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Abstract

In this research, we develop an approach to identification and testing for bid-rigging in pro-
curement auctions. First, we introduce a general auction model with asymmetric bidders. Sec-
ond, we study the problem of identification in our model. We state a set of conditions that are
both necessary and sufficient for a distribution of bids to be generated by a model with competi-
tive bidding. Third, we discuss how to elicit from industry experts a prior distribution over firm’s
structural cost parameters. Given this prior distribution, we use Bayes theorem to compare com-
petitive and collusive models of industry equilibrium. Finally, we apply our methodology to a
data set of bidding by construction firms in the Midwest. The techniques we propose are not
computationally demanding, use flexible functional forms and can be programmed using most
standard statistical packages.
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1 Introduction.

Bid-rigging is a serious problem in many procurement auctions. According to Engineering News-Record,

criminal bid-rigging cases have recently been filed in New York City and Chicago for building public

schools, bridge repair, interior remodeling, paving and many other types of construction. A widely pub-

licized instance of bid-rigging occurred in the New York cement industry in the 1980’s, where organized

crime designed an elaborate bid-rigging scheme that inflated building costs, making the price of poured

concrete the highest in the nation.2 Developing effective and computationally simple tools that can be used

by regulators to detect bid-rigging might serve as a deterrent to future collusion, and thereby lower prices

and enhance efficiency in some industries.

In this paper, we develop an approach to identification and testing for bid-rigging in procurement auc-

tions. We begin by describing a model of competitive bidding for procurement contracts. A unique aspect

of our model is that bidders are asymmetric, that is, ex-ante, the costs of bidders may differ. Asymme-

tries are commonplace in procurement and may arise due to the location of firms, capacity constraints, or

familiarity with local rules and regulations. Next, we study the problem of identification in the asymmetric

auction model. We state a set of conditions that is both necessary and sufficient for a distribution of bids to

be rationalized by our model and we also discuss how these conditions could be tested. Finally, we use the

tools of statistical decision theory to decide between competitive and collusive models of industry equilib-

rium. We elicit from industry experts a prior distribution over the structural cost parameters that enter into

our models. Given this prior distribution over structural cost parameters, we use Bayes Theorem and the

laws of conditional probability to decide between competitive and collusive models of industry equilibrium.

We apply our methodology to a data set of bidding by construction firms. The techniques needed for the

2 In his biography, Mafia turncoat Sammy (The Bull) Gravano, who claims to have orchestrated collusion
in the construction industry for the Gambino crime family said, “If one of them (contractor) gets a contract
for, say, thirteen million, the next thing you know, after he knows he’s got it, he jacks up the whole thing before
it’s over to a sixteen-or seventeen-million-dollar job. Now he’s increased the cost thirty-three percent. So
our greed (the Mafia) is compounded by the greed of them so-called legitimate guys (contractors).” Maas (1997), p. 271.
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computations are not particularly complex and can be programmed using standard statistical packages.

In empirical industrial organization, it is common to consult with industry experts during a research

project in order to learn about the nature of demand, costs and strategic interactions in the marketplace.

However, information garnered from industry sources is seldom formally incorportated into the estimation.

A unique feature of our analysis is that we elicit the beliefs of industry experts about the model parameters

and incorporate these beliefs into estimation.

The firms in our application survive in an unforgiving environment: poor decision making is punished

with personal financial loss (the firms in our industry are all owner operated). In our data set, over a

hundred firms compete, but only 7 firms have market shares that exceed 5 percent. We expect that the a

priori beliefs elicited from owner-operators with decades of experience contain important information about

industry costs that can help us to estimate parameters and decide between alternative models of industry

equilibrium. We do not advocate exclusively estimating models by imposing priors from external sources

such as industry experts, consulting engineers or internal cost records of firms. However, we believe that

in some circumstances, especially when other identifying information is not available, the data is of poor

quality and highly limited, utilizing this type of prior information about the parameters values can be very

useful in estimation and decision making.

There are a number of recent empirical papers on the subject of bid-rigging. The first set of empirical

papers describe the observed bidding patterns of cartels and compare cartel to non-cartel bidding behavior.

Porter and Zona (1993,1999) and Pesendorfer (1996) both analyze data sets where it is known that bid-

rigging has taken place. These papers find the following empirical regularities: First, cartel members tend

to bid less aggressively than non-cartel members. Second, the bids of cartel members tend to be more

correlated with each other than with the bids of non-cartel members. Third, collusion tends to increase

prices as compared to a non-collusive control group.

The second set of empirical papers, such as Porter and Zona (1993) and Baldwin, Marshall and Richard

(1997) propose econometric tests designed to detect collusive bidding. Baldwin, Marshall and Richard

(1997) nest both competition and collusion within a single model to test for collusion. Their model is ap-

plicable for oral or second-price auctions with private values. Porter and Zona (1993) propose a procedure

where two models of bidding are estimated. The first model is a logistic regression on the identity of the
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lowest bidder. The second model is an ordered logit regression on the ranking of all the bidders. Under

the null hypothesis of no collusion, the parameter values from the two models should be equal. Our com-

panion paper Bajari and Ye (2001) sheds some new light on the analysis of Porter and Zona (1993,1999)

and Baldwin, Marshall and Richard (1997) by demonstrating how observable differences across firms such

as location and capacity play a key role in the identification of collusion.

Finally our paper is also related to the literature on structural estimation of the first-price auction model.

Most closely related to our research is Guerre, Perrigne and Vuong (1999) which estimates the first-price

auction model non-parametrically. Also related are Bajari (1997) and Pesendorfer and Jofre-Bonet (2000)

which structurally estimate asymmetric models of the first price auction.

We believe that taken together with our companion paper Bajari and Ye (2001), the tests we have pro-

posed are a useful diagnostic for detecting suspicious bidding behavior. While no method for detecting

collusion is likely to be fool proof, we believe that our methods can be used as a first step to determine

whether suspicious bidding might have occurred and to determine whether further investigation is war-

ranted.

2 The Model

In this section, we develop a model of competitive bidding for a contract to build a single and indivisible

public works project. The framework of the model is appropriate for modeling bidding behavior in our seal

coating data set as well as bidding for many other types of procurement contracts.

In most auction models, it is usually assumed that firms are symmetric. In procurement settings, this

assumption implies that private cost estimates are independently and identically distributed. However, this

is not an appropriate assumption for the seal coat industry as well as many other procurement auctions. In

the seal coat industry, there are at least four sources of asymmetries. The first is location. Firms that are

closer to a construction project are more likely to submit a bid and their bids would be lower, other things

being equal. The second source of asymmetries is capacity utilization. Each firm needs to take into account

that winning a contract today will limit its available capacity to complete future projects. The third source

of asymmetries is different technologies across firms. Firms clearly differ in their sizes, most likely due to

technology and managerial efficiency. The fourth source of asymmetry is that firms differ in their success in
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winning contracts by state. Many firms in our data set complete the majority of their work in a single state.

In order to bid successfully, firms must be familiar with local regulations and local procurement officials.

To better capture all the industry features described above, in our model we assume that firms are asym-

metric. There are N firms competing for a contract to build a project. Before bidding starts, each firm i

forms an estimate of its cost to complete the project. Firm i knows its own cost estimate but does not know

the cost estimates of other firms. The cost estimate for firm i is a random variable Ci with a realization de-

noted as ci. The random variable Ci has a cumulative distribution function Fi(�; �i) and probability density

function fi (�; �i) where �i is a vector of parameters: We will let � = (�1; :::; �N ) denote the vector of all

firm specific parameters. The cost distribution is assumed to have support [c; c] for all firms:

As a simple example, consider a situation where each firm has a different location and hence different

transportation costs. Then one natural specification for firm i’s private information is:

ci = constant+ �1 � distancei + "i (1)

In equation (1), ci, firm i’s cost estimate is a function of three terms. The first term is a constant, which

could reflect attributes of the project that affect all firms identically, such as how many miles of highway

must be paved or the tons of concrete that must be poured for the foundation of a new building. The second

term, �1 � distancei; is different for different firms due to different locations. The third term, "i; serves to

model private information about some component of firm i’s cost, such as the cost for materials or labor. If

"i is normally distributed with mean zero and standard deviation � then � i = (constant; �1; distancei; �).

Let bi denote the bid submitted by firm i. Firms are assumed to be risk-neutral. If firm i submits the

lowest bid then firm i’s payoff is bi � ci; and if it fails to submit the lowest bid then firm i’s payoff is 0.

If two or more firms submit the same bid, the contract will be awarded at random among the set of the

lowest bidders. But ties only occur with probability zero in equilibrium. Firm i’s payoff function can thus

be written as:

ui(b1; :::; bn; ci) =

�
bi � ci if bi < bj for all i 6= j

0 otherwise.
(2)

Firm i has private values since its payoff depends only on c i and not the private information of other firms.

Armantier, Florens and Richard (1997) and Porter and Zona (1993) both use the assumption of private
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values in their models of procurement auctions. If firm specific factors account for the differences in cost

estimates, then the assumption of private values is plausible. In the seal coat industry, it is reasonable to

assume that firms have private value components to costs, because labor and material costs are mainly firm

specific and to some extent private information.

