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Abstract

This paper considers the problem of identification and estimation in the first-price multi-
unit auction. It is motivated by the auctions of bus routes held in London where, because
of anticipated synergies, bidders are allowed to submit bids on combinations of routes
as well as on individual routes. We show that equilibrium combination bidding does not
require cost synergies and can instead serve as a tool to leverage market power across the
different routes. As a result, the welfare consequences of allowing combination bidding
in the first price auction are ambiguous, and depend on the importance of the cost
synergies. We provide conditions for identification in the multi-unit first price auction.
In particular, we show that the presence of combination bids is a necessary condition for
identification. We propose an estimation method to infer the multidimensional private
information. The method consists of two stages. In the first stage, the distribution of

bids is estimated parametrically. In the second stage, costs and the distribution of costs

are inferred based on the first order conditions for optimally chosen bids. We apply
the estimation method to data from the London bus routes market. We quantify the
magnitude of cost synergies and evaluate the welfare impacts of allowing combination

bids in that market.
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1 Introduction

This paper considers the problem of identification and estimation in the first-price multi-
unit auction. It is motivated by the auctions held by the London Transportation authority
to award contracts to service bus routes. Two special features of these auctions are that
several bus routes are auctioned at the same time, and that bidders may submit combination
bids in addition to stand-alone bids. In other words, the London bus routes market is an
example of a combinatorial auction.

Combinatorial auctions - where bidders submit bids contingent on the final allocation -
allow bidders to transmit richer information regarding the value they attach to the objects
for sale. When the objects are not independent, for instance, because the bidders value
bundles of objects differently than the sum of the constituent parts, allowing such contingent
bids is a necessary condition for efficiency and optimality (Groves, 1973 and Clarke, 1971,
Levin, 1997, Armstrong, 2000 and Avery and Hendershott, 2000).

This was well understood by the London bus procurement authorities. Indeed, two of
the motivations for allowing combination bids in the London bus routes market were that
they would allow bidders to pass on, through lower bids, some of the cost savings resulting
from cost synergies between routes, and at the same time, that they would enhance the
efficiency in the allocation of routes across bidders.

However, allowing combination bids in the first price auction may also hurt efficiency
and costs. In section 2, we introduce a model of a private values multi-unit procurement
anction that allows for cost synergies between objects. We highlight two distinct motivations
for combination bidding. On the one hand, combination bidding gives rise to a strategic
effect because bidders’ stand-alone bids compete with their combination bids. As a result,
bidders may find it profitable to inflate their stand-alone bids relative to their combination
bids in order to favor the latter, even in the absence of any cost synergies. The reason is
that combination bids allow bidders to link otherwise independent markets and leverage any
advantage they may have in one market into the other. This effect may increase procurement
costs and hurt efficiency. On the other hand, when cost synergies are important, the fact
that combination bids do allow bidders to align their bids better on their costs, can help
improve efficiency and lower costs. As a result, the welfare consequences of combination
bidding depend on whether the leverage effect or the synergy effect dominates.

Section 3 provides conditions under which the unobserved costs and cost distribution

are identified from bid data. We assume that bidders assess their winning probabilities

correctly and choose bids to maximize their profits. We show that a necessary condition




for identification of the multidimensional private information based on bid data is that the
auction permits bidders to submit a full set of combination bids, in addition to stand-alone
bids. Moreover, as long as bidders do make use of all their bids, the cost distribution
function is identified. The intuition is that identification requires the set of allowable bids
— which represents the observed information — to be of the same dimension as the private
information to infer. In particular, this means that the general first price multi-unit auction
model with only stand-alone bids is not identified. Finally, we show that any constraint
on bids, such as reserve prices, or the condition that combination bids must be lower than
the sum of the constituent stand-alone bids, can reduce the dimensionality of the observed
information and therefore introduce a level of underidentification. A cost range rather than
a cost point is identified. We characterize this cost range.

Section 4 proposes our estimation method. It is based on Guerre, Perrigne and Vuong
(2000)’s two stage estimation method for single unit auctions but extends it to multi-
unit auction environments. The estimation proceeds in two stages. In the first stage,
the multivariate joint distribution of bids for all units is estimated parametrically. In the
second stage, the multivariate cost distribution is inferred using the first order conditions
for optimal bids.

Section 5 describes the London bus routes market. This market is particularly well-
suited for this kind of analysis. First, there is a common perception that synergies between
routes are prevalent. Second, combination bids are permitted and play an important role
in this market with about 30% of all routes won by combination bids. Thus, our method
allows us to quantify the extent of cost synergies in this market, and therefore assess the
relative importance of the leverage and synergy motivations for combination bids. Our very
preliminary results are reported in section 6. We calculate the percentage mark-up of bids
(relative to cost) for a selected sample of contracts for which stand-alone and combination
bids are submitted. We find that the mark-up is about 26% on stand-alone bids and 35% on
combination bids. Calculating the synergy effects we find that the cost of a combined route
is on average 8% lower than the sum of the costs for the individual routes. However, we
also find evidence that not all combination bids are motivated by underlying cost synergies.

Related literature. There is a growing literature on identification and estimation in
auctions. Donald and Paarsch (1993), Laffont, Ossard and Vuong (1995), Guerre, Perrigne
and Vuong (2000) and others propose identification results and estimation techniques to
infer bidders’ private information. The literature focuses to a large extent on the single-

unit auction model and little is known about auctions in which multiple units are sold.




Exceptions include the sequential auctions analyzed by Donald, Paarsch and Robert (2001)
and Jofre-Bonet and Pesendorfer (2001) and the discriminatory multi-unit auction analyzed
by Hortacsu (2002). Donald et al. and Jofre-Bonet and Pesendorfer’s approaches general-
ize previous estimation techniques to account for intertemporal linkages between auctions.
Hortacsu (2002) studies the Turkish Treasury bill auctions. He shows that bidders’ valu-
ation schedules are identified from their observed demand schedules in the discriminatory
multi-unit auction and proposes an estimation strategy based on resampling techniques.

There has also been a number of recent theoretical analyses of multi-unit auctions.
Among these, Armstrong (2000) and Avery and Hendershott (2000) derive properties of
the optimal multi-unit auction when types are multidimensional and objects may be sub-
stitutes or complements. A central question that these authors address is to what extent
the auctioneer may benefit from bundling the objects (A seminal contribution to this ques-
tion is Palfrey, 1983). Krishna and Rosenthal (1995) and Branco (1997) study the second
price multi-unit auction with synergies. Milgrom (2000) highlights some perverse effects
of combinatorial bidding in ascending auctions. Our analysis contributes to this literature
by highlighting the motivations and consequences of combination bidding in the first price
auction. Our leverage motivation is analogous to the bundling motivation in the (decision-
theoretic) multi-dimensional screening literature (McAfee, McMillan and Whinston, 1989,
Armstrong, 1996 and Armstrong and Rochet, 1999) but it had never been pointed out in
the auction context.

Finally, the importance of synergies in multi-unit auctions has been emphasized by the
recent experience in FCC spectrum auctions. Ausubel, Cramton, McAfee and McMillan
(1997) and Moreton and Spiller (1998) use a regression analysis to measure synergy effects

in these auctions.

2 The Model

This section introduces the model and highlights its key properties. The model integrates
the salient features of the London bus routes market.

A seller simultaneously offers m contracts for sale to N risk neutral bidders. Each
bidder 4 privately observes a cost draw, ¢; € R, for each possible subset of the contracts,
5 C S ={1,...,m}. Notice that there are a total of 2™ — 1 possible subsets of contracts.

We say that contracts s and ¢, with s Nt = @, are independent from bidder i’s perspective

if ¢t + ¢t = ¢, where ¢!, denotes bidder 4’s cost for the combination of contracts s and t.




They are complements if ¢, < ¢t + ci and substitutes if ¢, > ¢} + .

Contract costs are ex-ante distributed according to the joint distribution F((c%)scgi=1,..n5]X)
where X = (z, w) denotes a vector of observable contract characteristics z and bidder char-
acteristics w. We assume that F' is common knowledge, and that it has a bounded and
coordinate-wise convex support with a well defined strictly positive density everywhere.
Notice that our formulation permits correlation in bidders’ costs across bidders and con-
tracts.

We compare two auction rules. The first auction rule replicates the rule used in the
London bus routes market. Bidders may submit bids on all subsets of the set of contracts.
Let b denote bidder i’s bid on the subset of contracts s C S, and let 5 = (b, .., b, b)) €
R?™-1. We sometimes use the symbol b, to denote the vector of bids by bidder i on
all contracts except for s. Bidders pay the value of their winning bids and the auctioneer
selects the winner(s) based on the allocation that minimizes her total payment. Formally,
the last restriction requires that &, < b + bt for all 5, such that sNt = (. A combination
bid must be no greater than the sum of its constituent stand-alone bids. Otherwise the
auctioneer would select b -+ b} and ignore the combination bid & .}

The second auction rule is the standard simultaneous first-price auction where bidders
are allowed to submit bids on the individual contracts only. That is b = (¢, ...,8%,) € R™.

Fix bidder 7, and for each contract s, define B;? as the lowest bid submitted by
bidder i’s opponents on route (combination) s. By convention, let By { = 0 and let
B = (B",...,B3).

When only stand-alone bids are allowed, bidder 7's bid on an individual contract s € S
competes only against the best bid of his opponents on that particular contract, B,
Nevertheless, his optimization problem departs from the optimization of bidders in a single
unit auction because his costs depend on the final allocation of contracts. As a result, his
bids on the individual contracts must take into account the possibility that he may also win
other contracts.?

‘When combination bids are allowed, a different trade-off arises from the fact that bidders’

own bids compete with one another. Formally, with m contracts, there are 2™ possible

! Existence of an equilibrium in the multi-unit auction with combination bidding is guaranteed. There
always exists an equilibrium where all bidders submit a bid for the bundle S only. To see this, notice that
given that ¢’s opponents only submit a bid for the bundle, any bid by 7 on contract s C S can only win
together with ¢’s own bid on $\s. In other words, a bidder can only win a contract if he wins all of them.

