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Forecasting Chinese Carbon Dioxide Emissions: A Provincial

Approach

Maximilian Auffhammer, Richard T. Carson and Teresa Garin-Muñoz

Abstract

Forecasts of Chinese carbon dioxide (CO2) emissions are critical to any global agreement on miti-

gating possible global climate change. We provide such forecasts through 2050 using a reduced form

model. These estimates are the first based upon provincial-level data (1985-2000). We estimate a

reduced form model selected by minimizing the Schwartz Information Criterion in a general to sim-

ple search. The model chosen by the information criterion is a dynamic version of a model popular

in the literature on the Environmental Kuznets Curve (EKC), wherby per capita emissions first rise

and then fall with increasing income. We extend the traditional specification by including aggregate

population density, industry composition and technological progress that varies across provinces. In

our preferred model we find that the turning point of the inverse U shaped EKC relationship is near

the current Shanghai income level. Our dynamic model suggests mildly lower estimates of CO2 emis-

sions given similar GDP and population growth assumptions than those based on aggregate national

level data such as the quasi-official Intergovernmental Panel on Climate Change (IPCC) estimates.

Our model also predicts that province specific per capita emissions are likely to follow very different

income/pollution trajectories. This in turn suggests that province specific policies to reduce CO2

emission levels may be desirable.
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1 Introduction

’The Kyoto Protocol was fatally flawed in fundamental ways. [...] This is a challenge that

requires a 100 percent effort; ours, and the rest of the world’s. The world’s second-largest

emitter of greenhouse gases is China. Yet, China was entirely exempted from the requirements

of the Kyoto Protocol.

George W. Bush,

Rose Garden Press Conference,

June 11th 2001

This remark by President Bush summarizes one of the most potent arguments made by the United

States against reducing their greenhouse gas emissions: a multilateral agreement regulating global green-

house gas emissions is a pointless undertaking unless China and other large developing countries like India

agree to substantial limits on their future emissions.1 Forecasts of Chinese greenhouse gas emissions play

a central role in discussions concerning what policies can or should be adopted concerning global climate

change. China is currently the second largest emitter of greenhouse gases. By most current forecasts China

will pass the United States by the year 2020 (Intergovernmental Panel on Climate Change, 2000; Siddiqi,

Streets, Zongxin & Jiankun, 1994; Panayotou, Sachs & Zwane, forthcoming). Developing countries are

adamant about negotiating reductions relative to the level of emissions that would be projected to occur

normally as they industrialize.2 Annex I countries (OECD plus the Eastern European countries including

Russia), in contrast, agreed to reduce emissions relative to their 1990 base-line emission levels. Determining

this baseline level of projected emissions is crucial to any agreement involving the United States and China.

The literature forecasting Chinese CO2 emissions has taken three distinctly different approaches. The

first approach explains annually observed aggregate emissions data. This is sometimes done in a univariate

time series modelling but more typically done using population, income and some measure of technological

as predictors. Forecasts following this approach include those of the Intergovernmental Panel on Climate

Change (IPCC) as well as those by Yang & Schneider (1998). Models with an explicit economic orientation

usually add policy variables that allow for fuel switching, induced technological change, and emissions

trading.3 Such models typically cover multiple countries or regions. National aggregate level models do

not utilize additional information contained in data available at a more disaggregate level. The second

approach taken in the literature addresses this obvious limitation of using aggregate country level data

by looking at emissions data by industry sector (Sinton & Levine, 1994; Zhang, 1998; Garbaccio, Ho &

Jorgenson, 1999a; Garbaccio, Ho & Jorgenson, 1999b). This has been done with both aggregate sectoral

level data and with random samples of firms stratified by sector. The third approach gives up the nationally

representative nature of the second approach but gains considerable detail by doing case studies of the

factors influencing the performance of specific plants (e.g., Zang, May & Heller (2000)) .

1This argument is also embedded in a 1997 U.S. Senate Resolute (Byrd-Hagel) by which the U.S. Senate went on record

as stating that they would not ratify the Kyoto Protocol until there was meaningful participation by developing countries.
2China has justified its policy of ”no targets and time-tables” by arguing that Chinese responsibility for historic greenhouse

gas emissions on a per capita basis is very low compared to that of other countries, and particularly compared to industrialized

countries (Qu, 1990). In 1990, on a per capita basis, China’s emissions were one tenth of US per capita emissions and about

half the world average.
3See for instance the 1999 special issue of the Energy Journal edited by John Weyant on the cost of the Kyoto Protocol.
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We pursue a fourth approach - disaggregating emissions and other possible predictor variables at

the spatial level by looking across China’s provinces. China’s provinces differ greatly in land area.4 The

largest province by area, Xinjiang, is only 15% smaller than Mexico while the smallest province, Shanghai,

is about the size of Rhode Island. The largest province in population terms is Sichuan, counting 115 million

inhabitants. Tibet, with the fewest inhabitants, has 2.6 million. China’s largest provinces are therefore

larger than most European countries along either dimension. Exploring variation in CO2 emissions across

provinces will allow us to explore the sensitivity of these emissions to the spatial distribution of population,

income and technological changes.

2 Background

Our starting point is the classic IPAT model (Ehrlich & Holdren, 1971; Holdren, 2000):

I = P ·A · T (1)

where I stands for impact, typically measured in terms of the emission level of a pollutant, P is

population size, A represents a society’s affluence and T represents a technology index. Conceptually, this

model has long dominated science and engineering oriented discussions of the pollution generation problem

at the country and regional level including those underlying most of the IPCC’s emission scenarios. There

are many empirical variants of the model. They often involve specification in per capita terms, which

effectively eliminates P , and inclusion of coefficients on one or more of the variables under the guise that

the researcher at best has an income proxy for A and that the use of time or energy intensity as a proxy

for technology will require an estimated scale parameter to convert it into the technology index needed

for IPAT. Transformations of the basic IPAT model such as taking logs or working in terms of percent

change are also frequently seen. The common empirical implication underlying all of the IPAT family of

models is that pollution should be monotonically increasing in P and A and monotonically decreasing for

improvements in T .

With respect to China, Zhang (2000) has decomposed past CO2 emissions along the IPAT lines and

found that income has been the main factor increasing emissions, while changes in aggregate population

size have a much lesser impact. His estimates show that changes in energy intensity are between those of

the income and population effects in terms of absolute magnitude and working in the opposite direction.

