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Abstract

A number of studies have identi�ed patterns of positive correlation of returns, or

comovement, among di�erent traded securities. We distinguish three views of such co-

movement. The traditional \fundamentals" view explains the comovement of securities

through positive correlations in the rational determinants of their values, such as cash


ows or discount rates. \Category-based" comovement occurs when investors classify

di�erent securities into the same asset class and shift resources in and out of this class

in correlated ways. A related phenomenon of \habitat-based" comovement arises when

a group of investors restricts its trading to a given set of securities, and moves in and

out of that set in tandem.

We present models of these di�erent views of comovement, and then assess them

empirically using data on stock inclusions into and deletions from the S&P 500 index.

Index changes are noteworthy because they change a stock's category and investor

clientele (habitat), but do not change its fundamentals. We �nd that when a stock is

added to the index, its beta and R-squared with respect to the index increase, while its

beta with respect to stocks outside the index falls. The converse happens when a stock

is deleted. These results are broadly supportive of the category and habitat views of

comovement, but not of the fundamentals view. More generally, we argue that these

non-traditional views may help explain other instances of comovement in the data.

�We thank Will Goetzmann, Anthony Lynch, Mike Ryngaert, Robert Shiller, seminar participants at

Columbia University, Harvard University, the London School of Economics, New York University, Rice

University, UCLA, the University of Florida at Gainesville and Yale University for helpful comments, Huafeng

Chen and Bill Zhang for helpful comments and outstanding research assistance, and Rick Mendenhall and

Standard and Poor's for providing data.
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1 Introduction

Researchers studying the structure of asset returns have uncovered numerous patterns of

comovement. There is a strong common factor in the returns of small-cap stocks, for example,

and also in the returns of value stocks, closed-end funds, stocks in the same industry, and

bonds of the same rating and maturity. There is common movement within national markets

and across international markets.

Common factors such as these have attracted considerable attention because of the pos-

sible role assets' loadings on them play in explaining average rates of return. However, little

work has been done on understanding why the common factors arise in the �rst place. Why

do certain groups of assets comove while others do not? What determines loadings, or betas,

on these common factors? In this paper, we consider three theories of comovement { one

traditional, two more novel { and present new evidence in support of the non-traditional

theories.

The traditional view, derived from economies without frictions and with rational in-

vestors, is that comovement in prices re
ects comovement in fundamental values. Since, in a

frictionless economy with rational investors, prices equal fundamental value { in other words,

an asset's rationally forecasted cash 
ows, discounted at a rate appropriate for their risk {

any comovement in prices must be due to comovement in fundamentals.

An asset's fundamental value can change either because rational investors revise their

expectations about future cash 
ows or because they apply a di�erent discount rate to

those cash 
ows. Under the traditional view, then, correlation in returns is due either to

correlated changes in rationally expected cash 
ows or to correlated changes in rationally

applied discount rates. Correlated discount rates can in turn arise because of news about

interest rates or risk aversion, which a�ects all discount rates simultaneously, or because

of correlated changes in assets' rationally perceived risk. There is little doubt that this

\fundamentals" view of comovement explains many instances of common factors in returns:

stocks in the oil industry move together because there is a common component to news

about their future earnings, while the market factor in stock returns is at least in part due

to changes in interest rates.1

A number of recent papers, however, present evidence suggesting that the traditional

view of comovement is incomplete. Froot and Dabora (1999) study Siamese-twin stocks,

which are claims to the same cash-
ow stream, but are traded in di�erent locations. Royal

Dutch, traded primarily in the U.S., and Shell, traded primarily in the U.K., are perhaps

1The �ndings of Shiller (1989) illustrate the importance of accounting for changes in discount rates when

examining patterns of comovement. He shows that the U.S. and U.K. stock markets comove more than can

be explained by correlation in news about dividends alone; however, he also shows that allowing for plausible

changes in discount rates can potentially explain the residual comovement.
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the best known example. If return comovement is purely a re
ection of comovement in news

about fundamentals, these two stocks should be perfectly correlated. In fact, as Froot and

Dabora show, Royal Dutch comoves more with the S&P 500 index of U.S. stocks than Shell

does, while Shell comoves more with the FTSE index of U.K. stocks.

Hardouvelis, La Porta, and Wizman (1994) and Bodurtha, Kim, and Lee (1995) uncover

related evidence in their studies of closed-end country funds, whose assets trade in a di�erent

location from the funds themselves. Since funds and their underlying assets represent claims

to similar cash-
ow streams, the fundamentals view of comovement predicts that fund returns

and returns on their net asset values should be highly correlated. In fact, closed-end country

funds comove much more with the national stock market in the country where they are

traded than with the national stock market in the country where their assets are traded.

For example, a closed-end fund invested in German equities but traded in the U.S. typically

comoves more with the U.S. stock market than with the German stock market.

Fama and French (1995) investigate whether the strong common factors detected in

the returns of value stocks and small stocks by Fama and French (1993) can be traced to

common factors in the earnings of these stocks. While they do uncover a common factor in

the earnings of small stocks, as well as in the earnings of value stocks, these cash-
ow factors

line up poorly with the return factors. Once again, there appears to be some comovement

in returns that has little to do with comovement in news about fundamentals.

Finally, Pindyck and Rotemberg (1990) �nd strong comovement in the prices of seven

commodities { wheat, cotton, copper, gold, crude oil, lumber, and cocoa { that are chosen to

be as independent of one another as possible. They are neither complements nor substitutes,

are grown in di�erent climates and are used for di�erent purposes. Under the traditional

view of comovement, the only plausible source of price correlation is news about aggregate

demand. However, even after experimenting with a variety of forecasting models, Pindyck

and Rotemberg are unable to �nd suÆcient volatility in news about aggregate demand to

fully explain the comovement.2

These examples suggest that investor trading patterns, and not just fundamentals, de-

termine comovement. In this paper, we consider two speci�c models of such trading-induced

comovement. The �rst model is based on the \category" view of comovement, recently an-

alyzed by Barberis and Shleifer (2003). They argue that when making portfolio decisions,

many investors �rst group assets into categories such as small-cap stocks, oil industry stocks,

or junk bonds, and then allocate funds at the level of these various categories rather than at

2Pindyck and Rotemberg (1993) uncover similar evidence in an analogous study of stock returns. They

construct groups of stocks that are in completely di�erent lines of business and �nd that even though

the stocks within each group are in di�erent industries, their returns still comove strongly. This \excess"

comovement remains after controlling for any cash-
ow or discount rate correlation induced by news about

future macroeconomic conditions.
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the individual asset level. If some of the investors who use categories are noise traders with

correlated sentiment, and if their trading a�ects prices, then as they move funds from one

category to another, their coordinated demand will induce common factors in the returns of

assets that happen to be classi�ed into the same category, even if these assets' cash 
ows

are largely uncorrelated.

Our second model of trading-induced comovement, which we refer to as the \habitat" view

of comovement, starts from the observation that many investors choose to trade only a subset

of all available securities. Such preferred habitats may arise because of transaction costs,

international trading restrictions, or lack of information (Merton, 1987). As these investors'

risk aversion or sentiment changes, they alter their exposure to the securities in their habitat,

thereby inducing a common factor in the returns of these securities. For example, Lee,

Shleifer, and Thaler (1991) argue that closed-end mutual funds are a preferred habitat of

individual investors, and that therefore their market prices comove with the demand shifts

of individual investors even when their fundamentals do not. More generally, this view of

comovement predicts that there will be a common factor in the returns of securities that are

held and traded by a speci�c subset of investors, such as individual investors.3

Trading-induced comovement is a simple way of understanding the empirical evidence

described above. If small-cap stocks and value stocks form natural categories in investors'

minds { and the large number of money managers and mutual funds focused on such stocks

suggests that they do { then the category view of comovement predicts that there will be

common factors in the returns of such stocks that are only weakly related to any common fac-

tors in their cash 
ows. Moreover, if many individual investors in the U.S. con�ne themselves

to holding domestically traded securities, then the habitat view of comovement predicts that

closed-end country funds traded in the U.S. will comove substantially with U.S. stocks even

if their holdings consist of foreign equities.

The idea that trading unrelated to news about fundamental value might generate co-

movement builds on earlier evidence that such trading a�ects prices. Some of the best-known

evidence of this type comes from stock index rede�nitions. When an index is rede�ned, in-

vestors who follow it must reduce their holdings of securities that have been downweighted

in the index and buy those whose weighting has increased. Under the eÆcient markets view,

these demand shifts should not a�ect prices, as they carry no information about fundamental

value. However, Harris and Gurel (1986), Shleifer (1986), and Lynch and Mendenhall (1997)

�nd strong price e�ects for S&P 500 inclusions, while Kaul, Mehrotra, and Morck (1999) and

Greenwood (2001) �nd similar e�ects in the Toronto Stock Exchange TSE 300 and Nikkei

3Other models which consider investor habitats are motivated by similar information and transaction

cost considerations as our own, but focus on di�erent issues. Merton (1987) analyses the cross-sectional

implications when investors apply standard mean-variance analysis, but only over a subset of available

assets. Our focus is on the e�ects of habitat-level demand shifts that a�ect all stocks in the habitat equally.
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225 indices, respectively.4

In this paper, we return to the S&P 500 inclusion and deletion data. The same data

that has proved useful in showing that uninformed demand can a�ect prices may also be

helpful in showing that such demand can generate comovement. Since addition to the S&P

500 does not a�ect fundamental value, a stock's inclusion should not cause a change in the

correlation of its fundamental value with the fundamental values of other stocks already in

the index. Under the fundamentals view of comovement, then, it should not cause a change

in the correlation of the stock's return with the return of the S&P. In particular, a univariate

regression of a stock's return on the S&P return both before and after the stock's inclusion

should produce similar slope coeÆcients, or S&P betas, and similar R2s.

On the other hand, the vast popularity of S&P-linked investment products suggests that

the index is a preferred habitat for some investors, and is viewed as a natural category by

many more. Category-based investors include investors pursuing passive portfolio strategies

through index funds as well as index arbitrageurs exploiting discrepancies between cash and

futures prices. The trading-based theories therefore di�er from the fundamentals view in

their predictions about patterns of comovement before and after a stock's inclusion. In

particular, simple models of the category and habitat views predict that in the univariate

regression described above, the S&P beta and R2 should increase after inclusion; that in a

bivariate regression of a stock's return on both the S&P and a non-S&P \rest of the market"

index, the S&P beta should rise after the stock's inclusion while the non-S&P beta should

fall; that these patterns should go in the opposite direction for deletions; and that these

e�ects should be stronger in more recent data as the S&P becomes more widely used as a

category and habitat.

