
 1

 
 

R&D and the Patent Premium 
 
 
 

Ashish Arora*, Marco Ceccagnoli+ and Wesley M. Cohen* 
 

*Carnegie Mellon University, Pittsburgh, USA 
+INSEAD, Fontainebleau, France 

 
 
 
 
 

February 26, 2002 
 
 

PRELIMINARY DRAFT.  DO NOT QUOTE OR CITE WITHOUT AUTHORS’ 
PERMISSION. 

 
 
 

ABSTRACT 
 
In this paper we empirically evaluate the relationship between R&D incentives and the patent premium, 
defined as the additional payoffs due to patenting an invention relative to payoff to the unpatented 
invention.  What is the expected average premium, if any? Does it vary across industries? What would be 
the impact of increasing the premium on R&D investment? To answer these questions, we develop a 
model linking a firm’s R&D with its decision to patent for product innovations. The model assumes that 
R&D investments depend upon the expected value of an invention, which is itself a function of expected 
premium if the innovation is patented, assuming that the firm will choose to patent optimally i.e., only if the 
expected payoff from patenting an invention is greater than the expected cost. The patent premium, is 
modeled as a random variable specific to an invention, whose distribution depends on unobserved firm 
characteristics. We can estimate the model thanks to a unique data set based on the 1994 Carnegie 
Mellon Survey on Industrial R&D in the United States, which allows us to develop measures of R&D, 
patent propensity, patent effectiveness, and information flows from other firms and universities, among 
other variables, at the R&D lab level. The analysis shows that an increase in the patent premium 
increases R&D but the magnitude varies substantially across industries, being the highest in drugs and 
biotech and relatively lower in industries such as food and electronics.  We also use the estimates to 
simulate the impact of increasing the patent premium on patenting and find that our model is consistent 
with observed changes in patenting behavior in specific industry sectors such as semiconductors. 
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1.  Introduction 

Industrial R&D is widely seen as a key driver of productivity and economic growth.  In 1998, 

U.S. firms spent almost 150 billion dollars on industrial R&D, in large part because they 

expected to appropriate a substantial part of the return.  Many believe that patent rights are 

essential to the protection of this return to invention and are consequently a key inducement to 

R&D. This belief in the importance of patents and intellectual property protection has, over the 

past twenty years, underpinned a trend towards a strengthening of patent protection.  In 1982, 

the Court of Appeals for the Federal Circuit was established to make patent protection more 

uniform and, indirectly, strengthen it.  Since the early 1980's, we have also witnessed an 

expansion of what can be patented.  In the early 1980’s, the courts decided that life forms and 

software were both patentable, and patent coverage has been recently extended to business 

methods as well. 

Partly stimulated by the shifting policy environment, patents have also become a growing 

preoccupation of management (cf. Grindley and Teece [1997]).  Indeed, consultants are urging 

top management to exploit their patents and patentable inventions more aggressively—to the 

point of characterizing the untapped knowledge capital of firms as “Rembrandts in the attic” 

(Rivette and Kline [2000]).  

Curiously enough, these changes in policy and managerial practice and perception have 

proceeded despite a limited understanding of the effect of patents--no less stronger patents--on 

R&D and, in turn, on technical advance. In this paper, we examine the effect of patenting on 

R&D, addressing this gap in the empirical literature by using a unique data set based on the 

1994 Carnegie Mellon Survey on Industrial R&D in the United States.  

Our consideration of the effect of patent protection on R&D is broken into two parts. We first 

estimate what we call the patent premium — defined as the proportional increment to the value 

of inventions realized by patenting them.  Second, we simulate the impact of increasing the 

patent premium on R&D and patenting behavior.1  To do this, we develop a firm-level model 

linking a firm’s R&D effort with its decision to patent by recognizing that R&D and patenting 

affect one another, and are driven by many of the same factors.  Our model also accounts for 

the effect on R&D incentives of both the direct appropriability incentive due to patents, and the 

impact on R&D productivity of R&D-related information flows originating from other firms’ patent 

                                            
1 Using French patent renewal data, Schankerman [1998] also estimated something resembling what we call the 
patent premium, namely the value of the cash subsidy to R&D conferred by patent protection in France.  His 
estimates are, however, conditional upon patenting, which ours are not.  The relationship between patenting and 
R&D behavior is also not addressed in his study. 
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disclosures. The model also recognizes that stronger patents for a firm may mean that its rivals 

also enjoy stronger patent protection to the firm’s possible detriment.  The patent premium is 

modeled as a random variable specific to an invention, whose distribution depends on 

unobserved firm characteristics.  