Economists working on the relationship between pollution levels and income have frequently found an

empirical relationship known as the environmental Kuznets curve (EKC) that suggests that pollution first

rises with income up to some point and then falls after some threshold level, forming an inverted U-shape

relationship (Barbier, 1997). This possibility of an inverted U-shaped relationship with a downward side

where increases in income lead to decreases in pollution clearly contradict one of the key assumptions

underlying the IPAT model. One obvious way around this difficulty is to allow for the possibility that

the level of technology is dependent upon the affluence level. This greatly complicates the interpretation

of the IPAT relationship but makes it much more interesting from an economic and policy perspective.
4The literature on economic growth, uses data at this level of disaggregation to test for convergence of per capita incomes

across political subdivisions of countries (Barro & Sala-i-Martin, 1992; Bernard & Jones, 1996). Such studies provide

significant insight as to the behavior of national aggregates by allowing the researcher to holding constant factors that are

hard to control for across countries.
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In the case of China, there is substantial anecdotal evidence that technology development in the coastal

provinces has far outpaced that of many of the inland provinces.

There is also a difficulty in the IPAT formulation with respect to population. Most empirical for-

mulations assume that each person makes the same contribution. This restriction can easily be relaxed

by including some measure of population as a predictor variable so that increasing or decreasing scale

effects with respect to total population size are possible. Perhaps more fundamental though is that the

IPAT formulation does not distinguish between people living in different locations.5 After accounting for

the large increase in overall population this century, the major demographic change that has occurred

worldwide is large scale rural to urban migration that now seems to be occurring at an accelerating rate

in developing countries (United Nations, 1996). To the extent that a Chinese farmer living in a rural

area uses less fossil fuel based energy than a Chinese factory worker with similar income the degree of

urbanization or population density may be an important determinant of emission levels.

Our modelling framework will modify the IPAT framework in three basic ways. First, we will allow

income to have a non-monotonic effect on CO2 emissions. Second, we allow for the possibility of province

specific technology effects both with respect to the usual time trend but also with respect to initial

conditions at the beginning of our sample period. Third, we will allow for the possibility of both overall

population scale effects and population density scale effects. We take up some specific specification issues

in next section, which looks more closely at the EKC literature.

2.1 Environmental Kuznets Curve Relationship

The inverted U-shaped environmental Kuznets curve was first identified by economists at the World

Bank (Shafik & Bandyopadhyay, 1992) and became an important part of the NAFTA debate (Grossman

& Krueger, 1995). The nature of the relationship has been controversial ever since (Barbier, 1997; Lieb,

2001). There are a number of reasons for the controversy. First, the existence of such an empirical

relationship tends to fuel the belief that all one needs in order to solve the pollution problem in developing

countries is to increase income rather than focusing attention on the need for good environmental policies

(Arrow et el., 1995). Second, while theoretical justifications for the existence of an EKC relationship have

been put forth, there is not yet agreement on the nature of the underlying mechanism and, in particular,

whether it is mainly preference or technology driven. Third, the empirical relationship is somewhat suspect

and to some extent may be an artifact of the juxtaposition of data from more and less developed regions

(Vincent, 1997). Much of the issue here stems from data quality being correlated with development level

and the fact that there is data from substantially fewer developing countries than one would like to see.

Fourth, some researchers (Moomaw & Unruh, 1997) have argued in favor of more general pollution-income

relationships than an inverted U-shape. Fifth, it is sometimes argued that the empirical evidence in favor
5The original Ehrlich & Holdren (1971) contains a short discussion of population density but invokes an early notion of the

”environmental footprint” and suggests focusing more on better modelling of the affluence factor is more important. While

population projection play a large role in the IPCC emissions scenarios there has been surprisingly little work on the secondary

effects of population such as population density and urbanization on greenhouse gas emissions (Gaffin, 1998). Murthy, Panda

& Parikh (1997) provide one of the few analyses in the economics literature. Looking at rural-urban differences in India,

they find on a per rupee basis that urban dwellers are responsible for about 25% higher CO2 emissions than rural dwellers.

The inclusion of population density has long been common in studies dealing with deforestation (Cropper & Griffiths, 1994),

since more densely populated areas require more farming land to support consumption in the absence of technological change

and has been looked at in at least one EKC study (Panayotou, 1997a) with mixed results.
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of an EKC for stock pollutants like solid waste and CO2 is substantially weaker than for flow air pollutants

like SO2, NOx, CO, TSP and many flow water pollutants. In particular, some previous cross-country

estimates for CO2 emissions suggest that the income turning points for CO2 emissions are quite high

(Schmalensee, Stoker & Judson, 1998) or non-existent (Holtz-Eakin & Selden, 1995).

Some of these issues are addressed in this paper. First, by using data for a single country, which is

collected using consistent definitions and procedures we avoid the data comparability issue. In this sense

our study represents the developing country counterpart of Carson, Jeon & McCubbin (1997), who found

evidence in support of the EKC hypothesis for air pollutants, including CO2, across the 50 United States.

They found that per capita emissions fell with increasing income. China has substantially more variation

across provinces both in per capita emissions (a factor of 50) and income levels (a factor of 8) than there

is across U.S. states. Since China’s per capita income is relatively low compared to that of industrialized

countries, we would expect China to be on the upside of the EKC inverted U, that is per capita emission

levels should be rising with income. The income levels in the richest provinces are sufficiently high that a

lower rate of increase in emissions per capita might be observed if an EKC turning point holds for CO2

emissions at a level that is meaningful for the purpose of a climate agreement. Second, we will test for

more general functional forms of the pollution income relationship (PIR) using a third order polynomial

in income, which is popular in the literature (Sengupta, 1996; Moomaw & Unruh, 1997) as well as an even

more flexible form allowed for in the semi-parametric Generalized Additive Model framework (Hastie &

Tibshirani, 1990). Third, we move away from the simple income-pollution EKC models by starting to

explicitly model technology impacts in a more realistic manner. The traditional model specification of

EKC type relationships hypothesizes a purely contemporaneous relationship between per capita income

and emissions, implicitly assuming that one can adjust per capita emissions immediately. We argue

that it takes time to adjust technology and therefore suggest that a dynamic model is the appropriate

specification. This is done by allowing for lagged emissions to influence current emissions, which one

would expect, unless the capital stock could instantaneously adjust, and by allowing the nature of this

adjustment process to differ across provinces.6

We further introduce dynamics by allowing for changes in population density over time. We also

allow for provincial population to change over time. This will later allow us to examine the possibility

of differential population growth and migration scenarios that cannot be looked at in models based on

aggregate national data. Finally, in order to help capture exogenous technological and resource endowment

effects, we utilize a commonly used variable on composition of industry across China’s provinces. This

industry composition variable is defined as the share of heavy/primary goods processing industry in total

output. Though admittedly a rather broad definition, it is likely to be useful for the purposes of this

paper. Primary/heavy industry (e.g., steel mills) concentrate around deposits of these natural resources,

since transportation of unrefined ore is extremely costly. Provinces with high deposits of natural resources

such as coal and iron ore tend to have a higher concentration of heavy industry. Provinces with higher

initial shares of heavy industry are likely to produce a significantly larger amount of per capita CO2

6To our surprise, the only empirical paper we have found that allows for a dynamic adjustment process is Agras &

Chapman (1999), who find clear evidence in support of such a relationship using a sample of 34 countries from 1971-1989.

