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Abstract

A number of studies have identified patterns of positive correlation of returns, or
comovement, among different traded securities. We distinguish three views of such co-
movement. The traditional “fundamentals” view explains the comovement of securities
through positive correlations in the rational determinants of their values, such as cash
flows or discount rates. “Category-based” comovement occurs when investors classify
different securities into the same asset class and shift resources in and out of this class
in correlated ways. A related phenomenon of “habitat-based” comovement arises when
a group of investors restricts its trading to a given set of securities, and moves in and
out of that set in tandem.

We present models of these different views of comovement, and then assess them
empirically using data on stock inclusions into and deletions from the S&P 500 index.
Index changes are noteworthy because they change a stock’s category and investor
clientele (habitat), but do not change its fundamentals. We find that when a stock is
added to the index, its beta and R-squared with respect to the index increase, while its
beta with respect to stocks outside the index falls. The converse happens when a stock
is deleted. These results are broadly supportive of the category and habitat views of
comovement, but not of the fundamentals view. More generally, we argue that these
non-traditional views may help explain other instances of comovement in the data.

*We thank Will Goetzmann, Anthony Lynch, Mike Ryngaert, Robert Shiller, seminar participants at
Columbia University, Harvard University, the London School of Economics, New York University, Rice
University, UCLA, the University of Florida at Gainesville and Yale University for helpful comments, Huafeng
Chen and Bill Zhang for helpful comments and outstanding research assistance, and Rick Mendenhall and
Standard and Poor’s for providing data.



1 Introduction

Researchers studying the structure of asset returns have uncovered numerous patterns of
comovement. There is a strong common factor in the returns of small-cap stocks, for example,
and also in the returns of value stocks, closed-end funds, stocks in the same industry, and
bonds of the same rating and maturity. There is common movement within national markets
and across international markets.

Common factors such as these have attracted considerable attention because of the pos-
sible role assets’ loadings on them play in explaining average rates of return. However, little
work has been done on understanding why the common factors arise in the first place. Why
do certain groups of assets comove while others do not? What determines loadings, or betas,
on these common factors? In this paper, we consider three theories of comovement — one
traditional, two more novel — and present new evidence in support of the non-traditional
theories.

The traditional view, derived from economies without frictions and with rational in-
vestors, is that comovement in prices reflects comovement in fundamental values. Since, in a
frictionless economy with rational investors, prices equal fundamental value — in other words,
an asset’s rationally forecasted cash flows, discounted at a rate appropriate for their risk —
any comovement in prices must be due to comovement in fundamentals.

An asset’s fundamental value can change either because rational investors revise their
expectations about future cash flows or because they apply a different discount rate to
those cash flows. Under the traditional view, then, correlation in returns is due either to
correlated changes in rationally expected cash flows or to correlated changes in rationally
applied discount rates. Correlated discount rates can in turn arise because of news about
interest rates or risk aversion, which affects all discount rates simultaneously, or because
of correlated changes in assets’ rationally perceived risk. There is little doubt that this
“fundamentals” view of comovement explains many instances of common factors in returns:
stocks in the oil industry move together because there is a common component to news
about their future earnings, while the market factor in stock returns is at least in part due
to changes in interest rates.!

A number of recent papers, however, present evidence suggesting that the traditional
view of comovement is incomplete. Froot and Dabora (1999) study Siamese-twin stocks,
which are claims to the same cash-flow stream, but are traded in different locations. Royal
Dutch, traded primarily in the U.S., and Shell, traded primarily in the U.K., are perhaps

!The findings of Shiller (1989) illustrate the importance of accounting for changes in discount rates when
examining patterns of comovement. He shows that the U.S. and U.K. stock markets comove more than can
be explained by correlation in news about dividends alone; however, he also shows that allowing for plausible
changes in discount rates can potentially explain the residual comovement.



the best known example. If return comovement is purely a reflection of comovement in news
about fundamentals, these two stocks should be perfectly correlated. In fact, as Froot and
Dabora show, Royal Dutch comoves more with the S&P 500 index of U.S. stocks than Shell
does, while Shell comoves more with the FTSE index of U.K. stocks.

Hardouvelis, La Porta, and Wizman (1994) and Bodurtha, Kim, and Lee (1995) uncover
related evidence in their studies of closed-end country funds, whose assets trade in a different
location from the funds themselves. Since funds and their underlying assets represent claims
to similar cash-flow streams, the fundamentals view of comovement predicts that fund returns
and returns on their net asset values should be highly correlated. In fact, closed-end country
funds comove much more with the national stock market in the country where they are
traded than with the national stock market in the country where their assets are traded.
For example, a closed-end fund invested in German equities but traded in the U.S. typically
comoves more with the U.S. stock market than with the German stock market.

Fama and French (1995) investigate whether the strong common factors detected in
the returns of value stocks and small stocks by Fama and French (1993) can be traced to
common factors in the earnings of these stocks. While they do uncover a common factor in
the earnings of small stocks, as well as in the earnings of value stocks, these cash-flow factors
line up poorly with the return factors. Once again, there appears to be some comovement
in returns that has little to do with comovement in news about fundamentals.

Finally, Pindyck and Rotemberg (1990) find strong comovement in the prices of seven
commodities — wheat, cotton, copper, gold, crude oil, lumber, and cocoa — that are chosen to
be as independent of one another as possible. They are neither complements nor substitutes,
are grown in different climates and are used for different purposes. Under the traditional
view of comovement, the only plausible source of price correlation is news about aggregate
demand. However, even after experimenting with a variety of forecasting models, Pindyck
and Rotemberg are unable to find sufficient volatility in news about aggregate demand to
fully explain the comovement.?

These examples suggest that investor trading patterns, and not just fundamentals, de-
termine comovement. In this paper, we consider two specific models of such trading-induced
comovement. The first model is based on the “category” view of comovement, recently an-
alyzed by Barberis and Shleifer (2003). They argue that when making portfolio decisions,
many investors first group assets into categories such as small-cap stocks, oil industry stocks,
or junk bonds, and then allocate funds at the level of these various categories rather than at

2Pindyck and Rotemberg (1993) uncover similar evidence in an analogous study of stock returns. They
construct groups of stocks that are in completely different lines of business and find that even though
the stocks within each group are in different industries, their returns still comove strongly. This “excess”
comovement, remains after controlling for any cash-flow or discount rate correlation induced by news about
future macroeconomic conditions.



the individual asset level. If some of the investors who use categories are noise traders with
correlated sentiment, and if their trading affects prices, then as they move funds from one
category to another, their coordinated demand will induce common factors in the returns of
assets that happen to be classified into the same category, even if these assets’ cash flows
are largely uncorrelated.

Our second model of trading-induced comovement, which we refer to as the “habitat” view
of comovement, starts from the observation that many investors choose to trade only a subset
of all available securities. Such preferred habitats may arise because of transaction costs,
international trading restrictions, or lack of information (Merton, 1987). As these investors’
risk aversion or sentiment changes, they alter their exposure to the securities in their habitat,
thereby inducing a common factor in the returns of these securities. For example, Lee,
Shleifer, and Thaler (1991) argue that closed-end mutual funds are a preferred habitat of
individual investors, and that therefore their market prices comove with the demand shifts
of individual investors even when their fundamentals do not. More generally, this view of
comovement predicts that there will be a common factor in the returns of securities that are
held and traded by a specific subset of investors, such as individual investors.?

Trading-induced comovement is a simple way of understanding the empirical evidence
described above. If small-cap stocks and value stocks form natural categories in investors’
minds — and the large number of money managers and mutual funds focused on such stocks
suggests that they do — then the category view of comovement predicts that there will be
common factors in the returns of such stocks that are only weakly related to any common fac-
tors in their cash flows. Moreover, if many individual investors in the U.S. confine themselves
to holding domestically traded securities, then the habitat view of comovement predicts that
closed-end country funds traded in the U.S. will comove substantially with U.S. stocks even
if their holdings consist of foreign equities.

The idea that trading unrelated to news about fundamental value might generate co-
movement builds on earlier evidence that such trading affects prices. Some of the best-known
evidence of this type comes from stock index redefinitions. When an index is redefined, in-
vestors who follow it must reduce their holdings of securities that have been downweighted
in the index and buy those whose weighting has increased. Under the efficient markets view,
these demand shifts should not affect prices, as they carry no information about fundamental
value. However, Harris and Gurel (1986), Shleifer (1986), and Lynch and Mendenhall (1997)
find strong price effects for S&P 500 inclusions, while Kaul, Mehrotra, and Morck (1999) and
Greenwood (2001) find similar effects in the Toronto Stock Exchange TSE 300 and Nikkei

30ther models which consider investor habitats are motivated by similar information and transaction
cost considerations as our own, but focus on different issues. Merton (1987) analyses the cross-sectional
implications when investors apply standard mean-variance analysis, but only over a subset of available
assets. Our focus is on the effects of habitat-level demand shifts that affect all stocks in the habitat equally.



225 indices, respectively.*

In this paper, we return to the S&P 500 inclusion and deletion data. The same data
that has proved useful in showing that uninformed demand can affect prices may also be
helpful in showing that such demand can generate comovement. Since addition to the S&P
500 does not affect fundamental value, a stock’s inclusion should not cause a change in the
correlation of its fundamental value with the fundamental values of other stocks already in
the index. Under the fundamentals view of comovement, then, it should not cause a change
in the correlation of the stock’s return with the return of the S&P. In particular, a univariate
regression of a stock’s return on the S&P return both before and after the stock’s inclusion
should produce similar slope coefficients, or S&P betas, and similar R2s.