As a result, setting b. = oo for all 5 # S is a best response. Of course, other equilibria may also exist.
2This is the standard “exposure problem.”




winning allocations. Either bi +B§\i , beats any other alternative bid combination b + B S\zt
for t # s and Bgi, m which cgse bidder i wins exactly the set of contracts s with cost c,
or Bgi < b+ B‘S_\z , for all s, in which case bidder ¢ does not win anything. This yields the
following payoff function for bidder ¢ (ignoring ties):

{ b, —c, i b+ By, <min{b]+ B;” for t % s, B5'}

0 otherwise M

Consider the set of contracts s. Holding the distribution of the opponents’ best bids
(BT L Bgi) fixed, decreasing b increases bidder i’s chance to win exactly set of contracts
s by lowering the price of allocation b% + Bg\is relative to the others. However, this may
come at the expense of winning potentially more profitable contract combinations if for
instance b% — ¢t < bi — ¢t for some t.

This is a standard price discrimination trade-off and it is analogous to the pricing prob-
lem of the multi-product monopolist in the multi-dimensional screening literature. To make
this analogy more transparent, suppose that there are only two contracts, 1 and 2. Figure
1 represents bidder #’s bid (b}, b%, b2 ) in the (By t By %) space (in that space, combination

bid &%, , can be represented by a line with slope —1).

B;' A o
Q{ul
) b,'\_,2 wins
by
b +B™'2 wins
i > —i
h B
Figure 1:

Ignoring By, bidder ¢ wins contract 1 only when b + B} < min{b} ,, B +b5}, that is
whenever the realization of (By*, By *) falls in the lower right quadrant of figure 1. Similarly,
bidder 7 wins contract 2 only when (By g By Z') is in the upper left quadrant. In the upper
right truncated quadrant (shaded), b, , beats every other bid combination so bidder i wins
both goods. He wins none in the lower left quadrant.

Replacing the distribution of the opponents’ best bids (BT i,Bz_ i) by the distribution

of consumers reserve prices for good 1 and good 2, and reinterpreting b¢, b, and b , as
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the prices for goods 1, 2 and the bundle of the two respectively, yields the standard mul-
tiproduct pricing problem. McAfee, McMillan and Whinston (1989) use figure 1 to derive
a sufficient condition for bundling to be profitable for the monopolist with additive costs.
In particular, they find that when demand is independent across goods — in our setting,
whenever (B : By %) are independently distributed — submitting a price for the bundle that
is lower than the sum of the individual prices is optimal for the monopolist. Armstrong and
Rochet (1999) solve for the global maximization of the multi-product monopolist. Their
analysis confirms that bundling (the equivalent of submitting a non trivial combination bid
biu2 < by + by) is profitable unless there is strong correlation across buyers’ reservation
values. See also Armstrong (1996 and 2000).

The following example suggests that the strategic effect to which combination bidding

gives rise may have perverse consequences on welfare.

Example: The Leverage Motivation

Consider two independent contracts. Types are one-dimensional and independently dis-
tributed. Let ci(@i) be bidder 4’s cost for contract s, for the realization of type ¢* € R.
Without loss of generality, we take 6° to be i.5.d uniform on [0,1] since any asymmetry
among bidders can be captured by the ¢! functions. There are 3 bidders: A, B and C. Bid-
ders A and B are “local” bidders in the sense that bidder A is only interested in contract
1, cf(8) < oo but cf(0) = oo for all # and bidder B is only interested in contract 2. By
contrast, bidder C is interested in both contracts and he is a “global” bidder. Furthermore,
assume that ¢{'(8) = c{ (8) = c1(8) and c&(8) = c§ (0) = c2(9) for all §,® costs are increasing
in 8, ¢(.) and ¢,(.) > 0, and that there is no synergy between the two contracts for the
global bidder, ¢§ 5 = c{ + 5.

It is instructive to first consider the scenario where combination bidding is not allowed.
Since the allocation in each market is independent of the outcome and the bids in the other
market, and given that bidders are symmetric at the individual market level, the unique
equilibrium is symmetric and in strictly increasing strategies. As a result, the outcome
is efficient. Moreover, conditional on the optimal reserve price and the usual regularity
condition, this simple auction format minimizes procurement costs.

Now suppose that bidders are allowed to submit combination bids, and towards a contra-
diction suppose there is an equilibrium where bidders only submit stand-alone bids. From
the perspective of the global bidder, (b, b8) = (B¢, By Y are independently distributed.
Therefore, the analysis of McAfee et al. (1989) applies and bidder ¢’ will find it advanta-

#This means that bidders are symmetric at each object level.




geous to submit a non trivial combination bid at equilibrium, 5%, < b + b§. This means
that we can rule out the equilibrium where bidders only submit stand-alone bids (with the
“trivial” combination bid b, = b + b5). Combination bidding must take place in any
equilibrium.

In this example, combination bidding hurts efficiency and cost. Efficiency is hurt because
whether the local bidder A wins contract 1 or not, no longer depends on bidder A’s and
bidder C’s signals only but also on bidder B’s signal (through the combination bid of the
global bidder). By the revenue equivalence theorem, and given that the optimal auction is
efficient, procurement cost is also higher.* The example can be generalized and we have the

following result.

Proposition 1 Suppose that the contracts are independent and that competition in the local
markets is symmetric. Then allowing combination bids can only increase procurement costs

and hurt efficiency.

Proposition 1 suggests a class of environments where allowing combination bidding hurts
both costs and efficiency. Nevertheless, we have also constructed examples, especially when
high synergy levels are present, in which equilibrium bidding with combination bids results
in both higher efficiency and lower procurement costs relative to the equilibrium outcome
of the game in which combination bidding is not allowed.

There are three lessons from this analysis. First, observing a combination bid lower
than the sum of bids for the stand-alone constituent units is no guarantee that there are
underlying synergies. Submitting a combination bid can be profitable exactly for the same
reason why the multi-product monopolist finds price discrimination profitable.

Second, correlation in the environment is an important determinant of combination
bidding. In fact, we can show that there is no independent role for combination bidding
if bidders’ private information is unidimensional (that is, if costs are perfectly correlated
across contracts) and bidders are not too asymmetric.

Third, understanding the costs and benefits of combination bidding is an important

policy question. One benefit of combination bidding is that it allows bidders to better

*The intuition is that the combination bid pools the two markets together and it allows the global bidder
to leverage any advantage he has in one market into the other. Indeed, suppose that bidder A has a very
high cost realization for contract 1 that is, the global bidder has an advantage in market 1. Then, if the
global bidder only submits a combination bid, it reduces the toughness of the competition he faces in the
second market because bidder B needs to have a really low bid to compensate bidder A’s high bid and have

a chance to win. This mechanism, market linkage through combination bidding, is analogous to the leverage

theory in industrial organization (Whinston, 1989).




align bids on costs. In fact, combination bidding is a necessary condition for efficiency and
optimality (Groves, 1973 and Clarke, 1971; Levin, 1997, Armstrong, 2000 and Avery and
Hendershott, 2000). However, our analysis shows that combination bidding may also have
perverse effects in the first price auction. This suggests that the question is ultimately an
empirical one because the answer depends on the nature and extent of synergies present in

the market. This motivates the next section.

3 Identification

This section describes our identification results for the multi-unit first price auction. We
observe data on bids, contract characteristics and bidder characteristics. Our goal is to
infer costs, which we do under two assumptions: (1) the observed data on bids, contract
characteristics and bidder characteristics can be used to correctly infer bidders’ beliefs about
the winning chances of their bids, and (2) bidders choose bids to maximize the interim
expected payofl.

The bidding model is identified if the distribution of costs can be uniquely inferred from
the observed data. In this section, we provide a new positive result for non-parametric
identification in the private values multi-unit first price auction and show that the model is
generically identified when combination bids are allowed. We also illustrate how to obtain
identification bounds for the cost parameters when additional restrictions are placed on the
set of allowable bids.

Guerre, Perrigne and Vuong (2000) prove non-parametric identification in the one di-
mensional independent private values setting for single object first-price auctions.® Hortacsu
(2002) studies the homogeneous multi-unit discriminatory auction for Treasury bills. His
identification problem is closer to ours since it is intrinsically multi-dimensional: he observes
(a distribution of) demand schedules and his goal is to infer the (distribution of) marginal
valuation curves. Extending Guerre et al., Hortacsu proves non-parametric identification
in the case where bidders submit demand functions. The difference between our setting
with heterogeneous goods and Hortacsu’s model of homogeneous and divisible goods is that
demand is identified by a vector of costs (ci,...,cs) € R?" 1 in our setting whereas it is
identified by a marginal valuation function in his. This leads to different mathematical

structures.

SQther results for single unit auctions include Laffont and Vuong (1996) and Li, Perrigne and Vuong
(2000) who extend Guerre et al’s identification result to affiliated private values, and Athey and Haile

(2001) who analyze the identification problem when some bid observations are missing.




3.1 Identification Conditions

We start with the general (unconstrained) combinatorial first price auction. Bidders submit
bids on all subsets of the set of objects, the auctioneer selects the cheapest bidder-bid
allocation and the winners pay the price of their winning bids. Let h(b',..., bY|X) denote
the equilibrium joint distribution of bids and let B be its support.® We make the following

assumption on h and B:7

Assumption 1: (81,...,b") € R¥"1*¥ is distributed continuously on a closed and full

dimensional support.

Fix bidder i and let B~ be the 2™ — 1 dimensional vector of best bids by bidder ¢’s
opponents on each bundle. Given m objects, there are 2™ possible winning allocations of
the objects between bidder ¢ and his opponents. Either b+ BE\’ , for some s C S is the
cheapest bidder-bid combination, in which case bidder ¢ wins bundle s, or Bg* is, in which
case bidder i does not win anything. Let G5(b|3%, X): R¥"~1 — [0,1] denote the (correctly
inferred) probability that bid vector b¢ by bidder ¢ wins exactly bundle s conditional on his
actual submitted (equilibrium) bid being A and on some covariates X.8

In the multi-unit auction, bidders submit bids on all subsets of objects and therefore

solve a 2™ — 1 dimensional problem (in b%, s C S):

max Y (b, — cs)Gs(5) 2)
(bf.)sgs aC S
(for simplicity, we omit from now on the conditioning variables B and X in the expression of
Gs)- A direct consequence of assumption 1 (proved in the appendix) is that G is continuous
and a.e. differentiable in b for all t. Hence the expression in (2) is continuous and a.e.

differentiable. At any point where it is differentiable, the optimal bid vector by bidder 4

8The joint distribution of bids is trivially identified from the data when all bids are observed. When not
all bids are observed, additional identification conditions are required. See Athey and Haile, 2001 for the

single object case.
“In principle, the assumption of equilibrium behavior imposes some restrictions on the observed distri-

bution of bids. In the absence of a full characterization of equilibrium behavior in the combinatorial first

price auction, assumption 1 should be seen as an additional assumption made on the observed data.
8This expression for the probability of winning recognizes that the distribution of bids across bidders may

be correlated. Though empirical papers on auctions often assume independence across bidders, identification
results based on the first order condition do not require such assumption. For a recent example of extension

of identification in the single object first price auction to affiliated values, see Li, Perrigne and Vuong, 2000.
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must satisfy the first order conditions:

Ge(b) + (b — co)GL(B) =0 tC S
sCS
or, in matrix notation:
VG — ] = —G(b") (3)

where the (2™ — 1) by (2™ ~ 1) matrix V@ is defined by VGys(b*) = G4(b*) for s,t C S and
G(b) is a 2™ — 1 x 1 vector with G(b*) as.components.

