, there is no correlation between s and 7. In the data,
we observe the values of s and 7 for a worker for every job. As the distribution of s in
the data ranges from under a low -180 minutes to over a high 200 minutes, we have a
straightforward way of determining if effort matters in this environment.

For our particular model and functional form specifications, this general identification
problem reduces to showing that we can measure effort’s effect on time, captured by
(B3, Ba), and the cost of effort, 4. As described above, theory predicts when effort will
and will not be exerted in certain cases. Using this information, we are able to precisely
measure (33 and §4. Further, the model imposes a specific structure on the relationship
among v, 83, 34 and 7 through the utility-maximizing behavior of workers. These cross-
equation restrictions allow us to precisely estimate -,

A second source of identification comes from the firm’s change of parameters in the
incentive scheme two-thirds of the way through the sample period. As described in the
data section of the paper, the firm altered the productivity thresholds workers need to
beat to earn bonus pay, as well as the formula used to compute bonuses conditional on
eligibility. A consequence of this shift is that workers systematically changed when they
exerted effort, influencing their productivity. In an environment without effort, however,
the change in incentive schemes would have no effect on worker productivity. These
different predictions on how productivity should change with the switch in incentives
provides us with a second avenue of identification.

One difficulty with our current model is that we are unable to separate out the effect
of daily shocks to the worker from the effect of effort. We plan to address this problem
by incorporating a daily shock into the model and re-estimating the model’s parameters.
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4.3 Estimation Algorithm

As mentioned in the introduction, we use a maximum likelihood approach to estimate
the structural parameters of the worker’s problem. To compute the model’s likelihood,
we use a simple three step algorithm that is common to the discrete-choice structural
estimation literature. The first step is to specify the functional forms of the cost of time
function, 7, and the cost of effort function, c. Note that we have already assumed that
workers’ utility is additive in wages and effort. In addition, we need to choose values for
all the parameters in the model. The second step involves using the parameter values
and newly specified functions to solve the worker’s problem. For the functional forms
we consider in this paper, the worker’s policy rules are cutoff rules. Hence, for every
period n we find a threshold value §,, where a worker will only choose e = 1 if 5 > 5,,. As
described in the appendix, these policy rules are computed using backward induction.
Finally, the last step is to use the policy rules to infer the worker’s effort decisions. Using
this information along with the data, we then calculate the likelihood.

To find the set of parameters that maximize the likelihood, we use a simulated anneal-
ing program to search over the parameter space. We tried to use faster search methods,
such as simplex or derivative based algorithms, but found they continually got stuck on
‘flat spots’. As effort is discrete and the worker’s policy function is a cutoff rule, this
likelihood is a step function along certain dimensions. We found that only the simulated
annealing algorithm was able to perform a wide enough search of the parameter space

to find the global optimum.!®

4.4 Parameter Estimates

Using these functional specifications, we obtained the parameter estimates listed in Ta-
ble 3. Note that all parameter estimates are highly significant!6.

These estimates imply that when a worker does not exert effort, entering a field takes
4.5 seconds., With effort, a field is entered 1.3 seconds faster, a 28% reduction in time. In
contrast, how fast a worker clears jams is only marginally affected by the worker’s effort
decision. This is not unexpected however, as clearing a jam entails a series of steps (e.g.
opening a panel component, pulling out the stuck checks, etc) that are not conducive to
being hurried. Entering a field (e.g. a check’s bank account number), on the other hand,

15A good source on how a simulated annealing algorithm works is Goffe, Ferrier, and Rogers (1994).
16The standard errors reported here were computed given each worker’s type
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Table 3. Parameter Estimates
Parameter Estimate | Standard
Error
(seconds)
Intercept Bo | 380.106 1.4616
Jams B 27.558 0.0144
Fields Ba 4.465 0.1362
Effort on Jams 33 0.083 0.0252
Effort on Fields i 1.254 4.3e-5
(Do units)
Type 2 T 0.210 4.0e-6
Type 3 s 0.342 1.4e-5
Standard deviation o 0.224 4.3e-7
(dollars)
Cost of effort y 0.476 1.0e-7

Note: 7, is normalized to 0

is a task much like touch-typing, whose speed depends upon the worker’s concentration.
To gain a better understanding of how important effort is in reducing time, consider that
a typical batch of 1000 checks requires a worker to clear 14 jams and type in 193 fields.
Our parameter estimates imply that with effort, the time a worker spends processing
checks decreases by 15%. For Type 1 workers, this is a decrease of 4 minutes, while for
Type 2 and 3 workers this is closer to 5 minutes.

‘Turning to the cost of effort, notice that v is 0.48. As we assumed that utility is
additively separable in effort and wage, this value can be interpreted as the dollar cost
to a worker for choosing e = 1. Thus, the disutility from working hard while sorting
1000 checks is $0.48.