Our evidence supports the trading-based theories. Over a range of data frequencies,

stocks added to the S&P increase their beta and R2 with the S&P, while in bivariate regres-

sions that control for non-S&P returns, increases in S&P beta are even more pronounced.

Signi�cant results in the opposite direction are observed when stocks are deleted from the

index, and e�ects for both inclusions and deletions are stronger in more recent data.

While adding a stock to the S&P 500 should not cause a change in the cash-
ow covari-

ance matrix, it is possible to construct alternative explanations for our results under which a

stock's inclusion coincides with a shift in the covariance matrix. To rule these explanations

out, we also conduct a \matching" analysis: for each \event" stock included into the S&P

index, we search for a matching stock, drawn from the same industry as the event stock

and with similar market capitalization and recent growth in capitalization, but which is not

added to the S&P. We �nd that across all data frequencies, the matching stocks display

4Numerous other papers present evidence consistent with uninformed demand a�ecting prices. These

include French and Roll (1986), Lamont and Thaler (2000), Goetzmann and Massa (2001), Gompers and

Metrick (2001), and Mitchell, Pulvino, and Sta�ord (2002).
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much smaller shifts in S&P and non-S&P betas than do the event stocks.

In earlier research, Vijh (1994) investigates whether inclusion into the S&P a�ects a

stock's beta with respect to the overall market. He �nds a signi�cant, but economically

small, increase in stocks' betas with the market after inclusion. Our results show that while

inclusion has little e�ect on overall market beta, it has large e�ects on betas computed

with respect to components of the market, and that these e�ects are consistent with the

trading-based theories of comovement.

In a recent paper, Greenwood and Sosner (2002) also test the predictions of our models.

Instead of focusing on the S&P 500, they use data on additions to and deletions from the

Nikkei index. They �nd evidence of increases in beta and R2 following a stock's addition to

the index, and of decreases following deletions. Their evidence is thus also consistent with

our predictions; if anything, the results for the Japanese data are even stronger than those

for the U.S. data.

In Section 2, we present simple models illustrating our two non-traditional views of

comovement, as well as their distinct predictions. In Section 3, we test a number of these

predictions using data on S&P 500 inclusions and deletions. Section 4 concludes.

2 Two Models of Comovement

The traditional view of return comovement is the fundamentals-based view, under which the

returns of two assets are correlated because changes in the assets' fundamental values are

correlated. In this section, we lay out two alternative theories of comovement { a category-

based theory in Section 2.1. and a habitat-based theory in Section 2.2. The models we

present are simple, but they nevertheless allow us to illustrate the predictions that motivate

the empirical work in Section 3.

In both models, the economy contains a riskless asset in perfectly elastic supply and with

a zero rate of return, and also 2n risky assets in �xed supply. Risky asset i is a claim to

a single liquidating dividend Di;T to be paid at some later time T . The eventual dividend

equals

Di;T = Di;0 + "i;1 + : : :+ "i;T ; (1)

where Di;0 and "i;t are announced at time 0 and time t, respectively, and where

"t = ("1;t; : : : ; "2n;t)
0 � N(0;�D); i.i.d over time.

The price of a share of risky asset i at time t is Pi;t and the return on the asset between time
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t� 1 and time t is5

�Pi;t � Pi;t � Pi;t�1. (2)

More generally, for any variable x, we use the notation �xt+1 to denote xt+1 � xt.

2.1 Category-based Comovement

Barberis and Shleifer (2003) argue that when making their portfolio decisions, many investors

�rst group assets into categories based on some characteristic, and then allocate funds at

the level of these categories rather than at the level of individual securities. Thinking about

investments in terms of categories is particularly attractive to institutional investors who,

as �duciaries, must follow systematic rules in their portfolio allocation. The use of asset

categories simpli�es the investment process, and also provides a consistent way of evaluating

the performance of money managers.

To test any predictions that emerge from a category-based model, it is important to have

a concrete way of identifying categories. One place to start is to look at the products mutual

and pension fund managers o�er clients. If money managers are responsive to their clients,

they will create products that correspond to the categories those clients like to use when

thinking about investments. The fact that many money managers o�er funds that invest

in value stocks suggests that \value stocks" is a category in the minds of many investors.

Treasury bonds, junk bonds, large stocks, small stocks, growth stocks, or stocks within a

particular industry, country, or index are then also all examples of categories.

The category view of comovement holds that some of the investors who use categories

are noise traders with correlated sentiment. As their sentiment changes, they channel funds

in and out of the various categories. If these fund 
ows a�ect prices, they will generate

common factors in the returns of assets that happen to be classi�ed into the same category,

even if these assets' fundamental values are uncorrelated. For example, if \value stocks" is

a popular category, then as noise traders move funds in and out of value stocks in line with

their changing sentiment about value stocks, they will create a common factor in value stock

returns even if value stock earnings are only weakly correlated.

To see this in a formal model, suppose that there are just two such categories, X and

Y , and that risky assets 1 through n are in category X while assets n + 1 through 2n are

in Y . It may be helpful to think of X and Y as \old economy" and \new economy" stocks,

respectively. We write noise trader demand NC
i;t for shares of an asset i in category X at

time t as6

NC
i;t =

1

n
[AX + uX;t] ; i�X (3)

5For simplicity, we refer to the asset's change in price as its return.
6The \C" superscript stands for Category.
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and for an asset j in category Y as

NC
j;t =

1

n
[AY + uY;t] ; j�Y . (4)

Here AX and AY are constants, and uX;t and uY;t represent time t noise trader sentiment

about categories X and Y , respectively, distributed as

 
uX;t
uY;t

!
� N

  
0

0

!
; �2u

 
1 �u
�u 1

!!
; i.i.d. over time. (5)

The fact that the demand for all assets within a category is the same underscores the fact

that these investors allocate funds at the category level and do not distinguish among assets

in the same category.

The economy also contains a large number of identical agents known as \fundamental

traders," who act as arbitrageurs. They have CARA utility de�ned over the value of their

invested wealth one period later, and take price changes to be normally distributed.7 They

therefore solve

max
Nt

EF
t (� exp[�
(Wt +Nt

0(Pt+1 � Pt))]); (6)

where

Pt = (P1;t; : : : ; P2n;t)
0

Nt = (N1;t; : : : ; N2n;t)
0;

and where Ni;t is the number of shares allocated to risky asset i, 
 governs the degree of risk

aversion, EF
t denotes fundamental trader expectations at time t; and Wt is time t wealth.

Optimal holdings NF
t are given by

NF
t =

(V F
t )�1



(EF

t (Pt+1)� Pt); (7)

where

V F
t � varFt (Pt+1 � Pt);

with the F superscript in varFt again denoting a forecast made by fundamental traders.

If the total supply of the 2n assets is given by the vector Q, then given fundamental

trader expectations about future prices, current prices satisfy

Pt = EF
t (Pt+1)� 
V F

t (Q�NC
t ); (8)

where

NC
t = (NC

1;t; : : : ; N
C
2n;t)

0:

7This assumption is con�rmed in equilibrium.
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Rolling this equation forward, and setting

EF
T�1(PT ) = EF

T�1(DT ) = DT�1,

where

Dt = (D1;t; : : : ; D2n;t)
0;

leads to

Pt = Dt � 
V F
t (Q�NC

t )� EF
t

T�t�1X
k=1


V F
t+k(Q�NC

t+k): (9)

We simplify this further by imposing a more speci�c structure on the cash-
ow co-

variance matrix �D. In particular, we suppose that the cash-
ow shock to an asset has

three components: a market-wide cash-
ow factor which a�ects assets in both categories, a

category-speci�c cash-
ow factor which a�ects assets in one category but not the other, and

a completely idiosyncratic cash-
ow shock speci�c to a single asset. Formally, for i�X,

"i;t =  MfM;t +  SfX;t +
q
(1�  2

M �  2
S)fi;t; (10)

and for j�Y ,

"j;t =  MfM;t +  SfY;t +
q
(1�  2

M �  2
S)fj;t; (11)

where fM;t is the market-wide factor, fX;t and fY;t are the category-speci�c factors, and

fi;t and fj;t are idiosyncratic shocks;  M and  S are constants which control the relative

importance of the three components. Each factor has unit variance and is orthogonal to the

other factors. This implies

�ij
D � cov("i;t; "j;t) =

8>><
>>:

1, i = j

 2
M +  2

S, i; j in the same category, i 6= j

 2
M , i; j in di�erent categories.

(12)

In words, all assets have a cash-
ow news variance of one, the pairwise cash-
ow correlation

between any two distinct assets in the same category is the same, and the pairwise cash-
ow

correlation between any two assets in di�erent categories is also the same.8

Now suppose that fundamental traders conjecture that the conditional covariance matrix

of returns has the same structure as the cash-
ow covariance matrix, so that

V F
t = V = �2

 
V0 V1
V1 V0

!
; 8t; (13)

8Our theory does not depend on the existence of category-speci�c cash-
ow factors, but we include them

for the sake of generality. Indeed, it may be the existence of a cash-
ow factor in a group of assets that leads

to the initial creation of a category out of those assets.
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where

V0 =

0
BBBBBB@

1 �1 � � � �1

�1
. . . . . .

...
...

. . . . . . �1
�1 � � � �1 1

1
CCCCCCA
; V1 =

0
BBBBBB@

�2 � � � � � � �2
...

. . .
...

...
. . .

...

�2 � � � � � � �2

1
CCCCCCA
;

for some �2, �1, and �2. In words, all assets have the same return variance, the pairwise

return correlation between any two distinct assets in the same category is the same, and the

pairwise return correlation between any two assets in di�erent categories is also the same.

Given this conjecture,

Pt = Dt � 
V (Q�NC
t )� (T � t� 1)
V (Q� A); (14)

where

A = (
AX

n
; : : : ;

AX

n
;
AY

n
; : : : ;

AY

n
)0;

which means that up to a constant,

�Pt+1 = "t+1 + 
V�NC
t+1: (15)

This reduces to

�Pi;t+1 = "i;t+1 +
�uX;t+1
�1

+
�uY;t+1
�2

; i�X (16)

�Pj;t+1 = "j;t+1 +
�uX;t+1
�2

+
�uY;t+1
�1

; j�Y;

where

�1 =
1


�2(�1 + (1� �1)=n)
(17)

�2 =
1


�2�2
,

con�rming fundamental traders' conjecture about the structure of the conditional covariance

matrix of returns: cov(�Pi;t+1;�Pj;t+1) is indeed constant for all distinct assets i and j in

the same category, and it is also constant for all assets i and j in di�erent categories. We

study equilibria in which the speci�c values of �2, �1, and �2 conjectured by fundamental

traders are also con�rmed by (16), in the sense that they lead, through (16), to returns with

exactly the conjectured covariance matrix.9

Equation (16) shows that in this economy, there can be a common factor in the returns

of a group of stocks simply because those stocks happen to belong to the same category.