The first order conditions define a system of linear equations in the unknown cost pa-
rameters, ¢;, s C S. Identification of a cost realization thén reduces to the question of

existence and uniqueness of a solution to this system.

Proposition 2 (Sufficient condition for identification) Suppose that assumption 1 holds
and define the (2™ — 1) by (2™ — 1) matriz VG(B) by VGys(b%) = GL(bY). A sufficient con-
dition for identification in the first price multi-unit auction is that VG(b*) is invertible for
all i and all b'.

Proof. Since the first order conditions in (3) define a system of linear equations in
the unknown cost parameters (the [b* — ¢] vector), the invertibility of matrix VG(¥) is a
necessary and sufficient condition for a unique solution ¢! = ¢'(b%) € R?" 1. Identification
of the distribution of costs F follows directly. Indeed, if the system in (3) admits a unique
solution ¢*(b*) for all ' and all ¢, then the distribution of bids h(bY, ...,bN) defines a unique

.....

To provide sufficient conditions for the matrix VG to be invertible, the following defi-

nition will be useful:

Definition (irrelevant bids): Bid b} by bidder i is irrelevant if G4(b}, b* ;) = 0 and there
exists & > 0 such that Go(b} — &,b ) = 0. Otherwise it is relevant.

Irrelevant bids never win. Nevertheless, irrelevant bids can be optimal from a bidder’s
perspective because of the leverage motivation for combination bids: submitting a bid that
pever wins on a contract ensures that this bid does not compete with any other, potentially
more profitable, bid.? Such bids are problematic for inference. Indeed, suppose bidder 4

submitted an irrelevant bid on contract s. Then, any alternative bid vector (Ai, bt ,) with

9 Armstrong (1996) provides a decision-theoretic example where this property holds at the optimum.
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'Eg > b would have been equally optimal for bidder i, and therefore equally informative.
More formally, the definition of irrelevant bids implies that G§(b*) = 0 (small changes in
bi do not affect the probability that bidder i wins contract s or any other contracts) and
G%(5*) = 0 for all . This means that the row and column corresponding to contract s in
matrix VG are all zeros. Therefore V(& cannot be inverted.

Nevertheless, we can still use the information that winning contract s was not profitable
for bidder 1.

Definition (effective bid): Fix the distribution of (b!,...,6"). Consider any b for some
bidder ¢ and bundle s. Its associated effective bid, 5577 is the highest bid on contract s such
that b7/ is relevant subject to the condition that b2/ < b.

If b} is irrelevant, b3'7 is such that G,(b7 b7 ) = 0 but G057 — e b ,) > 0 for
all € > 0. Since payoffs are continuous in bids, bidder ¢ is indifferent between submitting
(b2,5,) or (077, 4,). In addition, since bidder i found it profitable not to win contract 8,
it must be that:

D (B — ) GRbET b + (8577 — co)Ga(be b y) =y > 0 (4)
1£s
where all derivatives are left derivatives.!? We shall see in the next section how this inequality
can be used to provide bounds on the unobserved parameters. In the meantime, we prove

the following properties of the elements of matrix VG:

Lemma 1 (Properties of VG) Suppose that assumption 1 holds. Consider matriz VG
(with elements defined by VGt s = GY) evaluated at any optimal bid vector b* by bidder i.
Then:

(1) Gt <0 for all t, and strictly so if bt is strictly relevant.

(2) Gt >0 for all t + s.

(3) 3, G5 <0 for all t, and strictly so for some t as long as b* includes at least one

strictly relevant bid.

Proposition 3 (Necessary and sufficient conditions for the invertibility of VG) Suppose
that assumption 1 holds. Then VG is invertible at any optimal bid vector b* if and only if
all bids in b* are relevant. Moreover, the determinant of any submatriz made from removing
some rows and the corresponding columns of VG has sign (-1)" where r is the number of

remaining rows/columns.

*YWe consider the left derivatives because the critical value b$f/ corresponds to a potential point of non-

differentiability in the payoff function (see remark 1 following proposition 5 in the appendix).

12




Lemma 1 and proposition 3 are proved in the appendix. Proposition 3 has a number of

direct implications for identification in multi-unit auctions.

Corollary 1 (i) Suppose that assumption I holds and that all equilibrium bids are strictly
relevant, then the private values combinatorial first price auction model is identified. (i) If
only stand-alone bids are permitted, then the model is not identified. (i) If contracts are

independent and only stand-alone bids are permitted, then the model is identified.

Corollary 1 is proved in the appendix. A general lesson is that identification requires the
dimensionality of the observed information to match that of the information to be inferred.
Specifically, in the multi-unit auction model with multi-dimensional types, the underlying
private information to infer (the costs ¢,) is 2™ — 1 dimensional. On the other hand, the set
of bids determines the dimensionality of the observed information. When bidders make full
use of all their bids, as in corollary 1(i), the observed information is 2™ — 1 dimensional, and
identification follows. By contrast, when only stand-alone bids are permitted, the observed
information is m dimensional and there is no hope to infer costs, unless the dimensionality

of private information is also m.!!

3.2 Incorporating Restrictions of the London Bus Market

The previous section suggested that the presence of irrelevant bids may be problematic
for identification. In addition, real-life auctions include various restrictions on the set of
allowable bids which may also lead to a reduction in the dimensionality of the observed
information and therefore the violation of the conditions in corollary 1(i).

In this section, we show how to extend our identification results and derive identification
bounds in these cases. We illustrate our approach by considering three types of restrictions
present in our data. First, the rule of the auction imposes that bids on a combination
of contracts must be no greater than the sum of the constituent bids. Second, London
Transport Buses imposes a (secret) reserve price. Third, bidders are not obliged to submit
bids on all routes and some bidders indeed submit bids only on a subset of the routes
auctioned in any particular tranche. Our interpretation is that it was not profitable for

these bidders to submit a bid that would have had a positive chance of winning.

"In addition, if the inference ignores the multi-unit nature of the auction (by treating each object as a
separate auction), it can be shown that the cost estimates are biased downward if contracts are complements

and upward if they are substitutes.
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Together, these restrictions mean that the optimization problem that any typical bidder

faces becomes:

max 3 (8 - ¢:)Ga(6) 5)

8CS

subject to a combination bid constraint:
b < b, + bt for all s,t,w C S such that tNw =0 and tUw = s (6)
and a reserve price constraint in the event bidder 1 does submit a bid on any given contract:
b, < RyforallsC S (7

The fact that bidders do not need to submit a bid on all contracts introduces a discon-
tinuity in the payoff function. Moreover, because of the multi-unit nature of the auction,
we cannot transform problem (5) subject to (6) and (7) into an optimization problem of
a continuous function over a compact set (for example, by imposing compulsory bidding)
such that any solution to the original problem is a solution to the transformed problem.!?

Nevertheless, we can still use the logic of the standard approach to optimization under
constraints and use first order conditions to infer costs. We proceed as follows. First, we
view reserve prices on each subset of the routes as “bids” submitted by the auctioneer. As a
result, though (b', ..., b") may no longer be viewed stricto sensu as distributed continuously
(given the mass point generated by non submitted bids), the probabilities of winning remain
continuous and a.e. differentiable.’® So does bidder 4’s optimization problem. In addition,
with reserve prices viewed as bids, the definition of effective bids extends straighforwardly
to the presence of reserve prices.

Second, whenever a bidder submits a relevant bid on all contracts, the Kuhn-Tucker
conditions for the optimization problem (5) subject to (6), (7) and compulsory bidding

provide a proper description of the bidder’s optimization problem.

12T see this, suppose that at the optimum b”of (5), bidder i submits a relevant bid on contract s but
not on contract t. Then, his first order condition with respect to bi takes into account the fact that b% does
not have any externality on contract t: Gf(b") = 0. However, this property does not necessarily hold if all
bids satisfy the reserve price constraint. As a result, b* may no longer satisfy the first order condition in the

transformed problem.
13 Alternatively, assumption 1 should be interpreted as a restriction on submitted bids.
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Third, whenever one of these bids, say b, is irrelevant (including because it was not
submitted), the first order condition with respect to that particular contract can be evalu-
ated at (657,57 ) where b5/ < bt is the associated effective bid to b that makes bidder i’s
bid on bundle s just relevant.

To summarize, given any observed bid vector b, we propose to evaluate bidder i's
first order condition with respect to contract s at (b7, 8" ) where b5/ is the effective
bid associated with 5. Clearly, effective and actual bids only differ in the cases of non
submitted bids or irrelevant bids. These are also the cases where, as we have argued, the
first order condition needs to be evaluated at the value of the bid that makes it just relevant.
In addition, since G%(b%,b%,) = 0 for all ¢ # s, and for all s such that b: is irrelevant (or
non submitted), these adjusted first order conditions can still be expressed as a system of

linear equations of the form
VG - =D (8)
where the VG matrix is now defined as
VGes(t) = G405 1),

the [6°7F — ¢] vector is now evaluated at the associated effective bid vector, and the D

column vector collects the G functions with the Lagrangian multipliers:
Ds(bi; K, }‘) = _Gs(bgff, bi__a) — Hg — Zr,t )\.9=1‘Ut + ZT,t )\t=sUr

Hs 1s positive if bidder i did not submit a bid or submitted an irrelevant bid on contract s,
and As=rut 2 0 is the Lagrangian multiplier for the constraint bt < bi 4 bl for s = r Ut and
rNt=0.