Firm i’s strategy is a function bi = bi(ci; �) which maps firm i’s cost draw, ci; to a bid bi in the

interval [c; c]. LeBrun (1994) and Maskin and Riley (1996a,b) have shown that, in equilibrium, the bid

functions bi = bi(ci; �) are strictly increasing and differentiable which implies that the inverse bid functions

�i(b; �) = b
�1
i (b; �) are also strictly increasing and differentiable. To simplify the notation, we will often

write firm i’s bid function as bi(ci), suppressing its dependence on the vector of parameters �:

Since bj(cj) is strictly increasing, when firm i has a cost draw of ci, her expected profit from bidding

bi will be:

�i(bi; ci;b�i; �) = (bi � ci)Qi(bi; �) (3)

whereQi(b; �) =
Q

j 6=i 1�Fj(�j(b; �); �j) is the probability that firm i is the lowest bidder. As we can see

from equation (3), firm i’s expected profit is a markup times the probability that firm i is the lowest bidder.

Static models with competitive bidders may not be sufficiently general in many empirical applications.

We now demonstrate that models with non-trivial dynamics and collusion can be viewed as special cases of

the model developed above.

2.1 Dynamic Bidding

In the construction industry, firms must usually bid in a sequence of auctions over time. Firms are often

capacity constrained due to limited physical capital and limited pool of workers who possess the necessary

specialized skills. In a dynamic equilibrium, a firm must account for the fact that winning a project in an

early auction will mean that it has less free capacity for future jobs. Capacity constraints have important im-

plications for bidding strategies. A stylized fact in many markets is that firms tend to bid more aggressively

early in the construction season when they have more unutilized capacity. Also, according to accounts by

industry participants, in order not to lose skilled workers, construction firms may even bid at less than cost

to prevent their employees from being idle.
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Let s be a vector denoting the state of the industry and assume that the state is publicly observed by all

participants in the auction. At any given point in time, this vector might include: the capacities for all firms

in the industry, the distances of all the firms to the project locations, the market prices of key materials and

so forth.

Assume that ViW (s) is the continuation value attached to winning at state s, and V iL;j(s) is the contin-

uation value attached to not winning (and that firm j is the winning firm) at state s. When i wins the job,

its used capacity increases and all the competitors’ capacities remain unchanged for the next period. When

j (j 6= i) wins the job, firm j’s used capacity increases and the capacities of all the other firms (including

firm i) remain unchanged for the next period. Note that in general, ViL;j(s) may not be the same for all j

(j 6= i).

To simplify the equilibrium analysis, we assume that the option value attached to not winning is the

same regardless of the winner’s identity, i.e., we assume that V iL;j = ViL: With this assumption, the firm’s

expected payoff will now have the general form:

�i(b; ci; �) = (b� ci + ViW (s))Qi(b; �) + ViL(s)(1�Qi(b; �)) (4)

= (b� ci + ViW (s)� ViL(s))Qi(b; �) + ViL(s) (5)

Since constants are irrelevant in a firm’s maximization problem, we may write the firm’s maximization

problem as:

max
b

(b� ci + ViW (s)� ViL(s))Qi(b; �) (6)

As in equation (3), a firm’s optimization problem is the difference between its bid and a cost estimate

times the probability of winning. The only difference now is that a firm’s cost includes an estimate of

the option value of having free capacity available for future periods. Since both V iW (s) and ViL(s) are

common knowledge to all participants in the game, the above equation is equivalent to maximizing utility

in a static auction model with cost ci + ViL(s)� ViW (s):3

3 Once option values are included in the analysis, it might be the case that the distributions of costs no longer
have common supports across the firms. As we discuss in the next section, this can cause problems for the
existence, uniqueness and other characterizations of the equilibrium. The theoretical problem remains, to the
best of our knowledge, unresolved. However, if one makes an arbitrarily small perturbation to the information
structure so that both firms have the same support, then the existence, unqiueness and characterization theorems still hold.
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The key assumption needed for the validity of this analysis is that V iL;j(s) is independent of j. While

this assumption may not be strictly true in a dynamic model of bidding, our empirical work suggest that

this assumption may not be a bad approximation. If firm i was concerned about which firm j 6= i wins the

procurement in the event that i does not, firm i should bid differently depending on the capacity utilization

of her competitors. However, while a firm’s own available capacity was significant in reduced form bid

functions, the capacity of other firms failed to be significant determinant of firm i’s bid. This is consistent

with firm i being indifferent between which competing firm j 6= i wins the contract.

2.2 Collusion

Numerous mechanisms for collusion have been found in the construction industry. For example, firms may

follow bid rotation schemes to allocate projects, side payments are sometimes made between firms and

geographic territories have been established as parts of cartel arrangements.

We will demonstrate that a simple model of collusive bidding where the cartel behaves efficiently is a

special case of our model presented at the beginning of this section. Suppose that before the auction begins,

all cartel members make a cost draw. The cartel members meet before the auction, compare cost draws and

the cartel member with the lowest cost draw submits a real bid, while other cartel members either abstain

from bidding or submit phantom bids. Let C � f1; 2; :::; Ng denote the cartel. The cost to the cartel (cc)

can be denoted as:

cc = min
j2C

cj (7)

If other bidders are aware of the identity of the cartel, then it is trivial to adapt our previous analysis to

the case of a cartel. The cartel is simply modeled as the order statistic of its members’ cost draws.

3 Properties of Equilibrium

In this section, we summarize some theoretical properties of the asymmetric auction model. This section

can be skipped by those readers primarily interested in the empirical implementation of our procedures.

In the asymmetric auction model, we assume that firms play a Bayes-Nash equilibrium in pure strategies.

Firm i first of all makes a cost draw ci, then taking the cost draw as given, chooses a bid b i that maximizes

(3).
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The first order condition for maximizing expected profit in our model is:

@

@b
�i(b; ci; �) = (b� ci)Q

0

i(b; �) +Qi(b; �) = 0 (8)

The equilibrium to the model can be characterized as the solution to a system of differential equations

with boundary conditions. This is done by rearranging equation (8):

@

@b
�i(b; ci; �) =

Y
j 6=i

[1�Fj(�j(b))]�(b�ci)
Y
j 6=i

fj(�j(b))�
0

j(b)
Y
k 6=j

[1�Fk(�k(b))] = 0; i = 1; :::; N: (9)

Equation (9) involves the inverse bid function �j(b) and its derivative �0j(b). Collecting terms and rewriting

(9) we can characterize the equilibrium inverse bid functions as the solution to a system of N ordinary

differential equations:

�
0

i(b) =
1� Fi(�i(b))

(N � 1)fi(�i(b))

2
4�(N � 2)

b� �i(b)
+
X
j 6=i

1

b� �j(b)

3
5 ; i = 1; :::; N: (10)

Throughout our analysis we will impose the following regularity conditions on our model primitives:
� Assumption 1. For all i, the distribution of costs Fi(ci; �) has support [c; c]. The probability density

function fi(ci; �) is continuously differentiable (in ci).

� Assumption 2. For all i, both fi(ci; �) is bounded away from zero on [c; c].

Theorem 1 (LeBrun (1994, 1995a,b) and Maskin and Riley (1996a,b)). If Assumptions 1 and 2 hold, then
an equilibrium in pure strategies exists. Furthermore, the equilibrium is strictly monotone and differen-
tiable.

Another basic result from the theoretical literature is that the inverse bid functions can be characterized

as the solution to a system ofN differential equations with 2N boundary conditions and that the equilibrium

is unique.

Theorem 2 (LeBrun (1995a), Maskin and Riley (1996a)) Suppose that Assumptions 1 and 2 hold. Let
�1(b); :::; �N (b) be inverse equilibrium bidding strategies. Then

(i) For all i, �i(c) = c;

(ii) There exists a constant � such that for all i, �i(�) = c;
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(iii) For all i and for all b 2 [�; c]; equation (10) holds.

Theorem 3 (Maskin and Riley (1996a), Bajari (1997), Bajari(2000), LeBrun (2000)) Suppose that as-
sumptions 1 and 2 hold. Then there is a unique equilibrium.

4 Identification

In this section, we will state a set of conditions that are both necessary and sufficient for a distribution of

bids to be generated from the asymmetric auction model of the previous sections. We assume that it is

possible to write the cumulative distribution function of firm i’s cost in the form F (cijzi) where zi 2 Z

is a vector of parameters and covariates that is publicly observable to all other firms. For instance, in

equation (1) the vector zi would be the tuple zi = (constant; �1; distancei; �). Let z denote the vector

z = (z1; :::; zn):

Let Gi(b; z) be the cumulative distribution of firm i’s bids and gi(b; z) be the associated probability

density function. Using the Theorems from the previous section, it is straightforward to show that the

following conditions must hold in equilibrium.

A1 Conditional on z, firm i’s bid and firm j’s bid are independently distributed.

A2 The support of each distribution Gi(b; z) is identical for each i.