On the other hand, the vast popularity of S&P-linked investment products suggests that
the index is a preferred habitat for some investors, and is viewed as a natural category by
many more. Category-based investors include investors pursuing passive portfolio strategies
through index funds as well as index arbitrageurs exploiting discrepancies between cash and
futures prices. The trading-based theories therefore differ from the fundamentals view in
their predictions about patterns of comovement before and after a stock’s inclusion. In
particular, simple models of the category and habitat views predict that in the univariate
regression described above, the S&P beta and R? should increase after inclusion; that in a
bivariate regression of a stock’s return on both the S&P and a non-S&P “rest of the market”
index, the S&P beta should rise after the stock’s inclusion while the non-S&P beta should
fall; that these patterns should go in the opposite direction for deletions; and that these
effects should be stronger in more recent data as the S&P becomes more widely used as a
category and habitat.

Our evidence supports the trading-based theories. Over a range of data frequencies,
stocks added to the S&P increase their beta and R? with the S&P, while in bivariate regres-
sions that control for non-S&P returns, increases in S&P beta are even more pronounced.
Significant results in the opposite direction are observed when stocks are deleted from the
index, and effects for both inclusions and deletions are stronger in more recent data.

While adding a stock to the S&P 500 should not cause a change in the cash-flow covari-
ance matrix, it is possible to construct alternative explanations for our results under which a
stock’s inclusion coincides with a shift in the covariance matrix. To rule these explanations
out, we also conduct a “matching” analysis: for each “event” stock included into the S&P
index, we search for a matching stock, drawn from the same industry as the event stock
and with similar market capitalization and recent growth in capitalization, but which is not
added to the S&P. We find that across all data frequencies, the matching stocks display

4Numerous other papers present evidence consistent with uninformed demand affecting prices. These
include French and Roll (1986), Lamont and Thaler (2000), Goetzmann and Massa (2001), Gompers and
Metrick (2001), and Mitchell, Pulvino, and Stafford (2002).



much smaller shifts in S&P and non-S&P betas than do the event stocks.

In earlier research, Vijh (1994) investigates whether inclusion into the S&P affects a
stock’s beta with respect to the overall market. He finds a significant, but economically
small, increase in stocks’ betas with the market after inclusion. Our results show that while
inclusion has little effect on overall market beta, it has large effects on betas computed
with respect to components of the market, and that these effects are consistent with the
trading-based theories of comovement.

In a recent paper, Greenwood and Sosner (2002) also test the predictions of our models.
Instead of focusing on the S&P 500, they use data on additions to and deletions from the
Nikkei index. They find evidence of increases in beta and R? following a stock’s addition to
the index, and of decreases following deletions. Their evidence is thus also consistent with
our predictions; if anything, the results for the Japanese data are even stronger than those
for the U.S. data.

In Section 2, we present simple models illustrating our two non-traditional views of
comovement, as well as their distinct predictions. In Section 3, we test a number of these
predictions using data on S&P 500 inclusions and deletions. Section 4 concludes.

2 Two Models of Comovement

The traditional view of return comovement is the fundamentals-based view, under which the
returns of two assets are correlated because changes in the assets’ fundamental values are
correlated. In this section, we lay out two alternative theories of comovement — a category-
based theory in Section 2.1. and a habitat-based theory in Section 2.2. The models we
present, are simple, but they nevertheless allow us to illustrate the predictions that motivate
the empirical work in Section 3.

In both models, the economy contains a riskless asset in perfectly elastic supply and with

a zero rate of return, and also 2n risky assets in fixed supply. Risky asset i is a claim to

a single liquidating dividend D;r to be paid at some later time 7. The eventual dividend
equals

Dir=D;og+¢ci1+...+¢&T, (1)

where D,y and ¢;; are announced at time 0 and time ¢, respectively, and where
, . . .
et =(e14y--+,82m1) ~ N(0,Xp), i.i.d over time.

The price of a share of risky asset ¢ at time ¢ is F;; and the return on the asset between time



t — 1 and time ¢ is®
APi,t = Pi,t - Pi,tfl- (2)

More generally, for any variable x, we use the notation Ax;,; to denote x;,1 — ;.

2.1 Category-based Comovement

Barberis and Shleifer (2003) argue that when making their portfolio decisions, many investors
first group assets into categories based on some characteristic, and then allocate funds at
the level of these categories rather than at the level of individual securities. Thinking about
investments in terms of categories is particularly attractive to institutional investors who,
as fiduciaries, must follow systematic rules in their portfolio allocation. The use of asset
categories simplifies the investment process, and also provides a consistent way of evaluating
the performance of money managers.

To test any predictions that emerge from a category-based model, it is important to have
a concrete way of identifying categories. One place to start is to look at the products mutual
and pension fund managers offer clients. If money managers are responsive to their clients,
they will create products that correspond to the categories those clients like to use when
thinking about investments. The fact that many money managers offer funds that invest
in value stocks suggests that “value stocks” is a category in the minds of many investors.
Treasury bonds, junk bonds, large stocks, small stocks, growth stocks, or stocks within a
particular industry, country, or index are then also all examples of categories.

The category view of comovement holds that some of the investors who use categories
are noise traders with correlated sentiment. As their sentiment changes, they channel funds
in and out of the various categories. If these fund flows affect prices, they will generate
common factors in the returns of assets that happen to be classified into the same category,
even if these assets’ fundamental values are uncorrelated. For example, if “value stocks” is
a popular category, then as noise traders move funds in and out of value stocks in line with
their changing sentiment about value stocks, they will create a common factor in value stock
returns even if value stock earnings are only weakly correlated.

To see this in a formal model, suppose that there are just two such categories, X and
Y, and that risky assets 1 through n are in category X while assets n 4+ 1 through 2n are
in Y. It may be helpful to think of X and Y as “old economy” and “new economy” stocks,
respectively. We write noise trader demand ng for shares of an asset ¢ in category X at
time t as®

2y

1 :
N'C;:E[AX—i_UX,t], ieX (3)

SFor simplicity, we refer to the asset’s change in price as its return.
6The “C” superscript stands for Category.



and for an asset j in category Y as

1 .
N¢ = - [Ay +uyy], jeY. (4)

gt

Here Ax and Ay are constants, and ux; and uy,; represent time ¢ noise trader sentiment
about categories X and Y, respectively, distributed as

(“Xﬂf),\,]\f((()),gz(l Pu )), i.i.d. over time. (5)
Uy,t 0 Pu 1

The fact that the demand for all assets within a category is the same underscores the fact
that these investors allocate funds at the category level and do not distinguish among assets
in the same category.

The economy also contains a large number of identical agents known as “fundamental
traders,” who act as arbitrageurs. They have CARA utility defined over the value of their
invested wealth one period later, and take price changes to be normally distributed.” They
therefore solve

mj\%x El' (— exp[-y(W; + N/ (P11 — P)))), (6)
where

Pt - (Pl,ta"'7P2n,t),
Nt — (Nl,ta-"aNZn,t)la

and where NV;, is the number of shares allocated to risky asset ¢, v governs the degree of risk
aversion, EI" denotes fundamental trader expectations at time ¢, and W; is time ¢ wealth.
Optimal holdings N[ are given by
v~

Ny = T(Et (Pry1) — P), (7)

where
VtF = Varf(PtH - P),

with the F' superscript in var again denoting a forecast made by fundamental traders.

If the total supply of the 2n assets is given by the vector @, then given fundamental
trader expectations about future prices, current prices satisfy

P, = EtF(PtH) - ’YV:F(Q - Ntc)a (8)

where
C __ C C \
Ny = (Nl,t7 - '7N2n,t) .

"This assumption is confirmed in equilibrium.



Rolling this equation forward, and setting

EIE—I(PT) = EIE—I(DT) = Dp_y,

where
Dt - (Dl,ta R D2n,t),7
leads to
T—t—1
P, =D, —yVF(@Q—-Nf) - Ef > YW@ — NS, (9)
k=1

We simplify this further by imposing a more specific structure on the cash-flow co-
variance matrix Xp. In particular, we suppose that the cash-flow shock to an asset has
three components: a market-wide cash-flow factor which affects assets in both categories, a
category-specific cash-flow factor which affects assets in one category but not the other, and
a completely idiosyncratic cash-flow shock specific to a single asset. Formally, for ie X,

Eip = Onrfare + Vs fxe + /(L — 03 — 02) fis, (10)

and for jeY,

£i0 = Unt farg + sy + /(1= 63 — 02) i, (11)

where fj, is the market-wide factor, fx, and fy, are the category-specific factors, and
fir and f;, are idiosyncratic shocks; 1y, and g are constants which control the relative
importance of the three components. Each factor has unit variance and is orthogonal to the
other factors. This implies

l,1=9
S = covieir, e50) = Y3 + b2, 4, in the same category, i # j (12)
Y2, i, 7 in different categories.

In words, all assets have a cash-flow news variance of one, the pairwise cash-flow correlation
between any two distinct assets in the same category is the same, and the pairwise cash-flow
correlation between any two assets in different categories is also the same.®

Now suppose that fundamental traders conjecture that the conditional covariance matrix
of returns has the same structure as the cash-flow covariance matrix, so that

W Wi
Vi=v=o " 1), W 13
t O-<‘/'1 ‘/E) ) ) ( )

80Our theory does not depend on the existence of category-specific cash-flow factors, but we include them
for the sake of generality. Indeed, it may be the existence of a cash-flow factor in a group of assets that leads
to the initial creation of a category out of those assets.



where

1 p1 e p1 p2 e ... p2
T e R |

: LT m :

pl ... pl 1 p2 e .. p2

for some o2, p;, and p,. In words, all assets have the same return variance, the pairwise
) ? ? ?

return correlation between any two distinct assets in the same category is the same, and the

pairwise return correlation between any two assets in different categories is also the same.