The same arguments as in proposition 3 can be used to prove that matrix V(G with rows

evaluated at (b/ b7 ) is invertible. This means that
[°77 — o] = VG (&) D(b; 1, A) 9)

is the solution to (8). Expression (9) is important. It says that, given any fixed values
for the Lagrangian multipliers, costs are uniquely identified from the bid observation. In
particular, if no constraint is binding, all the Lagrangian multipliers are equal to zero and
costs are identified: we are back to the special case of corollary 1. By contrast, any binding
constraint introduces a degree of underidentification because we do not observe the value of

the Lagrangian multiplier that solved bidder 4’s optimization problem when he (optimally)
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chose to submit bid vector b%. The only thing we know from the previous discussion is that
the multiplier of the binding constraint is positive. The next proposition characterizes more

precisely the extent of the underidentification in the cost parameters:

Proposition 4 (Identification bounds) Any binding constraint introduces a one-dimensional
degree of underidentification in the cost vector ¢ with the following properties: (1) cs de-
pends positively and linearly on the value of the multipliers p; but it is independent of
for all t # s; (2) cs depends positively on Ae—uw, and negatively on Ai=guny for all s, ¢t and

w.

The proof of proposition 4 can be found in the appendix. It uses Cramer’s rule and
the properties of determinants to sign how the solution to (9) varies with the value of the
Lagrangian multipliers.

There are several important elements to note in proposition 4. First, irrelevant bids and
non submitted bids only affect the identification of the cost parameter of the associated
contract. This is somewhat remarkable in this multi-unit auction setting where costs are a
priori jointly determined as the solution to a system of equations. The reason is that, in the
case of irrelevant or non submitted bids, bids on other contracts do not affect the probability
that bidder ¢ wins the contract on which he either did not submit a bid, or submitted an
irrelevant bid (it remains zero). Likewise, irrelevant bids do not affect the probability of
winning any of the other contracts. This removes the interdependency between the first
order condition with respect to the contract on which submitting an irrelvant bid is optimal
and the other first order conditions. A direct consequence is that, in the event of non
submitted bids, we can infer that the costs of the contract was higher that the reserve price
— exactly as in the single unit first price auction.

Second, proposition 4 allows us to derive bounds on the value of the cost parameters
that can rationalize the observed bids. For example, suppose that constraint % < b} + bf,
is binding. The solution to (9) evaluated at As—tn = 0 provides a lower bound to the cost
parameter cs. Of course, given the analysis in section 2, a parameter of greater interest
still is the extent of synergies between contracts ¢ and w. The next result is proved in the

appendix.

Corollary 2 (The maximum level of synergies is identified) Consider any 2 disjoint
contracts, t and w. If the combination bid constraint for these contracts is binding at the

optimum, an upper bound to the synergy involved between these two contracts is giwen by
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the solution c; + cy — cruw of the system in (9) when the Lagrangian multiplier Afs )<t

s set equal to zero.

3.3 Identification of the Cost Distribution Function [to be added]

4 Estimation Method

This section describes our estimation approach. Section 4.1 describes our parametric density
specification. Section 4.2 describes a simulated method of moments estimator for the bid
density function. Section 4.3 takes the bid density function as given and describes our
numerical method to infer costs.

We observe data on a cross section of auctions t = 1,...7. Let b* denote the bid vector
of bidder ¢ submitted for the contracts in auction t and let X* = (zf,w, ... w! t) denote
the route and bidder characteristics on auction t. w—%! denotes the vector of characteristics
for bidders other than bidder ¢ and we sometimes write X% = (z*, wi, w—%) where the i
superscript indicates that bidder characteristics are evaluated from bidder i’s perspective.

In this section, we make the following further assumption on the data generation process.

Assumption. The cost realizations for bidder 7 are stochastically independent of the cost

realizations of bidder j, for all j # 4, conditional on characteristics X*.

Furthermore, we assume that characteristics X* are observable to the bidders and the
econometrician. We do not consider bidder or contract heterogeneity that is not observed

to the econometrician.

4.1 A Multivariate Bid Density Function

We specify the density function of (latent) bids b* of bidder i in auction ¢ as a multivariate
log-normal density function in which the parameters are a (linear) function of bidder and
auction characteristics X*. Given our independence assumption on the cost draws across
bidders conditional on X*, the bids by bidder i are stochastically independent from the
bids of bidder j conditional on characteristics X.

The statistical model for latent bids by bidder 7 on auction t is:

In(7- —7)
= p(X") + A(X?) - ¢ (10)
In(7g ~ )
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In (10), latent bids are normalized by an internal cost estimate IC;, u denotes the
(2™ —1) dimensional vector of means, A is a (2™ ~1) by (2™ — 1) matrix and € is a (2™ —1)
dimensional standard normal random variable: £ ~ N(0,I) with 0 denotes the null vector
and I denotes the identity matrix. We assume that the mean 1, and A, are linear functions

of characteristics,

pe(X) = B X" and Agr(X™) = gr X

Thus, 3 = [34,...,08s] is a (2™ — 1) x k dimensional parameter matrix where k denotes
the number of explanatory variables in X and o = [a,,] is a (2™ — 1) X (2™ — 1) dimen-
sional matrix. Fach element «,; is a parameter vector of dimension k. Notice, that our
specification implies that the variance-covariance matrix of log bids is given by ¥ = AA’.
Latent bids above the reserve price are not observed. As in Laffont, Ossard and Vuong
(1995), we define the observed bid as equal to the reserve price, RY, when the latent bid is

not observed:

by = b(b"|X™) = b5 Lguecryy + R - Lgygiez ey

Henceforth, we use this convention and restrict attention to observed bids.

There is a large literature on estimation methods of the parameters of a lognormal
density function (see Griffiths (1980)). Proposed methods include maximum likelihood and
method of moments. Assuming that the lower bound + is known, the regularity conditions
of maximum likelihood are satisfied, and maximum likelihood yields consistent and efficient
estimates of the parameters (, ) as the number of auctions 7" gets large. If the lower bound
v is not known and is to be estimated, then a regularity condition of maximum likelihood
is violated. The method of moments provides an alternative estimation method that yields
consistent estimates for the parameter vector § = (a, 3,7), as the number of auctions T
increases (see Hansen (1982)). Numerical calculation of the moment conditions can be
computationally intensive as our density is multivariate. Simulation estimators (McFadden
(1989) and Pakes and Pollard (1989)) provide an elegant solution to this problem. The next

section describes our estimator.

4.2 A Simulated Method of Moments Estimator

Consider the difference between the observed and the (conditional) expected kth moment

of the bid vector:




% — (bit)k _ | [bk,Xitj 8]

The symbol (b*)! denotes the vector of first moments (6¢,... ,b), the symbol (5%)2 de-
notes the vector of second moments ((b{'6%), bifb¥, . .. , (b%b¥)) and so on. Notice, that the
itk

difference v*"* when evaluated at the true parameter value 6, is mean independent of the

exogenous data:

E {Uz‘tleit, g = 0*] =0

Given this condition together with some standard regularity conditions, we can adopt the
method of moments estimator described in Hansen (1982). The estimating equation is given
by

(B = E ':bk'Xit’ 9] 4 yitk

Unfortunately, F [b*| X%, 6] is the kth moment of a truncated multi-variate normal ran-
dom variable, which is numerically time-consuming to calculate. We solve the integration
problem by replacing the difficult to calculate expected value with a sirnulated, unbiased

estimate. The expected kth order moment of the observed bid can be written as:

(¢)

by multiplying and dividing the integrand by the importance function ¢(-) and where ¢

E b’“ X% 6 / / {(b(b"‘( | X%, 0)| X% 0 )k¢(5)J¢(e)dsl-..dss

denotes the multivariate standard normal density for ¢ = (€1,... ,€5), and the function b*
is implicitly defined in equation (11).14
Given a fixed set of random draws, e, for each bidder and auction, we can calculate an

estimate, b*, with the property:

14
£1 Y

b*(e1,... ,es|X*) =IC |exp | p(X™) +A(X™) - | +

£s v

19




EOF(XM,6,6) = E [b’“|X“, 9}
The estimate leads to a new estimating equation
b = k(X 6,2) + itk (11)

Since b* is an unbiased estimator of E [b*|X*, 8], the new prediction error, 7°*, is also mean

independent of the exogenous data at the true parameter values. This suggests a method
of moments technique may still be appropriate to estimate 6. Under regularity conditions
which are satisfied here, McFadden (1989) and Pakes and Pollard (1989) show that this
suggestion is correct.

Our estimator of the above form is found by taking, for each bidder and auction, inde-
pendent draws from the multivariate importance function ¢ of errors e = (e'1,... ,eMT).
As importance function ¢ we use the standard multivariate normal denisty ¢. A simulated
moment estimator is defined as the average across multiple simulated draws to reduce the
variance of the estimate while preserving unbiasedness. This is, we take L draws, ¢ = (

el ... ,EL) and calculate

el ed)

(P(Eitl i‘tl)

L
-~ 1 , ) ) )
k th T o E t * ¢ _itl o it th 9 X'Lt 0
b ( )935) L iy [(b(b (El ) )ES ’ )I ’ ) it ,ES

This equation for b* can then be substituted into the estimating equation (12). Let 7%
denote the resulting vector moment prediction errors for bidder 4 on auction t. It consists
of the (2™ — 1) vector of bids for individual route combinations stacked on top of the
(2™ — 1)(2™)/2 elements of cross products of bids for individual route combinations, and
so on. We denote a typical element of the vector by ottt

Let W be a matrix of instruments for the kth moment prediction error (k = 1,... , K).
We can write the instrument matrix for bidder i on auction t, W%, as a block diagonal

matrix:

Witl 0 0
W =1 ¢ 0
0 0 WK
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The method of moment estimation technique is based on the restriction that 7 is uncorre-
lated with the exogenous data W, With NT independent observations, the sample analog

of this restriction involves the sample correlation

9(9) = Zzzgitl(g) = Z ZZ@““%G) Q@ Wit
it it 1

where the vector of instruments W has at least as many elements as there are parameters

in 6. An estimate 0 is chosen to minimize a quadratic distance measure

G(6) =7(9)' Ag(#)

for some positive definite matrix A. A preliminary estimate 8, is obtained by setting A
equal to the identity matrix. Then, a new weighting matrix is calculated as the sample
variance of the individual moment conditions, g¢;u (@1) A second and final estimate, 5, is
then obtained from the use of this moment condition. The variance of 8 is estimated by the
formula given, for example in Pakes and Pollard (1989).