Conditional on z, each firm’s signal ci is independently distributed and since bids are function of c i, A1 must

hold in equilibrium. Condition A2 holds by the characterization Theorem stated in the previous section.

A third condition that must hold in equilibrium is that the distribution of bids must be exchangeable

in the zi: Let � be a permutation, that is, a one-to-one mapping from the set f1; :::; Ng onto itself. The

definition of exchangeability is that for any permutation � and any index i the following equality must

hold:

Gi(b; z1; z2; z3; :::; zN ) = G�(i)(b; z�(1); z�(2); z�(3); :::; z�(N)) (11)

Equation (11) implies if the cost distributions for the bidders are permuted by �, then the empirical distrib-

ution of bids must also be permuted by �. For instance, if we permute the values of z1 and z2 holding all

else fixed exchangeability implies that G1(b) and G2(b) also permute.
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A3 The equilibrium distribution of bids is exchangeable. That is, for all permutations � and any index
i Gi(b; z1; z2; z3; :::; zN ) = G�(i)(b; z�(1); z�(2); z�(3); :::; z�(N)):

The fourth condition that must hold in equilibrium is that the bid functions must be strictly monotone.

First of all note that we can write the first order conditions for equilibrium as:

ci = b�
1P

j 6=i

f(�j(b;z)jzi)�
0

j(b;z)

1�F (�
j
(b;z)jz

i
)

: (12)

Since equilibrium bid functions are strictly monotone it follows by a simple change of variables argument

that Gi(b; z) and gi(b; z) must satisfy:

Gi(b; z) = F (�i(b; z)jzi) (13)

gi(b; z) = f(�i(b; z)jzi)�
0

i(b; z) (14)

Now define �i(b; z) as follows

�i(b; z) = b�
1P

j 6=i
gi(b;z)

1�Gi(b;z)

; then (15)

A4 For all i and b in the support of the Gi(b; z) the function �i(b; z) is strictly monotone.

Finally, from our characterization theorem, the following boundary conditions should also hold:

A5 �i(
�b; z) = �c; �i(b; z) = c for i = 1; 2; � � � ; N .

We formalize the above observations into theorem 4.

Theorem 4 Suppose that the distribution of bids Gi(b; z); i = 1; :::; N is generated from a Bayes-Nash
equilibrium. Then conditions A1-A5 must hold.

The next set of result shows that if the conditions A1-A5 hold then it will be possible to construct a

distribution of costs Fi(bjz) that uniquely rationalizes the observed bids Gi(b; z) as an equilibrium (see

Bajari and Ye (2001) for a proof).

Theorem 5 Suppose that the distribution of bids Gi(b; z) satisfies conditions A1-A5. Then it is possible
to construct a unique set of F (cjz) such that Gi(b; z) is generated from an equilibrium to the game when
costs are distributed as F (cjz).

If there is no variation in z which is observable to the econometrician, it will typically not be possible to

determine whether collusion has occurred.
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Theorem 6 If there is no variation in z and A1-A5 hold, then competition is observationally equivalent to
a cartel C that is not all inclusive.

Even if there is variation in z, it may still not be possible to empirically distinguish collusion from

competition. A sophisticated cartel that includes all N firms may be able to construct a mechanism for

collusion that satisfies conditions A1-A5. For instance, suppose that the cartel operates by first having each

firm compute its competitive bid and then submit a bid of 1.1 times its competitive bid. It is straightforward

to show that conditions A1-A5 are satisfied if the cartel colludes in this fashion.

5 Competitive Bidding For Seal Coat Contracts

We have compiled a unique data set for the purpose to apply our test for collusive bidding. Our data set

was purchased from Construction Market Data (CMD) and contains detailed bidding information for nearly

all of the public and private road construction projects in Minnesota, North Dakota and South Dakota. We

purchased all archived records of road construction projects for these states awarded during the years 1994-

1998. This data set contains nearly 18,000 unique procurement contracts and was a whopping 48 MB in

size.4 For each project, the data set contained a wealth of information including, for example, the project

location, the deadline for bid submission, bonding requirements, the identities of all of the bidders, some

very detailed project description and many other variables, etc.

We decided to focus on a particular submarket in road construction called seal coating. Seal coating is

a maintenance process designed to extend the life of a road. It adds oil and aggregate (sand, crushed rock,

gravel or pea rock) to the surface of a road. This gives the road a new surface to wear and also adds oil that

will soak into the underlying pavement to slow the development of cracks in the highway. Seal coating is a

low cost alternative to resurfacing a highway.5 There are numerous advantages to focusing on seal coating,

4 Construction Market Data sells information to general contractors about upcoming construction projects.
Many of the general contractors we have spoken with subscribe to Construction Bulletin, a weekly periodical
published by CMD, to search for work. Construction Bulletin also reports bids for contracts that were awarded
in previous weeks. From conversations with DOT officials, general contractors, and CMD, we believe that
almost all public and private road construction projects exceeding $10,000 are contained in our data set. Some
of the data fields for projects owned by city and county governments were not complete. We phoned hundreds of county and city
governments throughout the Midwest to fill in missing fields in the CMD database.
5 In our data set, almost all of the seal coating takes places from late May to mid-September since standard
engineering specifications require a temperature of at least 60 degrees before seal coating starts. In fact, most State Departments
of Transportations have seasonal limitations on seal-coating that do not allow any sealing to be done before
the first week of June or after mid-September.
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as spelled out in Bajari and Ye (2001).

5.1 Contract Award Procedures

All public sector seal coat contracts are awarded through an open competitive bidding process. 6 In seal

coat projects, contractors do not submit a single bid; rather they submit a vector of bids. This is known as

a unit price contract and has the form:
contract item #1 estimated quantity for item #1 unit price for item #1
contract item #2 estimated quantity for item #2 unit price for item #2
contract item #3 estimated quantity for item #3 unit price for item #3
...

...
...

The contract items might include gallons of oil, tons of aggregate and mobilization. Both the contract

items and the estimated quantities are established by the owner of the contract (typically a city government

or State DOT) and the unit prices are chosen by the contractor.7;8

If the contract is awarded, it must by law be given to the lowest bidder. Public officials have the right to

reject all bids, but this rarely occurs in practice. Firms also have strong financial incentives to honor their

contractual obligations if they are the low bidders. Contractors usually must submit a bid bond of 5 to 10

percent of their total bid guaranteeing that they will not withdraw their bid after the public reading of all bids.

After the contract is awarded, the low bidder must submit a performance bond and pay bond to guarantee

the completion of the contract and that all subcontractors will be paid. For a more complete discussion of

contract procedures see Minnesota Department of Transportation (1999), Bartholomew (1998), Clough and

A typical crew for a seal coat company consists of 2 workers on the chip spreader, one distributor operator, 4 roller
operators, 4 flag persons, one person to drive a pilot car, one to drive the broom and one to set temporary pavement markings. On
a typical project there can be between 5 to 15 trucks hauling the aggregate to the project site and a loader operator to fill the trucks
with aggregate.

According to one company in the industry, who primarily works in the Dakotas, a typical crew (excluding
trucks) costs $1,500 per day in labor and $1,000 per day in the implicit rental price for machinery. A crew can typically expect to
seal coat 7 to 15 miles of highway per day depending on conditions. The cost of trucking, according to the
firm, is $35 per hour (including the driver).
6 The seal coat contract documents contain 6 major parts: bidding documents, general conditions of the contract,
supplementary conditions of the contract, specifications, drawings and report of investigations of physical site
conditions. (Please refer to Bajari and Ye (2001) for the detailed descriptions).

7 In our analysis, we abstract away from the fact that the firms make a vector of bids instead of a single
bid. As in Athey and Levin (2000), it would be possible to model bidding as a two-stage procedure. In
the first stage bidders choose a total bid and in the second stage they choose unit prices optimally.
8 The contractor is compensated according to the quantities that are actually used on the job. DOT personel monitor
the firm while the work occurs and are responsible for verifying measurements of quantities of material put
in place. If actual quantities are 20% less or more than the estimated quantities the price will be renegotiated
according to procedures described in the contract.
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Sears (1994), and Hinze (1993).

5.2 The Data Set

We observe all public sector seal coat contracts awarded from January 1994 through October 1998 in our

data set. There are four owner types: City, County, State and Federal. Most of contracts are owned by City

or State. Among all jobs, 230 (46.5%) are owned by Cities, 195 (39.3%) are owned by States, 68 (13.7%)

are owned by Counties, and only 2 owned by the Federal Government. The total value of contracts awarded

in our data set is $92:8 million.

The size of contracts vary greatly. Of the 495 contracts in our data set, 7 contracts were awarded for

more than $1 million, 256 contracts were awarded for less than $1 million but more than $100 thousand,

and 232 contracts were awarded for less than $100 thousand. A total of 98 firms bid on at least one of these

495 contracts, with 43 firms never winning any contract for the period reported.

The market concentration can be seen from Table 2, which summarizes the firms’ bidding activities,

while the firms’ identities are listed in Table 1. Among those 55 firms winning at least one job, only 18

firms have a market share exceeding 1%.9 The largest 7 firms in the market have a market share of 65.6%

and are led by Firm 2 (Astech Paving) who alone accounts for 21% of the market shares, attending 66.9%

of the auctions conducted.