9It is straightforward to show that such equilibria exist for a wide range of values of the exogeneous

parameters 
,  M ,  S , �
2

u, and �u.
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When noise traders experience a positive sentiment shock �uX;t+1 about category X, they

invest more in all securities in X, pushing the prices of these assets up together.

The intuition for why �uX;t+1 a�ects the return on stock 1 is clear enough: when noise

traders become more bullish about old economy stocks, they channel funds into X, pushing

the prices of all securities in that category up. Why �uY;t+1 also a�ects the return on stock 1

is less obvious. Suppose that noise traders become more bullish about new economy stocks,

pushing up the prices of securities in Y . Fundamental traders, seeing the stocks in Y trade at

high prices relative to their expected cash 
ows, will short those stocks and hedge themselves

as much as possible against adverse fundamental news by buying stocks in X. In this way,

the category Y sentiment shock, �uY;t+1; is also transmitted to stocks in X.

The fact that in our model, noise traders a�ect prices { and hence also, patterns of

comovement { relies on the assumption that fundamental traders have horizons which end

before cash-
ow uncertainty is resolved at time T . If fundamental traders only cared about

wealth at time T , they would be more aggressive in countering the e�ect of noise traders.

However, since they have a one-period horizon, they are forced to worry about future noise

trader demand, which makes them invest less aggressively. Equations (16) and (17) show

that a high risk aversion 
 or perceived stock volatility �2 make them particularly reluctant

to bet against the noise traders, increasing the impact of the sentiment shocks on returns.

The idea that fundamental traders may have short horizons and that this may limit

arbitrage has been emphasized by earlier work (De Long, Shleifer, Summers, Waldmann

1990, Shleifer and Vishny 1997). This view has found support in the considerable empirical

evidence, cited in the introduction, suggesting that demand unrelated to news about fun-

damental value a�ects security prices. Moreover, Wurgler and Zhuravskaya (2001) con�rm

that arbitrageurs are particularly wary of countering noise traders when the risk of doing so

is greater. They show that the price jump on inclusion into an index is larger for stocks with

poor substitutes, in other words, for those cases where arbitrageurs face higher risk.

To uncover evidence of category-induced comovement, we look for testable predictions

that are unique to this economy. One set of predictions describes what happens when a stock

enters a new category. Such reclassi�cation can occur in many ways. For example, if the

market capitalization of a large-cap stock declines suÆciently, it enters the small-cap stock

category. More simply, stocks are regularly added to indices like the S&P 500 and Russell

2000 to replace stocks that have been removed due to bankruptcy or merger.

Our �rst prediction is:

Proposition 1: Suppose that risky asset j, previously a member of Y; is reclassi�ed into X.

Then, assuming a �xed cash-
ow covariance matrix �D, and as the number of risky assets

11



n!1, the probability limit of the OLS estimate of �j in the univariate regression

�Pj;t = �j + �j�PX;t + vj;t; (18)

where

�PX;t =
1

n

X
l�X

�Pl;t; (19)

as well as the probability limit of the R2 of this regression, increase after reclassi�cation.10

The intuition is straightforward: when asset j enters category X, it is bu�eted by noise

traders' 
ows of funds in and out of that category. This increases its covariance with the

return on category X, �PX;t, and hence also its beta loading on that return. For simplicity,

we assume a �xed cash-
ow covariance matrix. A more general version of the proposition

would predict that beta increases more than can be explained by any change in cash-
ow

correlations.

A similar intuition lies behind the following prediction:

Proposition 2: Suppose that risky asset j, previously a member of Y; is reclassi�ed into X.

Then assuming a �xed cash-
ow covariance matrix �D, and as the number of risky assets

n!1, the probability limit of the OLS estimate of �j;X in the bivariate regression

�Pj;t = �j + �j;X�PX;t + �j;Y�PY;t + vj;t (20)

rises after reclassi�cation, while the probability limit of the OLS estimate of �j;Y falls. In

particular, the pre-reclassi�cation values of the two slope coeÆcients, �j;X and �j;Y , and

their post-reclassi�cation values, �j;X and �j;Y , satisfy

�
j;X

= 0; �
j;Y

= 1

0 < �j;X ; �j;Y < 1; �j;X + �j;Y = 1:

The essential prediction of the category view of comovement is that when a stock enters

category X, it becomes more sensitive to the category X sentiment shock �uX;t. The

independent variable in the Proposition 1 regression, �PX;t, is not a clean measure of this

sentiment shock: a substantial part of its variation comes from news about market-level cash


ows, fM;t. In regression (20), �PY;t can be thought of as a control for such news, making

the coeÆcient on �PX;t a cleaner measure of sensitivity to �uX;t. Note that while �j;X rises

after reclassi�cation, it rises by less than 1, and that while �j;Y falls, it falls by less than 1.

Moreover, the rise in �j;X has the same absolute magnitude as the fall in �j;Y .

10Proofs of all propositions are in the Appendix.
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Category-based comovement depends on the existence of noise traders who allocate funds

by category, as in equations (3)-(5). If there are no such noise traders in the economy,

Propositions 1 and 2 will not hold. Equation (16) shows that in this case

�Pi;t+1 = "i;t+1; i�X (21)

�Pj;t+1 = "j;t+1; j�Y;

so that comovement is fundamentals-based: the correlation of returns is completely deter-

mined by correlation in cash-
ow news. If, as assumed in the propositions, the cash-
ow

covariance matrix �D remains constant, the correlation structure of returns will also remain

constant. In other words, �j and R
2 in Proposition 1 and �j;X and �j;Y in Proposition 2 will

remain unchanged after reclassi�cation. In particular, it is straightforward to show that in

the absence of noise traders, �j;X = 0 and �j;Y = 1 both before and after reclassi�cation.

In our empirical work, we also test a more restrictive version of category-based comove-

ment. This view, studied by Barberis and Shleifer (2003), posits not only that there are

noise traders who allocate funds by category, but also that this allocation occurs in a speci�c

way. In particular, it assumes that when noise traders move funds into one category of risky

assets, they �nance this shift by withdrawing funds from another such category, rather than

by drawing down their holdings of the riskless asset. This may be due to institutions having

target allocation levels for the broadest asset classes { cash, bonds, and stocks { so that

while they are willing to move between di�erent equity categories, they are less willing to

change their overall allocation to equities. As a result, when they move into \new economy"

stocks, they withdraw funds from \old economy" stocks, so as to keep their overall equity

position unchanged.

We can think of this more restrictive version of category-based comovement as imposing

the additional constraint �u = �1 in (5), so that any sentiment driven shift in demand

for one category automatically corresponds to a decrease in demand for the other category.

While Propositions 1 and 2 clearly still hold under this restriction, a new prediction emerges:

Proposition 3: In the presence of noise traders with the demand function (3)-(5) with �u =

�1, and as the number of risky assets n ! 1, the correlation of the return on X with the

return on Y ,

corr(�PX;t;�PY;t);

is lower than in an economy that contains only fundamental traders.

When the economy contains only fundamental traders, the correlation of the returns of

categories X and Y is completely determined by the correlation of the fundamentals of those

two categories. Introducing noise traders with demand functions (3)-(5) and �u = �1 adds

perfectly negatively correlated shocks to the returns of categories X and Y; lowering the

correlation between them. Proposition 3 becomes testable in the time series if, over time, a
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growing fraction of investors have the demand functions in (3)-(5) with �u = �1. In that

case, assuming a �xed cash-
ow covariance matrix, the correlation of the two categories'

returns should fall over time.

Other than testing a more restrictive version of category-based comovement, Proposition

3 may also be useful in distinguishing category-based comovement from the second non-

traditional view of comovement, habitat-based comovement.

2.2 Habitat-based Comovement

The habitat view of comovement starts from the observation that many investors trade only

a subset of all available securities. Such preferred habitats may arise because of transaction

costs, international trading restrictions, or lack of information (Merton, 1987). For example,

suppose that one group of investors { \habitatX" investors { trades only securities 1 through

n, a set we again refer to as X, while another group { habitat Y investors { trades only

n + 1 through 2n, set Y . We can think of assets 1 through n as U.S. stocks, and assets

n + 1 through 2n as U.K. stocks; there are many investors in both countries who restrict

themselves to trading only domestic securities. We emphasize that X and Y play di�erent

roles here than in Section 2.1. There, they represent groups of assets that some investors

do not distinguish between when allocating their demand. Here, they represent groups of

assets that are the sole holdings of some investors.

Now suppose that habitat X investors experience an increase in risk aversion. They will

then reduce their positions in all the risky assets they hold, generating a common factor in

the returns of securities in X, even if those risky assets' fundamental values are uncorrelated.

More generally, the habitat view of comovement predicts a common factor in the returns

of any group of stocks that happens to be the primary holdings of a particular subset of

investors.

To compare this view to the category-based view, suppose that habitat X investors'

demand for risky assets is given by

NHX
i;t =

1

n
[AX + uX;t] ; i�X (22)

NHX
j;t = 0; j�Y:

We think of uX;t as tracking their level of risk aversion, changes in which lead them to alter

their exposure to all assets in X. Of course, uX;t can also be interpreted as an indicator of

sentiment about the future returns of assets in X, although the model does not require such

an interpretation. By de�nition, habitat X investors' demand for assets in Y is zero.

14



Similarly, habitat Y investors' demand is

NHY
i;t = 0; i�X (23)

NHY
j;t =

1

n
[AY + uY;t] ; j�Y .

We assume  
uX;t
uY;t

!
� N

  
0

0

!
; �2u

 
1 �u
�u 1

!!
; i.i.d. over time.

As before, we close the economy with fundamental traders who behave as in (6). Given

their expectations about future prices, current prices are given by

Pt = EF
t (Pt+1)� 
V F

t (Q� (NHX
t +NHY

t )) (24)

= EF
t (Pt+1)� 
V F

t (Q�NC
t );

exactly as in (8). In other words, even though investors' demand functions are motivated

di�erently here than in the case of category-based comovement, prices are the same. Once

again, there will be a common factor in the returns of assets in X even if there is no common

factor in news about their fundamental values.

The equivalence in equation (24) means that Propositions 1 and 2 also hold in this

economy, withX and Y signifying investor habitats, not categories. For example, Proposition

1 should now be interpreted as predicting that if a stock becomes part of the habitat of a

speci�c group of investors, it will comove more with the other assets in that habitat than it

did before.