Agras & Chapman (1999) correctly perceived the issue as one of a capital adjustment process and as such saw the flaw. In

their model, the dynamic adjustment process is assumed to be the same for all countries in the sample and they allow for

the possibility of a price response to the two large oil shocks in the time period they model and for trade related effects.
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emissions - after adjusting for income and other factors. As time and the development process continue,

one would expect a shift of industry composition towards lighter industries. We use a simple time trend

to adjust for continued and exogenous technological change through time. There may still be other forces

driving emission differences across provinces such as province specific pollution control regulations that

do not work through the technology adjustment process. We can weakly test for such effects by allowing

for provincial level fixed effects.

The next section describes China from a provincial perspective. In order to estimate a model with valid

parameter estimates and meaningful policy conclusions, it is essential that there be a sufficient degree of

time-series and cross-sectional variability in the data. A discussion of our data set, empirical specification

and estimation of the model appear in subsequent sections.

2.2 China’s Provinces

China’s modern economic growth has largely been fuelled by the exploitation of its massive coalfields.

Coal made up 76% of China’s total energy consumption in the 1990s. The burning of coal for electricity

and heating causes more than 90% of air pollution. Most coal deposits are located in the north and

northwest regions such as Inner Mongolia and Shanxi. Of these, Shanxi is the largest producer with

nearly 30% of the total coal output in China. Coal is shipped south by boat and rail for further processing

and consumption. Figure 1 shows the share of total waste gas emissions across China’s provinces. The

sparsely populated coal producing provinces do contribute a disproportionate share of waste gas emissions.

Figure 1: Provincial Shares of Total Waste Gas Emissions (in 2000)
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China’s population has increased by 234% since 1950, making it the world’s most populous country by
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a margin of about 285 million people, which is about the current size of the US population. The past two

decades have been characterized by increased urbanization and efforts by the Chinese government to locate

people in less densely populated areas - essentially trying to offset migration to urban centers. Per capita

emissions depend greatly on the scale of industrial activity, which is highly concentrated in the coastal

areas and urban centers. The simple linear correlation coefficient between provincial population density

and per capita waste gas emissions is 0.464 for our sample. This suggests density scale effects, which we

will formally explore in section 4. Only 6.50% of the total Chinese population live in the six Northwest

regions7, which account for 54% of total Chinese territory. Fourty-two percent of the population live in the

relatively small coastal provinces. While the current population distribution remains much the same from

the records of the 1930s (Lin & Huang, 1997), current population growth rates vary substantially across

provinces. For instance, in 1999, the natural growth rate of the population in Tianjin was 0.21% while

Beijing, Anhui, and Guangxi had average annual growth rates of 0.85%. In contrast, Guizhou, Tibet, and

Guangdong have growth rates of more than 1.5% per annum. Population migration is increasing and now

averages between 50 million to 80 million annually. There is evidence of population net outflow from the

Northwest provinces of Tibet, Qinghai, Xinjiang, Sichuan, Guizhou, Yunnan, Shaanxi and Gansu (Lin &

Huang, 1997).

Changes in per capita income are the driving force behind the EKC hypothesis. Figure 2 displays per

capita income for 1985 and for 2000 (the first and last year of our sample) in terms of per capita 1985

RMB. Provinces are ordered by compound annual growth rate of per capita income over the fifteen-year

period. Two things to note from the figure are: (a) the very large increases in per capita income over this

fifteen-year period, and (b) substantial differences in the growth rates between provinces.

The latter are reflected in the many changes in the provincial income ranking over the fifteen-year

period even though the three initially wealthiest provinces, Shanghai, Beijing, and Tianjin have retained

their earlier rankings. The large increase in Chinese per capita income appears to be due in large part

to the reforms that started in 1979. Over time progressively more reforms with respect to foreign direct

investment, joint ventures, and imports were allowed. It is noteworthy that the coastal provinces contain

all of the special economic zones (SEZs). Figure 3 underlines the importance of provincial access to trade

as well as the implications of trade and Foreign Direct Investment liberalization. China’s per capita

wealth is heavily concentrated in the coastal provinces. We will explore the relationship between per

capita emissions and per capita income in detail.

While China’s government has been cautious about making any commitment to carbon emissions re-

duction, China has paid considerable attention to energy efficiency improvements and has achieved notable

successes in the past decades (Sinton, 1996). The energy intensity of the Chinese economy (measured by

primary energy consumption per unit of national income) has decreased steadily since 1977. According

to Chinese energy analysts, the major factors driving down the energy intensity have been the increasing

share of light industries and investment in energy conservation (Sinton & Levine, 1994). More recent

work (Garbaccio et al., 1999b) has tended to assign more of the responsibility for the drop in Chinese

energy intensity to technological change. Pollution control, especially in coal fired power plants, is focused

more on improving the efficiency of coal furnaces (e.g, increasing the furnace temperature) than installing

end of pipe technologies such as scrubbers. This is due to the large fixed investment necessary to install
7Inner Mongolia, Ningxia, Xinjiang, Tibet, Gansu and Qinghai.
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Figure 2: Provincial Per Capita Income (1985 RMB) and Annual Growth in 2000
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scrubbers as well as the increased output of electricity per unit of coal. Due to the inefficiency of most

current coal fired Chinese power plants, this trend is expected to continue in the near future. Although

there has been some thought given to switching away from energy production using coal and using more

renewable energy or nuclear power sources, a change in the composition of inputs seems unlikely. The

overall outcome is apt to be a large scale change in electric generating capacity with a mix of energy

sources similar to the present, where coal is used to provide the bulk of the electric power supplied.

In the mid-1970s, China established the National Environmental Protection Agency (NEPA) with a

network of environmental protection departments, bureaus and offices at provincial, municipal, and county

levels. Under the leadership of NEPA, China has developed ”by far the largest application of a market

based regulatory instrument in the world” (Wang, 2000). In the late 1990s the demand for environmental

quality emerged in major cities. Due to differences in public concern and to devolution of responsibili-

ties from Beijing, provincial and city governments have become important from an environmental policy

making perspective. The individual leadership of the local governments and the severity of pollution im-

pact affect implementation at these levels (Wang & Wheeler, 1996; Wang, 1999). Some provinces/cities

adopted air pollution emission permit policies even before the implementation of any national legislation.

Examples are Shanghai, Tianjin, and Xuzhou City of Jiangsu Province (National Environmental Protec-

tion Agency, 1996). These cities are high-income cities with high degrees of trade openness. By 1983 all
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Figure 3: 2000 Provincial Per Capita Income in 1985 RMB
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provinces except for Tibet8 had established an implementation system. In this sense, environmental policy

making in China, once characterized by a top-down model, is now being moved down to the province and

city level.