Given this conjecture,

Pt:Dt—VV(Q_NtC)_(T_t_l)’YV(Q—A)a (14)
where A Ao A A
A:(TX,...,TX,WY,...,%),,

which means that up to a constant,
Apt—i—l = &1+ ’)’VANg_I (15)

This reduces to

AUX,t+1 4 AUY,tJrl

APi’t+1 = 5i,t+1+ ¢1 ¢2 y 1eX (16)
Auy A
APjp1 = €j41+ U+l + UY’HI, JeyY,
P2 P1
where
1
o1 = (17)
vo?(p1 + (1 = p1)/n)
1
¢2 - 9
Yo" P2

confirming fundamental traders’ conjecture about the structure of the conditional covariance
matrix of returns: cov(AP; 11, APj;41) is indeed constant for all distinct assets ¢ and j in
the same category, and it is also constant for all assets ¢« and j in different categories. We
study equilibria in which the specific values of 02, p;, and py conjectured by fundamental
traders are also confirmed by (16), in the sense that they lead, through (16), to returns with
exactly the conjectured covariance matrix.’

Equation (16) shows that in this economy, there can be a common factor in the returns
of a group of stocks simply because those stocks happen to belong to the same category.

9Tt is straightforward to show that such equilibria exist for a wide range of values of the exogeneous
parameters v, Y, tbs, 02, and py.
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When noise traders experience a positive sentiment shock Auy,.; about category X, they
invest more in all securities in X, pushing the prices of these assets up together.

The intuition for why Aux 4, affects the return on stock 1 is clear enough: when noise
traders become more bullish about old economy stocks, they channel funds into X, pushing
the prices of all securities in that category up. Why Auy ;1 also affects the return on stock 1
is less obvious. Suppose that noise traders become more bullish about new economy stocks,
pushing up the prices of securities in Y. Fundamental traders, seeing the stocks in Y trade at
high prices relative to their expected cash flows, will short those stocks and hedge themselves
as much as possible against adverse fundamental news by buying stocks in X. In this way,
the category Y sentiment shock, Auy 44, is also transmitted to stocks in X.

The fact that in our model, noise traders affect prices — and hence also, patterns of
comovement — relies on the assumption that fundamental traders have horizons which end
before cash-flow uncertainty is resolved at time 7'. If fundamental traders only cared about
wealth at time 7', they would be more aggressive in countering the effect of noise traders.
However, since they have a one-period horizon, they are forced to worry about future noise
trader demand, which makes them invest less aggressively. Equations (16) and (17) show
that a high risk aversion v or perceived stock volatility o2 make them particularly reluctant
to bet against the noise traders, increasing the impact of the sentiment shocks on returns.

The idea that fundamental traders may have short horizons and that this may limit
arbitrage has been emphasized by earlier work (De Long, Shleifer, Summers, Waldmann
1990, Shleifer and Vishny 1997). This view has found support in the considerable empirical
evidence, cited in the introduction, suggesting that demand unrelated to news about fun-
damental value affects security prices. Moreover, Wurgler and Zhuravskaya (2001) confirm
that arbitrageurs are particularly wary of countering noise traders when the risk of doing so
is greater. They show that the price jump on inclusion into an index is larger for stocks with
poor substitutes, in other words, for those cases where arbitrageurs face higher risk.

To uncover evidence of category-induced comovement, we look for testable predictions
that are unique to this economy. One set of predictions describes what happens when a stock
enters a new category. Such reclassification can occur in many ways. For example, if the
market capitalization of a large-cap stock declines sufficiently, it enters the small-cap stock
category. More simply, stocks are regularly added to indices like the S&P 500 and Russell
2000 to replace stocks that have been removed due to bankruptcy or merger.

Our first prediction is:

Proposition 1: Suppose that risky asset j, previously a member of Y, is reclassified into X.
Then, assuming a fized cash-flow covariance matriz Xp, and as the number of risky assets

11



n — 00, the probability limit of the OLS estimate of (3; in the univariate regression

APj; = a; + BjAPx; + vjy, (18)
where 1
APX,t = — Z Apl,ta (19)
n leX

as well as the probability limit of the R* of this regression, increase after reclassification.'

The intuition is straightforward: when asset j enters category X, it is buffeted by noise
traders’ flows of funds in and out of that category. This increases its covariance with the
return on category X, APx,, and hence also its beta loading on that return. For simplicity,
we assume a fixed cash-flow covariance matrix. A more general version of the proposition
would predict that beta increases more than can be explained by any change in cash-flow
correlations.

A similar intuition lies behind the following prediction:

Proposition 2: Suppose that risky asset j, previously a member of Y, is reclassified into X.
Then assuming a fized cash-flow covariance matriz Xp, and as the number of risky assets
n — 00, the probability limit of the OLS estimate of (; x in the bivariate regression

APjy = aj+ B xAPx; + By APy + vy (20)

rises after reclassification, while the probability limit of the OLS estimate of B;y falls. In
particular, the pre-reclassification values of the two slope coefficients, 3; x and By, and
their post-reclassification values, Bj,x and Bj,y, satisfy

Bix = 0 By =1
0 < Bx, Bjy <1, Bjx+08;y =1

The essential prediction of the category view of comovement is that when a stock enters
category X, it becomes more sensitive to the category X sentiment shock Aux,. The
independent variable in the Proposition 1 regression, APy, is not a clean measure of this
sentiment shock: a substantial part of its variation comes from news about market-level cash
flows, fars. In regression (20), APy, can be thought of as a control for such news, making
the coefficient on APx; a cleaner measure of sensitivity to Auy,. Note that while 3; x rises
after reclassification, it rises by less than 1, and that while 3;y falls, it falls by less than 1.
Moreover, the rise in 3; x has the same absolute magnitude as the fall in 3; .

10Proofs of all propositions are in the Appendix.
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Category-based comovement depends on the existence of noise traders who allocate funds
by category, as in equations (3)-(5). If there are no such noise traders in the economy,
Propositions 1 and 2 will not hold. Equation (16) shows that in this case

APi,tJrl = Eiuy1, 16X (21)
APj,t+1 = &jt+1 JeyY,

so that comovement is fundamentals-based: the correlation of returns is completely deter-
mined by correlation in cash-flow news. If, as assumed in the propositions, the cash-flow
covariance matrix X, remains constant, the correlation structure of returns will also remain
constant. In other words, 8; and R? in Proposition 1 and j3; y and (3;y in Proposition 2 will
remain unchanged after reclassification. In particular, it is straightforward to show that in
the absence of noise traders, 3; x = 0 and ;y = 1 both before and after reclassification.

In our empirical work, we also test a more restrictive version of category-based comove-
ment. This view, studied by Barberis and Shleifer (2003), posits not only that there are
noise traders who allocate funds by category, but also that this allocation occurs in a specific
way. In particular, it assumes that when noise traders move funds into one category of risky
assets, they finance this shift by withdrawing funds from another such category, rather than
by drawing down their holdings of the riskless asset. This may be due to institutions having
target allocation levels for the broadest asset classes — cash, bonds, and stocks — so that
while they are willing to move between different equity categories, they are less willing to
change their overall allocation to equities. As a result, when they move into “new economy”

)

stocks, they withdraw funds from “old economy” stocks, so as to keep their overall equity

position unchanged.

We can think of this more restrictive version of category-based comovement as imposing
the additional constraint p, = —1 in (5), so that any sentiment driven shift in demand
for one category automatically corresponds to a decrease in demand for the other category.
While Propositions 1 and 2 clearly still hold under this restriction, a new prediction emerges:

Proposition 3: In the presence of noise traders with the demand function (3)-(5) with p, =
—1, and as the number of risky assets n — oo, the correlation of the return on X with the
return on Y,

corr(APx, APy,),

15 lower than in an economy that contains only fundamental traders.

When the economy contains only fundamental traders, the correlation of the returns of
categories X and Y is completely determined by the correlation of the fundamentals of those
two categories. Introducing noise traders with demand functions (3)-(5) and p, = —1 adds
perfectly negatively correlated shocks to the returns of categories X and Y, lowering the
correlation between them. Proposition 3 becomes testable in the time series if, over time, a

13



growing fraction of investors have the demand functions in (3)-(5) with p, = —1. In that
case, assuming a fixed cash-flow covariance matrix, the correlation of the two categories’
returns should fall over time.

Other than testing a more restrictive version of category-based comovement, Proposition
3 may also be useful in distinguishing category-based comovement from the second non-
traditional view of comovement, habitat-based comovement.

2.2 Habitat-based Comovement

The habitat view of comovement starts from the observation that many investors trade only
a subset of all available securities. Such preferred habitats may arise because of transaction
costs, international trading restrictions, or lack of information (Merton, 1987). For example,
suppose that one group of investors — “habitat X” investors — trades only securities 1 through
n, a set we again refer to as X, while another group — habitat Y investors — trades only
n + 1 through 2n, set Y. We can think of assets 1 through n as U.S. stocks, and assets
n + 1 through 2n as U.K. stocks; there are many investors in both countries who restrict
themselves to trading only domestic securities. We emphasize that X and Y play different
roles here than in Section 2.1. There, they represent groups of assets that some investors
do not distinguish between when allocating their demand. Here, they represent groups of
assets that are the sole holdings of some investors.

Now suppose that habitat X investors experience an increase in risk aversion. They will
then reduce their positions in all the risky assets they hold, generating a common factor in
the returns of securities in X, even if those risky assets’ fundamental values are uncorrelated.
More generally, the habitat view of comovement predicts a common factor in the returns
of any group of stocks that happens to be the primary holdings of a particular subset of
investors.