Proposition 3, however, is not a direct implication of the habitat-based view of comove-

ment, because it relies on the additional assumption that �u = �1. This assumption is less

plausible in the habitat setting than in the category setting. While target allocations for

the broadest asset classes may motivate this assumption in the context of category-based

investing, there is no obvious reason why an increase in the risk aversion of habitat X in-

vestors should automatically be accompanied by a decrease in the risk aversion of habitat Y

investors. Proposition 3 therefore potentially o�ers a way of distinguishing between the cat-

egory and habitat views: evidence consistent with the prediction in that proposition would

favor the category-based view.

It is important to note that the habitat-based view of comovement depends on limits

to arbitrage, just as the category-based view does. The fact that some investors trade only

certain securities means that habitatsX and Y can trade at di�erent prices, even if their �nal

cash 
ows are similar, thus opening up potentially attractive opportunities for unconstrained

arbitrageurs. Since fundamental traders have short horizons in our model, they are unable

to exploit these opportunities very aggressively.
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3 Empirical Tests

Propositions 1 and 2 lay out predictions that hold in an economy where return comovement

is in part due to category-based or habitat-based trading 
ows, but which do not hold in

an economy where return comovement is entirely a function of comovement in news about

fundamentals. We now test these predictions to see if we can uncover any evidence of

trading-induced comovement.

To test the propositions, we need to identify a group of securities with three characteris-

tics. First, the group must be viewed as a natural category, or must be a preferred habitat

for many investors, or both. Second, since these propositions concern reclassi�cation, there

must be clear and identi�able changes in group membership over time. Finally, in order

to control for fundamentals-based comovement, a security's inclusion or removal from the

group should not cause a change in the correlation of the security's fundamental value with

the fundamental values of other securities in the group.

One set of securities that satis�es these requirements is the S&P 500 index. Earlier

we suggested identifying categories by looking at the products money managers o�er their

clients. The immense popularity of S&P-linked products suggests that this index may be

a natural category in many investors' minds: S&P index funds and depositary receipts are

important investment vehicles for both institutions and individuals, while S&P 500 futures

are heavily traded by index arbitrageurs. The S&P 500 may also be a preferred habitat for

U.S. investors who are reluctant to invest in foreign stocks and who doubt that active fund

managers can outperform passive indices.

The S&P also has the second characteristic we require: there is clear and identi�able

turnover in its membership. In a typical year there are about 30 changes; our full sample,

which we describe in Section 3.1, includes 455 additions and 76 deletions.

Finally, the act of adding a stock to the S&P 500 should not cause a change in the

covariance of the stock's cash 
ows with other stocks' cash 
ows. The stated goal of Standard

and Poor's is to make the index representative of the U.S. economy, not to provide signals

about future cash 
ows. Deletions from the index, however, are another matter. Stocks

are usually removed from the index because a �rm is merging, being taken over, or nearing

bankruptcy. In these situations cash-
ow characteristics may well be changing, so we exclude

these cases from our deletion sample.

We therefore test Propositions 1 and 2 for the case where X is the S&P 500, and Y is

stocks outside that index. In Section 3.2., in line with Proposition 1, we test whether a

stock's beta with the S&P and the fraction of its variance explained by the index increase

(decrease) after the stock's inclusion in (removal from) the index. In Section 3.3., in line

with Proposition 2, we test whether a stock's beta with the S&P, controlling for the return
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of non-S&P stocks, goes up (falls) after inclusion (deletion).

Our null hypothesis is that return comovement is entirely a function of comovement in

news about fundamentals, so that the betas and R2 just described do not change. The

alternative hypothesis is that trading 
ows do induce comovement, so that the betas and R2

change as predicted in the propositions.

While adding a stock to the S&P 500 should not cause a change in the cash-
ow covari-

ance matrix, it is possible that a stock's inclusion may coincide with a shift in the covariance

matrix, and that this may drive some of our results. We address this possibility in Section

3.5.

Tests of Propositions 1 and 2 can provide evidence in favor of our non-traditional theories

of comovement, but do not allow us to distinguish between them. Proposition 3 may be

useful here, in that it is more obviously an implication of the category-based view than of

the habitat view. Therefore, in Section 3.6., motivated by Proposition 3, we test whether

the correlation of S&P and non-S&P stocks has fallen in line with the growing importance

of the S&P: evidence supportive of this prediction would favor the category-based view.

3.1 Data

We consider S&P 500 index inclusions between September 22, 1976 and December 31, 2000

and deletions between January 1, 1979 and December 31, 2000. Standard & Poor's did not

record announcement dates of index changes before September 1976 and we were unable to

obtain data on deletions before 1979.

There are 590 inclusion events in the inclusion sample period and 565 deletions in the

deletion sample period. Inclusion events are excluded if the new �rm is a spin-o� or a

restructured version of a �rm already in the index, if the �rm is engaged in a merger or

takeover around the inclusion event, or if required return data is not available. Deletion

events are excluded if the �rm is involved in a merger, takeover, or bankruptcy proceeding,

or if required return data is not available.11 These circumstances, determined by searching

the NEXIS database, exclude the vast majority of deletions. The �nal sample includes 455

inclusions and 76 deletions.12

11This last possibility may arise if the event occurs so close to the end of the sample that it prevents us

from estimating post-event betas.
12The S&P 500 inclusion and deletion data are available upon request.
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3.2 Univariate Regressions

If category-induced or habitat-induced trading 
ows cause return comovement, Proposition

1 predicts that stocks which are added to (deleted from) the S&P 500 will comove more

(less) with the other members of the index after the addition or deletion event.

For each inclusion and deletion event, we run the univariate regression

Rj;t = �j + �jRSP500;t + vj;t (25)

separately for the period before the event and for the period after the event, and record the

change in slope coeÆcient, ��j, and the change in R2, �R2
j . Rj;t is the return of the event

stock between time t � 1 and t, while RSP500;t is the contemporaneous return on the S&P

500 index, obtained from the CRSP Index on the S&P Universe �le.13

We run these regressions for three data frequencies: daily, weekly, and monthly. With

daily and weekly data, the pre-event regression is run over the 12-month period ending the

month before the month of the inclusion announcement, while the post-event regression is

run over a 12-month period starting the month after the month of the inclusion implemen-

tation. In the case of monthly data, we use a 36-month period ending a month before the

announcement month and a 36-month period starting a month after the implementation

month for the pre-event and post-event regressions, respectively.14

Table 1 reports the change in slope coeÆcient, averaged across all events in the sample,

��, as well as the average change in R2, �R2. It con�rms that stocks added to the S&P

500 experience a strongly signi�cant increase in daily and weekly betas and R2: In the full

sample of additions, the mean increase in daily beta is 0.151 and in weekly data, 0.11. At

the monthly frequency, though, we are unable to detect a signi�cant increase in either beta

or R2: Other than a weakly signi�cant change in daily beta, we do not detect signi�cant

drops in beta or R2 around deletion events.

Another prediction of trading-based comovement is that since the importance of the S&P

has grown over the course of our sample, the e�ects predicted by Proposition 1 should be

stronger in the second half of our sample. Consistent with this, Table 1 shows that at daily

13In order to avoid spurious e�ects, we remove the contribution of the stock in question from the right-

hand side variable. For addition events, this means that there are 500 stocks in the right-hand side variable

before the addition, and 499 afterward. The reverse applies for deletion events.
14Up until October 1989, inclusions and deletions were made e�ective on the day of their announcement.

Since then, the changes have been announced a few weeks in advance of their actual implementation. It is

not clear whether to view the to-be-added stock as being in the index, or not in the index during the time

between announcement and implementation; signi�cant price e�ects have been documented on both days

(Lynch and Mendenhall, 1997). To avoid these issues entirely, we do not use data from the month of the

announcement or of the implementation; these are almost always the same month.
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and weekly frequencies, the increases in beta and R2 across inclusion events are quantitatively

larger over the second subsample.

The standard errors in the table deserve comment. If two events are close together in

calendar time, there may be substantial overlap in the time periods covered by the regressions

associated with each event. This means that the disturbances vj;t may be correlated across

events, which in turn implies that the ��j may not be independent but rather autocorrelated

at several lags.

We use simulation methods to compute standard errors that account for this dependence.

We generate a simulated data set, consisting of an S&P return and returns on included stocks,

and set the cross-sectional correlation of the disturbance terms to whatever value generates

a �rst-order autocorrelation in the ��j's equal to that observed in our results. We then

compute �� in this sample, under the null that betas do not change after inclusion. By

generating many such data sets, we obtain the distribution of �� under the null, and hence

also, appropriate standard errors.15

3.3 Bivariate Regressions

The univariate regressions provide evidence of trading-based comovement at higher frequen-

cies. Stronger evidence comes from tests of Proposition 2, which predicts that controlling

for the return of non-S&P stocks, a stock that is added to (removed from) the S&P will

experience a large increase (decrease) in its loading on the S&P return. To test this, for each

inclusion and deletion, we run the bivariate regression

Rj;t = �j + �j;SP500RSP500;t + �j;nonSP500RnonSP500;t + vj;t (26)

for the period before the event and the period after the event, and record the changes in

S&P and non-S&P betas, ��j;SP500 and ��j;nonSP500. RnonSP500;t is the return on non-S&P

stocks in the NYSE, AMEX, and Nasdaq universe between time t � 1 and time t. This is

inferred from index return and capitalization data using the identity that the capitalization-

weighted average return of S&P stocks and of non-S&P stocks equals the overall CRSP

value-weighted return on NYSE, AMEX, and Nasdaq stocks.

As before, we run the regressions at daily, weekly, and monthly frequencies. Daily and

weekly regressions are run over a 12-month period ending the month before the announce-

ment month and over a 12-month period starting the month after the implementation month.

15It turns out that at least for daily and weekly frequencies, cross-correlation of disturbances does not a�ect

the standard errors by very much. The reason is that such cross-correlation produces positive autocorrelation

in the ��j at the �rst few lags but negative autocorrelation at higher lags. As a result, the variance of ��

is only slightly higher than if the disturbances were uncorrelated.
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The monthly regressions use 36-month periods before announcement and after implementa-

tion.

Table 1 reports the change in S&P beta, averaged across all events in the sample, ��SP500,

as well as the average change in non-S&P beta, ��nonSP500. The results are statistically

stronger than the univariate results. At all three data frequencies, S&P 500 inclusion is

associated with a substantial and signi�cant increase in beta with the S&P and a substantial

and signi�cant decrease in beta with the rest of the market. For example, daily beta with

the S&P 500 goes up by an average of 0.357 and daily beta with other stocks drops by

-0.373. Large and signi�cant results also obtain for deletion events at the daily and weekly

frequencies. Moreover, the table shows that at all three data frequencies, the changes in

S&P and non-S&P betas are quantitatively larger in the second subsample.