3 Data

We will estimate a set of models using a province-level panel data set for 30 Chinese provinces during

the period 1985-2000. Most of the provincial data used in this study have been collected from the China

Statistical Yearbooks of the corresponding years. For 25 of the provinces we have one observation for

every year of the sample period (16 years), while for a few of the provinces there are only data available

for twelve, thirteen or fourteen years. The result is an unbalanced panel data set with 468 observations.

3.1 Waste Gas Emissions

The original source of our data on waste gas emissions (WGE) is China’s Environmental Yearbook

published by China’s NEPA. WGE are measured in billions of cubic meters and are very heterogeneously

distributed between provinces. The coastal provinces9, forming 14% of the area of the country, account for

about 54% of waste gas emissions in 2000. This largely reflects the uneven distribution of population and
8Tibet began pollution charges in March 1991.
9Coastal region provinces (from north to south) are: Liaoning, Hebei, Beijing, Tianjin, Shandong, Jiangsu, Shanghai,

Zhejiang, Fujian, Hainan, Guangdong, and Guangxi.
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economic activity in China. Per capita waste gas emissions (PWGE) also display high variability between

provinces. Figure 4 shows the ranking of provinces according to 1985 per capita waste gas emissions.

Provinces with higher PWGE tend also to be the provinces with higher income per capita. The simple

correlation between the two variables is 0.56. Note that the coastal provinces also tend to have high

PWGE. The average annual rate of increase of WGE during the sample period was 5.64%. However, that

rate of change differed between provinces. While WGE in Hainan increased at an annual rate of 12.73%,

the corresponding change of WGE in Tianjin was -0.57%.

Figure 4: 1985 & 2000 Per Capita Waste Gas Emissions (thousands of m3)
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3.2 Converting waste gas emissions to CO2 emissions

Data on China’s carbon dioxide emissions are only available at a national level (Oak Ridge National

Laboratory, 1998).10 Waste gas emissions are obtained by the local NEPA agencies by measuring the

composition of fossil fuels used on a provincial level. The authorities then use an estimated engineering

relationship, which allows them to convert inputs into waste gas emissions. This method is also the one

applied by Oak Ridge National Laboratory (1998) to obtain aggregate CO2 emissions for single nations.

Since we do not know the exact engineering relationship used by NEPA we convert WGE into CO2 (carbon

equivalent) emissions by aggregating waste gas emissions across provinces by year and using this variable

10This is true of most countries since CO2 is not a directly regulated pollutant and its estimates are largely derived from

fossil fuel consumption.
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to predict CO2. We estimate the following equation:

CO2t = 8.60 WGEt + ηt (2)

The heteroskedasticity consistent (White) t-statistic is 95.55. This almost perfect linear correlation

(.982) suggests that WGE is a good proxy for CO2. This allows one to predict per capita WGE emissions

at the provincial level and then use the conversion factor above (8.60) to derive CO2 (carbon equivalent)

estimates. This relationship will hold if China keeps its focus on combustion efficiency versus end-of-pipe

technologies such as scrubbers. By most estimates this shift is not expected to happen in the moderate

term future, although it may impact our long term forecasts. Further, since transportation plays a large

role in greenhouse gas emissions, this relationship may break down if there are large increases in the

number of automobiles. This is also unlikely to happen in the near future due to China’s limited oil

resources and resistance to relying on oil imports. We will conduct all of our estimations using waste gas

emissions and convert them for comparison purposes in section 5.

3.3 Socioeconomic Data

All of the data on waste gas emissions, per capita GDP, industrial composition, and population char-

acteristics have been collected from the Chinese Statistical Yearbooks (1986-2001). Our measure of GDP

was calculated by deflating provincial nominal GDP using the national consumer price index for China as

a deflator with 1985 as the base year. To get the per capita GDP measure we divide by the total provin-

cial population at year end. Per capita GDP shows a high variability between provinces as discussed in

section 2. Population density is calculated as total provincial population divided by total area in square

miles. Our variable for industry composition is the ratio of value added by heavy industry over total value

added by heavy and light industry per province. We only include industry composition for the first year

with available data for all provinces, since we proxy for technological improvement by including a time

trend. The Chinese Statistical Office has also changed its definition of heavy industry in the latter part

of our sample, which makes it impossible to provide a consistent variable. We include this ratio for 1989,

which is the first year for which we have observations for all provinces. We further include a dummy

variable for coastal provinces. Coastal provinces contain all of the special economic zones, and due to

their favorable location attract most of the foreign direct investment (FDI). This makes these provinces

structurally different.

4 Empirical Models and Results

The adopted modelling philosophy has to accommodate the two main purposes of this paper, which are

to forecast China’s CO2 emissions and to understand how population, income and technological change

affect individual provinces’ emissions. We use a general to simple specification search based on Hendry

(1985). Within this framework we choose the Schwarz Information Criterion (SIC) in order to select our

model. We choose this criterion since the R2 will always prefer a less parsimonious model and it can be

shown that the adjusted R2 does not sufficiently penalize models for the inclusion of too many parameters.

We choose the SIC over the Akaike Information Criterion, since it punishes the inclusion of additional

11



parameters more heavily (Diebold, 2001). Thus we prefer and will ultimately use a parsimonious model

to forecast China’s CO2 emissions.

4.1 Specification Search

Equation 3 below is our most general model. It models the pollution income relationship (PIR) as a

third order polynomial, allowing for an N-type relationship suggested by some studies. This most general

model includes fixed time and province effects as well as a longer (two-period) lag structure. The most

general initial model is given as:

ln(PWGEit) = β1ln(GDPit) + β2(ln(GDPit))2 + β3(ln(GDPit))3 + β4ln(COMPito
)

+β5ln(PDENSit) + β6COASTi + β7FDIit +
30∑

i=1

β7+iln(PWGEit−1) (3)

+
30∑

i=1

β37+iln(PWGEit−2) + αt + γi + εit

where i is a province index, t is a time index, γi is a province fixed effect, αt is a year fixed effect

and εit is the usual Gaussian error term. The variables are PWGEit, per capita waste gas emissions (100

thousand m3), GDPit, per capita gross domestic product in real terms (RMB 1985), COMPito , industry

composition in 1989, COASTi is a dummy variable for the coastal provinces and FDIit is Foreign Direct

Investment (RMB 1985). The variable PDENSit is the population density for province i at time t. We

include one and two-period province specific lagged dependent variables in the initial specification, which

allows provinces to track their emissions at different rates. As discussed in the previous section we adjust

for differences in initial industry composition. The time fixed effects adjust for shocks to preferences

and technology common to all provinces. The province specific fixed effects, if significant will capture

differences in ”starting point” emissions, which are not captured by the coastal dummy or initial industry

composition. We adjust for initial industry composition to capture differences in the initial pollution

intensity of industry - assuming that heavy industry is more pollution intensive than light industry.