To compare this view to the category-based view, suppose that habitat X investors’
demand for risky assets is given by

. 1
N{{f‘ = E[Ax+ux,t], ieX (22)

NIY =0, jev.
We think of ux, as tracking their level of risk aversion, changes in which lead them to alter
their exposure to all assets in X. Of course, ux, can also be interpreted as an indicator of

sentiment about the future returns of assets in X, although the model does not require such
an interpretation. By definition, habitat X investors’ demand for assets in Y is zero.
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Similarly, habitat Y investors’ demand is

NEY = 0, ieX (23)
1 .
Nﬁgy o [Ay +uyy], jeY.

We assume
Uxt ) N 0 02 LA , i.i.d. over time.
Uyt 0 pu 1

As before, we close the economy with fundamental traders who behave as in (6). Given
their expectations about future prices, current prices are given by

P, = E[(Py1) =V (Q— (N/* + N/™)) (24)
= EtF(PtJrl) - ’YVtF(Q - Ntc)a

exactly as in (8). In other words, even though investors’ demand functions are motivated
differently here than in the case of category-based comovement, prices are the same. Once
again, there will be a common factor in the returns of assets in X even if there is no common
factor in news about their fundamental values.

The equivalence in equation (24) means that Propositions 1 and 2 also hold in this
economy, with X and Y signifying investor habitats, not categories. For example, Proposition
1 should now be interpreted as predicting that if a stock becomes part of the habitat of a
specific group of investors, it will comove more with the other assets in that habitat than it
did before.

Proposition 3, however, is not a direct implication of the habitat-based view of comove-
ment, because it relies on the additional assumption that p, = —1. This assumption is less
plausible in the habitat setting than in the category setting. While target allocations for
the broadest asset classes may motivate this assumption in the context of category-based
investing, there is no obvious reason why an increase in the risk aversion of habitat X in-
vestors should automatically be accompanied by a decrease in the risk aversion of habitat Y
investors. Proposition 3 therefore potentially offers a way of distinguishing between the cat-
egory and habitat views: evidence consistent with the prediction in that proposition would
favor the category-based view.

It is important to note that the habitat-based view of comovement depends on limits
to arbitrage, just as the category-based view does. The fact that some investors trade only
certain securities means that habitats X and Y can trade at different prices, even if their final
cash flows are similar, thus opening up potentially attractive opportunities for unconstrained
arbitrageurs. Since fundamental traders have short horizons in our model, they are unable
to exploit these opportunities very aggressively.
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3 Empirical Tests

Propositions 1 and 2 lay out predictions that hold in an economy where return comovement
is in part due to category-based or habitat-based trading flows, but which do not hold in
an economy where return comovement is entirely a function of comovement in news about
fundamentals. We now test these predictions to see if we can uncover any evidence of
trading-induced comovement.

To test the propositions, we need to identify a group of securities with three characteris-
tics. First, the group must be viewed as a natural category, or must be a preferred habitat
for many investors, or both. Second, since these propositions concern reclassification, there
must be clear and identifiable changes in group membership over time. Finally, in order
to control for fundamentals-based comovement, a security’s inclusion or removal from the
group should not cause a change in the correlation of the security’s fundamental value with
the fundamental values of other securities in the group.

One set of securities that satisfies these requirements is the S&P 500 index. Earlier
we suggested identifying categories by looking at the products money managers offer their
clients. The immense popularity of S&P-linked products suggests that this index may be
a natural category in many investors’ minds: S&P index funds and depositary receipts are
important investment vehicles for both institutions and individuals, while S&P 500 futures
are heavily traded by index arbitrageurs. The S&P 500 may also be a preferred habitat for
U.S. investors who are reluctant to invest in foreign stocks and who doubt that active fund
managers can outperform passive indices.

The S&P also has the second characteristic we require: there is clear and identifiable
turnover in its membership. In a typical year there are about 30 changes; our full sample,
which we describe in Section 3.1, includes 455 additions and 76 deletions.

Finally, the act of adding a stock to the S&P 500 should not cause a change in the
covariance of the stock’s cash flows with other stocks’ cash flows. The stated goal of Standard
and Poor’s is to make the index representative of the U.S. economy, not to provide signals
about future cash flows. Deletions from the index, however, are another matter. Stocks
are usually removed from the index because a firm is merging, being taken over, or nearing
bankruptcy. In these situations cash-flow characteristics may well be changing, so we exclude
these cases from our deletion sample.

We therefore test Propositions 1 and 2 for the case where X is the S&P 500, and Y is
stocks outside that index. In Section 3.2., in line with Proposition 1, we test whether a
stock’s beta with the S&P and the fraction of its variance explained by the index increase
(decrease) after the stock’s inclusion in (removal from) the index. In Section 3.3., in line
with Proposition 2, we test whether a stock’s beta with the S&P, controlling for the return
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of non-S&P stocks, goes up (falls) after inclusion (deletion).

Our null hypothesis is that return comovement is entirely a function of comovement in
news about fundamentals, so that the betas and R? just described do not change. The
alternative hypothesis is that trading flows do induce comovement, so that the betas and R?
change as predicted in the propositions.

While adding a stock to the S&P 500 should not cause a change in the cash-flow covari-
ance matrix, it is possible that a stock’s inclusion may coincide with a shift in the covariance
matrix, and that this may drive some of our results. We address this possibility in Section
3.5.

Tests of Propositions 1 and 2 can provide evidence in favor of our non-traditional theories
of comovement, but do not allow us to distinguish between them. Proposition 3 may be
useful here, in that it is more obviously an implication of the category-based view than of
the habitat view. Therefore, in Section 3.6., motivated by Proposition 3, we test whether
the correlation of S&P and non-S&P stocks has fallen in line with the growing importance
of the S&P: evidence supportive of this prediction would favor the category-based view.

3.1 Data

We consider S&P 500 index inclusions between September 22, 1976 and December 31, 2000
and deletions between January 1, 1979 and December 31, 2000. Standard & Poor’s did not
record announcement dates of index changes before September 1976 and we were unable to
obtain data on deletions before 1979.

There are 590 inclusion events in the inclusion sample period and 565 deletions in the
deletion sample period. Inclusion events are excluded if the new firm is a spin-off or a
restructured version of a firm already in the index, if the firm is engaged in a merger or
takeover around the inclusion event, or if required return data is not available. Deletion
events are excluded if the firm is involved in a merger, takeover, or bankruptcy proceeding,
or if required return data is not available.!’ These circumstances, determined by searching
the NEXIS database, exclude the vast majority of deletions. The final sample includes 455
inclusions and 76 deletions.'?

HThis last possibility may arise if the event occurs so close to the end of the sample that it prevents us
from estimating post-event betas.
12The S&P 500 inclusion and deletion data are available upon request.
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3.2 Univariate Regressions

If category-induced or habitat-induced trading flows cause return comovement, Proposition
1 predicts that stocks which are added to (deleted from) the S&P 500 will comove more
(less) with the other members of the index after the addition or deletion event.

For each inclusion and deletion event, we run the univariate regression
Rji = aj + BjRspsoot + v (25)

separately for the period before the event and for the period after the event, and record the
change in slope coefficient, A3;, and the change in R? ARJZ-. R;;is the return of the event
stock between time ¢t — 1 and ¢, while Rgpsgo, is the contemporaneous return on the S&P
500 index, obtained from the CRSP Index on the S&P Universe file.!?

We run these regressions for three data frequencies: daily, weekly, and monthly. With
daily and weekly data, the pre-event regression is run over the 12-month period ending the
month before the month of the inclusion announcement, while the post-event regression is
run over a 12-month period starting the month after the month of the inclusion implemen-
tation. In the case of monthly data, we use a 36-month period ending a month before the
announcement month and a 36-month period starting a month after the implementation
month for the pre-event and post-event regressions, respectively.*

Table 1 reports the change in slope coefficient, averaged across all events in the sample,
Af, as well as the average change in R?, ARZ?. It confirms that stocks added to the S&P
500 experience a strongly significant increase in daily and weekly betas and R2. In the full
sample of additions, the mean increase in daily beta is 0.151 and in weekly data, 0.11. At
the monthly frequency, though, we are unable to detect a significant increase in either beta
or R?. Other than a weakly significant change in daily beta, we do not detect significant
drops in beta or R? around deletion events.

Another prediction of trading-based comovement is that since the importance of the S&P
has grown over the course of our sample, the effects predicted by Proposition 1 should be
stronger in the second half of our sample. Consistent with this, Table 1 shows that at daily

13In order to avoid spurious effects, we remove the contribution of the stock in question from the right-
hand side variable. For addition events, this means that there are 500 stocks in the right-hand side variable
before the addition, and 499 afterward. The reverse applies for deletion events.

1Up until October 1989, inclusions and deletions were made effective on the day of their announcement.
Since then, the changes have been announced a few weeks in advance of their actual implementation. It is
not clear whether to view the to-be-added stock as being in the index, or not in the index during the time
between announcement and implementation; significant price effects have been documented on both days
(Lynch and Mendenhall, 1997). To avoid these issues entirely, we do not use data from the month of the
announcement or of the implementation; these are almost always the same month.
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and weekly frequencies, the increases in beta and R? across inclusion events are quantitatively
larger over the second subsample.

The standard errors in the table deserve comment. If two events are close together in
calendar time, there may be substantial overlap in the time periods covered by the regressions
associated with each event. This means that the disturbances v;; may be correlated across
events, which in turn implies that the AS; may not be independent but rather autocorrelated
at several lags.