One possible concern about the bivariate regression is collinearity, in that the two right-

hand side variables are highly correlated. However, the usual standard errors do, of course,

take the correlation of the explanatory variables into account { no special correction is

required. Collinearity does mean that the standard errors on the slope coeÆcients in the

bivariate regressions will typically be higher than on the slope coeÆcient in the univariate

regressions. Nonetheless, Table 1 shows that in spite of the larger standard errors, the

bivariate regressions are able to reject the null more strongly than the univariate tests.

While collinearity cannot explain our statistically signi�cant results in Table 2, it does ex-

plain another feature of the bivariate regression results, namely that ��SP500 and ��nonSP500
appear to sum to a number close to zero. To see this, note �rst that due to collinearity, the

sum of ��SP500 and ��nonSP500 will have a lower standard error than does either of ��SP500
or ��nonSP500. Mathematically, this is because collinearity induces negative correlation be-

tween ��SP500 and ��nonSP500, lowering the variance of their sum.

Second, the sum of ��SP500 and ��nonSP500 is approximately the change in overall

market beta after inclusion, which we already know from the work of Vijh (1994) to be

small. Putting these two observations together, it makes sense, both under the null and

alternative hypotheses, that the sum of ��SP500 and ��nonSP500 should be close to zero.

The key di�erence between the two hypotheses, though, and the one that we test in Table

1, is that ��SP500 should be statistically greater than zero for inclusions and statistically

lower than zero for deletions.

3.4 Calendar Time Tests

The methodology we use to test Propositions 1 and 2 in Sections 3.2 and 3.3 is often called

an \event time" approach. An alternative methodology is a \calendar time" approach. This

technique is often used to address a common statistical problem in event studies, namely
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correlation of returns across events. As described in Section 3.2., we use simulations to deal

with this issue. Performing calendar time tests o�ers a second way of checking that our

results are robust to these statistical considerations.

The calendar time approach requires the construction of two portfolios: a \pre-event"

portfolio whose return at time t, Rpre;t, is the equal-weighted average return at time t of all

stocks that will be added to the index within some window after time t; and a \post-event"

portfolio whose return at time t, Rpost;t, is the equal-weighted average return at time t of

all stocks that have been added to the index within some window preceding time t. In our

analyses of daily and weekly data, we take the window to be a year, and extend it to three

years for monthly data.

The calendar time test of Proposition 1 then calls for running two regressions,

Rpre;t = �pre + �preRSP500;t + vpre;t (27)

and

Rpost;t = �post + �postRSP500;t + vpost;t; (28)

and checking whether �post > �pre and whether the R2 in the second regression is greater

than in the �rst.

Similarly, the calendar time test of Proposition 2 calls for running the following two

regressions,

Rpre;t = �pre + �pre;SP500RSP500;t + �pre;nonSP500RnonSP500;t + vpre;t (29)

and

Rpost;t = �post + �post;SP500RSP500;t + �post;nonSP500RnonSP500;t + vpost;t; (30)

and checking whether �post;SP500 > �pre;SP500 and �post;nonSP500 < �pre;nonSP500.

Table 2 reports the changes in slope coeÆcients and R2s. In general, the results are as

supportive of trading-based comovement as the event time tests. In the univariate regres-

sions, signi�cant increases in beta and R2 occur at the daily and weekly frequencies, and

for R2; even at the monthly frequency. In the bivariate regressions, the results for inclusion

events are strongly signi�cant at all three data frequencies, although the results for deletion

events are weaker than before: there is no statistically signi�cant e�ect at any frequency.

3.5 Evaluating Alternative Explanations

We now consider two alternative explanations for the results in Table 1. One possibility is

that stocks in the S&P 500 index di�er from other stocks in terms of some characteristic,
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and that the stocks Standard and Poor's chooses to include are stocks that are increasingly

demonstrating that characteristic. If the characteristic is also associated with a cash-
ow

factor, this may explain our results.

The most obvious such characteristic is size. Stocks in the S&P have considerably higher

market capitalizations than stocks outside the index, and the stocks Standard and Poor's

includes into the index have often been growing in size prior to inclusion. Moreover, size

is associated with a cash-
ow factor: there is a common component to news about the

earnings of large-cap stocks. Our �nding that S&P betas increase around inclusion may

simply re
ect the fact that included stocks are growing in size around inclusion and are

therefore increasingly loading on the large stock cash-
ow factor. More generally, this is a

story in which inclusion into the S&P coincides with a change in the cash-
ow covariance

matrix, even if it does not cause it.

Another potential explanation is based on industry e�ects. Suppose that some industry

becomes increasingly dominant in the economy. This increases the fraction of the value of

the S&P made up by stocks in this industry. Moreover, in an e�ort to keep their index

representative, Standard and Poor's may start drawing an increasing number of new inclu-

sions from this industry. Since S&P beta is computed using the value-weighted S&P return,

this simultaneity can in principle explain our results: if Yahoo! is included into the S&P

at precisely the time that other technology stocks in the index are growing in value { as

indeed it was, having been added in December 1999 { it may covary more with the S&P

after inclusion than before.

To address both these competing explanations, we perform a matching exercise. For each

event stock included into the S&P during our sample period, we search for a \matching"

stock, drawn from the same industry as the event stock and in the same size decile as the

event stock, both at the time of inclusion and 12 months before inclusion, but which is not

included into the index. In other words, since the matching stock matches the event stock on

industry and on recent growth in market capitalization, it is as good a candidate for inclusion

as the event stock itself, but simply happens not to be included. If the matching stocks do

not demonstrate the same increase (decrease) in S&P (non-S&P) betas as the event stocks,

it strengthens the case that the results in Table 1 are due to trading-based comovement,

rather than to the alternative explanations.16 In the case of deleted stocks, the matching

16At the monthly frequency, in order to match the window betas are computed over, we look for matching

stocks that match the event stock on size both at inclusion and 36 months before inclusion. At all frequencies,

we initially try to match by SIC4 industry code. If no match can be found, we allow the matching stock

to be in the same SIC3 industry class, then to be within one size decile at inclusion, then to be within one

size decile 12 months before inclusion, then to be in the same SIC2 industry class, then to be within two

size deciles at inclusion, then to be within two size deciles 12 months before inclusion, and �nally to be

within three size deciles 12 months before inclusion. Events for which no such matches can be found are not

included in the matching exercise samples.
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stock is a stock in the S&P which matches the deleted stock on industry, and recent change

in market capitalization, but which is not removed from the index.

Table 3 and Figure I contain the results of the matching exercise. We discuss Figure I

�rst. Panels A, B, and C of the �gure present results for daily, weekly, and monthly data,

respectively. Within each panel, the top two graphs present results for the event �rms, while

the bottom two correspond to the matching �rms. Also, within each panel, the graphs on

the left present results for the �rst half of our sample, 1976-1987, while those on the right

correspond to the second half, 1988-2000.

These twelve graphs use rolling regressions to show how S&P and non-S&P betas change

in event time. To understand this more precisely, consider the top left graph in Panel A.

The solid line shows the mean daily S&P beta and the dashed line shows the mean daily

non-S&P beta. These coeÆcients are re-estimated each month using the prior 12 months

of daily data. Therefore coeÆcients plotted to the left of the left vertical line use only pre-

event returns. CoeÆcients plotted to the right of the right vertical line use only post-event

returns. CoeÆcients in between use both pre- and post-event data. In terms of these �gures,

the beta changes reported in Table 1 are the average beta as of event month +12, which uses

data from months [+1, +12] minus the average beta as of event month -1, which uses data

from months [-12, -1]. There are fewer data points in the graph (N = 169) than in Table

1 (N = 196 for additions in the �rst subsample), however, because the graph includes only

event �rms with available return data for a full 24 months after inclusion, and for which we

were able to �nd matching �rms. To be clear, the steady change in estimated betas between

the two vertical lines should not be interpreted as a steady change in true betas. Rather, it

arises from mixing data from the pre- and post-event regimes.

Figure I suggests that whichever frequency we look at, the alternative stories can explain

only a small fraction of our results: the matching stocks exhibit much smaller shifts in betas

than do the event stocks. Table 3, which reports the change in betas and R2 in univariate and

bivariate regressions for event stocks relative to the analogous changes for matching stocks,

con�rms this impression. At the daily and weekly frequency, and in the second subsample at

the monthly frequency, the changes in beta and R2 in univariate regressions and in S&P and

non-S&P betas in bivariate regressions, remain strongly signi�cant across inclusion events,

even after subtracting o� the corresponding changes for matching stocks.17

Even though there appears to be evidence of trading-based comovement at all three

frequencies, Table 3 suggests that the evidence for it is stronger at higher frequencies. It is

worth noting that this is itself a direct prediction of our alternative theories of comovement:

17In Table 1, we conducted simulations to correct the standard errors for possible correlation in disturbance

terms across regressions. This problem a�ects matching stock regressions just as much as it does event stock

regressions, but it does not a�ect di�erences in slopes across the two sets of regressions. The Table 2 standard

errors are therefore the usual ones { no simulation-based correction is required.
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the fraction of comovement due to our trading-based mechanisms should be larger at higher

frequencies. The reason is simply that the noise trader sentiment shocks, �uX;t and �uY;t,

are mean-reverting, and therefore explain less of the variance of monthly stock returns than

of the variance of daily stock returns. Going one step further, they must also explain less

of monthly return comovement than of daily return comovement. The pattern in Table 3

is supportive of this. The fact that there is evidence of trading-based comovement even in

monthly data, though, suggests that the noise trader sentiment shocks do not mean revert

very rapidly.18

3.6 Comovement Across Categories

The results of our tests of Propositions 1 and 2 lend support to both of our non-traditional

theories of return comovement, but do not help us distinguish between them. We argued

earlier that Proposition 3 emerges more naturally as an implication of the category view

than of the habitat view. Evidence bearing on that proposition may therefore shed some

light on which of the two views is more relevant for the S&P.

Proposition 3 predicts that the correlation of the returns of two groups of securities will be

lower than the correlation of their fundamentals if these groups form natural categories. This

proposition is testable in the time series under the condition that the groups' importance as

categories has grown over time. The S&P 500 satis�es this last condition: its use in various

investment styles has grown dramatically in the last few decades. Consistent with this trend,

Wurgler and Zhuravskaya (2001) �nd that the size of the inclusion price jump has grown

with the volume of funds devoted to S&P indexing, and our earlier results show increasing

comovement e�ects in more recent years.