We first estimate equation 3, a two-way error component model11, and compare it to a model with

time only fixed effects, province specific fixed effects and a model with no fixed effects. The model with

no fixed effects has a slightly lower SIC than the model with time fixed effects only. The SIC prefers the

model without province specific fixed effects. This is a good indicator that the coastal dummy and initial

industry composition capture the structural differences in ”starting point” emissions. We include a simple

time trend and obtain the lowest SIC.12 We then estimate the model with a simple time trend and compare

the sample selection criterion for this model to a model imposing the restriction that ∀jε[38, 67]βj = 0,

which suggests an AR(1) over an AR(2) specification. The SIC suggests an AR(1) specification over an

AR(2) and AR(0) specification. This finding confirms our conjecture from section 2, which suggested

that technology and therefore per capita emissions do not adjust contemporaneously. The information

contained in a one period lag suggests that provinces adjust their per capita emissions rather slowly. The
11For this model to be identified, we need to restrict the parameters on initial industry composition and the coastal dummy

to be zero for this estimation.
12We also estimated a model with province specific time trends. The SIC was higher and the results added no additional

insight when compared to a model with a time trend common across provinces.
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fact that the model rejects the AR(2) specification further suggests that the non-immediate past does not

contain any information valuable for forecasting purposes.

We further test whether a more parsimonious dynamic model is preferred by the SIC, which would

amount to the restriction that ∨i, jε[1, 30]β5+i = β5+j . This simple restriction implies that all provinces

have the same elasticity of current emissions with respect to past per capita emissions. We argue that

this elasticity varies across provinces. We test for whether our specification is preferable to a pooled

model and reject pooling at the 1% level. This is quite a strong result, since we would gain 29 degrees

of freedom by pooling. In summary, we argue that a smaller relative parameter estimate on a province’s

lagged per capita waste gas emissions indicates faster speed of adjustment - a province with a high rate

of technological innovation. Correspondingly a larger (closer to one) parameter estimate would indicate a

slow rate of adjustment.

Our model selection criterion further rejects the inclusion of the third order polynomial term as well

as FDIit for all models, yet suggests the inclusion of population density and the coastal dummy variable.

Model 4 below minimizes the Schwartz Information Criterion.

ln(PWGEit) = α + β1ln(GDPit) + β2(ln(GDPit))2 + β3ln(COMPito
) + β4ln(PDENSit)

+β5COASTi +
30∑

i=1

β5+iln(PWGEit−1) + β36ln(TIMEt) + εit (4)

We test for serial correlation in the error terms and fail to reject the null hypothesis of no serial correlation

after including the first order province specific lags13.

There has been considerable interest in the literature on whether the shape of the PIR is more general

than an inverse U. We turn to this topic in the next section. Since we assumed a rather restrictive

parametric form of the PIR, we estimate equation 4 via a Generalized Additive Model.

4.2 Generalized Additive Model

The Generalized Additive Model given in equation 5 is estimated using a smoothing spine as well as

a Loess data smoother (Cleveland & Devlin, 1988). The model below puts no parametric restrictions on

the shape of the PIR. The smoothers will give us an indication of the functional form without any ex ante

imposed restrictions.

ln(PWGEit) = α + f(ln(GDPit)) + β1ln(COMPito) + β2ln(PDENSit)

+β3COASTi +
30∑

i=1

β3+iln(PWGEit−1) + β34ln(TIMEt) + εit (5)

The shape of the PIR is depicted in Figure 5. The shape of the PIR clearly shows a functional form

which resembles the rising slope of an EKC type relationship. Since China is a developing country, most
13A Shapiro-Wilk test for normality of the studentized residuals of the model rejects the null hypothesis of a normal

distribution. Since non-normal error terms may produce biased parameter estimates, we estimate the model using a robust

regression algorithm. The parameter estimates on the lagged dependent variables are uniformly higher, which is offset by

a larger negative parameter estimate on the time trend. The model produces initially higher forecasts, but the aggregate

forecasts converge to values similar in magnitude to the ones reported in the next section. Robust forecasts are available

upon request from the authors.
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of the observations are well below the turning point. The shape is consistent with the upward rising, but

decreasing slope part of an EKC relationship. We note that the power of this method, given our sample,

relies on observations from the left rather than the right tail of the income distribution. When using our

model selection criterion, we find that the parametric specification in equation 4 is preferred to the GAM

model. The in sample predictions are, however, almost identical.

Figure 5: Predicted PWGE from Income using GAM
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4.3 Preferred Model Results

Table 1 reports the estimation results from our preferred model.14 Of particular importance are the

signs and magnitudes of β1 and β2 in Table 1. In this particular case, emissions and per capita GDP

will show an inverted-U shape relationship given that β1 > 0 and β2 < 0. The turning point for the

model reported in Table 1 is at 13143 RMB, which is slightly above Shanghai’s current income, although

the confidence interval on the estimate of the turning point, exp(−β1/2β2) is rather large. We check our

specification by comparing the model predictions in sample versus the predictions from the generalized

additive model of equation 5. The in sample predicted values of this GAM estimation are highly correlated

(ρ=0.999) with the in sample predictions of the parametric model, providing further evidence in favor of

our specification.

The parameter estimate on initial industry composition is positive as expected, yet statistically in-

significant in both models. We conducted a likelihood ratio test and failed to reject the omission of
14We estimated this model using the traditional specification without lags and population density and obtain LPWGEit =

−2.11+1.42 ·ln(GDPit)−0.07 ·(ln(GDPit))
2−0.04 · ln(Time). When we include population density, we obtain LPWGEit =

3.07 + 1.43 · ln(GDPit)− 0.08 · (ln(GDPit))
2 − 0.02 · ln(Time) + 1.19 · ln(PDENSit). The R2 is 0.47 and 0.45 respectively.
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Table 1: Parameter Estimates
Lag Robust