We use simulation methods to compute standard errors that account for this dependence.
We generate a simulated data set, consisting of an S&P return and returns on included stocks,
and set the cross-sectional correlation of the disturbance terms to whatever value generates
a first-order autocorrelation in the Afg;’s equal to that observed in our results. We then
compute AJ in this sample, under the null that betas do not change after inclusion. By
generating many such data sets, we obtain the distribution of A under the null, and hence
also, appropriate standard errors.'?

3.3 Bivariate Regressions

The univariate regressions provide evidence of trading-based comovement at higher frequen-
cies. Stronger evidence comes from tests of Proposition 2, which predicts that controlling
for the return of non-S&P stocks, a stock that is added to (removed from) the S&P will
experience a large increase (decrease) in its loading on the S&P return. To test this, for each
inclusion and deletion, we run the bivariate regression

Rj; = aj + B;,sps00Rsps00, + Bjnonspsoononsrsoot + Vjy (26)

for the period before the event and the period after the event, and record the changes in
S&P and non-S&P betas, A} spsoo and AB;nonspsoo- Fnonspsoo, is the return on non-S&P
stocks in the NYSE, AMEX, and Nasdaq universe between time ¢ — 1 and time ¢. This is
inferred from index return and capitalization data using the identity that the capitalization-
weighted average return of S&P stocks and of non-S&P stocks equals the overall CRSP
value-weighted return on NYSE, AMEX, and Nasdaq stocks.

As before, we run the regressions at daily, weekly, and monthly frequencies. Daily and
weekly regressions are run over a 12-month period ending the month before the announce-
ment month and over a 12-month period starting the month after the implementation month.

15Tt turns out that at least for daily and weekly frequencies, cross-correlation of disturbances does not affect
the standard errors by very much. The reason is that such cross-correlation produces positive autocorrelation
in the AB; at the first few lags but negative autocorrelation at higher lags. As a result, the variance of AS3
is only slightly higher than if the disturbances were uncorrelated.
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The monthly regressions use 36-month periods before announcement and after implementa-
tion.

Table 1 reports the change in S&P beta, averaged across all events in the sample, A gpsg,
as well as the average change in non-S&P beta, ABponspseo- The results are statistically
stronger than the univariate results. At all three data frequencies, S&P 500 inclusion is
associated with a substantial and significant increase in beta with the S&P and a substantial
and significant decrease in beta with the rest of the market. For example, daily beta with
the S&P 500 goes up by an average of 0.357 and daily beta with other stocks drops by
-0.373. Large and significant results also obtain for deletion events at the daily and weekly
frequencies. Moreover, the table shows that at all three data frequencies, the changes in
S&P and non-S&P betas are quantitatively larger in the second subsample.

One possible concern about the bivariate regression is collinearity, in that the two right-
hand side variables are highly correlated. However, the usual standard errors do, of course,
take the correlation of the explanatory variables into account — no special correction is
required. Collinearity does mean that the standard errors on the slope coefficients in the
bivariate regressions will typically be higher than on the slope coefficient in the univariate
regressions. Nonetheless, Table 1 shows that in spite of the larger standard errors, the
bivariate regressions are able to reject the null more strongly than the univariate tests.

While collinearity cannot explain our statistically significant results in Table 2, it does ex-
plain another feature of the bivariate regression results, namely that ABgpsoe and ABponspsoo
appear to sum to a number close to zero. To see this, note first that due to collinearity, the
sum of ABgpsee and ABponspseo Will have a lower standard error than does either of ABgpso,
or ABnonspso- Mathematically, this is because collinearity induces negative correlation be-
tween ABgpseo and ABponspsen, lowering the variance of their sum.

Second, the sum of ABgpsyy and ABponspsee iS approximately the change in overall
market beta after inclusion, which we already know from the work of Vijh (1994) to be
small. Putting these two observations together, it makes sense, both under the null and
alternative hypotheses, that the sum of ABgpsy and ABponspseo should be close to zero.
The key difference between the two hypotheses, though, and the one that we test in Table
1, is that ABgpsy, should be statistically greater than zero for inclusions and statistically
lower than zero for deletions.

3.4 Calendar Time Tests

The methodology we use to test Propositions 1 and 2 in Sections 3.2 and 3.3 is often called
an “event time” approach. An alternative methodology is a “calendar time” approach. This
technique is often used to address a common statistical problem in event studies, namely
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correlation of returns across events. As described in Section 3.2., we use simulations to deal
with this issue. Performing calendar time tests offers a second way of checking that our
results are robust to these statistical considerations.

The calendar time approach requires the construction of two portfolios: a “pre-event”
portfolio whose return at time ¢, R, is the equal-weighted average return at time ¢ of all
stocks that will be added to the index within some window after time ¢; and a “post-event”
portfolio whose return at time ¢, R,os+, is the equal-weighted average return at time ¢ of
all stocks that have been added to the index within some window preceding time t. In our
analyses of daily and weekly data, we take the window to be a year, and extend it to three
years for monthly data.

The calendar time test of Proposition 1 then calls for running two regressions,

Rpre,t = Opre + ﬁpreRSP500,t + Upre,t (27)

and
Rpost,t = Opost + 6postRSP500,t + Upost,t» (28)
and checking whether £,,5s > B, and whether the R? in the second regression is greater

than in the first.

Similarly, the calendar time test of Proposition 2 calls for running the following two
regressions,

Ryrer = apre + Bpre,sPs002sP500,t + BprenonspsooBnonspsoo,e + Vpre,t (29)

and

Ryost,t = Qpost + Bpost,s 5005 P500,t + Bpost,nons psoolinonsrso,t + Upost,t (30)

and checking whether 8,05t 5P500 > Bpre,spso0 and Bpost,nonsrsoo < Bpre,nonspsoo-

Table 2 reports the changes in slope coefficients and R?s. In general, the results are as
supportive of trading-based comovement as the event time tests. In the univariate regres-
sions, significant increases in beta and R? occur at the daily and weekly frequencies, and
for R?, even at the monthly frequency. In the bivariate regressions, the results for inclusion
events are strongly significant at all three data frequencies, although the results for deletion
events are weaker than before: there is no statistically significant effect at any frequency.

3.5 Evaluating Alternative Explanations

We now consider two alternative explanations for the results in Table 1. One possibility is
that stocks in the S&P 500 index differ from other stocks in terms of some characteristic,
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and that the stocks Standard and Poor’s chooses to include are stocks that are increasingly
demonstrating that characteristic. If the characteristic is also associated with a cash-flow
factor, this may explain our results.

The most obvious such characteristic is size. Stocks in the S&P have considerably higher
market capitalizations than stocks outside the index, and the stocks Standard and Poor’s
includes into the index have often been growing in size prior to inclusion. Moreover, size
is associated with a cash-flow factor: there is a common component to news about the
earnings of large-cap stocks. Our finding that S&P betas increase around inclusion may
simply reflect the fact that included stocks are growing in size around inclusion and are
therefore increasingly loading on the large stock cash-flow factor. More generally, this is a
story in which inclusion into the S&P coincides with a change in the cash-flow covariance
matrix, even if it does not cause it.

Another potential explanation is based on industry effects. Suppose that some industry
becomes increasingly dominant in the economy. This increases the fraction of the value of
the S&P made up by stocks in this industry. Moreover, in an effort to keep their index
representative, Standard and Poor’s may start drawing an increasing number of new inclu-
sions from this industry. Since S&P beta is computed using the value-weighted S&P return,
this simultaneity can in principle explain our results: if Yahoo! is included into the S&P
at precisely the time that other technology stocks in the index are growing in value — as
indeed it was, having been added in December 1999 — it may covary more with the S&P
after inclusion than before.

To address both these competing explanations, we perform a matching exercise. For each
event stock included into the S&P during our sample period, we search for a “matching”
stock, drawn from the same industry as the event stock and in the same size decile as the
event stock, both at the time of inclusion and 12 months before inclusion, but which is not
included into the index. In other words, since the matching stock matches the event stock on
industry and on recent growth in market capitalization, it is as good a candidate for inclusion
as the event stock itself, but simply happens not to be included. If the matching stocks do
not demonstrate the same increase (decrease) in S&P (non-S&P) betas as the event stocks,
it strengthens the case that the results in Table 1 are due to trading-based comovement,
rather than to the alternative explanations.'® In the case of deleted stocks, the matching

16 At the monthly frequency, in order to match the window betas are computed over, we look for matching
stocks that match the event stock on size both at inclusion and 36 months before inclusion. At all frequencies,
we initially try to match by SIC4 industry code. If no match can be found, we allow the matching stock
to be in the same SIC3 industry class, then to be within one size decile at inclusion, then to be within one
size decile 12 months before inclusion, then to be in the same SIC2 industry class, then to be within two
size deciles at inclusion, then to be within two size deciles 12 months before inclusion, and finally to be
within three size deciles 12 months before inclusion. Events for which no such matches can be found are not
included in the matching exercise samples.
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stock is a stock in the S&P which matches the deleted stock on industry, and recent change
in market capitalization, but which is not removed from the index.

Table 3 and Figure I contain the results of the matching exercise. We discuss Figure I
first. Panels A, B, and C of the figure present results for daily, weekly, and monthly data,
respectively. Within each panel, the top two graphs present results for the event firms, while
the bottom two correspond to the matching firms. Also, within each panel, the graphs on
the left present results for the first half of our sample, 1976-1987, while those on the right
correspond to the second half, 1988-2000.