Table 4 reports the trends in comovement between the S&P and other stocks over the

past thirty years. The left column shows that the relative size of the S&P and whole market

has remained constant. The declining correlations in the right columns show that at all

three data frequencies, the returns on the S&P 500 have grown increasingly divorced from

the returns on the rest of the market. The correlation in returns remains high today, but it

is not as high as it was prior to the advent of the S&P 500 as a category. Another interesting

pattern is that the decline in the daily correlation seems to have halted in recent years, while

the weekly and monthly correlations continue to decline.

In Table 5 we determine whether the decreasing correlation between S&P and non-S&P

stocks is statistically signi�cant, or whether the correlation between two random groups

18This observation is consistent with the results of Froot and Dabora (1999), who �nd that discrepancies

between return comovement and cash-
ow comovement are larger at higher frequencies, although still present

at lower frequencies.
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would on average display a similar decline. We construct value-weighted returns on a random

group of 500 stocks and compute their correlation with the value-weighted returns on the

rest of the market over consecutive �ve year periods. By repeating this procedure for many

random groups of 500 stocks, we can construct sampling distributions for the change in

correlation over various intervals. We can then determine whether the decline in the S&P

correlation is unusually large.

The left columns of Table 5 report the sampling distribution of the changes in correlation

between the random 500 and the rest of the market. The correlations between random

groups of stocks have declined. Panel A shows that, from the early 1970s to the late 1990s,

the daily return correlation between random groups has fallen by a median of -0.043. For

comparison, the second column from the right reports the experience of the S&P 500. Over

this same period, Table 4 indicates that the daily return correlation between the S&P and

the rest of the market has fallen by -0.118. The last column indicates that this is a much

greater decline than expected by chance. A similar conclusion emerges for weekly data. At

the monthly level, the decline in correlation between S&P and non-S&P stocks is below the

average decline for randomly-chosen stocks, but is not statistically unusual.

Our simulation controls for the possibility that the decline in the S&P and non-S&P

return correlation is due to a general decline in the correlation of stock fundamentals. Indeed,

the results of Campbell, Lettau, Malkiel, and Xu (2001) suggest that such a decline in

fundamental correlation has occured, making it important to control for. Our simulation does

not, however, rule out the possibility that our results are due to an especially large decline

in the correlation of S&P 500 stocks' fundamentals with remaining stocks' fundamentals,

as compared to the decline in the correlation of a random 500 stocks' fundamentals with

remaining stocks' fundamentals. However, we see no obvious reason why this would be the

case, since the S&P 500 index has always been constructed to be representative of the overall

economy.19

Our test of Proposition 3 therefore potentially provides some evidence in favor of the

category, rather than the habitat, view of comovement. The evidence in Tables 4 and 5

appears more consistent with investors investing across a full range of assets but channeling

funds from one category to another, than it is with investors restricting themselves to trading

only a subset of securities.

19Panel A of Table 4 also shows that the abrupt halt in the decline of the daily S&P correlation after 1990

is not mirrored by the random-500 correlation, while the weekly and monthly S&P correlations continue to

decline relative to the typical random-500 group. One explanation is that arbitrage has checked the decline

in the daily correlation, but has yet to stop the decline in the weekly and monthly correlations. De Long et

al. (1990) point out that long-horizon arbitrage is likely to be weaker than short-horizon arbitrage.
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4 Conclusion

In this paper, we present and examine empirically three models of comovement. The tradi-

tional model attributes comovement to correlation in news about fundamental value. The

two alternative models we consider explain comovement by correlated investor demand shifts

for securities in a given category, or by demand shifts by speci�c investor clienteles.

To assess these theories, we consider the well-studied phenomenon of stock inclusions

into, and deletions from, the S&P 500 index. While previous studies have noted signi�cant

immediate price e�ects associated with inclusions and deletions, we focus on changes in the

patterns of comovement of newly included (or deleted) stocks with stocks already in the

index. We �nd that stocks included into the index begin to comove more with other stocks

in the index, and less with stocks out of the index. The converse holds for deletions. Because

inclusion into the S&P 500 index conveys no news about fundamentals, this evidence is hard

to reconcile with the fundamentals view of comovement, but supports the theories based on

shifts in demand.

This evidence adds to the growing range of phenomena identi�ed by �nancial economists

that reveal the importance of asset classi�cation, and of demand shifts among asset classes,

for valuation. From this perspective, a security's price may depend not only on its fun-

damentals, but also on which asset categories it belongs to, and on which investors trade

it.
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5 Appendix

Proof of Propositions 1, 2, and 3: Suppose that asset n + 1 is reclassi�ed from Y into X,

and that at the same moment, asset 1 is reclassi�ed from X into Y . Before reclassi�cation,

�PX;t+1 = "X;t+1 +
�uX;t+1
�1

+
�uY;t+1
�2

(31)

�PY;t+1 = "Y;t+1 +
�uX;t+1
�2

+
�uY;t+1
�1

�Pn+1;t+1 = "n+1;t+1 +
�uX;t+1
�2

+
�uY;t+1
�1

;

where

"k;t =
1

n

X
l�k

"l;t, k = X; Y .

This implies, as n!1;

cov(�Pn+1;t+1;�PX;t+1) =  2

M + 2�2u�u(
1

�21
+

1

�22
) +

4�2u
�1�2

(32)

cov(�Pn+1;t+1;�PY;t+1) =  2

M +  2

S + 2�2u(
1

�21
+

1

�22
) +

4�2u�u
�1�2

var(�PX;t+1) = var(�PY;t+1) =  2
M +  2

S + 2�2u(
1

�21
+

1

�22
) +

4�2u�u
�1�2

cov(�PX;t+1;�PY;t+1) =  2

M + 2�2u�u(
1

�21
+

1

�22
) +

4�2u
�1�2

:

After reclassi�cation, �PX;t+1 and �PY;t+1 are still given by (31), but now

�Pn+1;t+1 = "n+1;t+1 +
�uX;t+1
�1

+
�uY;t+1
�2

: (33)

This implies, as n!1;

cov(�Pn+1;t+1;�PX;t+1) =  2

M + 2�2u(
1

�21
+

1

�22
) +

4�2u�u
�1�2

; (34)

cov(�Pn+1;t+1;�PY;t+1) =  2
M +  2

S + 2�2u�u(
1

�21
+

1

�22
) +

4�2u
�1�2

;

while var(�PX;t+1), var(�PY;t+1), and cov(�PX;t+1;�PY;t+1) remain the same as before.

Since the OLS estimate of �n+1 in the regression

�Pn+1;t+1 = �n+1 + �n+1�PX;t+1 + vn+1;t+1 (35)

is given by

�n+1 =
cov(�Pn+1;t+1;�PX;t+1)

var(�PX;t+1)
; (36)
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expressions (32) and (34) taken together with

1

�21
+

1

�22
�

2

�1�2
= (

1

�1
�

1

�2
)2 � 0;

con�rm that �n+1 increases after reclassi�cation as claimed in Proposition 1. Moreover, since

var(�Pn+1;t) and var(�PX;t) are unchanged after reclassi�cation, the increase in �n+1 also

implies an increase in the R2 of regression (35) after inclusion.

The OLS estimates of �n+1;X and �n+1;Y in the regression

�Pn+1;t+1 = �n+1 + �n+1;X�PX;t+1 + �n+1;Y�PY;t+1 + vn+1;t+1 (37)

are given by  
�n+1;X
�n+1;Y

!
=

1

VXVY � C2
XY

 
VY �CXY

�CXY VX

! 
Cn+1;X

Cn+1;Y

!
(38)

where

Vk = var(�Pk;t+1); k = X; Y

CXY = cov(�PX;t+1;�PY;t+1)

Cn+1;k = cov(�Pn+1;t+1;�Pk;t+1), k = X; Y .

Before reclassi�cation, Cn+1;X = CXY and Cn+1;Y = VX = VY , while after reclassi�cation,

Cn+1;X = VX �  2
S and Cn+1;Y = CXY +  2

S. It is easy to check that this implies that if

�n+1;X and �n+1;Y are the pre-reclassi�cation values of �n+1;X and �n+1;Y , respectively, and

�n+1;X and �n+1;Y are the post-reclassi�cation values, then

�
n+1;X

= 0; �
n+1;Y

= 1

0 < �n+1;X ; �n+1;Y < 1; �n+1;X + �n+1;Y = 1:

This proves Proposition 2.

Finally, given the expressions for var(�PX;t+1), var(�PY;t+1), and cov(�PX;t+1;�PY;t+1)

in equation (32), it is immediate that when �u = �1,

var(�PX;t+1) = var(�PY;t+1) =  2

M +  2

S + 2�2u(
1

�1
�

1

�2
)2

cov(�PX;t+1;�PY;t+1) =  2

M � 2�2u�u(
1

�1
�

1

�2
)2; (39)

and hence that

corr(�PX;t+1;�PY;t+1) < corr(�DX;t+1;�DY;t+1) =
 2
M

 2
M +  2

S

:

This proves Proposition 3.
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Table 1. Changes in comovement of stocks added to and deleted from the S&P 500 Index. Changes in the slope 

and the fit of regressions of returns of stocks added to and deleted from the S&P 500 Index on returns of the S&P 

500 Index and the non-S&P 500 rest of the market. The sample includes stocks added to and deleted from the S&P 

500 between 1976 and 2000 which were not involved in mergers or related events (described in the text), and which 

have sufficient return data on CRSP. For each added or deleted stock j, the univariate model  

tjtSPjjtj RR ,,500, υβα ++=  

and the bivariate model 

tjtnonSPnonSPjtSPSPjjtj RRR ,,500500,,500500,, υββα +++=  

are separately estimated for the pre-change and post-change period. Returns on the S&P 500 (RSP500) are from the 

CRSP Index on the S&P 500 Universe file. Returns on a capitalization-weighted index of the non-S&P 500 stocks 

(RnonSP500) in the NYSE, AMEX, and Nasdaq are inferred from the identity  

 

tSP
tCRSP

tSP
tnonSP

tCRSP

tSPtCRSP
tVWCRSP R

CAP
CAP

R
CAP

CAPCAP
R ,500

1,

1,500
,500

1,

1,5001,
, 








+







 −
=

−

−

−

−− . 