Model t-

Parameter Estimate Statistic

Constanti 0.932 1.070

ln(GDPit) 0.756 3.750

(ln(GDPit))
2 -0.040 -3.060

ln(Compito) 1.435 1.880

Coastalit -0.458 -1.540

ln(Pdensit) 0.375 4.080

ln(Time) -0.062 -3.190

Beijing 0.625 11.970

Tianjin 0.624 12.060

Hebei 0.663 12.340

Shanxi 0.563 9.790

Inner Mongolia 0.813 20.210

Liaoning 0.638 8.920

Jilin 0.614 13.540

Heilongjiang 0.610 12.680

Shanghai 0.605 10.490

Jiangsu 0.634 12.370

Zhejiang 0.746 12.430

Anhui 0.522 6.480

Fujian 0.733 15.880

Jiangxi 0.504 7.890

Shandong 0.639 12.500

Henan 0.462 6.250

Hubei 0.529 8.460

Hunan 0.485 7.350

Guangdong 0.742 13.280

Guangxi 0.751 18.600

Hainan 0.783 11.320

Sichuan 0.529 9.010

Guizhou 0.591 10.910

Yunnan 0.654 9.750

Tibet 0.746 2.860

Shaanxi 0.548 10.070

Gansu 0.638 11.680

Qinghai 0.844 9.130

Ningxia 0.642 13.240

Xinjiang 0.828 16.260

R2 0.9677

Observations 468
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industry composition from the estimation. The parameter has the expected sign, indicating that a 1%

higher value of the initial heavy to light ratio of industry results in a 1.4% increase in per capita waste gas

emissions. The parameter estimate on population density is positive and significant. Our approach differs

from the IPCC forecasts in this aspect. Our estimation suggests that increased population density will

result in significantly higher per capita waste gas emissions. Migration and aggregate population growth

will separately affect per capita and aggregate emissions. An increase in population of a province, whose

land area is fixed, will have scale effects on per capita emissions of its inhabitants. Therefore a province

with low immigration and high natural population growth may experience similar emissions as a province

with high immigration and very low natural population growth. We will incorporate this effect when

producing forecasts and demonstrate that different scenarios will have very strong consequences on the

path of China’s aggregate emissions.

The parameter estimate on the dummy variable COASTi is negative and marginally statistically

significant. The coastal provinces attracted 89% of the total foreign direct investment in 1999. Influx of

foreign direct investment is tied to an influx of foreign technology, which replaces older and less efficient

capital stock accumulated throughout earlier years. This structural difference, as well as the location of

China’s special economic zones, which provide these provinces with the access to foreign technology, may

account for this lower per capita emission level. The parameter estimate on the time trend, ln(TIMEt),

indicates that as time progresses and technology common to all provinces improves, per capita emissions

decrease slightly each year. This time trend captures a combination of technology improvements as well

as shifts in preferences towards better environmental quality. It carries the expected sign and is significant

in both models.

There is considerable variation in individual provinces’ elasticities with respect to the previous period’s

emissions, as indicated by the parameters on the province specific AR(1) terms.15 Figure 6 plots the

parameter estimates for the provinces from the lag-model in deviation form.16 The provinces with lagged

parameter values that are substantially below the average tend to be the coastal provinces that have

received substantial FDI, whereas the provinces with substantially higher lagged parameter values tend

to be provinces which are large coal producers with substantial concentrations of heavy industry. Figure

7 demonstrates the impact of differing lag parameter estimates on projected per capita emissions. We

simulate three provinces with identical starting per capita income, which grows at 5.02% per period.

Figure 6 illustrates two points, which are not immediately obvious. We previously argued that a higher

parameter estimate on the lagged dependent variable indicates worse technology or an older capital stock.

In order to test for this, we would require data on the age or state of capital by province. Since this data is

not currently available it is difficult to rigorously explore this argument. In another specification we allowed

the AR(1) parameter to change in the middle of the sample and only three provinces show a statistically

significant change. The lag parameter estimate on Beijing and Shanghai decreases mildly, whereas the

parameter estimate on Guizhou increases slightly. Even though these changes are significantly different

from zero, they are rather small in absolute magnitude. This result contradicts a popular argument
15All of our provincial lagged emission coefficients except one (Qinghai) are smaller, that is more responsive, than the 0.84

estimate that Agras & Chapman (1999) obtain from their sample of countries.
16The parameter estimates given in Figure 6 are obtained from an estimation omitting the coastal dummy as well as initial

industry composition to extract the overall differences in technological progress. This estimation suggests that a fruitful

approach for future work would be to develop a model to predict the magnitude of the lag parameters using variables such

as industrial composition, coal deposits, FDI and provincial environmental regulations
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Figure 6: Lag Parameter Estimates (Deviation from Mean)
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Figure 7: Traditional EKC vs. Lag Specification
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hypothesizing a ’new China’, which conjectures dramatic structural changes on every level of society

resulting in improved environmental quality.

The thick line in Figure 7 shows the predicted per capita emissions of the estimated contemporaneous

model. Small changes in the lag parameter have tremendous implications for the turning point of per

capita emissions. A province with a parameter estimate of 0.80 will have a drastically higher turning

point of predicted per capita emissions than a province with a parameter estimate of 0.70 on its lag,

ceteris paribus.

We argue that the lags contain some information as to the age and pollution intensity of a province’s

capital as well as the ability of local authorities to enforce environmental legislation. The higher a

province’s parameter estimate on the lagged dependent variable, the slower it adjusts its next period

emissions, according to an EKC type relationship. This may be due to an aging capital stock. The av-

erage age of a province’s capital stock should be highly correlated with these elasticities, yet we cannot

test this since we lack the necessary data at this point in time. Although it may be quite easy to adjust

single power plants’ or production facilities’ equipment, it is a long process to decrease the average age of

an entire province’s capital stock.

5 Forecasting CO2 Emissions

To forecast CO2 emissions, we will forecast waste gas emissions using the lag specification presented

in the previous section. Those waste gas emissions are then converted into CO2 (carbon equivalent)

emissions using the conversion factor estimated in Section 3.2. To make use of the models estimated

in section 4.3, we need to make assumptions about the time paths of the predictor variables in each

model. The independent variables, whose future values are unknown, are provincial per capita GDP and

population density. We provide forecasts combining different scenarios for each of those two variables.

The provincial population forecasts are based on the projections by Chesnais & Minglei (1998). The GDP

growth scenarios are based on IPCC projections as well as one scenario using in-sample historical GDP

growth. We choose a model of no population growth and constant 5.02% growth of per capita GDP, which

corresponds to the assumption for our medium GDP growth scenario, as the baseline forecast. We then

examine the sensitivity of the results to differences in assumptions about the paths of predictor variables.

5.1 Alternative Scenarios

The two models only require assumptions about future levels of per capita GDP and population, since

the land area of provinces is fixed. Different assumptions about the future trends of the explanatory

variables are likely to imply very different per capita and aggregate emissions levels. Rather than be

inclusive about all possible sets of assumptions, we will attempt to illustrate the impact of the range of

assumptions typically made concerning Chinese GDP and population growth rates. We limit our analysis

to only three GDP growth scenarios. The three different scenarios demonstrate the sensitivity of our

forecasts to changes in the assumptions regarding GDP growth rates very well. The three alternative sets

of assumptions are a slow growth case, a medium growth case, and a high growth case.

Population projections are crucial to our forecasts. Official estimates of population are only available

at a national level. However, we require provincial level population projections, which are provided

19



by Chesnais & Minglei (1998). Four scenarios are considered, which incorporate internal migration and

natural population growth. The four scenarios can be characterized as follows: Scenario A is characterized

by constant natural birth and mortality rates across provinces. Scenario B is characterized by decreasing

natural birth rates and constant mortality rates. Scenario C is characterized by decreasing mortality and

constant birth rates. Scenario D is characterized by decreasing birth and mortality rates. Chesnais &

Minglei (1998) provide a very detailed account regarding the assumptions underlying the population model.