We included three types of workers in the model as we found that having more
than three did not significantly change our results. Type 1 workers are the best and
benchmark workers (i.e 7; = 0). Type 2 workers are worse than Type 1 workers, taking
21% more time to process checks than Type 1. Finally, Type 3 workers are the least
efficient workers, sorting checks 34% slower than Type 1 workers. Table 4 provides a
comparison of these assigned types to the workers’ actual grades. Note that most high
grade workers (those with grades of 6 or 7) are Type 1 and most low grade workers are
not Type 1. There are, however, some low skilled, high grade workers and high skilled,

low grade workers.
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Table 4: Worker Grade and Type
High Grade Low Grade

Worker 1 2 3 45 6 7 8 9 10|11 12 13 14 15
Grade(Data) |7 7 7 6 6 6 6 6 6 6|5 5 5 4 4
Type(Model) [1 1 1 1 1 1 2 2 3 11 2 3 2 1

4.5 Analysis of Effort Decisions

Using these parameter estimates, we can analyze workers’ effort decisions. The model
infers that workers exerted effort 98% and 84% of the time respectively, under the firm’s
two incentive schemes. Hence, the changes the firm made to the bonus scheme decreased
the number of times workers choose e = 1 by 14%. Knowing how often workers exert
effort allows us to determine by how much the firm’s bonus plan increases productivity.
Using our parameter estimates, we compute that exerting effort decreases the time spent
processing checks by 15%. This implies that under the first incentive pay plan, workers’
high effort decreased the time spent sorting checks by (0.98-0.15) = 14.7%. The decrease
in time under the second incentive pay scheme is slightly less, at 12.6%. Taking the
average of these two numbers, weighted by the number of observations under each regime,
we find that over the sample period, the firm’s bonus plan decreased the time spent
sorting checks by 14%. This translates into a 16% increase in worker productivity.

When exactly though, do workers choose low effort? Assuming that workers start out
the day exerting effort, theory predicts that low effort decisions will most likely occur
in the second half of a shift, after a worker experiences an unproductive morning. As
discussed in the theoretical implications part of this paper, Section 3, this is due to
the firm’s kinked incentive pay scheme. Given the estimated parameters, we can test
this prediction as the model computes workers’ policy rules and effort decisions over the
sample period.

From the model, we know that workers choose low effort 1,038 times out of a possible
18,120 times during the sample period. To determine if workers are choosing effort

over an entire day or mixing high and low effort decisions within a day, we constructed
Table 5. This table lists the number of days when a high level of effort was never exerted
(Zero Effort), days when both high and low effort were exerted (Mixed Effort), and the
days when a high level of effort was always exerted (Full Effort). It is interesting to note
that under the first incentive pay regime there are no ‘zero effort’ days, while under the
second regime there are 138. This increase in ‘zero effort’ days is the result of the two
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Table 5: Effort Decisions within the Day

Zero Effort | Mixed Effort | Full Effort
First IP Regime 0 119 2493

Second IP Regime 138 74 939

type 3 workers in the sample. Under the second incentive pay regime, these workers do
not start the day expecting to receive a large enough bonus to compensate them for the
cost of effort. Hence, they will only choose e = 1 if they receive high productivity shocks
during the day. In contrast, all workers under the first incentive pay regime and type 1
and 2 workers under the second regime, always start the day with a high effort level.
By focusing on workers who start the day exerting a high level of effort, we can test
the theoretical prediction of when in the day low effort decisions typically occur. Out of
the 1,038 low effort decisions, 350 of them were made by workers who started the day
choosing e = 1. Of these decisions, all occurred in the second half of a worker’s shift,
supporting our theoretical prediction. In addition, this result illustrates that there is a
large inefficiency associated with the dynamic nature of the firm’s incentive scheme. The
use of daily productivity numbers and the resulting effects on worker behaviour account
for roughly a third of all low effort decisions made. By re-structuring its incentive pay
scheme to compensate workers more frequently, the firm could significantly reduce the

number of times workers choose low effort.

4.6 Welfare Analysis

Now that we understand how often workers choose to exert a high level of effort, we
analyze by how much the firm’s bonus plan increases welfare. We address this issue
by first considering the welfare in the economy under two extreme cases: a flat-wage
scheme and the first-best scheme. We choose these two schemes as we are interested in
comparing the case where workers never exert effort to the one where they always exert
effort. By looking at the worker’s problem, it is clear that if workers are only paid an
hourly rate, they will never exert effort. Under the first-best scheme, we know that it is
profit-maximizing for the firm to always motivate its workers to choose e = 1. This is
because the expected gain to the firm when the worker exerts effort is larger than the
disutility from effort. Qur parameters imply that effort causes, at the least, a 4 minute
reduction in time for a typical batch of 1000 checks. The mean wage of workers is $10.55,
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Table 6: Welfare Analysis per Worker per Day

Flat Wage | First Best | Difference in Welfare
(e=0) (e=1)
Minutes Spent Sorting 136 115 21
Cost of Effort () $0 5 - $0.48 -$2.38

which means the firm expects to save % - $10.55, or $0.70. As the disutility from effort
is only $0.48, there is a gain to always have the worker choose e = 1.