These twelve graphs use rolling regressions to show how S&P and non-S&P betas change
in event time. To understand this more precisely, consider the top left graph in Panel A.
The solid line shows the mean daily S&P beta and the dashed line shows the mean daily
non-S&P beta. These coefficients are re-estimated each month using the prior 12 months
of daily data. Therefore coefficients plotted to the left of the left vertical line use only pre-
event returns. Coefficients plotted to the right of the right vertical line use only post-event
returns. Coefficients in between use both pre- and post-event data. In terms of these figures,
the beta changes reported in Table 1 are the average beta as of event month +12, which uses
data from months [+1, +12] minus the average beta as of event month -1, which uses data
from months [-12, -1]. There are fewer data points in the graph (N = 169) than in Table
1 (N = 196 for additions in the first subsample), however, because the graph includes only
event firms with available return data for a full 24 months after inclusion, and for which we
were able to find matching firms. To be clear, the steady change in estimated betas between
the two vertical lines should not be interpreted as a steady change in true betas. Rather, it
arises from mixing data from the pre- and post-event regimes.

Figure I suggests that whichever frequency we look at, the alternative stories can explain
only a small fraction of our results: the matching stocks exhibit much smaller shifts in betas
than do the event stocks. Table 3, which reports the change in betas and R? in univariate and
bivariate regressions for event stocks relative to the analogous changes for matching stocks,
confirms this impression. At the daily and weekly frequency, and in the second subsample at
the monthly frequency, the changes in beta and R? in univariate regressions and in S&P and
non-S&P betas in bivariate regressions, remain strongly significant across inclusion events,
even after subtracting off the corresponding changes for matching stocks.!”

Even though there appears to be evidence of trading-based comovement at all three
frequencies, Table 3 suggests that the evidence for it is stronger at higher frequencies. It is
worth noting that this is itself a direct prediction of our alternative theories of comovement:

17In Table 1, we conducted simulations to correct the standard errors for possible correlation in disturbance
terms across regressions. This problem affects matching stock regressions just as much as it does event stock
regressions, but it does not affect differences in slopes across the two sets of regressions. The Table 2 standard
errors are therefore the usual ones — no simulation-based correction is required.
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the fraction of comovement due to our trading-based mechanisms should be larger at higher
frequencies. The reason is simply that the noise trader sentiment shocks, Auy,; and Auy,,
are mean-reverting, and therefore explain less of the variance of monthly stock returns than
of the variance of daily stock returns. Going one step further, they must also explain less
of monthly return comovement than of daily return comovement. The pattern in Table 3
is supportive of this. The fact that there is evidence of trading-based comovement even in
monthly data, though, suggests that the noise trader sentiment shocks do not mean revert
very rapidly.!'®

3.6 Comovement Across Categories

The results of our tests of Propositions 1 and 2 lend support to both of our non-traditional
theories of return comovement, but do not help us distinguish between them. We argued
earlier that Proposition 3 emerges more naturally as an implication of the category view
than of the habitat view. Evidence bearing on that proposition may therefore shed some
light on which of the two views is more relevant for the S&P.

Proposition 3 predicts that the correlation of the returns of two groups of securities will be
lower than the correlation of their fundamentals if these groups form natural categories. This
proposition is testable in the time series under the condition that the groups’ importance as
categories has grown over time. The S&P 500 satisfies this last condition: its use in various
investment styles has grown dramatically in the last few decades. Consistent with this trend,
Wurgler and Zhuravskaya (2001) find that the size of the inclusion price jump has grown
with the volume of funds devoted to S&P indexing, and our earlier results show increasing
comovement effects in more recent years.

Table 4 reports the trends in comovement between the S&P and other stocks over the
past thirty years. The left column shows that the relative size of the S&P and whole market
has remained constant. The declining correlations in the right columns show that at all
three data frequencies, the returns on the S&P 500 have grown increasingly divorced from
the returns on the rest of the market. The correlation in returns remains high today, but it
is not as high as it was prior to the advent of the S&P 500 as a category. Another interesting
pattern is that the decline in the daily correlation seems to have halted in recent years, while
the weekly and monthly correlations continue to decline.

In Table 5 we determine whether the decreasing correlation between S&P and non-S&P
stocks is statistically significant, or whether the correlation between two random groups

18This observation is consistent with the results of Froot and Dabora (1999), who find that discrepancies
between return comovement and cash-flow comovement are larger at higher frequencies, although still present
at lower frequencies.
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would on average display a similar decline. We construct value-weighted returns on a random
group of 500 stocks and compute their correlation with the value-weighted returns on the
rest of the market over consecutive five year periods. By repeating this procedure for many
random groups of 500 stocks, we can construct sampling distributions for the change in
correlation over various intervals. We can then determine whether the decline in the S&P
correlation is unusually large.

The left columns of Table 5 report the sampling distribution of the changes in correlation
between the random 500 and the rest of the market. The correlations between random
groups of stocks have declined. Panel A shows that, from the early 1970s to the late 1990s,
the daily return correlation between random groups has fallen by a median of -0.043. For
comparison, the second column from the right reports the experience of the S&P 500. Over
this same period, Table 4 indicates that the daily return correlation between the S&P and
the rest of the market has fallen by -0.118. The last column indicates that this is a much
greater decline than expected by chance. A similar conclusion emerges for weekly data. At
the monthly level, the decline in correlation between S&P and non-S&P stocks is below the
average decline for randomly-chosen stocks, but is not statistically unusual.

Our simulation controls for the possibility that the decline in the S&P and non-S&P
return correlation is due to a general decline in the correlation of stock fundamentals. Indeed,
the results of Campbell, Lettau, Malkiel, and Xu (2001) suggest that such a decline in
fundamental correlation has occured, making it important to control for. Our simulation does
not, however, rule out the possibility that our results are due to an especially large decline
in the correlation of S&P 500 stocks’ fundamentals with remaining stocks’ fundamentals,
as compared to the decline in the correlation of a random 500 stocks’ fundamentals with
remaining stocks’ fundamentals. However, we see no obvious reason why this would be the
case, since the S&P 500 index has always been constructed to be representative of the overall
economy. '’

Our test of Proposition 3 therefore potentially provides some evidence in favor of the
category, rather than the habitat, view of comovement. The evidence in Tables 4 and 5
appears more consistent with investors investing across a full range of assets but channeling
funds from one category to another, than it is with investors restricting themselves to trading
only a subset of securities.

19Panel A of Table 4 also shows that the abrupt halt in the decline of the daily S&P correlation after 1990
is not mirrored by the random-500 correlation, while the weekly and monthly S&P correlations continue to
decline relative to the typical random-500 group. One explanation is that arbitrage has checked the decline
in the daily correlation, but has yet to stop the decline in the weekly and monthly correlations. De Long et
al. (1990) point out that long-horizon arbitrage is likely to be weaker than short-horizon arbitrage.
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4 Conclusion

In this paper, we present and examine empirically three models of comovement. The tradi-
tional model attributes comovement to correlation in news about fundamental value. The
two alternative models we consider explain comovement by correlated investor demand shifts
for securities in a given category, or by demand shifts by specific investor clienteles.

To assess these theories, we consider the well-studied phenomenon of stock inclusions
into, and deletions from, the S&P 500 index. While previous studies have noted significant
immediate price effects associated with inclusions and deletions, we focus on changes in the
patterns of comovement of newly included (or deleted) stocks with stocks already in the
index. We find that stocks included into the index begin to comove more with other stocks
in the index, and less with stocks out of the index. The converse holds for deletions. Because
inclusion into the S&P 500 index conveys no news about fundamentals, this evidence is hard
to reconcile with the fundamentals view of comovement, but supports the theories based on
shifts in demand.

This evidence adds to the growing range of phenomena identified by financial economists
that reveal the importance of asset classification, and of demand shifts among asset classes,
for valuation. From this perspective, a security’s price may depend not only on its fun-
damentals, but also on which asset categories it belongs to, and on which investors trade
it.
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5 Appendix

Proof of Propositions 1, 2, and 3: Suppose that asset n + 1 is reclassified from Y into X,
and that at the same moment, asset 1 is reclassified from X into Y. Before reclassification,

Aux t+1 AUY,t+1

APxiv1 = expq + — +
P1 P2
A . AUX,t+1 AUY,t+1
Pyio1 = ey +
0 o
A’U/X t A'U/
441 Y+l
APy ii41 = Engipt1 + p + p ;
2 1

where

1
Ekt = — Z&,t, k=X,Y.
lek

This implies, as n — oo,

1 1 402
COVAPn ,AP e 2+20'Zu__|__ + u
( +1,t+1 X,t+1) z/)M P (¢2 ¢%) ¢1¢2
1 402p,
cOV(APpy141, APyi1) = U3+ 05+ 20 (¢2 Q)WL ¢1¢§)2
2
1 1 402 p,
var(APx 1) = var(APyuy) = @/JM +@/JS +20 (¢2 P ) ¢1“<pr
2
1 1 40
cov(APx 11, APyy1) = %2\/[ + QUzpu((ﬁ—% + ¢2) Sido’

After reclassification, APy, and APy, are still given by (31), but now

AU)(,1H-1 AuY,t—i—l

APnyipt1 = Engipe1 + b1 * b9
This implies, as n — o0,
1. dolp
coV(APpi1p41, APx 1) = i+ 20, (¢2 ¢_%) " ¢1¢2“,
s o, 11 402
coV(AP 141, APyi1) = Uy + U5+ 20,0u(5 + 5) + ’
¢1 ¢2 ¢1¢2

(31)

(32)

(33)

(34)

while var(APx ;41), var(APy,11), and cov(APx 41, APy, 1) remain the same as before.

Since the OLS estimate of 3, in the regression

APy 141 = g1 + Bup1t APx i1 + U141
is given by
COV(APn+1,t+17 APX,tJrl)

ﬁn-}-l - VaI’(APX,H_l) ’
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expressions (32) and (34) taken together with

LI W TS S SR
o1 b3 Prda 1 o’ T

confirm that (3,1 increases after reclassification as claimed in Proposition 1. Moreover, since

var(AP, 1) and var(APy,) are unchanged after reclassification, the increase in (3,1 also
implies an increase in the R? of regression (35) after inclusion.