The model incorporates the current and future age structure of the single provinces, which indirectly

incorporate migration patterns within China.

We assume that the GDP growth rate (ξt) and population growth rate (φt) are jointly distributed

as f(ξt, φt) ∼ N2[µξ, µφ, σ2
ξ , σ2

φ, ρ] and in and out of sample population and GDP growth rates can be

characterized by this bivariate normal distribution. The distribution is parameterized by using the in

sample mean and standard deviation of the population growth rate as well as its correlation coefficient

with aggregate GDP growth for µφ, σφ and ρ respectively. Three different pairs of values for µξ and σξ

for our out of sample predictions are used as we consider a slow, medium and high GDP growth scenario.

The parameters for the slow growth scenario are derived from a distribution based on Scenario IS92a of

the quasi official IPCC forecasts. The IPCC provides two possible values for this scenario, which we take

to be the upper and lower 5th percentile of the marginal growth rate distribution. The mean of the GDP

growth rate for the medium growth scenario is only 0.5% larger than the mean of the low growth scenario.

Although this seems to be a small difference, a 0.5% higher GDP growth rate over a 50 year horizon has

a drastic impact on per capita income. The high growth scenario uses China’s in sample aggregate GDP

growth rate and variance. These values are admittedly very high, and by most forecasts China’s economy

is not expected to follow the high growth path it has in the years covered by our sample. The results

using these parameters do show the drastic impact of the income effect in the upper regions of the future

provincial income distribution on CO2 emissions.

We do not forecast the population growth rate, as the four scenarios provided by Chesnais & Minglei

(1998) are used. We calculate φt∀ t ε [2001,2050] from these forecasts and use the conditional marginal

distribution g(ξt|φt) = N [α+βφt, σ
2
ξ (1−ρ)2], where α = µξ−βµφ and β = ρσξσφ

σ2
φ

to obtain realizations of

the aggregate GDP growth rate. Table 2 summarizes the scenarios in consideration. Since we only consider

three scenarios of GDP growth, a total of twelve different population/GDP scenarios for forecasting

purposes are considered.

5.2 Sensitivity To Alternative Scenarios

In this section we look at how the different scenarios defined in Table 2 influence forecasts of CO2

emissions using the same model. Figure 8 displays aggregate forecasts of Chinese CO2 emissions based

on the conservative slow and medium GDP growth assumptions for all four population scenarios until the

year 2050. The forecast in Figure 8 under the assumption of slow and medium rate of growth of GDP

depend critically on the assumption about the rate of growth of population (Scenario A vs. Scenarios B,

C, and D). These results suggest that changes in population density patterns will have a large impact on

CO2 emissions. The thick line indicates the median point forecast for each population growth scenario,

while the dashed lines indicate the 90% confidence interval. It is noteworthy how similar the forecasts

for the same population scenario and differing GDP growth scenario are. Our forecasts suggest that the

20



Table 2: Assumptions Concerning GDP and Population Growth Rates
A-Slow B-Slow C-Slow D-Slow

Mortality Rate Constant Constant Decreasing Decreasing

Birth Rate Constant Decreasing Constant Decreasing

GDP Growth Mean 4.46% 4.46% 4.46% 4.46%

GDP Growth StDev. 0.47% 0.47% 0.47% 0.47%

A-Medium B-Medium C-Medium D-Medium

Mortality Rate Constant Constant Decreasing Decreasing

Birth Rate Constant Decreasing Constant Decreasing

GDP Growth Mean 5.02% 5.02% 5.02% 5.02%

GDP Growth StDev. 0.77% 0.77% 0.77% 0.77%

A-Fast B-Fast C-Fast D-Fast

Mortality Rate Constant Constant Decreasing Decreasing

Birth Rate Constant Decreasing Constant Decreasing

GDP Growth Mean 8.90% 8.90% 8.90% 8.90%

GDP Growth StDev. 4.66% 4.66% 4.66% 4.66%

distribution of population across China’s provinces may have a drastic impact on the PRC’s aggregate

CO2 emissions.
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Figure 8: Aggregate Forecasts of China’s CO2 Emissions - Slow and Medium GDP Growth
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Figure 9: Aggregate Forecasts of China’s CO2 Emissions - High GDP Growth
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Table 3: Range Of Projected CO2 Emissions from Different Studies (billion metric tons of carbon)

Year IPCC* Yang and Ho et al. Garbaccio et Panayotou Lag-

(2000) Schneider (1998) al. (1999) et al. Specification**

(1998) (1999)***

2020 1.73 - 2.50 —– —– 2.13 2.34 1.54 - 2.30

2022 —– —– —– 2.30 1.56 - 2.42

2025 —– 1.16 - 1.80 —– —– 1.60 - 2.62

2050 2.32 3.90 1.54 - 3.14 2.84 - 4.66 —– 1.71 0.81 - 4.56
Note: * Projected values for China have been obtained by using CO2 emissions for the year 1999 and the rates of growth

calculated for the region ”China and centrally planned Asia”. ** Due to its unrealistic nature, the baseline model was not

included in our prediction band. ***Projected flow of CO2 emissions from fossil fuels 1996-2050

Figure 9 shows our forecasts using the high GDP growth scenario. This scenario reflects historical

GDP growth for the PRC for the past 15 years. These years have been a period of high growth and it is

expected that GDP growth will slow down in the near future. As one can see from Figure 9, the higher

levels of GDP growth push per capita income past the estimated turning points; and depending on the

population growth scenario, suggests an aggregate ’Kuznets’ type PIR. In this high growth scenario, the

income effect offsets the population growth effect.

Forecasts based on national aggregates cannot pick up the population density effect, which leads to

some interesting policy conclusions. Some of the differences found between studies using national aggregate

data and studies using provincial data may reflect the fact that for the first kind of works the same rate

of growth of population is applied to all the provinces. This is an assumption, which has tremendous

implications regarding optimal policy measures relating internal migration and urbanization to future

CO2 emissions. These estimation results do suggest that China may be able to make tremendous progress

towards potentially agreed upon emission reductions by considering population migration patterns.

5.3 Comparison With Other Studies

The projections of CO2 emissions from this study are subject to a great deal of uncertainty, as are

any forecasts over such a long time horizon. It was our initial goal to provide a set of forecasts based on

a different level of aggregation to those provided by the studies cited in section 1. Below we compare our

forecasts to those of previous studies. Table 3 summarizes those comparisons.