 

Total capitalization on the S&P 500 (CAPSP500) is from the CRSP Index on the S&P 500 Universe file. Returns on 

the value-weighted CRSP NYSE, AMEX, and Nasdaq index (RVWCRSP) and total capitalization (CAPCRSP) are from 

the CRSP Stock Index file. Returns from October 1987 are excluded. The mechanical influence of the added or 

deleted stock is removed from the independent variables as appropriate. For the univariate regression model, we 

examine the mean difference between the pre-change slope and the post-change slope β∆ , and the mean change in 

fit 2R∆ . For the bivariate model, we examine the mean changes in the slopes, 500SPβ∆  and 500nonSPβ∆ . The pre-

change and post-change estimation periods are [-12,-1] and [+1,+12] months for daily and weekly returns and [-36,-

1] and [+1,+36] months for monthly returns. Panels A, B, and C show results for daily, weekly, and monthly returns, 

respectively. Standard errors are determined by simulation, to account for cross-correlation, and are reported in 

parentheses. ***, **, and * denote statis tical significance at the 1%, 5%, and 10% levels in one-sided tests, 

respectively.  



 

 
 

Univariate 
   

Bivariate 
 

 

 

Sample 

 

 
 

N  
 

 

β∆  
(s.e.) 

 
2R∆  

(s.e.) 

   

500SPβ∆  
(s.e.) 

 

500nonSPβ∆  
(s.e.) 

 

 
Panel A. Daily Returns 

 
 

Additions 
 

 
1976-2000 

 

 
455 

  
0.151*** 
(0.021) 

 
0.049*** 
(0.005) 

   
0.357*** 
(0.022) 

 
-0.373*** 
(0.029) 

 

  
1976-1987 

 

 
196 

 

  
0.067*** 
(0.023) 

 
0. 038*** 
(0.008) 

   
0.252*** 
(0.041) 

 
-0.262*** 
(0.050) 

 

  
1988-2000 

 

 
259 

  
0.214*** 
(0.032) 

 
0.058*** 
(0.007) 

   
0.406*** 
(0.027) 

 
-0.426*** 
(0.035) 

 

 
Deletions 

 

 
1976-2000 

 

 
76 

  
-0.087* 
(0.049) 

 
-0.010 
(0.007) 

   
-0.511*** 
(0.111) 

 
0.550*** 
(0.122) 

 

 
Panel B. Weekly Returns 

 
 

Additions 
 

1976-2000 
 

 
455 

  
0.110*** 
(0.029) 

 
0.033*** 
(0.008) 

   
0.174*** 
(0.053) 

 
-0.119** 
(0.056) 

 

  
1976-1987 

 

 
196 

 

  
0.025 

(0.036) 

 
0.027** 
(0.012) 

   
0.137 

(0.094) 

 
-0.125 
(0.093) 

 

  
1988-2000 

 

 
259 

  
0.173*** 
(0.043) 

 
0.037*** 
(0.010) 

   
0.202*** 
(0.061) 

 
-0.115* 
(0.069) 

 

 
Deletions 

 
1976-2000 

 

 
76 

  
-0.129 
(0.105) 

 
-0.015 
(0.010) 

   
-0.505*** 
(0.161) 

 
0.412** 
(0.169) 

 

 
Panel C. Monthly Returns 

 
 

Additions 
 

1976-1998 
 

 
324 

  
0.042 

(0.041) 

 
0.004 

(0.014) 

   
0.317*** 
(0.077) 

 
-0.252*** 
(0.072) 

 

  
1976-1987 

 

 
172 

 

  
-0.010 
(0.060) 

 
0.006 

(0.021) 

   
0.267** 
(0.127) 

 
-0.167 
(0.116) 

 

  
1988-1998 

 

 
152 

  
0.101 

(0.066) 

 
0.000 

(0.021) 

   
0.375*** 
(0.113) 

 
-0.348*** 
(0.107) 

 

 
Deletions 

 
1976-1998 

 

 
45 

  
0.006 

(0.100) 

 
0.001 

(0.022) 

   
0.303 

(0.240) 

 
-0.256 
(0.252) 

 

 



Table 2. Changes in comovement of stocks added to and deleted from the S&P 500 Index: Calendar time.  

Differences between the comovement characteristics of two portfolios of stocks: those about to be added to the S&P 

500 and those just recently added. The sample includes stocks added to and deleted from the S&P 500 between 1976 

and 2000 which were not involved in mergers or related events, and which have sufficient return data on CRSP. A 

capitalization-weighted return index of non-S&P 500 stocks (RnonSP500) in the NYSE, AMEX, and Nasdaq is inferred 

from the identity described in Table 1. Returns from October 1987 are excluded. In daily data, for example, each day 

we form an equal-weighted portfolio of stocks that will be added to the S&P 500 within the next year and a portfolio 

of stocks that were added within in the past year. We then run separate univariate regressions for each portfolio on 

the S&P 500 index, 

tpretSPprepretpre RR ,,500, υβα ++=   and   

tposttSPpostposttpost RR ,,500, υβα ++= , 

denoting the difference in slope and fit between the “post” and “pre” regressions as β∆  and 2R∆ , respectively. 

We also run separate bivariate regressions for each portfolio, 

tpretnonSPnonSPpretSPSPprepretpre RRR ,,500500,,500500,, υββα +++=   and 

tposttnonSPnonSPposttSPSPpostposttpost RRR ,,500500,,500500,, υββα +++= , 

denoting the difference in the slopes as 500SPβ∆  and 500nonSPβ∆ , respectively. The mechanical influence of the pre 

and post portfolio stocks is removed, as appropriate, from the independent variables. In daily and weekly data, the 

pre portfolio includes stocks that will be added within one year and the post portfolio includes stocks that were 

added in the past year. In monthly data, these windows are extended to three years. We require at least 10 stocks in 

each portfolio in order for that observation (day, month, or year) to be included in the regressions. Standard errors 

are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels in one-sided 

tests, respectively. 



 

 
 

Univariate 
   

Bivariate 
 

 

 

Sample 

 

 
 

T  
 

 
β∆  

(s.e.) 

 
2R∆  

(s.e.) 

   

500SPβ∆  

(s.e.) 

 

500nonSPβ∆  

(s.e.) 

 

 
Panel A. Daily Returns 

 
 

Additions 
 

 
1976-2000 

 

 
4147 

  
0.123*** 
(0.013) 

 
0.100*** 
(0.007) 

   
0.297*** 
(0.020) 

 
-0.262*** 
(0.022) 

 

  
1976-1987 

 

 
1873 

 

  
0.116*** 
(0.019) 

 
0.061*** 
(0.010) 

   
0.326*** 
(0.035) 

 
-0.329*** 
(0.044) 

 

  
1988-2000 

 

 
2274 

  
0.129*** 
(0.017) 

 
0.119*** 
(0.010) 

   
0.298*** 
(0.026) 

 
-0.247*** 
(0.026) 

 

 
Deletions 

 

 
1976-2000 

 

 
151 

  
0.058 

(0.107) 

 
-0.069 
(0.063) 

   
0.164 

(0.190) 

 
-0.080 
(0.117) 

 

 
Panel B. Weekly Returns 

 
 

Additions 
 

1976-2000 
 

 
856 

  
0.045* 
(0.026) 

 
0.028* 
(0.015) 

   
0.167*** 
(0.046) 

 
-0.154*** 
(0.043) 

 

  
1976-1987 

 

 
387 

 

  
0.041 

(0.039) 

 
-0.028 
(0.024) 

   
-0.014 
(0.094) 

 
0.051 

(0.099) 

 

  
1988-2000 

 

 
469 

  
0.049 

(0.036) 

 
0.065*** 
(0.022) 

   
0.219*** 
(0.054) 

 
-0.210*** 
(0.048) 

 

 
Deletions 

 
1976-2000 

 

 
29 

  
-0.082 
(0.193) 

 
-0.160 
(0.120) 

   
-0.162 
(0.537) 

 
0.039 

(0.288) 

 

 
Panel C. Monthly Returns 

 
 

Additions 
 

1976-2000 
 

 
282 

  
0.018 

(0.042) 

 
0.090*** 
(0.030) 

   
0.319*** 
(0.073) 

 
-0.320*** 
(0.061) 

 

  
1976-1987 

 

 
127 

 

  
0.019 

(0.047) 

 
0.007 

(0.048) 

   
0.148 

(0.114) 

 
-0.143 
(0.099) 

 

  
1988-2000 

 

 
155 

  
0.016 

(0.065) 

 
0.157** 
(0.067) 

   
0.388*** 
(0.092) 

 
-0.406*** 
(0.075) 

 

 
Deletions 

 
1976-2000 

 

 
116 

  
-0.123 
(0.105) 

 
-0.293*** 
(0.058) 

   
-0.255 
(0.166) 

 
0.132 

(0.132) 

 

 



Table 3. Changes in comovement of stocks added to and deleted from the S&P 500 Index: Relative to 

matching firms. Changes in the slope and the fit of regressions of returns on stocks added to and deleted from the 

S&P 500 Index relative to changes in the same parameters for matching stocks. Each stock in the event sample is 

paired with another stock which matches it on industry, market capitalization and growth in market capitalization 

over the pre-change estimation period (described in text). The event sample includes stocks added to and deleted 

from the S&P 500 between 1976 and 2000 which were not involved in mergers or related events, which have 

sufficient return data on CRSP, and for which a matching stock could be found. For each added or deleted stock j, 

the univariate model 

tjtSPjjtj RR ,,500, υβα ++=  

and the bivariate model 

tjtnonSPnonSPjtSPSPjjtj RRR ,,500500,,500500,, υββα +++=  

are separately estimated for the pre-change and post-change period, and analogous regressions are run for each 

matching stock. Returns on the S&P 500 (RSP500) are from the CRSP Index on the S&P 500 Universe file. Returns 

on a capitalization-weighted index of the non-S&P 500 stocks (RnonSP500) in the NYSE, AMEX, and Nasdaq are 

inferred from the identity described in Table 1. Returns from October 1987 are excluded. The mechanical influence 

of the added or deleted stock is removed from the independent variables as appropriate. For the univariate regression 

model, we examine the mean difference between the pre- and post-change slope and fit of the event stock and the 

matching stock, β∆∆  and 2R∆∆ . For the bivariate model, we examine the mean difference between the changes 

in the slopes of the event stock and the matching stock, 500SPβ∆∆  and 500nonSPβ∆∆ . The pre-change and post-

change estimation periods are [-12,-1] and [+1,+12] months for daily and weekly returns and [-36,-1] and [+1,+36] 

months for monthly returns. Panels A, B, and C show results for daily, weekly, and monthly returns, respectively. 

Standard errors are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels 

in one-sided tests, respectively. 



 

 
 

Univariate 
   

Bivariate 
 

 

 

Sample 

 

 
 

N  
 

 

β∆∆  
(s.e.) 

 
2R∆∆  

(s.e.) 