The owner of the largest firm in the market, Astech (Firm 2) received a one year prison sentence for

bid-rigging in the late 1980’s. The owners of two other firms, McLaughlin & Schulz Inc. (Firm 5) and

Allied Paving (Firm 1) were also fined for bid-rigging with Astech in the seal coat industry. The owners of

all three firms were, at one time, banned from bidding for public sector seal coat contracts. Whether these

or any other firms in the industry are still engaged in anti-competitive behavior is an interesting question.

In Table 3 we study the concentration of bidders who attend any given auction. The average number of

bids in an auction is 3:3 with 29 contracts receiving only one bid. We conjecture that the low participation

has to do with bid preparation costs on the part of contractors. The firms we spoke with suggested that

significant managerial resources are required to prepare a bid.10

9 A firm’s market share is defined as the ratio of the amount of the firm’s total winning bids over the amount
of total winning bids for all the contracts.
10 First, firms must gather information about materials prices and find subcontractors for the project which
is a time consuming activity. Also, firms must carefully study the project plans and specifications to calculate
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Table 4 summarizes values for the 1st lowest bid (BID1), the 2nd lowest bid (BID2), and “money on the

table” (BID21=BID2-BID1), when the total number of bids is at least 2. Money left on the table averages

$15,724 and has a maximum of $352,174. All of the firms in our market are owner operated so whatever

profits are made accrue directly to the firm’s manager. If firms had complete information about competitors’

costs, the amount of money that should be left on the table in equilibrium would be near zero. The amount

of money left on the table is consistent with the presence of non-negligible private information about costs.

Based on the winning bids and bidding dates, we construct a new variable “CAP.”, which is meant to

measure each firm’s capacity utilization level. A firm’s capacity at a particular bidding time is defined as

the ratio of the firm’s used capacity (measured by the firm’s total winning bids’ amount up to that time) over

the firm’s total winning bids’ amount in the entire season.11

Another generated variable is distance, which we construct using information about both the location

of the firms and the location of the project.12 For jobs covering several locations, we use the midpoints

of the jobs to do the calculation. Table 5 summarizes the distance in miles between the project site and

the winning firm (DIST1) up to the distance between the job and the firm submitting the 7th lowest bid

(DIST7). Firms with shorter distances from project locations are more likely to win the job.13 The average

distance of the closest firm is 122.3 miles whereas the distances of firms who fail to win projects tends to

be considerably higher.14

One important control variable for our analysis will be engineer’s estimate. This is an estimate formed

either by branches of the government or by consulting engineering firms. In speaking with engineers at

expected costs. Many of the projects we have studied are spread out over 10 to 100 miles from endpoint to endpoint. Firms must
make a careful (and often tedious) calculation of anticipated transportation costs for the project. Finally, firms will need to get a
bond for the project which is also time consuming. Standard references about construction bidding such as
Park and Chapin (1992) suggest that bid preparation costs are on average one to two percent of total project costs.
11 Note that as mentioned earlier, the season during which seal coating can take place lasts from late May
to mid-September. So a season mentioned in the above definition starts on September 1 and ends on August 31 of
the following calendar year. This measure of capacity was computed using the entire data base of bidding
information even though in our econometric analysis we will focus on a subset of these projects.
12 The calculation is facilitated by using Yahoo’s map searching engine http://maps.yahoo.com/py/ddResults.py.
Using city and state’s names as input for both locations, the map searching engine gives distances automatically.
Doing this manually would be too time consuming, so we wrote an “electronic spider” to do the job.
13 The small mean distance for the firms with the 7th lowest bid is mainly due to the problem of too many
missing observations. If those missing observations are recovered, we expect that DIST7 would have much higher mean.
14 In our complete data set, it was not possible to find the location of all projects or all the firms that bid
in these projects. Furthermore, some projects in our original data set had missing information that we could not supplement with
information from the relevant branch of City, County, State or the Federal Government. However, we used
the available information in calculating firms’ capacities even though other parts of the observation might be incomplete.
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Minnesota, North Dakota and South Dakota’s Departments of Transportation, the engineers claimed that

they formed the estimates by gathering information on materials prices, prevailing wage rates and other

relevant cost information. The engineer’s estimate is supposed to represent a “fair market value” for

completion of the project. We found that estimates were available for 139 out of the 441 projects in the data

set. Table 6 shows that the engineer’s estimate is a useful control for project costs. The normalized winning

bid is almost exactly 1 and has standard deviation of 0.1573.

Table 6 suggests that both location and capacity play an important role in bidding. Firms will bid higher

the greater the distance to a project and greater capacity utilization implies a higher bid. On the other hand,

Probit estimates also suggest that firms with greater capacity utilization and greater distance to a project are

less likely to bid all else held constant.

Another important determinant of firm i’s success in winning contracts is familiarity with local regulators

and local material suppliers. In Table 7, we calculate, for each state and for each firm, the percentage of the

firm’s total dollar volume done in that state. Our results suggest that the majority of the firms in our data

set work primarily in one state. This effect is present even after controlling for distance. For instance, firm

3 is located near the boundaries of Minnesota, North Dakota and South Dakota. Yet it does over 70 percent

of its dollar volume of seal coating in South Dakota. Also, firms 6 is located near the Minnesota and South

Dakota border. Yet firm 6 has won no contracts in South Dakota.

5.3 Reduced Form Bid Functions

Next, we estimate a set of reduced form bid functions to measure the relationship between a number of

variables and the firms’ observed bidding behavior. The variables we will use in these regression are as

follows:

� BIDi;t: The amount bid by firm i on project t.

� ESTt: The estimated value of project t.

� DISTi;t: Distance between the location of the firm and the project.

� LDISTi;t: log(DISTi;t+1.0).

� CAPi;t: Used capacity measure of firm i on project t.

� MAXPi;t: Maximum percentage free capacity of all firms on project t, excluding i.

� MDISTi;t: Minimum of distances of all firms on project t, excluding i.

� LMDISTi;t: log(MDISTi;t+1.0).

16



� CONi;t: The proportion of work done (by dollar volume) by firm i in the State where project t is
located prior to the auction.

We assume that firm i’s cost estimate for project t satisfies the following structural relationship:

ci;t

ESTt
= c(DISTi;t; CAPi;t; CONi;t; !i; Æt; "it) (16)

Equation (16) implies that firm i’s cost in auction t can be written as a function of its distance to the project,

its backlog, the previous experience that firm i has in this market which we proxy for using CON i;t, a firm

i productivity shock !i, an auction t specific effect Æ t; and "it; an idiosyncratic shock to firm i that reflects

private information she will have about her own costs. The results of Section 3 demonstrate that under

certain simplifying assumptions about dynamic competition, a dynamic model with capacity constrained

bidders is formally equivalent to a static model where the firm’s cost is ci+ViL(s)�ViW (s), a sum of current

project costs, ci; plus a term ViL(s) � ViW (s) that captures the option value of keeping free capacity. In

practice, the measure of backlog CAPi;t will be a good proxy for ViL(s)�ViW (s). Mapping the structural

cost function back to the framework of Section 5 implies that zi = (DISTi;t; CAPi;t; CONi;t; !i; Æt).

Firm i’s bid function should depend on the entire parameter vector z = (z1; :::; zN ): However, given

the limited number of data points in our sample, it will not be possible to model the bid functions in a

completely flexible fashion because z is a vector with 5 � N elements. We choose to include a firm’s

own distance, capacity and concentration. From our conversations with firms who actually bid in these

auctions, we believe that the most important characteristics of the other firms to include in the reduced form

bid function are the location of the closest competitor and the backlog of the competitor that has the most

free capacity. To control for Æt, we use fixed effects for the auction and to control for ! i we use firm fixed

effects for the largest 11 firms in the market. We are able to identify both our auction fixed effect and firm

fixed effects because we do not use fixed effects for all of the firms. This implies that firms that are not the

11 largest have an identical productivity shock ! i which is probably not a bad assumption in this industry.

Since there are 138 auctions, 11 main firms and one pooled group of non-main firms in our restricted

data set, we have 137 auction dummies and 11 firm dummies. The set of regressors thus contains a constant

(C), 148 dummy variables, own distance(DISTi;t), own capacity (CAPi;t), maximal free capacity among

competitors (MAXPi;t), minimal distance among competitors (MINDISTi;t), and the job concentration
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variable (CONi;t). To take care of the heteroscedasticity problem, we take the ratio of the bid and the value

(the engineer’s estimate) as the dependent variable ( BIDi;t

ESTt
).