First, we compare our estimated CO2 emissions and the values obtained according to the average annual

growth rates of CO2 estimated by the IPCC (Intergovernmental Panel on Climate Change, 2000) for the

period 1990-2050. However, when making the comparison, one needs to keep in mind that the annual

growth rates estimated by the IPCC represent an average for the region ”China and centrally planned

Asia”. We have made the projections by applying those rates of growth to the Chinese CO2 emissions

of 1997. Table 3 shows the range of values of the projected CO2 emissions for the year 202017 under

the A1B, A2, B1 and B2 marker scenarios of IPCC, and our projections. We note that, in the medium

term, our range of forecasts is lower than that provided by the IPCC. The information contained in the

spatially disaggregated data should contain more information than the national aggregate data. Our point
17We compare the values for the year 2020 because the IPCC estimated rates of growth apply until that year.

24



forecasting prediction band is slightly narrower, even after considering a wide variety of population and

GDP growth scenarios. This is also true for the point forecasts made for the final year in our forecasting

horizon (2050).

Yang & Schneider (1998) provide a set of estimates for the region ”China and centrally planned Asia”

by using a different analytical framework18. Their projected carbon emissions for the year 2050 range

between 1.54 and 3.14 billion metric tons - depending on the considered assumptions about the evolution

of the main determinants. This range of values is very similar to the estimated range of values of CO2

emissions by using our model. Our range of point forecasts is similar, but slightly lower compared to the

point forecasts provided by Yang & Schneider (1998). This is also true when we compare our forecasts

to Garbaccio et al. (1999a). The point forecasts provided by their study lie outside the interval spanned

by our estimates and are considerably higher. This is also true when considering the projected CO2

emissions found by Ho, Jorgenson & Perkins (1998). According to their work, Chinese CO2 emissions by

the year 2050 will range from 2.84 and 4.66 billion metric tons. Our projections for the same year suggest

somewhat levels.

6 Conclusion

We provide CO2 emission forecasts for China through the year 2050 under several alternative scenarios.

Our results suggest that Chinese CO2 emissions will be somewhat lower (given a common overall GDP

and population growth assumptions) than those projected by models based on national aggregate level

data with somewhat tighter confidence intervals.

In developing our estimates, we clearly reject the standard IPAT type models that underlie most

estimates being used by the IPCC (2000). First, we find that while a coefficient of 1.0 on population

typically assumed by these models cannot be rejected, differences in population density do play a sizeable

role in helping to predict CO2 emissions. This finding is consistent with work by Murthy et al. (1997) on

rural-urban differences in India based on an input-output modelling perspective. Our result has important

implications if large-scale migration from rural provinces to urban areas take places as many demographers

believe is likely.

Second, our estimation results are consistent with the inverted U-shaped pollution income relationship

posited by the Environmental Kuznets curve hypothesis. This result either rejects the IPAT family of

models’ common assumption that pollution emissions are monotonically increasing in terms of income, or,

it requires one to adopt a considerably more complex specification of technology, which effectively breaks

the independence assumption between the IPAT affluence and technology factors. Our estimated EKC

relationship plays a key role in helping to offset the increase in CO2 emissions projected to occur with

increases in population density.

During the time period considered, China’s most populous provinces are projected to be on the flat

part of the EKC inverted-U and in many instances on the declining side of that inverted-U. Because of this

our results show that uncertainty about future Chinese CO2 emissions shift from being driven primarily

by uncertainty about growth in income to one where the uncertainty is strongly dominated by variation
18In the framework used by Yang & Schneider (1998), emissions are decomposed into four factors which, when multiplied

together, determine the magnitude of emissions in one year. These factors are population size, GDP per capita, energy

intensity, and carbon intensity.
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in population projections. Indeed, using four different but plausible provincial population scenarios, the

difference between our highest and lowest forecasted aggregate emissions is roughly equal in magnitude

to the European Union’s total current emissions.

Third, our technology specification is much richer than those in most IPAT type models. We reject

both static specifications and simple dynamic specifications where the units of observation have similar

technological responses. The model our specification tests prefers is a simple first order autoregressive

process defined in terms of past emissions, which can vary across provinces. This suggests quite different

speeds of technological progress, likely in the form of average capital vintage and energy efficiency across

China’s provinces. Spatial heterogeneity across provinces appears to be well captured by this specification

when coupled with two initial conditions, the ratio of heavy to light industry and proximity to the coast.

Once these are taken into account, statistical tests suggest the unit fixed effects specification that is

common to much of the EKC literature is no longer needed. Statistical tests also suggest that a single

exogenous technological trend is sufficient rather than province specific trends.

Moving beyond the standard IPAT family of models, we believe that there are several major advantages

to using provincial level data. It allows the researcher to exploit a large degree of spatial heterogeneity

across provinces that is otherwise ignored by models using national aggregate level data. China is especially

well suited to this approach. Many of China’s provinces encompass large areas and have larger populations

than most of the major European countries, in addition to a substantial amount of variation in income

and emissions data. This variation substantially reduces the problem of multicollinearity; a problem that

plagues national aggregate level data and helps to improve the precision of our parameter estimates. The

key to being able to use subnational level data is the consistency with which variables are collected across

provinces as well as having an adequate number of time periods. In this regard, China looks ideal and

provides some of the first evidence on the nature of the pollution income relationship developed solely in

the context of a single major developing country.

Much of the message in our results is contained in the coefficients on lagged emissions for each province.

In this sense, our work starts to unravel the EKC black box that bothers many commentators (Arrow et

al., 1995). Differences in the estimated coefficients can result in radically different CO2 trajectories even

though all incorporate a common underlying EKC component. Policy measures should be designed to

bring down the estimated lagged emissions coefficient.

One key question for any Chinese participation in an agreement to reduce its CO2 emissions is how

well China could implement such an agreement at the provincial and local levels. Clearly there has been

work at the national level, which would likely have the effect of reducing the lag division parameters

(Garbaccio, Ho and Jorgenson, 1999a). As China’s environmental decision making continues to devolve

to provincial and city levels (Wang & Wheeler, 1999), the national-provincial coordination issue becomes

a particularly interesting one if as our results suggest problems are concentrated in a small number of

provinces which are large coal producers.
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Mäler, K. G., Perrings, C. & Pimentel, D. (1995), ‘Economic growth, carrying capacity, and the

environment’, Science 268, 520–521.

Barbier, E. B. (1997), ‘Introduction to the environmental kuznets curve special issue’, Environment and

Development Economics 2, 369–381.

Barro, R. & Sala-i-Martin, X. (1992), ‘Convergence’, Journal of Political Economy 100, 223–251.

Bernard, A. B. & Jones, C. I. (1996), ‘Productivity and convergence across U.S. states and industries’,

Empirical Economics 21, 113–135.

Carson, R. T., Jeon, Y. & McCubbin, D. R. (1997), ‘The relationship between air pollution emissions and

income: US data’, Environmental And Development Economics 2, 433–450.
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