A Monte Carlo study revealed that the estimator is well behaved even for small number
of observations. Moreover, the first two moments, & = 1,2, are sufficient to identify the

parameter vector 6.

4.3 Inference of the Cost Distribution Function

"This section describes our numerical approximation technique to infer the cost distribution
function based on estimates of the bid density.

Let h(b}, ..., b%, ..., b%|X") denote the estimated probability density function of bids by
bidder ¢ on all the subsets of S conditional on X*. The probability that bidder i‘s bid
(vector) & wins exactly route (combination) s conditional on X?, G,(b*|X?), can be written
as a function of the density of the lowest bids by #’s opponents conditional on X*, which
we denote as h(y (B{%,...,B5'|X"). Notice further that the density h(l)(Bl_i, ...,Bgi]Xi)
can be expressed directly as a function of the bid density h(.|.). The analytical expressions
involves multi-dimensional integrals which are complex to calculate numerically.

Following Judd (1998), we solve the described integration problem using Monte Carlo
integration methods. The method is based on the law of large numbers and can be
explained as follows: For each bidder j # ¢ we draw a bid (vector) from the density

h(.|X7) conditional on the characteristics X/. We then determine the low competitors’
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bids (B¢ X?) = (By", ..., B5'|X?). We repeat this exercise L times by repeatedly drawing
bids and determining the low competitors’ bids. The “pseudo data” of competitors’ low
bids, (B, 1b'e i)lel, is then used directly to approximate the probability that bidder i wins
exactly route s with the bid b*, G,(b*|X*). The empirical frequency of this event is given
by:

: ; Z]‘ id b* wins exactly route s b ¢
G (b x7) = 2 Ifly te s| (BIX}

where 15} = 1 if z is true and 0 otherwise. By the law of large numbers, the approximation
error vanishes as L increases. The derivative G%, can be calculated numerically by using

one sided differences with £(L) appropriately chosen. The numerical difference yields,

o b LbE L bR X)) — Ge(BE, b — e, L, B X
Gg(bz|Xz) = Gs( 2 [ ] SI ) G ( 1 T £, S| )

£

Next, we describe how we determine the cost density and distribution function. We
approximate the cost density function using a step function on a specified grid. We partition
the bid (and cost) space into M intervals, Cs = {[%, AR VYM 1 U [R, 00).® The first
M ~1 intervals are of length ﬁRj—l each. The last interval, [R,, 00), accounts for unobserved
bids. We take the Cartesian product of the partitions in each dimension and specify the
grid in the bid space as C = X;cgCs. Observe that the grid C' consists of n = M 21 cubes
and each cube is of dimension 2™ — 1. The fineness of the grid is determined by the number
M, and our numerical approximation becomes more accurate as we increase M. We denote
a typical element of C by C;. The probability of the cube Cj in the bid space is denoted by

hi. It is given by:

(X = /C h{(b|X*)db.

In order to determine the associated probability of the cube C) in the cost space, we
conduct the following calculation: For each | = 1...n, we select a bid vector by € Ci.
Without loss of generality we chose b; as the midpoint of the cube C). The previous section
describes how to obtain the cost range associated with & based on the Kuhn-Tucker con-

ditions for optimal bids. We denote the associated cost range with ¢;(b;|.X %). Notice, that

SFor simplicity of exposition, we assume that the cost space equals the bid space. This assumption is not

required and can be relaxed.
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the cost range can be either a singleton, or a path or a higher dimensional area. Moreover,
the cost range can be calculated by varying the Lagrange multiplier(s) between 0 and oo.
The value of the cost density function on the cube ) equals the frequency with which cost
observations fall into the cube. If the cost range is a singleton, then the frequency is exactly
determined, while if the cost range is not a singleton, then this translates into an upper and
a lower bound on the cost distribution function only.

We specify the density function of the cube C} for a lower and an upper bound of the
cost distribution function using the componentwise maximum and minimum of the cost

range,

e _ 1o ~
A = 2 Hewptetbbxincay - ha(XY),
k=1

sUp

1o .
= D Lt telxcon - he(X0).
k=1

where sup(¢) (and inf(¢)) are the componentwise largest (and smallest) element in the set
o.

Our estimator of the cost distribution function is then the cumulative distribution func-
tion associated with the lower and upper bound on the empirical frequency densities. They

are given by:

n
inf N inf
F (Cl> ey CS'|X ) = ; fl 1{CLC{C’IC’1£cl,...,cfgscs}}’

n

3up i _ sup

F*®(c1,.es|XY) = DA™ Lo ol gon dyzeshy
=1

We can make three observations: First, our numerical approximation entails an error and
the error becomes negligible as M and L increase. Second, we calculate the standard errors
for cost estimates using the delta method. Third, if no constraint is binding, then the upper

and lower bound on the cost distribution function coincide.

5 The London Bus Market

This section describes the London bus market, gives descriptive summaries of our data and

provides evidence for our chosen specification.
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The London bus market represents about 800 routes serving an area of 1,630 square
kilometers and more than 3.5 million passengers per day. It is valued at 600 million Pounds
per year (US $900 million). Deregulation was introduced by the London Regional Trans-
port Act of 1984. The Transport Act designated London Regional Transport (LRT) as the
authority responsible for the provision and procurement of public transport services in the
Greater London area, as well as the development and operations of bus stations and the
network-wide operational maintenance. Private procurement was encouraged. In order to
enhance competition, LRT, which by virtue of the Transport Act acted as the holding com-
pany for the original public operator London Buses Limited, created a separate tendering
division, independent from its operational division, and split the formerly unitary London
Buses into 12 operational subsidiairies. These were privatized in 1994. In practice, the
introduction of route tendering was very gradual. The first tenders took place in 1985, but
it was not until 1995 that half of the network was tendered at least once.l® Since then,
tendering has reached its steady state regime with 15-20% of the network tendered every

year.

The procurement process. About every two weeks London Transport Buses issues an
Invitation to tender which provides a detailed description of upcoming contracts for sale.
The invitation simultaneously covers several routes, usually in the same area of London
(the set of routes that corresponds to an invitation is called a tranche). For each route, the
invitation provides a complete description of the service for tender including the routing,
service frequency and vehicle type. Contract length is typically five years. A set of pre-
qualified operators may submit sealed bids for individual routes. In addition, operators may
submit a bid for route combinations within the tranche. A bid specifies an annual price
at which the operator is willing to provide the service.!” There is a period of two months
between the invitation to tender and the tender return date, and another two months before

contracts are awarded. The official award criterion is best economic value and the process

$Non-tendered routes remained operated by the subsidiaries of London Buses Limited under a negotiated

block grant. The private operators and the subsidiaries competed for the tendered services.
"London Transport Buses has experimented with different contractual forms. The majority of contracts

are 50 called gross cost contracts, in which the revenues collected on the buses accrue to London Transport
Buses and the operator receives a fixed fee for the service. Some contracts are net cost contracts, in which
the operators take responsibility for the revenues. The price for the operator service then consists of those
revenues plus a transfer from (or payment to) London Transport Buses. Finally, net cost contracts may
contain a provision that limits the risk the operator takes in case the revenues were too different from the

forecast. If bidders are risk neutral, which we assume in our analysis, all three contracts forms are equivalent.
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follows EU law for fair competition.’® In practice, this means that the contract is awarded
to the low bidder but deviations at the margin are possible to account for operator quality
for instance.® To allow winning operators to reorganize and order new buses if necessary,

contracts start 8 to 10 months after the award date.

Description of the bid data.”® We have collected data on 179 tranches consisting of
a total of 674 routes offered to operators between December 1995 and May 2001 (return
date). For each tranche and for each route in the tranche, the data include the following
information: (1) contract duration and planned start of the contract (2) route character-
istics including the route start and end points; route type (day route, night route, school
service, mobility route); annual mileage; bus type (single deck, midibuses, double deck or
routemaster); and the peak vehicle requirement;?! (3) the identity of bidders and all their
submitted bids (including bids for combinations of the routes in the tranche). For the auc-
tions held starting in May 2000, the data also contain an internal cost estimate generated
by London Transport Buses for every route.

Contract heterogeneity. There are many dimensions along which the routes in our sample
vary. Route characteristics affect costs and, ultimately, participation and bids. A monetary
measure of contract heterogeneity is the internal cost estimate (ICE) prepared by London
Transport Buses since May 2000. We generated a predicted internal cost estimate based
on a regression of the ICE on route characteristics. We found the predicted ICE to be an
accurate assessment of the final cost. We considered a regression of the log of bids and the
log of low bids on the internal cost estimate. The internal cost estimate explains 90% of
the variation in the bids and 92% in the variation of low bids. In order keep the number
of explanatory variables in our empirical specification small, we use the predicted internal
cost estimate to account for contract heterogeneity.

Most auctions consist of only few routes.?? Qur estimation uses the 118 tranches in our

data that have no more than 3 routes. Table 1 provides summary statistics of our bid data

BEEC directive 93/38.
"The empirical analysis revealed no systematic patterns in these considerations that we could model

explicitly. We interpret the considerations at the margin as noise in the awarding process.
p Y P 3 P
20 Appendix A provides further details concerning the sources of the data.
21 The peak vehicle requirement determines how many buses the winning operator needs to commit to the

contract.
*2The distribution of routes across tranches in our sample is the following: 50 tranches consist of a single

route, 36 tranches have two routes, 32 tranches have 3 routes, 13 tranches have 4 routes, 10 have 5 routes,

27 tranches have between 6 and 10 routes, and 11 tranches have more than 10 routes.
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for these tranches.?3

Table 1 Descriptive Summary of the Bid Data (Tranches with 1, 2 and 3 routes)

Variable Obs Mean Std Min Max
PVR 218 965 826 1 52
In(mileage) 218 1200 179 6.21 1440
In(ICE) 218 1328 1.29 10.82 15.56
No-Bidders-per-Tranche 118 3.70 1.74 1 8
No-Bidders-per-Route 218 294 157 1 7
Log-Stand-Alone-Bid 641 13.12 128 947  15.87
Log-Combination-Bid 83 1448 0.74 1175 15.89
Money-Left-on-Table (%) 177 13.54 20.36 0.06 157.86

On average 3.7 bidders submit at least one bid on a tranche. The number of bidders
ranges between 1 and 8. Fewer bids are submitted on individual routes. On average 2.94
operators submit a bid for an individual route. The number of bids per route ranges between
1 and 7. A total of 44 bidders submit at least one bid on a tranche with three routes or
less. Of those, 26 win a contract.