BIDi;t

ESTt
= �0+ �1LDIST i;t+�2CAP i;t+�3MAXP i;t+�4LMDIST i;t+�5CON i;t+"it (17)

The results from the regression, estimated using ordinary least squares, are (with t-statistics in parentheses):

Reduced Form Bid Function
Variable OLS

C (Constant) .6809

(5.95)

LDISTi;t (Own distance) .0404

(3.45)

CAPi;t (Own used capacity) .1677

(8.51)

MAXPi;t (Maximal free capacity among rivals) .0255

(.713)

LMDISTi;t (Minimal distance among rivals) .0240

(1.81)

CONi;t (Job concentration) -.0590

(-1.866)

Sample Size 450

R2 .8480

The regression also includes a fixed effect for each project t and fixed effect for each of the 11 largest firms in the market.

The results from our reduced form bid function are consistent with basic economic intuition. Firm i’s bid

is an increasing function of firm i’s distance from the project site and firm i’s capacity utilization. As

firm i’s distance increases so does i’s cost. Our theory would lead us to expect a positive coefficient on

own distance. The coefficient on CAPi;t is also positive and significant. As firm i’s backlog increases,

all else held constant, the option value of free capacity will increase because once i becomes completely

capacity constrained, firm i will no long have a chance to bid on future projects. The coefficient onCON i;t

is negative, indicating that if firm i has more prior experience in the state, firm i will tend to bid more

aggressively.

Our reduced form bid function also produces results that are consistent with the strategic interactions

implied by the asymmetric auction model. As the distance of firm j 6= i increases or as the capacity

utilization of firm j 6= i increases competition will soften and firm i raises her bid. However, the reaction
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to MAXPERi;t is not significant at conventional levels.

5.4 Test for conditional independence

In this section, we report the result from the test of the conditional independence assumption A1 in Section

5. We use a reduced form bid function as in the previous subsection, however, we will allow the model

to be more flexible. If firm i is one of the largest 11 firms in the industry we use equation (18) with firm

varying coefficients to model i’s bid function. If i is not one of the 11 largest firms in the industry we

use equation (19) to model i’s bid function. We pool equations (18) and (19) in the estimation and include

auction fixed effects.

BIDi;t

ESTt
= �0;i+ �1;iLDIST i;t+�2;iCAP i;t+�3;iMAXP i;t+�4;iLMDIST i;t+�5;iCON i;t+"it(18)

BIDi;t

ESTt
= �0+ �1LDIST i;t+�2CAP i;t+�3MAXP i;t+�4LMDIST i;t+�5CON i;t+"it (19)

Suppose the coefficient of correlation between the residual to i’s bid function and j’s bid function,

"i;t and "j;t, is �ij . The test of conditional independence is then equivalent to testing the following null

hypothesis:

H0 : �ij = 0 (20)

The Fisher test is applied to test the hypothesis (20) (see Bajari and Ye (2001) for the detail). Among

all 23 pairs which have at least 4 simultaneous bids, the null hypothesis cannot be rejected except for four

pairs of firms at 5% significance level. These four pairs are: (Firm 1, Firm 2), (Firm 2, Firm 4), (Firm 5,

Firm 14), and (Firm 6, Firm 7). However, of these pairs, only the pair (Firm 2, Firm 4) bid against each

other more than a handful of times. The Pairs (Firm 1, Firm 2), (Firm 5, Firm 14) and (Firm 6, Firm 7) bid

against each other on average no more than two or three times a year in the data set.

5.5 Test for Exchangeability

In this section we use our regression model (18) and (19) to test whether the empirical distribution of

bids is exchangeable. Exchangeability implies that capacities and distances should enter the firm’s bid-

value function in a “symmetric” way. Formally, in the reduced form bid function, let � i1;�i2; �i3; �i4

be the coefficients of LDIST1, CAP1, MAXP , MINDIST for i, one of the largest 11 firms. Then
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exchangeability is equivalent to the following hypothesis:

H0:�ik = �jk for all i; j; i 6= j; and for all k = 1; � � � ; 4: (21)

We use the F-test to test for exchangeability. Let SSRU and SSRC be the sum of squared errors in the

unconstrained and constrained models, respectively. Also let T be the number of observations (T = 450 in

our data set) , m be the number of regressors, and n be the number of constraints implied by H 0. Then the

statistic

F =
(SSRC � SSRU )=n

SSRU=(T �m)
(22)

is distributed as an F distribution with parameters (n; T �m) under null hypothesis. Note that the F -test is

also a variation of the quasi-likelihood ratio test (QLR ) on non-linear two- and three-stage least squares.

We conduct two tests of exchangeability in this section. The first set is to test exchangeability for the

whole market, i.e., the constrained regression that pools all the 11 main firms together. The second set is

to test the exchangeability on pairwise basis, i.e., the constrained regression pools two of the main firms

together at each test (hence the number of constraints is 4). We perform this set of tests for each pair of

firms with at least 4 simultaneous bids.

The exact result is reported in Bajari and Ye (2001). The result shows that for almost all the tests, we

fail to reject the null hypothesis at 5% significance level. In fact, we only reject the null when we pool all

the 11 main firms and when we pool Firm 2 and Firm 5.

5.6 Discussion

The results of our tests of exchangeability and conditional independence imply that there are five pairs of

firms who exhibit bidding patterns that are not consistent with our characterization of competitive bidding.

The four pairs (Firm 1, Firm 2), (Firm 2, Firm 4), (Firm 5, Firm 14), and (Firm 6, Firm 7) fail the conditional

independence test and the pair (Firm2,Firm5) fails the exchangeability test. However, of these pairs, only

the pairs (Firm 2, Firm 4) and (Firm2,Firm5) bid against each other more than a handful of times. The

other three pairs (Firm 1, Firm 2), (Firm 5, Firm 14) and (Firm 6, Firm 7) bid against each other on average

no more than two or three times a year in the data set. Also, according to industry participants, these firms

function in different sub-markets and would have no reason to view each other as principal competitors.

Therefore, the two pairs of firms that might be of concern to regulators are (Firm2,Firm5) and (Firm 2, Firm

4).
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Overall, bidding in this industry appears to conform to the axioms A1-A5. This observation is important

to policy makers since there is a history of bid-rigging in the seal coat industry. Several of the largest firms

in the industry were colluding in the early to mid-1980’s and paid damages for bid-rigging. Our analysis

suggests that currently most bidding behavior in the industry is consistent with our model of competitive

bidding.

We are aware of the following three limitations to our approach:

First, in both our tests for conditional independence and exchangeability, we need to use a correct func-

tional form for the reduced form bid functions. In our analysis, we used a number of different functional

forms for the reduced form bid function and the results in the tests for conditional independence and ex-

changeability were robust across these alternative specifications. The arguments of firm i’s bid function

is the vector z which has 4 � N arguments. Given that we have only 138 auctions in our data set, we can

never be certain that our independence and exchangeability results were not influenced by a poor choice of

functional form.

Second, our results might be incorrect if there are omitted variables. If there are elements of z that the

firms see but which are not present in our data set our regression coefficients will be biased. In our analysis,

we use fixed effects for each contract and for the largest 11 firms. Therefore, we should be most worried

about omitted variables that are elements of z but which are not co-linear with the firm or contract fixed

effects. This could happen, for instance, when there are 3 firms and firm1 and firm 2 always use a quote

from a particular subcontractor when computing their cost estimates while firm 3 does not. If this quote is

publicly observed, it will then induce positive correlation between the residuals to the bid functions of firms

1 and 2.15 A similar critique could be made of our test of exchangeability. Omitted cost variables could

lead us to falsely conclude that firm 2 and firm 5 fail to have an exchangeable distribution of bids.

Third, if a sophisticated cartel is operating in this market, then, as we mentioned in Section 5, the

cartel could satisfy assumptions A1-A5 by generating phony bids in a clever fashion. Therefore, from

our tests, we will not be able to identify whether those firms who passed the conditional independence and

15 However, in our test for conditional independence, we found that the residual between firm 2 and 4 are negatively correlated.
If this is due to omitted cost variables, it must be the case that the omitted variable must induce negative correlation
between the costs of these two firms. So far, we have not been able to come up with a scenario that would
generate this type of cost shock. However, if firm 2 and firm 4 engaged in a scheme of submitting phony bids, this might induce a
negative correlation in the residuals since phony bidding implies that when firm 2 bids high firm 4 must bid low.
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exchangeability tests are competitive or are smart colluders. In recent empirical papers that document cartel

behavior such as Porter and Zona (1993,1999) and Pesendorfer (1995) the authors know from court records

and investigations the identity of the cartel. In all these papers, both exchangeability and conditional

independence fail. To the best of our knowledge, there is no documented case of cartel bidding where the

cartel intentionally submitted phony bids that were both conditionally independent and exchangeable.

Therefore, while collusion is certainly one reason why the tests of conditional independence and ex-

changeability fail, it is certainly not the only reason. The restrictions of the competitive bidding model

are quite stringent and there are a variety of reasons, other than collusion, for our failure to accept the

competitive model. Therefore, we shall interpret firms (2,4) and (2,5) as a candidate set of cartels.

In the following section, we shall approach the problem of testing for collusion from an alternative point

of view. Our approach shall be to estimate three structural models of industry equilibrium. The first model

M1 shall correspond to the case of no collusion, the second model M2 is a model in which firms 2 and

4 collude to maximize joint profits and the third model M3 is a model in which firms 2 and 5 collude to

maximize joint profits. We shall elicit the prior beliefs of industry experts about costs and we shall use the

tools of statistical decision theory to make a decision between these three alternative models.