   

500SPβ∆∆  
(s.e.) 

 

500nonSPβ∆∆  
(s.e.) 

 

 
Panel A. Daily Returns 

 
 

Additions 
 

 
1976-2000 

 

 
435 

  
0.120*** 
(0.022) 

 
0.040*** 
(0.006) 

   
0.318*** 
(0.035) 

 
-0.289*** 
(0.042) 

 

  
1976-1987 

 

 
189 

 

  
0.109*** 
(0.028) 

 
0. 033*** 
(0.008) 

   
0.262*** 
(0.051) 

 
-0.257*** 
(0.065) 

 

  
1988-2000 

 

 
246 

  
0.129*** 
(0.032) 

 
0.046*** 
(0.007) 

   
0.361*** 
(0.047) 

 
-0.313*** 
(0.055) 

 

 
Deletions 

 

 
1976-2000 

 

 
36 

  
-0.098 
(0.081) 

 
-0.012 
(0.013) 

   
-0.298** 
(0.142) 

 
0.271 

(0.193) 

 

 
Panel B. Weekly Returns 

 
 

Additions 
 

1976-2000 
 

 
434 

  
0.077** 
(0.037) 

 
0.028*** 
(0.009) 

   
0.208*** 
(0.070) 

 
-0.146** 
(0.070) 

 

  
1976-1987 

 

 
188 

 

  
0.086* 
(0.047) 

 
0.026* 
(0.015) 

   
0.202* 
(0.113) 

 
-0.162 
(0.114) 

 

  
1988-2000 

 

 
246 

  
0.070 

(0.055) 

 
0.030*** 
(0.012) 

   
0.212** 
(0.087) 

 
-0.134 
(0.088) 

 

 
Deletions 

 
1976-2000 

 

 
36 

  
-0.013 
(0.157) 

 
-0.030 
(0.020) 

   
-0.616** 
(0.251) 

 
0.771** 
(0.285) 

 

 
Panel C. Monthly Returns 

 
 

Additions 
 

1976-1998 
 

 
300 

  
0.104** 
(0.047) 

 
0.011 

(0.013) 

   
0.173* 
(0.103) 

 
-0.090 
(0.091) 

 

  
1976-1987 

 

 
162 

 

  
0.054 

(0.060) 

 
0.008 

(0.020) 

   
0.054 

(0.145) 

 
-0.011 
(0.125) 

 

  
1988-1998 

 

 
138 

  
0.163** 
(0.073) 

 
0.015 

(0.020) 

   
0.313** 
(0.144) 

 
-0.183 
(0.133) 

 

 
Deletions 

 
1976-1998 

 

 
18 

  
0.236 

(0.156) 

 
0.057 

(0.041) 

   
0.438 

(0.315) 

 
-0.133 
(0.266) 

 

 



Table 4. Trends in the correlation between returns on the S&P 500 and the rest of the market. The correlation 

between the S&P 500 and the rest of the market. Returns on the S&P 500 (RSP500) are from the CRSP Index on the 

S&P 500 Universe file. Returns on a capitalization-weighted index of the non-S&P 500 stocks (RnonSP500) in the 

NYSE, AMEX, and Nasdaq are inferred from the identity  

 

tSP
tCRSP

tSP
tnonSP

tCRSP

tSPtCRSP
tVWCRSP R

CAP
CAP

R
CAP

CAPCAP
R ,500

1,

1,500
,500

1,

1,5001,
, 








+







 −
=

−

−

−

−− . 

 

Total capitalization the S&P 500 (CAPSP500) is from the CRSP Index on the S&P 500 Universe file. Returns on the 

value-weighted CRSP NYSE, AMEX, and Nasdaq index (RVWCRSP) and total capitalization (CAPCRSP) are from the 

CRSP Stock Index file.  Returns from October 1987 are excluded.  
 

 
 

Correlation between S&P 500 and the rest of the market 
 

 
 
 
 

Years 

 
Mean of 










tCRSP

tSP

CAP
CAP

,

,500  

 

 
Daily Returns 

 
Weekly Returns 

 
Monthly Returns 

 
1970 – 1974 

 
0.689 

 
0.941 

 
0.942 

 
0.931 

 
1975 – 1979 

 
0.685 

 
0.898 

 
0.920 

 
0.925 

 
1980 – 1984 

 
0.670 

 
0.871 

 
0.915 

 
0.929 

 
1985 – 1989 

 
0.683 

 
0.825 

 
0.864 

 
0.912 

 
1990 – 1994 

 
0.690 

 
0.817 

 
0.851 

 
0.901 

 
1995 – 1999 

 

 
0.701 

 
0.823 

 
0.810 

 
0.840 

 



Table 5. Trends in the correlation between returns on the S&P 500 and the rest of the market: Relative to random 500 stocks. The decline in correlation 

between returns on the S&P 500 and the rest of the market is evaluated relative to the null hypothesis that a similar decline applies to random categories of 

stocks. The distribution of changes in the correlation between the return on 500 random stocks from NYSE, AMEX, and Nasdaq and the value-weighted return 

on the rest of the market is determined by simulation. The following procedure is repeated 500 times: (i) A sample of 500 random stocks from the NYSE, 

AMEX, and Nasdaq is identified from all stocks that CRSP lists for 1970. The complementary set of stocks, i.e. the rest of the market, is also identified as of 

1970. (ii) The daily, weekly, and monthly correlation between these two portfolios is computed and recorded each year from 1970 through 1999. If a stock drops 

out of the random 500 sample, it is replaced with a stock randomly taken from the rest of the market sample. Returns from October 1987 are excluded. (iii) These 

two return series represent one sample path, over which correlations and changes in correlations can be estimated. Panels A, B, and C show results for daily, 

weekly, and monthly returns, respectively.  
 

  
Change in correlation between random 500 

and the rest of the market 

   
Change in correlation between S&P 500  

and the rest of the market 

  
 

 
 

 
 

Years 

 
5th  

percentile 

 
10th 

percentile 

 
50th 

percentile 

 
90th 

percentile 

 
95th 

percentile 

 
 

Actual 

 
 

Prob ( Actual < X ) 

 
Panel A. Daily Returns 

 
 

1995 – 1999 vs.  
1970 – 1974  - 0.070 - 0.064 -0.043 - 0.023 - 0.019 

 
 

- 0.118 

 
 

0.002 
 

1975 – 1979 - 0.073 - 0.066 -0.045 - 0.028 - 0.024 
 

- 0.075 
 

0.040 
 

1980 – 1984  - 0.070 - 0.065 -0.042 - 0.023 - 0.019 
 

- 0.048 
 

0.344 
 

1985 – 1989 - 0.079 - 0.073 -0.053 - 0.037 - 0.032 
 

- 0.002 
 

0.996 
 

1990 – 1994  
 

 
- 0.048 

 
- 0.042 

 
-0.026 

  
- 0.012 

 
- 0.009 

 
+ 0.006 

 
0.998 



 
 

Panel B. Weekly Returns 
 

 
1995 – 1999 vs.  

1970 – 1974  - 0.076 - 0.073 -0.050 - 0.032 - 0.026 

 
 

- 0.132 

 
 

0.002 
 

1975 – 1979 - 0.076 - 0.071 -0.050 - 0.030 - 0.025 
 

- 0.110 
 

0.002 
 

1980 – 1984  - 0.068 - 0.064 -0.044 - 0.020 - 0.016 
 

- 0.105 
 

0.002 
 

1985 – 1989 - 0.075 - 0.069 -0.050 - 0.033 - 0.029 
 

- 0.054 
 

0.090 
 

1990 – 1994  
 

  
- 0.051 

  
- 0.045 

 
-0.029 

 
- 0.012 

 
- 0.008 

 
- 0.041 

 
0.136 

 
Panel C. Monthly Returns 

 
 

1995 – 1999 vs.  
1970 – 1974  - 0.115 - 0.103 -0.060 - 0.030 - 0.025 

 
 

- 0.091 

 
 

0.162 
 

1975 – 1979 - 0.114 - 0.102 -0.059 - 0.030 - 0.023 
 

- 0.085 
 

0.202 
 

1980 – 1984  - 0.102 - 0.090 -0.050 - 0.018 - 0.008 
 

- 0.089 
 

0.112 
 

1985 – 1989 - 0.116 - 0.105 -0.066 - 0.036 - 0.031 
 

- 0.072 
 

0.390 
 

1990 – 1994  
 

 
- 0.095 

 
- 0.083 

 
- 0.045 

 
- 0.017 

 
- 0.012 

 
- 0.061 

 
0.274 

 



 

 

Figure I. Changes in comovement of stocks added to the S&P 500 Index and stocks with matching 

characteristics.  Plots of the mean slope coefficients of bivariate regressions of returns on stocks added to the S&P 

500, and stocks with matching characteristics to those added, on returns of the S&P 500 Index and the non-S&P 500 

rest of the market. The event sample includes stocks added to the S&P 500 which were not involved in mergers or 

related events (described in the text), which have complete returns data over the entire event horizon examined in 

each figure (-12 to +24 months in daily and weekly returns data and –36 to +72 months in monthly returns data), 

which remain in the Index for the full post-event horizon, and for which suitable matching firms exist that have 

complete data over the same horizon. Each stock in the event sample is matched with a stock on industry and growth 

in market capitalization (as described in text) over the pre-change estimation period. For each added stock j (and 

each corresponding matching stock), the bivariate model  

tjtnonSPnonSPjtSPSPjjtj RRR ,,500500,,500500,, υββα +++=  

is estimated in rolling regressions where sample intervals are [-12,-1] months for daily and weekly returns 

regressions and [-36,-1] months for monthly returns. Returns on the S&P 500 (RSP500) are from the CRSP Index on 

the S&P 500 Universe file. Returns on a capitalization-weighted index of the non-S&P 500 stocks (RnonSP500) in the 

NYSE, AMEX, and Nasdaq are inferred from the identity described in Table 1. Returns from October 1987 are 

excluded. The mechanical influence of the added stock is removed, as appropriate, from both independent variables. 

The means of the event stock coefficients are plotted in event time in the top half of each panel, and the means of the 

matching stock coefficients are plotted in the bottom half. The left vertical line indicates the addition date; 

coefficients to the left of this line are estimated using only pre-event data. Coefficients to the right of the right 

vertical line are estimated using only post-event data. In between, coefficients are estimated using both pre- and 

post-event data. Panels A, B, and C show results for daily, weekly, and monthly returns, respectively.  



 

 

A. Daily Returns 
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1976-1987 matching firms (N = 169) 1988-2000 matching firms (N = 153) 
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B. Weekly Returns 
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C. Monthly Returns 
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