Operators submit a total of 641 stand-alone bids. The distribution of stand-alone bids
resembles a log-normal distribution. The average stand-alone bid equals 13.1 in logarithm
which amounts to about 490,000 Pounds. Since bidders are committed by their bids, stand-
alone bids define implicitly a combination bid (with value equal to the sum of the stand-alone
bids). We call a combination bid "non trivial” when it is strictly less than the sum of the
component stand-alone bids. On the tranches with two and three routes a total of 83 non
trivial combination bids and 218 trivial combination bids are submitted.?4

Reasons invoked by the operators to offer discounts for combinations of routes include
the possibility to share spare vehicles and depot overhead costs in general, and more efficient
organization and coordination of working schedules. Ignoring trivial combination bids, the
discount of a combination bid relative to the sum of stand-alone bids by the same company

equals 4.5% on average. The discount amounts to 3.9% with two-route bids, 7.7% with

#The equivalent statistics for the whole sample are very similar.
247 trivial combination bid is generated for each non overlapping combination of routes s and ¢ over which

a bidder bid without submitting a bid on route combination s U t.

The following calculation provides a sense of the censoring present in our data due to the reserve price
and the combination bid constraint imposed by LTB. If all bidders who ever submitted a bid on a route in
a tranche had submitted a bid on all the routes and route combinations in the tranche, we would have 852

stand-alone and 693 combination bids.
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3-route bids. When all combination bids are included (i.e those implicitly defined by stand-
alone bids), this discount drops to 1.1% on average (1% for two-route bids and 1.6% for
3-route-bids).

The market for bus operators. Bus operators tend to be organized in groups with
operational subsidiaries active in local areas of London. As of November 2000, there were
64 pre-qualified bus companies in the London area. Because operational companies that
belong to the same group don’t bid against one another, we define the bidding entity at
the group level, and refer to it as a “bidder” or an “operator.” This yields 51 independent
pre-qualified bidders in the market. After the privatization of the London Buses subsidiaries
in 1994, a substantial reorganization and consolidation of the industry took place. Since
then, the market has stabilized with a C4 ratio around 70% between late 1996 and 2001.
For each bus operator active in the tendered bus services in London, we have a complete
history of its depots (openings/first time use for the tendered market and closings, location)
since deregulation, as well as its committed fleet for the tendered market (on a monthly
basis, by bus type). Depots are leased on a long term basis or bought, and a typical garage
has capacity for 50-100 buses and serves about 8 routes. Table 2 provides descriptive |

statistics of our operator data for the period between November 1995 and May 2001.

Table 2 Descriptive Statistics for the Operators (Monthly, Nov 95 - May 01)

Variable Obs Mean Std Min Max
Bidders-with-active-garage 67 20,06 1.11 13 23
Active-garages 67 8275 347 76 88
Garages-per-operator 1,344 4.12 5.22 1 25
Buses-per-operator 1,344 26790 376.77 O 1,355

A few elements are worth noting. First, asymmetry among operators is considerable.
For example, in November 2000, a total of 10 operators had one garage, 4 operators had
two garages, one operator had 6 garages, one operator has 7 garages, one operator had 9
garages, one operator had 11 garages, one operator have 13 garages, and one operator has
21 garages. This size asymmetry is also reflected in the distribution of market shares in our
sample as well as in the range of bus types bidders operate.

Second, despite a fairly concentrated market, an active fringe of small bidders seems to
be providing a certain level of competition. For our whole sample, “entrants”, i.e. bidders
without an established garage at the time of the tranche, submitted 10.6% of all the bids,
and bidders with only one established garage submitted another 15.95% of the bids. In our
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sample, there was an entrant or a bidder with only one garage bidding on 49.11% of the
routes. The incumbency rate is 62%. Such active fringe would make collusion very difficult

to sustain.

The determinants of uncertainty and bidder participation. A measure of uncer-
tainty is the relative difference between the lowest and second lowest stand-alone bid, or
money left on the table. It equals 13.54%. Thus, stand-alone bids overpay by about 110,500
Pounds on average. This suggests considerable uncertainty about the competitors’ bids. As
the number of bidders increases, the amount overpaid decreases. The money left on the
table equals 20.94% when two bids are submitted, 11.51% when three bids are submitted,
9.36% when four bids are submitted and 7.69% when five or more bids are submitted. Thus,
even as the number of bids submitted increases, the uncertainty does not vanish. With five
or more bidders the amount overpaid for the average contract equals almost 63,000 Pounds.

What determines the uncertainty in bids? At the operator level, costs are determined in
part by the actual expenses in capital, labor and fuel incurred in carrying out the contract.
But they also depend on the opportunity of using these resources, especially capital, in
other ways. There is probably little uncertainty among operators concerning the expected
cost of labor or fuel (there are well functioning markets for these), but opportunity costs
may not be known to other operators. Qur interpretation is that uncertainty in this market
15 best viewed as stemming from private information about (opportunity) costs.

An important question for modelling bidding behavior in the London bus routes market
is to determine whether cost uncertainty arises at the firm, tranche, or route level. In other
words, does the opportunity cost vary at the firm level, the garage level or route level? To
examine these questions we decompose the variation in the bid submission decision.

We examine how much of the variation in the decision variable is explained by tranche
fixed effects, route fixed effects, tranche-depot and tranche-operator fixed effects, as well as
dead mileage (closest distance from the route to the garage). We focus on bid submission
decisions by bidders with an active garage at the time of the auction and on tranches of
two and three routes. We are left with 3,358 observations. Due to the large number of
explanatory variables, we consider the linear probability model and estimate it using OLS.
The empirical model is y = XA + u, where y = 1 if a bid is submitted and zero otherwise,
X denotes a vector of explanatory variables and u denotes the residual.

Table 3 reports our results for several specifications. The individual specifications grad-
ually add more variables to X. A description of these is given in the second column, and

their number is given in the third column. The fourth and fifth columns report the R? and
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adjusted R’ for the specification. We interpret the increase in the fraction of explained
variance as a measure of the importance of the added variables. The last column reports
the value of the F- statistic for the test of joint significance of the explanatory variables
added relative to the previous model.?* For example, the test statistic for the hypothesis
that tranche fixed effects are zero (model (2)) is an F- distributed random variable with
(67, 3288) degrees of freedom.

Table 3 Variance Decomposition of the Bid Submission Decision*
)

Variables Included #var R? R F
(1) Dead Mileage, linear and quadratic (DM) 3 024 024 520.75*
(2) DM+ Tranche Fixed Effects (TF) 70 0.28 0.27  3.00*
(2 DM+Route Fixed Effects 170 030 026 1.63*
(3) DM~+TF+ Operator Fixed Effects 92 031 029 4.14*
(4) DM+TF+Depot Fixed Effects 159 040 037 6.83*

* Tranches with 2 and 3 routes. ** indicates significance at 1% level.

Models (2) and (2’) test competing interpretation of the sources of uncertainty common
to all bidders: at the tranche or at the route level. Both do equally well on the basis of
the adjusted R®. We also tested whether route fixed effects are significantly different from
zero when tranche fixed effects are present. The test statistic is an F- distributed random
varjable with (100, 3188) degrees of freedom. It is equal to 0.73. We cannot reject the null
hypothesis that route fixed effects are zero once tranche fized effects are accounted for. For
this reason, models (3) and (4) build on model (2).

According to the R? in model (4) about 60% of the variation remains unexplained. The
unexplained part comes from the remaining uncertainty as to whether a bidder submits a
bid on a given route after controlling for dead mileage, garage fixed effects and tranche fixed
effects. We may interpret this uncertainty as a bidder specific idiosyncracy arising at the
route and tranche level. Notice also, that the order in which we add variables may affect
the contribution to the R?. We looked at permutations of the order and found no major
differences.

The empirical evidence suggests the following origins for the cost uncertainty: First,
there is no evidence of cost shocks common to all bidders at the route level after controlling
for tranche fixed effects. Second, a substantial part of the uncertainty in bidders’ decisions

is explained by bidder asymmetry captured by dead mileage, bidder fixed effects and depot

25** denotes we can reject the null hypothesis at a 1% confidence level.
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fixed effects. Third, there is considerable residual uncertainty for each bidder arising at the

route and tranche level.

Summary and conclusions. The evidence presented in this section supports the view
that a multi-unit combinatorial first price auction with private values and multi-dimensional
private information is a reasonable model for the London bus routes market. We argue these
points in turn. Multi-unit combinatorial; The tranche is the proper level of analysis for this
market. First, the temporal simultaneity of the auction for the routes in the same tranche,
their geographic proximity as well as the existence of combination bids requires that we
analyse them at the same time. Second, several elements suggest that inter-tranche effects
may not be very important. The delay of 10 months between the award date and the start of
the contract reduces the role for capacity in this market. In addition, combination bidding
is motivated in part by (local) cost synergies among routes, but different tranches tend to
cover different geographical areas.?6 First price: The competitive assumption is consistent
with the existence of the active fringe of bidders. Private Values: Most of the inputs used
by operators have well-functioning markets. In addition, our bidders are experienced so we
expect them to be able to forecast accurately their costs, in the sense that cost forecasts
by competitors should not lead to revise their own cost estimates. Finally, the fact that
we did not find evidence of common shocks at the route level lends further support to this
hypothesis. Multi-dimensional private information: Our specification is flexible. It does
allow for cost correlation across routes, it does not assume it. This seems important in view

of the evidence presented in table 3.

6 Estimation Results [preliminary and incomplete]

This section describes our estimates.

Our data do not contain reserve prices. To account for the reserve price in the estimation,
we presume that reserve prices follow a specific functional form that is linear in the internal
cost estimate. A lower bound on the reserve price is then the highest ratio of accepted bid
to the reserve price. In our data this ratio equals 1.45. We use this number for our analysis.
We vary this number to assess the robustness of our estimates to changes in the reserve

price rule. Specifically, lowering the number should not affect the estimates qualitatively.