The OLS estimates of 3,41 x and 3,11y in the regression

APy 141 = gt + Byt x APx i1 + By, vy APy 1 + Ungi 41 (37)

are given by

( 6n+1,X ) — 1 ( VY _CXY ) ( CTL+1,X ) (38)
ﬁn+1,Y VXVY - CIZYY _CXY ‘//Y Cn—i—l,Y

where

Vk — Var(APk7t+1), k = X, Y
OXY = COV(APX7t+1, APY¢+1)
Cn-i-l,k = COV(APTH-I,H—I; APk,H_I), k= X, Y.

Before reclassification, Cp,11,x = Cxy and Cy 41y = Vx = Vy, while after reclassification,
Cniix = Vx — 9% and Cpy1y = Cxy + 2. It is easy to check that this implies that if
Bns1,x and B,41y are the pre-reclassification values of 3,1 x and 3,11y, respectively, and
Bn—l—l,X and Bnﬂ,y are the post-reclassification values, then

Qn—l—l,X =0, =1

0<Bri1x> Buiry <1, Bryix + Bppry =1

Qn—l—l,Y

This proves Proposition 2.

Finally, given the expressions for var(APx 1), var(APy,11), and cov(APx 11, APy11)

in equation (32), it is immediate that when p, = —1,
1 1
var(APy 1) = var(APy, 1) = i +95 + 203(¢_ a ¢_)2
1 2
1 1
coV(APx 111, APy 1) = i — 200 pu(— — —)?, (39)
o1 9o
and hence that
_ U
cort(APx 141, APy 1) < corr(ADx 11, ADyy1) = 5.
Vi + s

This proves Proposition 3.
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Table 1. Changes in comovement of stocks added to and deleted from the S& P 500 Index. Changes in the slope
and the fit of regressions of returns of stocks added to and deleted from the S& P 500 Index on returns of the S& P
500 Index and the non-S& P 500 rest of the market. The sample includes stocks added to and deleted from the S& P
500 between 1976 and 2000 which were not involved in mergers or related events (described in the text), and which
have sufficient return dataon CRSP. For each added or deleted stock j, the univariate model

R =a; +bRepge, tUj,
and the bivariate model

Rj,t = aj +b i,SP500 RSPSOO,t + bj,nonSPSOO RmnSPSOO,t + uj,t

are separately estimated for the pre-change and post-change period. Returns on the S& P 500 (Rspsgo) are from the
CRSP Index on the S&P 500 Universe file. Returns on a capitalization-weighted index of the non-S& P 500 stocks
(Rnonspsoo) inthe NY SE, AMEX, and Nasdaq are inferred from the identity

AP - CAR. 0 AP 0
Rwcrset = gﬁ cropi-s - CARsooc s Roonsesoor + ?ﬂiRSPSOO,t'
CAPCRSP,t-l 4] CAPCRSP,t-l 4]

Total capitalization on the S&P 500 (CAPspsqo) is from the CRSP Index on the S&P 500 Universe file. Returns on
the value-weighted CRSP NY SE, AMEX, and Nasdag index (Rywcrsp) and total capitalization (CAPcrsp) are from
the CRSP Stock Index file. Returns from October 1987 are excluded. The mechanical influence of the added or
deleted stock is removed from the independent variables as appropriate. For the univariate regression model, we

examine the mean difference between the pre-change slope and the post-change slope Db , and the mean changein

fit DR . For the bivariate model, we examine the mean changes in the slopes, Db ssoo and DD e - The pre-
change and post-change estimation periods are [-12-1] and [+1,+12] months for daily and weekly returns and [-36,-
1] and [+1,+36] months for monthly returns. Panels A, B, and C show results for daily, weekly, and monthly returns,
respectively. Standard errors are determined by simulation, to account for cross-correlation, and are reported in

parentheses. ", *", and * denote statistical significance at the 1%, 5%, and 10% levels in one-sided tests,

respectively.



Univariate Bivariate
Sample = p—
N Db DR [b SP500 [b nonSP500
(se) (se) (se) (se)
Panel A. Daily Returns
Additions  1976-2000 455 0151 0049 0357 " 0373
(0.021) (0.005) (0.022) (0.029)
1976-1987 19 0067 " 0.038"" 0252 0262
(0.023) (0.008) (0.042) (0.050)
1988-2000 259 0214 0058"" 0406 " 0426
(0.032) (0.007) (0.027) (0.035)
Deletions  1976-2000 76 -0.087" -0010 0511 0550 "
(0.049) (0.007) (0.111) (0.122)
Panel B. Weekly Returns
Additions  1976-2000 455 0110 0.033"" 0174 0119
(0.029) (0.008) (0.053) (0.056)
1976-1987 19 0.025 0027 0.137 -0.125
(0.036) (0.012) (0.094) (0.093)
1988-2000 259 0173 0.037"" 0202 0115
(0.043) (0.010) (0.061) (0.069)
Deletions  1976-2000 76 -0.129 -0015 0505 " 0412
(0.105) (0.010) (0.161) (0.169)
Panel C. Monthly Returns
Additions  1976-1998 324 0.042 0.004 0317 0252
(0.042) (0.014) (0.077) (0.072)
1976-1987 172 -0010 0.006 0.267" -0.167
(0.060) (0.021) (0.127) (0.116)
1988-1998 152 0.101 0.000 03755 0348
(0.066) (0.021) (0.113) (0.107)
Deletions ~ 1976-1998 45 0.006 0.001 0.303 -0.256
(0.100) (0.022) (0.240) (0.252)




Table 2. Changes in comovement of stocks added to and deleted from the S& P 500 Index: Calendar time.

Differences between the comovement characteristics of two portfolios of stocks: those about to be added to the S& P
500 and those just recently added. The sample includes stocks added to and deleted from the S& P 500 between 1976
and 2000 which were not involved in mergers or related events, and which have sufficient return data on CRSP. A
capitalization-weighted return index of non-S& P 500 stocks (Raonspsoo) in the NY SE, AMEX, and Nasdag isinferred
from the identity described in Table 1. Returns from October 1987 are excluded. In daily data, for example, each day
we form an equal-weighted portfolio of stocks that will be added to the S& P 500 within the next year and a portfolio
of stocks that were added within in the past year. We then run separate univariate regressions for each portfolio on
the S& P 500 index,

R =a .t b Rspsoo,t *tU e and

pre pre,
+Uu

pret

Rpost,t =a post +b post RSPSOO,t postt *

denoting the difference in slope and fit between the “post” and “pre” regressions as Db and DR 2 , respectively.
We also run separate bivariate regressions for each portfolio,

Rpret =a pre +b pre,SP500 RSPSOO,t +b prenonSP500 RnonSPSOO,t +u pret and

+u

Rpost,t =a post +b post, SP500 Rspsoo,t +b post,nonSP500 RnonSPSOO,t postt ?

denoting the difference in the slopes as Db .y and DB, ,gps00 - respectively . The mechanical influence of the pre
and post portfolio stocks is removed, as appropriate, from the independent variables. In daily and weekly data, the
pre portfolio includes stocks that will be added within one year and the post portfolio includes stocks that were
added in the past year. In monthly data, these windows are extended to three years. We require at least 10 stocksin
each portfolio in order for that observation (day, month, or year) to be included in the regressions. Standard errors
are reported in parentheses. **, ", and * denote statistical significance at the 1%, 5%, and 10% levels in one-sided

tests, respectively.



Univariate Bivariate
Sample 2
P T Db DR Db SP500 Db nonSP500
(se) (se) (se) (se)
Panel A. Daily Returns
Additions 19762000 4147 0123 0.100"" 0297 " 0262
(0.013) (0.007) (0.020) (0.022)
1976-1987 1873 0116 0061"" 0326 " 0329
(0.019) (0.010) (0.035) (0.044)
1988-2000 2074 0129 0119 0208 0247
(0.017) (0.010) (0.026) (0.026)
Deletions  1976-2000 151 0.058 -0.069 0.164 -0.080
(0.107) (0.063) (0.190) (0.117)
Panel B. Weekly Returns
Additions  1976-2000 856 0.045 0.028" 0167 0154
(0.026) (0.015) (0.046) (0.043)
1976-1987 387 0041 -0028 -0014 0.051
(0.039) (0.024) (0.094) (0.099)
1988-2000 469 0.049 0.065 " 0219 0210
(0.036) (0.022) (0.054) (0.048)
Deletions  1976-2000 29 -0.082 -0.160 -0.162 0.039
(0.193) (0.120) (0537) (0.288)
Panel C. Monthly Returns
Additions  1976-2000 282 0018 0090 " 0319 03207
(0.042) (0.030) (0.073) (0.061)
1976-1987 127 0.019 0.007 0.148 -0.143
(0.047) (0.048) (0.114) (0.099)
1988-2000 155 0.016 0157 0388 -0406""
(0.065) (0.067) (0.092) (0.075)
Deletions 1976-2000 116 -0.123 0203 -0.255 0132
(0.105) (0.058) (0.166) (0.132)




Table 3. Changes in comovement of stocks added to and deleted from the S&P 500 Index: Relative to
matching firms. Changes in the slope and the fit of regressions of returns on stocks added to and deleted from the
S& P 500 Index relative to changes in the same parameters for matching stocks. Each stock in the event sample is
paired with another stock which matches it on industry, market capitalization and growth in market capitalization
over the pre-change estimation period (described in text). The event sample includes stocks added to and deleted
from the S&P 500 between 1976 and 2000 which were not involved in mergers or related events, which have
sufficient return data on CRSP, and for which a matching stock could be found. For each added or deleted stock j,

the univariate model
R =a; + b Rypgpe U,
and the bivariate model

Ri.=a;+ b i spsooRspsoor + bj,nonSPSOO Ronspsoos TU

it
are separately estimated for the pre-change and post-change period, and analogous regressions are run for each
matching stock. Returns on the S&P 500 (Rspsgg) are from the CRSP Index on the S& P 500 Universe file. Returns
on a capitalization-weighted index of the non-S& P 500 stocks (Rnonspsoo) in the NY SE, AMEX, and Nasdag are
inferred from the identity described in Table 1. Returns from October 1987 are excluded. The mechanical influence
of the added or deleted stock is removed from the independent variables as appropriate. For the univariate regression

model, we examine the mean difference between the pre- and post-change slope and fit of the event stock and the

matching stock, DDb and DDR? . For the bivariate model, we examine the mean difference between the changes

in the slopes of the event stock and the matching stock, DDD ooy and DDD ,gpeq0 - The pre-change and post-

change estimation periods are [-12,-1] and [+1,+12] months for daily and weekly returns and [-36,-1] and [+1,+36]
months for monthly returns. Panels A, B, and C show results for daily, weekly, and monthly returns, respectively.