With these compensation schemes in mind, we turn to measuring welfare, Qur strat-
egy is to compare the welfare associated with processing a typical day’s worth of checks,
about 5000 checks, under the two schemes. From the data, we know that while sorting
5000 checks, a worker will typically clear 70 jams and type in 966 fields. Using these
numbers, we find that in the flat-wage case (where no effort is exerted), a worker will
typically take 136 minutes to sort 5000 checks. Naturally, as a worker never exerts effort
under this scheme, the disutility from effort is $0. Moving to the first-best, we find that
a worker will typically sort 5000 checks in 115 minutes, 21 minutes faster than without
effort. The disutility the worker experiences from exerting effort is 5 - $0.48 = $2.38,
as e = 1 is chosen 5 times (once for every 1000 checks). To compute the net change
in welfare when moving from a flat-wage to the first best scheme, we need to compare
the gain of 21 minutes to the disutility from exerting effort. The firm gains in two ways
from the decrease in time taken to sort checks. First, the worker now has an extra 21
minutes to perform other tasks for the firm. To compute the value of this extra time
to the firm, we use the mean wage of workers, $10.55. Second, the sorting machine is
free for 21 minutes. The value of this extra time to the firm is harder to quantify!”. As
such, we only consider the welfare effects of freeing up the worker’s time, which equals
$10.55 - % = $3.69. The total expected gain in welfare from using the first-best scheme
is then $3.69 — $2.38 = $1.31, which is a 5% increase in welfare.’® Table 6 summarizes
these results.

Using this method of analysis, we can easily compute the welfare gain from using
the firm’s incentive schemes. As previously mentioned, our estimates imply that workers

17We are currently working on a good approximation of this value
18These results were computed using a Type 1 worker. Using a Type 2 or 3 worker increases the firm’s
gains from using incentives and increases the percent change in welfare.

26




exerted a high level of effort 98% of time under the first bonus scheme and 84% of the time
under the second. Hence, under the first incentive pay scheme, welfare was increased by
0.98 - 5% = 4.9%. We similarly calculate the welfare increase under the second incentive
pay regime and then take the average of the two percentages, weighted by number of
observations under each regime. We find that over the sample period, welfare increased
by 4.7% due to the firm’s bonus plan.

5 Summary and Conclusion

Most empirical work on incentive pay has only focused on measuring by how much
incentives increase output. As such, it is unclear at what cost this extra output is
obtained. Qur paper adds to this literature by examining both the increase in output
and the corresponding rise in disutility from higher effort due to incentives. This allows us
to measure by how much the welfare of the firm and workers rises due to the introduction
of incentives.

We accomplish this by studying a check-clearing firm’s use of incentives. Using the
firm’s production records, we develop and estimate a dynamic model of worker behavior.
This allows us to determine by how much the welfare gains of increased output due to
incentives outweigh the disutility from increased effort. We find that compared to an
environment without incentives, the firm’s bonus scheme lowers the time taken to sort
checks by 14%. Roughly two-thirds of this gain, however, is needed to compensate work-
ers for their higher effort levels. By comparing these two welfare changes, we compute
that the introduction of incentives increases the welfare of the firm and workers by 4.7%.

Although this paper only looks at one firm, we believe our results have broad ap-
plicability. The ‘continuous flow’ production technology used by the firm has general
characteristics common to a large portion of the manufacturing sector of the economy.
Specifically, the automation of the check-sorting process and the worker’s role in main-
taining the operation of a machine, are production characteristics found throughout a
variety of manufacturing industries. In these industries, then, we believe that the intro-
duction of incentives would increase the welfare of firms and workers.

Another lesson we draw from our results concerns the dynamic effects of contracts.
In the case of the check-clearing firm, the combination of compensating workers after
they have made multiple effort decisions, with a minimum productivity requirement
significantly reduces the bonus system’s effectiveness. Roughly a third of the low effort
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decisions made by employees over the sample period were caused by this dynamic effect.
Simply by paying workers more often, the firm could get rid of this inefficiency. The
general lesson, then, is that when designing incentive schemes, close attention should be
paid to how the bonus scheme affects the worker’s effort decision over time.
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