26The geographic dispersion of the tranches together with local nature of the business reduces the inter-
actions among tranches and bidders. We calculated that an average bidder in our sample bid on a tranche

every 5 months.
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As instruments for the moment condition any of the exogenous data are admissible.
These include all bidder and auction specific variables on each auction and the powers of
these variables. The total number of instruments has to exceed the number of parameters.
For the mean of route combination s on auction ¢ for bidder i we select the following eight
instruments: internal cost estimate, the number of routes in the tranche, dead mileage of
bidder 7 to route (combination) s, the number of garages of bidder i, a dummy that equals
one if the route combination s consists of routes with identical bus types??, the number of
firms with a garage within 5 miles of one route on the tranche, a constant, the square of
the internal cost estimate. For the second moment of bids of bidder i on route combination
s Ut we select the internal cost estimate for the route combination s U ¢, the total number
of routes within the tranche, dead mileage of bidder i to route combination s Ut, a dummy
that equals one if the route combination s U ¢ consists of routes with identical bus types
and a constant. The total number of instruments exceeds the number of parameters in the
model which guarantees identification.

Potential bidders on auction ¢ include all bidders with a garage within 5 miles of at
least one route within auction ¢. Bidders who submit a bid and have a garage further than
5 miles from all routes on auction ¢ are classified as fringe bidders. We assume that it is
common knowledge that fringe bidders submit a bid on at least one route on auction ¢ and
include fringe bidders in the set of potential bidders.

Parameter Specification: There are a number of natural restrictions to impose on the
way the parameters of the bid density depends on bidder and auction characteristics X™ =
(2%, w", w™**'). First, the parameters should be invariant with respect to permutation in the
characteristics of bidder ¢ opponents, w~"!. Second, the parameters should also be invariant
with respect to permutations of the indices of sets of routes with the same number of routes.
This implies that 3, = 3,, for all s, 7 such that |s| = |7|. Restrictions on the matrix A are

Qs,s = Qrg, Qgr = Qrg, sy = Qry a0d ayg = ay - for all s,7 such that |s| = |7|, and

8, T £ u.
In the estimation of the mean, we want to control for tranche, bidder, contract hetero-

geneity and synergy effects. As explanatory variables we include the internal cost estimate?®,

#"The dummy also equals one for stand-alone routes.
* As explained above, the data provide information on the internal cost estimates for the most recent

60 routes. For earlier route we construct a measure of the predicted internal cost estimate. The predicted
internal cost estimate is calculated based on a regression of the internal cost estimate on route characteristics.
Route characteristics included in the regression are the number of peak vehicle required, the mileage, and

bus type. The regression explains 95% of the variation in the internal cost estimate.
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the number of bidders with at least one garage within 5 mile of one of the routes of the
tranche, the number of garages of bidder ¢ within 5 miles of one route on the tranche, the

dead mileage of bidder ¢. This yields the following specification for u%:

i = By + BoICE, + f3NO-GARAGES-TOTAL + 33NO-GARAGES-i
+B4DEAD-MILEAGE-i, + B5IDENTICAL-BUS-TYPES, + 8gNO-ROUTES-IN-THE TRANCHE

We specify the elements «; ; of the matrix A as follows:

Qgr = A1 1{s='r} + /\21{3757 and sMT=0} + )‘31{37ET and sNT#0} + A4]-{r0utes s and 7 have the same bus type}

The first constant accounts for diagonal elements in A, while the second and third constant
account for off diagonal elements. We distinguish two off-diagonal effects depending on
whether route s and 7 have a non-empty interesection or not. The last constant accounts

for synergy effects that may arise if the bus types required in routes s and 7 are the same.

7 Conclusions [To be written]

8 Appendix A: Data sources and coding issues

8.1 Data sources:

London Buses’ tendering program: For each tranche and route in the tranche, this
document provides the tender issue date, the tender return date, the planned start of the
contract, the contract duration, together with the start and end point of the routes in the

tranche.

Bid evaluation documents: These are London Transport Buses internal documents
assessing the bids received for one to several routes in a tranche. These documents provide
information on all route characteristics, including the identity of the incumbent when this
is an existing route, the bids received (including combination bids), the identity of the
bidders and, most of the time, the garage from which they plan to operate the route.??

These documents analyze the bids received and make an award recommendation. When

?9Missing values for the garage locations were completed using the bidder’s closest garage to any of the

end points of the route at the time of the tender return.
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this recommendation deviates from the lowest price criterion, the criterion used is detailed

and justified.

Route history: History of all the London Bus routes since 1934, compiled by the London
Omnibus Traction Society (LOTS). For each route, this data contains information on the
identity of the bus operator, the garage from which operation is carried out, the bus type and
peak vehicle requirements (PVR) for weekdays, Saturdays and Sundays. For our analysis
we have used weekdays PVR.

Depot history: Document compiled by the London Omnibus Traction Society (LOTS)
since the deregulation in 1985. Provides information on openings, closings and transfers
of bus depots used for London bus routes. This document is also our primary source of
information for entry, mergers and acquisition (secondary sources included London Buses
internal memos, companies’ websites and LOTS’ London Bus and Tram fleetbook publica-

tions).

8.2 Coding issues:

Route Alternatives: London Transport Buses sometimes specifies alternative specifica-
tions for a route (different bus types, frequencies or routing, for example). By convention,

we have coded only the bid information related to the awarded service specification.

Age of vehicle: Vehicle age is the only dimension of the offer, besides price, that is not
specified by London Buses. Hence, operators often submit different bid - vehicle age combi-
nations. In the data, we have coded the bids for both existing and new buses. However, we
did not find evidence that would suggest a trade-off between age and bid levels in the award
decision. Rather, London Transport Buses seems to evaluate bids holding the age dimension
constant, and award decisions are in practice indistinguishable from the award decisions of
a contracting authority that would randomize between the age category it prefers, and then
selects the best bid within that category. As a result, strategic interactions between the
bids along the age dimension can be ignored, and in our main regressions, we have focused
on the bids submitted for the age category that has attracted bids from the greatest number
of bidders.

Tranches: By definition, a tranche is a set of routes auctioned at the same time. For our
analysis, we have split several of the original tranches into independent subtranches when the
following criteria were satisfied: (1) The two subsets of routes were in distinct geographical

areas of London, (2) No combination bids were submitted across the two subsets of routes,
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and (3) The bids received on the two different subsets of routes originate from two different

sets of bidders, or at least from two different sets of garages.

9 Appendix B: Proofs

Proposition 5 (Continuity and differentiability of G;) Suppose bids are distributed
continuously on a closed support of full dimension. Then bidder i’s probability of winning
contract s, G5(b%), is continuous at all b on its domain for all s, and it is a.e. continuously

differentiable in bt for all t.

Proof: Given m contracts, there are 2™ possible winning allocations among bidder i and
his opponents: either b + BE\‘ , is the bidder-bid combination most advantageous to the
auctioneer, or Bgi is. Ignoring ties, bidder ¢ wins contract s if

b+ Bg\is < min{b} + Bg\it for all ¢t # s; Bgi} (12)

Define Wi(b! ) = min{b! + BE\’ ,for all t # s; B5'} — Bg\is. (notice that W is a function of
b ).
Claim 1: W(b' ) is a random variable distributed continuously on a closed support.

Proof: For W not to be a random variable, it must be min{b} + Bg\it for all t # s; Bg'} is
perfectly correlated with Bg\za. Because all the Bg\lt /Bg"* are best bids on different subsets
of the contracts, the only way for them to be perfectly correlated on a one by one basis
involves perfect correlation of some of the bids in the (b!,...,5") space. This is ruled out
given the full dimensionality of the bids support. Hence W¢ is a random variable. It has a
closed support since (b, ..., b") have a closed support, and it is continuously distributed on

that support since (b, ..., b™) are distributed continuously on its support. QED
Let W! denote the support of WE. Define fi(.|bL,) as the probability distribution function
of W on WE and fi(.|bL,) = 0 on R\W:. Then

G.) = [ fital iz

is well defined and it represents the probability that bidder ¢ wins bundle s given his
submitted vector of bids . By construction, it is continuous in b and differentiable at any
value of b% where fi(.|b%,) is continuous. (e.g. Rudin, 1967, thm 6.20). By claim 1 and by

construction of f%, the only points of discontinuity of f; in b lie at the boundaries of the
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support of W{. Therefore G, is a.e. differentiable in 5%. Continuity and a.e. differentiability
with respect to bi, t # s, is proved in a similar fashion since the distribution of W is defined
implicitly through integration over BS"\iS\BEi\BE\it (cfr expression (12)). This implies that
fi(|b,) is differentiable a.e. in b, t # s. Therefore, so is G%. QED

Remark 1 Because f. is always left and right continuous, left and right derwatives are

always well defined.

Remark 2 Points of non-differentiability of G5 and irrelevant bids. A noteworthy conse-
quence of the proof of proposition 5 is that G, fails to be differentiable in b, at b2/ that
makes the bid on bundle s just relevant (since bl s corresponds to the upper bound of W?).

At v , G may also fail to be differentiable with respect to a bid on one other bundle.

Proof of lemma 1: Given m contracts, there are 2™ possible allocations of these con-
tracts between bidder 7 and his opponents: Either b + B.s_'\is is the best bid combination
submitted, in which case bidder i wins exactly subset s of the contracts, or Bg* is the best
bid combination, in which case bidder i does not win anything,.

Any increase in b makes allocation b% + Bg\it more expensive relative to the other ones,
but otherwise does not affect the relative ranking of b% + Bg\z s 8 7 t, and Bg". Hence the
probability that any of these competing allocations wins cannot decrease: Gt > 0 for t # s
and 3 G% < 0 for all ¢t. Likewise, the probability that allocation b + B_g\it wins cannot
increase: Gy < 0.

If b¢ is strictly relevant (in particular, this means that G; > 0), G} must be strictly negative,
for otherwise increasing b} by epsilon would make bidder i strictly better off (given the
previous argument, raising b: does not hurt the profits bidder i makes from his other bids),
a contradiction with the fact that b is optimal for bidder .