6 A Structural Econometric Models.

In this section, we describe how to estimate three alternative structural models of industry equilibrium. We

shall refer to the three models as M1, M2, and M3. In the first model all firms determine their bids

competitively as in the model outlined in sections 2 and 3. In the second model, firms 2 and 4 collude

in an efficient manner. Before the bidding begins, firm 2 and firm 4 compute cost estimates c 2;t and c4;t

respectively for project t. The cartel operates efficiently so that only the firm with the lowest cost submits

a bid. That is, the cost to the cartel is cc;t = minfc2;t; c4;tg. The other cartel member either refrains

from bidding or submits a “phantom” bid. The cost distribution for the cartel is the minimum of c2;t and

c4;t. This distribution has a probability density function f2(cc;tjz; �)(1 � F4(cc;tjz; �))+ f4(cc;tjz; �)(1 �

F2(cc;tjz; �)). In model M2, we can treat the cartel as a single firm who has cost cc;t. In computing

expected utility, it is sufficient for non-cartel firms to only concern themselves with the low bid among all

of the cartel members. Therefore, as we mentioned in section 2.2, efficient cartels are a special case of our
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asymmetric auction model. The third model, M3 is analogous to M2, with now firm 2 and firm 5 being

the cartel members.

We believe that the assumption of an efficient cartel is reasonable for the seal coat industry in the Mid-

west. According to industry officials and insiders we have spoken with, before the early 1980’s, collusion

did occur (and was prosecuted) in the seal coat industry. Firms frequently made side payments to each

other. Many side payments were made directly in cash. Another mechanism for making side payments

was through the use of falsified invoices. For instance, firm A would rent equipment from firm B on paper.

However, the equipment would not actually be rented in practice. The payment that firm A made to firm B

for this phantom equipment rental would serve as a sidepayment.

There could be no way to scientifically assess the most appropriate mechanism for collusion or the most

common mechanism for collusion when it was present in the industry. However, from our conversations

with industry regulators and insiders, we believe that a model of efficient collusion is at least a plausible

hypothesis. Furthermore, as we shall see in the next section, it leads to a tractable econometric specification

whereas many alternative models of collusion may not be as straightforward to structurally estimate.

Let gi(b; �; z;M) be the p.d.f. of firm i’s observed bids andGi(b; �; z;M) be the distribution function in

the model M = M1;M2 or M3. In the competitive model, firm i makes a best response to the distribution

of the bids of all other firms. In the collusive model, M2, a non-cartel member, firm i needs to make a best

response to only the minimum bid of the cartel and the bids of all the other non-cartel firms. In this case,

gi(b; z; �;M2) is the minimum of the bid of firm 2 and of firm 4 since any bid that is not the minimum is a

“phony” bid that the cartel has submitted in order to deceive regulators. Similarly, in the collusive model

M3; we treat the cartel as a single firm who submits a bid of the minimum of firm 2’s bid and firm 5’s bid.

If we assume that the firms in the industry are profit maximizing, then firm i’s private information in

model M , which we denote as cMi must satisfy:

cMi = b�
1P

j 6=i
gi(b;�;z;M)

1�Gi(b;�;z;M)

: (23)

This relationship must hold for models m = M1, M2, and M3:

Let bgi(b; �; z;M) and bGi(b; �; z;M) denote the estimated values of gi(b; �; z;M) and Gi(b; �; z;M).

Let cM;EST
i;t denote an estimate of the cost of firm i in project t and let cM;EST denote the estimated vector
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of the cM;EST
i;t : Following Guerre, Perrigne and Vuong (1999) we estimate firm i’s private information by

evaluating the formula (23) and the empirical estimates of bgi(b; �; z;M) and bGi(b; �; z;M) of gi(b; �; z;M)

and Gi(b; �; z;M):

c
M;EST
i;t = b�

1P
j 6=i

bgi(b;�;z;M)

1� bGi(b;�;z;M)

: (24)

In what follows, we shall briefly outline the particulars of our approach to the estimation of cM;EST
i;t : Recov-

ering an estimate of an agent’s private information from a first order condition such as (24) is now common

practice in the empirical auctions literature. For a complete discussion of issues related to estimation of

this equation, please refer to Guerre, Perrigne and Vuong (1999) and Pesendorfer and Jofre-Bonet (2000).

In our problem, the distributions gi(b; �; z;M) depend on a large number of parameters and covariates.

The empirical analysis of the previous section indicates that it is important to control for unobserved hetero-

geneity at the level of the firm and at the level of the project. Obviously, kernel estimation of g i(b; �; z;M)

is not practical in our application. Therefore, as a simplifying assumption, we shall assume that it is possi-

ble to model the distribution of bids as a linear function of the covariates and an additively seperable error

term as in equations (18) and (19). In the competitive model, we include all of the bids. In M2 we only

include the lower of firm 2’s bid and firm 4’s bid since if the cartel is profit maximizing, bidders are making

a best response to the minimum bid of the cartel. Similarly in model M3 we only include the minimum

bid of firm 2 and firm 5. In order to estimate the implied costs corresponding to the three models, we must

estimate bgi(b; �; z;M) and bGi(b; �; z;M) for M = M1;M2;M3:

As a first stage, we estimate equations (18) and (19). As we mentioned previously, in the case of M2 we

estimate the cartel’s bid as the minimum of the bids of firm 2 and firm4 and in the case of M3 the cartel’s

bid is the minimum of the bid of firm 2 and firm 5. In all three models, we shall assume that the distribution

of firm i’s bid satisfies:

bi;t = (o.l.s. fitted value of bi;t) + "i;t

where "i;t is modeled as a mixture of four normal distributions. We use the mixture of normals specification

because it allows us to flexibly model the distribution of bi;t and be able to compute bgi(b; �; z;M) andbGi(b; �; z;M) in a simple manner. To estimate the mixture of normals distribution for models M =
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M1;M2; and M3 we used maximum likelihood estimation. For models M1, M2, and M3 the estimated

distributions of the residuals appear to closely match the empirical distributions of the residuals.

In general, the vector of costs cM;EST will not be estimated exactly, instead the econometrician will have

uncertainty about the value of cM;EST . It is possible, using standard econometric methods to derive a joint

density of the cM;EST and we shall refer to this density as p(cM;EST ).

7 Testing For Collusion: A Bayesian Framework.

In the previous section, we demonstrated how to estimate the joint distribution of the latent costs p(cM;EST )

for three alternative models of industry equilibrium. In this section, we will suggest a Bayesian framework

for computing a posterior probability for each of our three models.

Each of our three models of industry equilibrium implies a different distribution over structural cost

parameters. Let p(ci;tjzt; �i;M) for M = M1;M2; and M3 denote a probability density function for

the cost distribution of firm i in auction t conditional on covariate zt, parameters �i and model M . For

instance, in the collusive model M2, the cost distribution for the cartel is f2(cc;tjz; �)(1 � F4(cc;tjz; �))+

f4(cc;tjz; �)(1 � F2(cc;tjz; �)). In model M3, the probability density function of the cost distribution of

the cartel is f2(cc;tjz; �)(1 � F5(cc;tjz; �))+ f5(cc;tjz; �)(1 � F2(cc;tjz; �)): Using the fact that bids are

independent across auctions, it is straightforward to compute p(cM;EST
jzt; �;M); the probability density

function for all the costs in all the auctions:

p(cM;EST
jzt; �;M) =

TY
t=1

Y
i

p(ci;tjzt; �i;M) (25)

In Bayesian Statistics, it is necessary to specify a prior distribution over structural parameters. As we shall

explain below, we shall elicit the prior distribution of the parameters, p(�) from industry experts. Given the

likelihood function for each model (25), we define the marginalized likelihood of model M as follows:

MLM =

Z Z
p(cM;EST

jM; �) p(�)p(cM;EST ) (26)

That is, the marginalized likelihood is the expected value of the likelihood function after margalizing out

the distribution of � and the distribution of cM;EST .
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In a Bayesian framework, we must specify a prior probability for each model. Let p(M i) denote the

prior belief (probability) that M =Mi, and let MLi denote the value of likelihood function conditional on

M = Mi. Then according to the Bayesian Theorem, we can compute the posterior probability of M = M i

which we denote as p�(Mi) as follows:

p�(Mi) =
p(Mi) �MLi

p(M1) �ML1 + p(M2) �ML2 + p(M3) �ML3
(27)

In the following section, we describe how we elicit the prior distribution over structural cost parameters

p(�) from industry experts. Given this distribution and a (flexible) functional form for the likelihood

p(cM;EST
jzt; �;M), to compute the posterior probability of each model, we only need to evaluate the

integral (26) and apply Bayes Theorem as in equation (27). In the following sub-section, we describe how

we elicit p(�) from industry experts and how we flexibly specify the distribution of p(ci;tjzt; �i;M):

7.1 Eliciting Prior Beliefs.

In this section, we specify a flexible functional form for the distribution of p(ci;tjzt; �i;M) and we demon-

strate how we elicit a prior distribution of beliefs p(�) from industry experts. We will model the cost

(normalized by the estimate) as the sum of a fitted value plus a flexible error term. That is,

ci;t

ESTt
=
ci;t(�; zt)

ESTt
+ �it (28)

In equation (28), the normalized cost is a function of a fitted value c i;t(�; zt) which depends on the structural

parameters �, a set of auction t co-variates zt, and an idiosyncratic error term �it. In order to model the

error distribution flexibly, we allow it to be a mixture of four normal distributions, that is:

�it � �1N(�1; �1) + �2N(�2; �2) + �3N(�3; �3) + �4N(�4; �4) (29)

What remains to be specified is how we will use the expert information to compute c i;t(�; zt) a fitted

value of the cost that is a function of the parameters and how we will determine the vector of parameters

� = (�1; �2; �3; �4), � = (�1; �2; �3; �4) and � = (�1; �2; �3; �4).