Standard errors are reported in parentheses.~~,”", and " denote statistical significance at the 1%, 5%, and 10% levels

in one-sided tests, respectively.



Univariate Bivariate
Sample == pp——
N DI]) DDR Du) SP500 Du) nonSP500
(se) (se) (se) (se)
Panel A. Daily Returns
Additions  1976-2000 435 0120 0040 " 0318 0289
(0.022) (0.006) (0.035) (0.042)
1976-1987 189 0109 0.033"" 0262 -0257""
(0.028) (0.008) (0.051) (0.065)
1988-2000 246 0129 0046 " 0361 0313
(0.032) (0.007) (0.047) (0.055)
Deletions  1976-2000 36 -0.098 0012 0208 0271
(0.081) (0.013) (0.142) (0.193)
Panel B. Weekly Returns
Additions  1976-2000 434 0.077" 0.028"" 0.208"" 0146
(0.037) (0.009) (0.070) (0.070)
1976-1987 188 0.086' 0.026° 0202 -0.162
(0.047) (0.015) (0.113) (0.114)
1988-2000 246 0.070 0030 0212 0134
(0.055) (0.012) (0.087) (0.088)
Deletions  1976-2000 36 -0.013 -0.030 0616 0771”
(0.157) (0.020) (0.251) (0.285)
Panel C. Monthly Returns
Additions  1976-1998 300 0104 0.011 0173 -0.090
(0.047) (0.013) (0.103) (0.001)
1976-1987 162 0.054 0.008 0.054 -0011
(0.060) (0.020) (0.145) (0.125)
1988-1998 138 0.163" 0015 0313" -0.183
(0.073) (0.020) (0.144) (0.133)
Deletions  1976-1998 18 0.236 0.057 0438 0133
(0.156) (0.041) (0.315) (0.266)




Table 4. Trends in the correlation between returns on the S& P 500 and the rest of the market. The correlation
between the S& P 500 and the rest of the market. Returns on the S& P 500 (Rspsgo) are from the CRSP Index on the
S&P 500 Universe file. Returns on a capitalization-weighted index of the non-S& P 500 stocks (Rnonspsoo) in the
NY SE, AMEX, and Nasdaq are inferred from the identity

AP - CAR. 0 AP 0
Rawcrset = gg cropi-s - CARsooc s Roonsesoor + ?ﬂiRSPSOO,t'
CAPCRSP,t-l 4] CAPCRSP,t-l 4]

Total capitalization the S&P 500 (CAPspsq) is from the CRSP Index on the S& P 500 Universe file. Returns on the
value-weighted CRSP NY SE, AMEX, and Nasdaq index (Rywcrsp) and total capitalization (CAPcrsp) are from the
CRSP Stock Index file. Returns from October 1987 are excluded.

Mean of
o APSPSOO,’[ 9 Correlation between S& P 500 and the rest of the market
Years CAP.s: &
Daily Returns Weekly Returns Monthly Returns
1970- 1974 0.689 0941 0.942 0931
1975-1979 0.685 0.898 0.920 0.925
1980 - 1984 0.670 0.871 0.915 0.929
1985 - 1989 0.683 0.825 0.864 0912
1990 - 19%4 0.690 0.817 0.851 0.901

19951999 0.701 0.823 0.810 0.840




Table 5. Trends in the correlation between returns on the S& P 500 and the rest of the market: Relative to random 500 stocks. The decline in correlation
between returns on the S& P 500 and the rest of the market is evaluated relative to the null hypothesis that a similar decline applies to random categories of
stocks. The distribution of changes in the correlation between the return on 500 random stocks from NY SE, AMEX, and Nasdag and the value-weighted return
on the rest of the market is determined by simulation. The following procedure is repeated 500 times: (i) A sample of 500 random stocks from the NY SE,
AMEX, and Nasdaq is identified from all stocks that CRSP lists for 1970. The complementary set of stocks, i.e. the rest of the market, is also identified as of
1970. (ii) The daily, weekly, and monthly correlation between these two portfolios is computed and recorded each year from 1970 through 1999. If a stock drops
out of the random 500 sample, it is replaced with a stock randomly taken from the rest of the market sample. Returns from October 1987 are excluded. (iii) These
two return series represent one sample path, over which correlations and changes in correlations can be estimated. Panels A, B, and C show results for daily,

weekly, and monthly returns, respectively.

Change in correl ation between random 500 Change in correlation between S& P 500
and the rest of the market and therest of the market
5th 10" 50" o0t o5
Years percentile percentile percentile percentile percentile Actual Prob (Actual < X))

Panel A. Daily Returns

1995-1999 vs.
1970 - 1974 -0.070 -0.064 -0.043 -0.023 -0.019 -0.118 0.002
1975- 1979 -0.073 - 0.066 -0.045 -0.028 -0.024 - 0075 0.040
1980 1984 -0.070 - 0.065 -0.042 -0.023 -0.019 -0.048 0.344
1985— 1989 -0.079 - 0073 -0.053 -0.037 - 0032 - 0.002 0.99%

1990 - 194 -0.048 -0.042 -0.026 -0.012 - 0.009 +0.006 0.998




Panel B. Weekly Returns

1995— 1999 vs.
1970— 1974 - 0076 - 0073 -0.050 -0.032 - 0.026 -0132 0.002
1975- 1979 -0.076 -0071 -0.050 -0.030 -0.025 -0110 0.002
1980 - 1984 - 0.068 - 0.064 -0.044 -0.020 - 0016 -0.105 0.002
1985 — 1989 -0.075 - 0.069 -0.050 -0.033 -0.029 - 004 0.090
1990 - 1994 -0.051 -0.045 -0.029 -0.012 - 0.008 -0041 0.136

Panel C. Monthly Returns

1995— 1999 vs.
19701974 -0115 -0.103 -0.060 -0.030 -0.025 - 0.091 0.162
19751979 -0114 -0.102 -0.059 -0.030 -0.023 -0.085 0.202
1980 - 1984 -0.102 - 0.090 -0.050 -0.018 - 0.008 -0.089 0112
1985 — 1989 -0.116 -0.105 -0.066 -0.036 -0031 -0.072 0.390
1990—- 194 - 0.095 -0.083 -0.045 -0.017 -0.012 -0.061 0.274




Figure |. Changes in comovement of stocks added to the S&P 500 Index and stocks with matching
characteristics. Plots of the mean slope coefficients of bivariate regressions of returns on stocks added to the S&P
500, and stocks with matching characteristics to those added, on returns of the S& P 500 Index and the non-S& P 500
rest of the market. The event sample includes stocks added to the S& P 500 which were not involved in mergers or
related events (described in the text), which have complete returns data over the entire event horizon examined in
each figure (-12 to +24 months in daily and weekly returns data and —36 to +72 months in monthly returns data),
which remain in the Index for the full post-event horizon, and for which suitable matching firms exist that have
complete data over the same horizon. Each stock in the event sample is matched with a stock on industry and growth
in market capitalization (as described in text) over the pre-change estimation period. For each added stock j (and
each corresponding matching stock), the bivariate model

Rj t o aj + ﬁj,SPSOO Rspsoo,t + ﬁj,nonSPSOO RnonSPSOO,t + Uj,t
is estimated in rolling regressions where sample intervals are [-12,-1] months for daily and weekly returns
regressions and [-36,-1] months for monthly returns. Returns on the S& P 500 (Resgg) are from the CRSP Index on
the S&P 500 Universe file. Returns on a capitalization-weighted index of the non-S& P 500 stocks (Ryonsesoo) iN the
NYSE, AMEX, and Nasdaq are inferred from the identity described in Table 1. Returns from October 1987 are
excluded. The mechanical influence of the added stock is removed, as appropriate, from both independent variables.
The means of the event stock coefficients are plotted in event time in the top half of each panel, and the means of the
matching stock coefficients are plotted in the bottom half. The left vertical line indicates the addition date;
coefficients to the left of this line are estimated using only pre-event data. Coefficients to the right of the right
vertical line are estimated using only post-event data. In between, coefficients are estimated using both pre- and

post-event data. Panels A, B, and C show results for daily, weekly, and monthly returns, respectively.
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B. Weekly Returns

1976-1987 additions with matches (N = 169) 1988-2000 additions with matches (N = 153)
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C. Monthly Returns

Mean coefficient

Mean coefficient

1976-1987 additions with matches (N = 97)
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E—Ccta with S&P500 = ™= = Beta with non-S&P500

1988-2000 additions with matches (N = 47)
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