We now show that Y, G% < 0 for some ¢t when b* contains at one least strictly relevant bid.
Towards a contradiction, suppose that ¥ G% = 0 for all t. This means that the support of
min{bY, b + Bg\it for all t # s} is distinct from the support of Bgi (by proposition 4, these
random variables are distributed continuously on a closed support). Since one of bidder i’s

bids wins sometimes, it means that3°

min{b, bl + Bg\it for all ¢ + s} < Bg*, for all realizations of B (13)

30The expression in (13) implicitely assumes that the supports of min{by, b¢ + By, for all t # s} and Bg*

are convex. It is straightforward to adapt the argument to non convex (and closed) support.
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Since b* is optimal
lggx{nﬁn{bg — Bg', b+ By, — Bg' forall t # s}} = 0

(for otherwise increasing all bids by epsilon would be a profitable deviation). But this means
that Bg* competes at least with one of bidder ¢’s bids. Hence >, Gt < 0 for at least one t.
QED

Proof of proposition 3:

From proposition 5, we know that the point at which a bid becomes just relevant, beff ,
is a potential point of non differentiability of the G5 function. Nevertheless these remain
both left and right differentiable and we adopt the convention that whenever a bid is just
relevant, its derivatives is taken from the left (i.e. making it strictly relevant). With this
convention, lemma 1 also applies to all relevant bids.

From now on, we also introduce the notation “contract 0” with the convention that b4 = 0,
S\{0} = S, and say that bidder i wins contract 0 when Bj3® is the winning bidder-bid
combination (bidder ¢ wins nothing). With this definition, Gy =1~ " scs G

The following definition will be useful:

Definition: The set of contracts 2 C § U {0} forms a connected chain of substitutes if
for all s and s’ in (& # 0), either G_g’ > 0 or there exist wy,...,w, € §} such that
G¥1 > 0,G%2 > 0,..,G5_ > 0.

Claim 1: If all bids on the set of contracts S are relevant, then 2 = § U {0} forms a

connected chain of substitutes.

Proof: First, since G5 < 0 (lemma 1(1)), any contract s C S must be connected with
at least one other contract. In addition, contract ( is conmected to at least one other
contract by lemma 1(3). Second, if two contracts in {2 are not connected, they must exist
at least two disjoint sets of contracts in 2, with no contract in the first set connected with
a contract in the other set. We now prove that if all bids in S are relevant, then ) forms
a connected chain of substitutes. Towards a contradiction, suppose that set {s,t} and the
rest form two disjoint sets of contracts (the focus on a set of two contracts is without loss
of generality). Consider the following continuous random variables distributed on a closed
support (using assumption 1 and a similar argument to that of lemma 1), min{b% + Bs_‘\itv
b —0—B§\is} and mjnw#,s{bfu+B§\iw}. Since all bids are relevant, sometimes min{bé—i—BS_\it, bi+-
Bgist < minye s {2, —|—B§\iw} (bidder ¢ wins contract s or t) and sometimes min{b? +B§\it,
A +Bg,} > MiNyz 5 {6, +B§<w}. Hence min{bf;—i—Bg\it, b +B§\ia} = miny.,s {0, —|—B§\iw}
must happen given that their support is closed and that b* is optimal (if those supports were
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disjoint there would be a scope for a profitable deviation). Therefore, s or ¢ must compete

directly with some w in the other set, i.e. G, or G5, > 0. A contradiction.

We can now prove that det VG < 0 (so that VG is invertible). The proof is by induction.
By lemma 1, property (3) holds strictly for at least one contract. We relabel the rows and
columns of matrix V& such that the sum of the elements in the first row is strictly negative

(this does not change the value of the determinant):
Y G<o (14)

Consider the linear transformation, L; on the columns of VG that adds to column s # 1,
a5 times column 1 such that G% + alsG% = 0 for s # 1 (notice, a1, > 0 and Y a3, < 1
given (14)). This leaves the first row of matrix VG with all zeros except in the first position.
Denote the resulting matrix by L1 VG and let [L1 VG] be matrix L; VG from which the first
~ row and the first column have been removed. Since determinants are invariant to linear
transformations, det VG = det L1 VG = G} det[ L1 VG].

We claim that the resulting 2" x 2™ matrix [L; V] satisfies properties (1) to (3) of the
original matrix, including the strict inequalities. Property (1): The diagonal elements of
matrix (L1 V@] are equal to G + a1,G;. Since the G elements satisfy properties (1) to (3)
and aq; < 1, we have G5+ a1,G5 < 0. Property (2): The off-diagonal of the new matrix are
equal to Gf +a1:G§ > 0 since it is a sum of positive elements. Property (3): The sum of the
row elements of the [L; VG) matrix is equal to 3, ) GE+ G4 Y2, ans < 0 since Y GL <0
and ), £1 15 < 1. To show that this inequality holds strictly for at least one row of the new
matrix {L1 V@], we need to consider two cases. First, if any of the elements G5 of the first
column of the original matrix was strictly positive, then since ) o1 Xl < 1, there exists a
row in the new matrix such that condition (3) holds strictly. If all the elements G§ = 0 for
s # 1, contract 1 is directly connected only to contract 0. But then by claim 1, it must be
that one of the remaining contracts, say ¢, is connected to 0. This means that 5, Gt < 0
in the original matrix, and in the new matrix.

Repeating the argument leads to sign(det VG) = sign(—1)?"—1 < 0.

To prove the last part of the claim we show that any submatrix made from VG by removing
some rows and the corresponding columns has the same properties (1) to (3), including the

strict inequalities. The proof then proceeds as before. QED

Proof of corollary 1: (i) Follows directly from propositions 2 and 3. (ii) When only stand-
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alone bids are permitted, bidders solve the following constrained maximization problem:

max Z(b@ —¢5)Gs(b) st b= bi\t +biforalls CSandtC s
b sCS
Substituting for b; = bs + b; into the objective function reduces the problem to a m
dimensional optimization problem in bids for the individual contracts ¢ for s € S. Assuming

differentiability, the first order conditions are:

Yo G+ Y AL —cw) Y GL)}=0 forallses
t s.t. sCt wCSs i st sCt
This is a system of m linear equations in 2™ — 1 variables (the unobserved c,). This
system is under-identified. (iii) Follows from standard results for the single unit auction

environments (see, e.g. Guerre et al., 2000). QED

Proof of proposition 4: The claim that any binding constraint introduces a single dimen-
sion of underidentification follows directly from (9) since the solution is unique up to the
value of the Lagrangian multiplier involved in that constraint. The rest of the proof uses
the following properties of determinants: (1) Determinants are invariant to linear transfor-
mations of rows or columns, (2) determinants are invariant to the permutation of rows and
the corresponding column, (3)

an+bun .. an aiy .. an bu .. aww

det . .. =det | .. . + det | . .. , and (3)

an1+by1 . ann aN1 .. GaNN bvi . ann
the multiplication of any row or column by a constant, multiplies the value of the determi-

nant by that constant.

Let G denote the 2™ —1 x 1 vector of Gy, define e; as the 2™ — 1 x 1 vector with entry 1 at
the row corresponding to contract ¢ and zero elsewhere and I.—; ,, as the 2™ —1 x 1 vector
with entry 1 in the row corresponding to contract r and -1 in the rows corresponding to

contracts ¢ and w. With these notations,

DEsmN) = -G+ mectd 3 Al
tc s T twCr, thw=0,
[t]=|wl

Let AgB denote matrix A from which the column corresponding to contract s has been

replaced by vector B. Cramer’s rule together with properties (2) and (3) of determinants
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imply that

. 1 i
b — o = s det VGLD(Hu,\)
— 1 d
= Ve (—det VGG + E p1y det VG ey (15)

tCs

+ Z Z Ar=tUw det VGSIr=tUw]

TCS t,wCr, tNw=>0,
<]

In words, the underlying cost parameter ¢, depends linearly on the values of the Lagrangian

multipliers.
Claim 1: det VGge; > 0 if t = s, and zero otherwise.

Proof: If the reserve price on contract ¢ is binding or if ¥ is irrelevant (which is the only
time we need to worry about the sign of det VGset), then Gf(bif 7 b ) =0forall s#t,
and GY(b{/7,bi,) < 0, that is, the column in matrix VG that corresponds to contract ¢ is
all zeros but for the (row) entry corresponding to the t** contract. Now, by construction,
the column in matrix V(G,e; that corresponds to contract s is all zeros but for the (row)
entry corresponding to the ¢t contract. If s # ¢, matrix VGye; has two linearly dependent
columns (corresponding to contracts s and t) so det V@se; = 0. If s = ¢, det VGye; is equal
to the determinant of matrix VG from which the row and column corresponding to contract

t have been removed. By proposition 3, det VGre; > 0 (since 2™ rows remain).

Claim 2: det VG, I

o > 0ifs=r itis < 0if s =t or w.

Proof: Suppose first that 7 = 5. Define L, as the operator that adds the values associated
to row s to rows t and w so that L,VGl,—s ., becomes a matrix with a zero column
at position s except for the “1” entry at row s. Define M as the 2™ x 2™ matrix made
of matrix L;VGels—t from which the row and the column corresponding to contract s
have been removed, and M’ as the 2™ x 2™ matrix made of matrix L,VG from which
the row and column corresponding to contract s have been removed. Then M = M’ and
det M' = det M > 0 by lemma 1 and property (1). The claim follows from the fact that
det VGsls—syw = det L,V G Ity = det M.

Now suppose that s = ¢ or w, and define L, as the operator that adds row s to row r and

substracts row s from row w so that L (VG,I, ) is now a matrix with a zero column

=allw

except for an entry —1 at row s. Define M and M’ as above. The claim follows from the
fact that det VG, I = —det M < 0.

r=allw

Proposition 4 then follows from (15), claims 1 and 2, and the fact that det VG < 0. QED
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Proof of corollary 2: Suppose that b = b} + bZ, for some ¢, w and s with s = + U w and
tNw = . Define oy = ¢; + €y — Ctuw, the cost synergy between contracts ¢t and w. With
this notation, bf, —cy = bé —c+ bfu — ¢y + . Let Oy the operator on the columns of V&

that add column s to columns ¢ and w. We have:

[

bt — Ct
VGBI ~d = CVGE) | by —cu | = D, V)

Xtuw

Given that such transformation on the column of V& do not change the value of the
determinant, we can use the same type of arguments as in the proof of proposition 4 (in
particular, note that ai., is at the position corresponding to contract s) to prove that
depends negatively on the value of AMtuw)=tuw- Therefore, setting Ag )=t = 0 provides

an upper bound to the synergy ay,. QED
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