The approach we used to elicit the expert’s beliefs over the structural parameters was first to elicit a

probability distribuiton over markups. We believed that it would be hard for our expert to articulate to us

the value of the auction fixed effect in project t. However, we did believe that the experts would have fairly
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thoughtful views about markups in the industry. Let mi;t be the markup of player i in auction t and let

p(mi;t) be the prior density function. After extensive discussions with the experts, we elicited their beliefs

about the 25, 50, 75 and 99th percentiles of the distribution of markups of auctions in our sample. The

views of the experts were quite close and we average their views in the equations below.

25th percentile = 3% (30)

50th percentile = 5%

75th percentile = 7%

99th percentile = 15%

Given the beliefs (30), we assume that markups were independently and identically distributed according to

the following distribution:

p(mi;t) =

8>><
>>:

8:3333 if 0 < mi;t < 0:03
12:5 if 0:03 < mi;t < 0:05
12:5 if 0:05 < mi;t < 0:07
3:125 if 0:07 < mi;t < 0:15

(31)

It can be easily verified that (31) agrees with the percentiles in equation (30).

If the markup on project t is mi;t and the observed bid in project t is bi;t, it follows that the cost ci;t must

satisfy:

ci;t = (1�mi;t) � bi;t (32)

Next, given the probability density function p(mi;t) in equation (30), draw a random vector of markup mT

for all projects t = 1; ::::; T and all bidders i who bid in the tth project. Then using equation (32) we can

compute a set of latent costs ci;t. We then estimate the following equations using ordinary least squares to

find a fitted value ci;t(�; zt) for all i and t.

ci;t

ESTt
= �0;i+ �1;iLDIST i;t+�2;iCAP i;t+�3;iLMDIST i;t+�4;iCON i;t+"it (33)

ci;t

ESTt
= �0+ �1LDIST i;t+�2CAP i;t+�3LMDIST i;t+�4CON i;t+"it (34)
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We include firm and auction specific fixed effects in order to capture unobserved heterogeneity across

projects and firms. Just as in our estimation of the bid functions in equations (18) and (19), we use equation

(33) for the main firms allowing the coefficients to be firm specific and equation (34) for the non-main

firms. From equations (33) and (34) we can also find an estimated value b� for the standard deviation of " it.

We must next compute the value of � = (�1; �2; �3; �4), � = (�1; �2; �3; �4) and � = (�1; �2; �3; �4).

We shall assume that the parameters of the mixture of normals are drawn uniformly from all of those

distributions satisfying:

�1�1 + �2�2 + �3�3 + �4�4 = 0 (35)

�1�
2
1 + �2�

2
2 + �3�

2
3 + �4�

2
4 = b�2

�1 + �2 + p3 + �4 = 1

�0:2 � �i � 0:2

0:01 � �i � 0:2

We assume that �0:2 � �i � 0:2and 0:01 � � � 0:2 so that the support of the �iand �iare compact. We

believe that this assumption is appropriate because we have found that the fitted residuals from equations

(33) and (34) fall outside the interval (�:2; :2) very infrequently. We also found that b� is seldom above 0:2

and below 0:01, therefore the restriction that 0:01 � �i � 0:2 is of small consequence.

To summarize, given a random vector of markups mT , we compute a vector of fitted costs ci;t using

equations (33) and (34) and we draw the values of � = (�1; �2; �3; �4), � = (�1; �2; �3; �4) and � =

(�1; �2; �3; �4) using equation (35). The likelihood for a vector of costs for the competitive model M1

conditional on � is then:

p(
ci;t

ESTt
j�;M1) = �1N(

ci;t � ci;t

ESTt
; �1; �1) + �2N(

ci;t � ci;t

ESTt
; �2; �2) (36)

+�3N(
ci;t � ci;t

ESTt
; �3; �3) + �4N(

ci;t � ci;t

ESTt
; �4; �4)

The likelihood for the vector of costs from the modelM2 andM3 are computed similarly except we assume

that the cost for the cartel is the order statistic of its member’s cost.
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7.2 Putting It All Together.

We now summarize all of the steps needed to compute a simulated value of the likelihood function for

model M:

1. Draw a random vector cM;EST
T over the distribution of cost estimates from the distribution p(cM;EST

T )
that was estimated in Section 6.

2. Draw a random vector mT from the distribution (31).

3. GivenmT , compute fitted values ci;t for all auctions t and all firms i.

4. Draw the parameters of the mixture of normal distribution �;�;� according to the distribution in the
equation (35).

5. Compute the value of the likelihood function, p(cT j�;�;�; �; �;M1) as in equation (36).

Using standard methods for computing an integral using simulation, it is possible to evaluate the integral

(31). See Judd (2000) for a discussion of standard methods for numerical integration.

Using equation (27), we can compute the posterior beliefs for the 3 competing models. The posterior

beliefs can be useful for decision making. Suppose for instance, these beliefs will be used in order to

determine whether to investigate and prosecute the candidate cartel. Suppose that the anti-trust authority

possesses a loss function u(a;M). Here a is the action that the anti-trust authority must take, for example,

to prosecute or not andM takes on valuesM1,M2 andM3 corresponding to whether or not there is a cartel

in the industry. The anti-trust authority’s expected loss of an action a, conditional on the data is

p�(M1)u(a;M1) + p�(M2)u(a;M2) + p�(M3)u(a;M3) (37)

Given the posterior probabilities over models p�(M1), p�(M2); p�(M3); it is then straightforward for the

anti-trust official to choose a loss minimizing action.

A difference between using equation (37) and classical methods for model selection is that equation (27)

explicitly takes into account the preferences of the decision maker. For instance, an anti-trust authority

may not want to choose to investigate firms 2 and 4 just because M2 is the largest. We might expect the

anti-trust authority to only want to investigate when the probability of collusion is quite large.

As an aside, we note that it is straightforward to simulate the posterior distribution of the structural

parameters if we impose the prior beliefs elicited by our industry experts since our specification is just a

linear model with a flexible error term. This is an alternative to the methods proposed by Guerre, Perrigne
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and Vuong (1999). In small samples, such as in our data set, there is often not enough data to implement

non-parametric procedures. We would expect a Bayesian approach to have much better small sample

properties. For an introduction to Bayesian analysis of many standard models, see Gelman et al. (1995).

8 Results.

In what follows, we shall present the results of the estimation procedures described in Sections 6 and 7.

We began by estimating the models M1, M2 and M3. Using equation (24) we can compute an implied

distribution of markups under the three alternative models which we summarize in Table 9 below:

Table 9: Distribution of Markups Under Alternative Models.
Percentile M1 M2 M3
10 0:01229 0:01273 0:0114
20 0:01597 0:01818 0:0182
30 0:02077 0:02422 0:0256
40 0:02536 0:03201 0:0343
50 0:03329 0:04126 0:0447
60 0:04227 0:05434 0:0584
70 0:05692 0:0754 0:0930
80 0:1000 0:1621 0:1756
90 0:2381 0:3354 0:5826

It is clear from Table 9 that markups are consistently higher under the collusive models M2 and M3. The

difference between these models becomes particularly striking near the 80th and 90th percentiles. In model

M2, 20 percent of the projects have a markup in excess of 15 percent and 10 percent of the projects have

markups in excess of 33 percent. In model M3, 20 percent of the projects have markups in excess of 17

percent and 10 percent have markups in excess of 58 percent. Models M2 and M3 generate a much higher

frequency of markups over 15 percent than the prior beliefs of our industry experts.

Another difference between models M1, M2 and M3 is the percentages of costs that are found to be

negative.

Table 10: Percent of Cost Estimates Found to be Negative.
Model Percentage Negative
M1 3%
M2 5%
M3 7%

It might come as a surprise to some readers to learn that some bids cannot be rationalized by a positive cost
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draw. To understand why this might occur, ask what would the bid be by a firm who has a cost of zero.

Since costs in our model are assumed to be positive, the firm is certain to win the auction. Would the firm

want to bid zero? Certainly not, because with a bid of zero he receives a profit of zero. If the firm bids

above zero, she receives positive expected utility. Therefore, the lowest bid consistent with equilibrium is

bounded away from zero. This follows formally from Theorem 2.

However, firms in the real world will do sometimes submit bids that are not consistent with our equi-

librium model. There are several reasons why this might occur. The first is that the firm simply makes

a mistake in calculating its bid. While this occurs infrequently, it is by no means unheard of. The sec-

ond reason is that the firm does in fact have a negative cost for doing the project. Finding and retaining

qualified employees in the construction industry is a challenge for managers. If the firm does not find a

sufficient amount of work to occupy its seal coating crew, it risks losing these employees. Therefore, the

firm is sometimes willing to bid jobs at a lost in order to retain its employees. A similar phenomenon is

documented by Benkard (2001) who argues that Lockheed’s production of the L1011 airplane at a loss for

11 years was due to learning curves in the production process. Another third reason that we might infer

that costs are negative is because our model is misspecified. In fact, we are almost certain that our model

is not an exact representation of the data generating process in the industry. (We do believe, however, that

it is a useful representation.)

We believe that it is inappropriate for us to censor the observations in which costs are negative. We

interpret the fact that model M3 is unable to assign positive costs to 7 percent of the bids as an evidence in

favor of model M1 over M3. However, we do need to modify our likelihood function slightly to allow for

negative costs. In computing the marginalized likelihoods, we modified the model of the previous section

so that, with 95 percent probability, the likelihood function was constructed as in Section 7. With 5 percent

probability, however, we assume that ci;t
ESTt

is uniformly distributed between 1.0 and -10. This simple

modification of the likelihood function allows costs to be negative. We are confident that our results are

robust to alternative specifications that mix the model of Section 7 with a small probability that allows for

negative costs in order to account for mis-specification.

Using the procedure described in the previous section, we compute the marginalized likelihoods associ-

ated with each of the three competing models. These computations were done using approximately 5 hours
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of CPU time on a Sun Ultra 60 workstation. In Table 11 we summarize our results.16

Table 11: Marginalized Likelihoods and Model Posterior Probabilities.
Model Expected Value of Log Likelihood Log of Marginalized Likelihood Posterior Probability
M1 62.169 (61.916,62.423) 163.4 (161.89,163.9) 1.00
M2 -320.41 (–320,58,320.24) -185.58 (–186.8,184.75) 0.0
M3 -243.15 (–250.75,235.56) -186.6 (–187.81,184.55) 0.0

As we can see from Table 11, the competitive model M1 strongly dominates the other two alternatives.

This is because, as we saw in Tables 9 and 10, it more closely agrees with the beliefs of our industry insider

about markups in the industry. In particular, according to our industry expert, for all practical purposes,

none of the markups exceed 15 percent. The collusive models imply a degree of market power that is not

consistent with a priori beliefs about the industry. From the results in Table 11, it is clear that the posterior

probability (assuming a uniform prior over all models) of the competitive model M1 far exceeds the other

models.

9 Conclusion.

In empirical industrial organization, almost no formal use is made of expert opinion in estimation and

testing. A contribution of this paper is to make formal use of the a priori beliefs of industry experts in order

to decide between non-nested models of industry equilibrium. We believe that using the prior beliefs of

our industry experts is a powerful tool that is potentially useful in many applied problems. In the seal coat

industry, there are nearly 100 firms who bid at some point in our data set. However, only 6 of the firms

have a market share that exceeds 5 percent. In such a competitive environment, we believe that the beliefs

of a leading firm will contain important information about markups.

The views of industry experts are particularly useful when the economist only has a small sample.

Economists are often forced to make decisions between alternative models or to make predictions with only

a handful of data points. We believe that in many cases, using the a priori beliefs of experts will result

in improved small sample properties. It is possible to extend the approach we have developed to other

problems in industrial organization. If it is possible to elicit a prior distribution over parameters or induce

a prior distribution over parameters (in our case by using beliefs about markups) the tools of Bayesian

statistics can be used to form a posterior distribution over parameters that take into account the beliefs of

16 All confidence intervals are based on 500,000 simulated values of the likelihood function.
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industry experts.

We believe that the methods proposed in this research, when taken together with our companion paper

Bajari and Ye (2001) is a useful methodology to decide between competition and collusion in procurement

auctions. We have analyzed a model that allows for asymmetric bidders and non-trivial dynamics that we

believe are important strategic considerations in many procurements. We stated a set of conditions that are

both necessary and sufficient for a distribution of bids to arise from competitive bidding in the asymmetric

auction model. Two of these conditions, conditional independence and exchangeability can be tested in a

straightforward fashion. We also argued that deciding between competitive and collusive bidding can be

naturally formulated as a statistical decision problem. We developed techniques for structurally estimating

asymmetric auction models and for computing the posterior probability of competitive and collusive models.

While no empirical techniques for detecting collusion are likely to be flawless, we believe that the tests we

propose, taken together can be a useful first step in detecting suspicious bidding patterns.
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10 Tables.

Table 1: Identities of main firms
Firm ID Name of the Company Firm ID Name of the Company

1 Allied Blacktop Co. 11 Asphalt Surfacing Co.

2 Astech 12 Bechtold Paving

3 Bituminous Paving Inc. 14 Border States Paving Inc.

4 Lindteigen Constr Co. Inc. 17 Mayo Constr Co. Inc.

5 McLaughlin & Schulz Inc. 20 Northern Improvement

6 Morris Sealcoat & Trucking Inc. 21 Camas Minndak Inc.

7 Pearson Bros Inc. 22 Central Specialty

8 Caldwell Asphalt Co. 23 Flickertail Paving & Supply

9 Hills Materials Co. 25 Topkote Inc.

Table 2: Bidding activities of main firms
Firm ID No.of wins Avg. bid % mkt. share No. Participation % of participation

1 92 82790 8.2 145 29.3

2 102 191953 21.1 331 66.9

3 20 363565 7.8 69 14.0

4 35 241872 9.1 114 23.0

5 29 283323 8.9 170 34.3

6 40 77423 3.3 84 17.0

7 45 62085 3.0 121 24.4

8 16 87231 1.5 134 27.1

9 10 237408 2.6 14 2.8

11 4 328224 1.4 28 5.7

12 3 317788 1.0 8 1.6

14 4 754019 3.2 25 5.1

17 5 1018578 5.5 8 1.6

20 13 355455 5.0 38 7.7

21 2 903918 1.9 5 1.0

22 2 903953 2.0 8 1.6

23 2 439619 1.0 4 0.8

25 3 382012 1.2 13 2.6

Total 427 87.7

Average bid is the average of all bids that a particular firm submitted, No. Participation is the total number of bids that a particular

firm submitted and % participation is the fraction of seal coat contracts a particular firm bid for.

Table 3: Bid concentration
Number of bids 1 2 3 4 5 6 7

Number of contracts 29 87 190 118 44 22 5
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Table 4: First and second lowest bids
Observation Mean Std Dev. Min Max

BID1 466 191355 227427 3893 1772168

BID2 466 207079 244897 4679 1959928

BID21 466 15724 29918 33 352174

Table 5: Distances (in miles)
Mean Min Max Mean Min Max

DIST1 122.3 0 584.2 DIST5 160.3 13 555.2

DIST2 151.9 0 585.2 DIST6 177.9 63 484.4

DIST3 177.9 0 637.6 DIST7 91 44 128.9

DIST4 166.4 11.2 608.6

Table 6: Summary statistics for restricted data set
Variable No. Obs Mean Std Min Max

Winning Bid 441 175,000 210,000 3893 1,732,500

Markup: (Winning Bid-Estimate)/Estimate 139 0.0031 0.1573 -0.3338 0.5421

Normalized Bid:Winning Bid/Estimate 139 1.0031 0.1573 0.6662 1.5421

Money on the Table: 2nd Bid-1st bid 134 15,748 19,241 209 103,481

Normalized Money on the Table: (1st Bid-2nd Bid)/Est 134 0.0776 0.0888 0.0014 0.5099

Number of Bidders 139 3.280 1.0357 1 6

Distance of Winning Firm 134 188.67 141.51 0 584.2

Distance of Second Highest Bidder 134 213.75 152.01 0 555

Capacity of Winning Bidder 131 0.3376 0.3160 0 0.9597

Capacity of Second Bidder 131 0.4326 0.3435 0 1

Table 7: Concetration of Firm Activity by State.
Firm MN. Concentration ND. Concentration SD Concentration

1 1 0 0

2 0.2781 0.7218 0

3 0 0.2377 0.7623

4 0 1 0

5 0.1246 0.5338 0.3414

6 0.8195 0.1804 0

7 0.9572 0.0427 0

8 0.7290 0.2709 0

11 0 0 1

14 0 1 0

20 0 1 0
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Table 8: Reduced form bid function
Coefficient Estimate Coefficient Estimate

�1 .046923 (3.64072) �1 .031346 (1.99253)

�2 .174253 ( 8.42785) �2 .153158 (3.29708)

�3 .040483 (.555484) �3 .036645 (.503462)

�4 .020369 (1.45323) �5 .034269 (2.12646)

R Square .849138
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