We are able to estimate this model largely because the Carnegie Mellon Survey provides key 

measures of not only R&D and patenting—which tend to be widely available—but  firms’ 

evaluations of the effectiveness of patents in protecting the returns to invention, and a measure 

of the use of patents --namely the share of innovations that are patented-- that is separate from  

R&D. The availability of a measure for the firms’ patent propensities --along with our measures 

of R&D and patent applications --allows us to treat the share of inventions that are patented and 

R&D as distinct constructs, which in turn provides for flexibility when estimating the relationship 

between the two. 

Our analysis only considers the impact of patenting on the R&D of incumbents.  Thus, a 

limitation of our analysis is that we do not explore the impact of patenting on entry and the 

innovation that may be associated with it. Indeed, in some industries such as drugs, patents 

may well promote entry, while in others, such as semiconductors and telecommunications 

equipment, pervasive cross licensing of patent portfolios and the norm of trading like-for-like 

may well deter it (cf. Shapiro [2000]).  Similarly, we do not consider the role that patents may 

play in fostering a “division of innovative labor” represented by the emergence of specialized 

technology service or research firms that support the generation and diffusion of technical 

advance in industries such as biotechnology, semiconductors, scientific instruments and 

chemicals (cf. Arora, Fosfuri and Gambardella [2001]).  

Background 

There are theoretical as well as empirical reasons to question whether patent rights advance 

innovation in a substantial way or in all industries. The rationale for patents protection is to 

augment the incentives to invent by conferring the right to exclude others from making, using or 

selling the invention in exchange for the disclosure of the details of the patented invention.  

Although the prospect of monopoly rents should induce inventive effort, the costs of disclosure 

can more than offset the prospective gains to patenting (cf. Horstmann et al. [1985]).  In theory, 

the effect of “stronger” patents on firms’ incentives to invest in invention are less clear once one 

recognizes that “stronger” patents mean that not only any given firm’s patents but also those of 

its rivals are stronger.  For example, policies that broaden the scope of patents do not 

unambiguously increase the expected rents due to inventive activity when a rival working in the 
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same technological domain may, as a consequence, be able to limit a firm’s ability to 

commercialize its inventions (cf. Jaffe [2000], Gallini [2001]). Merges and Nelson [1990] and 

Scotchmer [1991] also contend that broad patent protection may slow the rate of technical 

change by impeding subsequent inventions where technologies develop cumulatively. Thus, in 

theory, the net effect of patenting on the returns to innovation is ambiguous. 

Empirical work also suggests that the impact of patents on innovation is not apparent. The 

empirical studies of Scherer et al [1959], Taylor and Silberston [1973], and Mansfield [1986] 

suggest that patent protection may not be an essential stimulus for the generation of innovation 

in most industries. Levin et al. [1987] and, more recently, Cohen et al. [2000] suggest that in 

most industries patents are less featured than other means of protecting inventions, such as first 

mover advantages or secrecy, for protecting inventions.  Lerner [1995] also suggests that patent 

litigation is especially burdensome for small firms and startups with less access to finance, 

conceivably undermining their contributions to technical advance.2 

Other concerns have been raised.  Heller and Eisenberg [1998], for example, have claimed that 

in the domain of genetic inventions, patentability has been extended to such fine-grained 

notions of invention that ownership of the patents covering any new product becomes so divided 

that the negotiations necessary to commercialization may well break down. Indeed, Cohen et al. 

[2000] suggest that in industries such as electronics it is common for there to be hundreds of 

patentable elements in one product, with the consequence that no one firm is likely to hold all 

the rights necessary for a product’s commercialization.  As argued by Cohen et al. [2000] for 

“complex product” industries generally and Hall and Ziedonis [2001] for the semiconductor 

industry in particular, such mutual dependence commonly spawns extensive cross-licensing.  

Although the kind of breakdown suggested by Heller and Eisenberg does not occur in these 

industries, the prospect of extensive cross-licensing, and the associated use of patents as 

bargaining chips may stimulate patent portfolio races among industry incumbents that can act 

as a barrier to entry to firms that possess relatively few patents.  Numerous scholars have also 

raised concerns over the proliferation of defensive patenting that may represent a costly tax on 

innovation. 

                                            
2 Scholars have recently focused the empirical work on explaining patenting behavior itself. Using data from a 1993 
survey on the innovative activities of Europe's largest industrial firms, Arundel and Kabla [1998] find that firms’ patent 
propensities (the percentage of innovations for which a firm applies for a patent) are positively related to firm size and 
to the degree of patent effectiveness. Using the same data, Duguet and Kabla [1998], find that the information 
disclosed in a patent application lowers the firm’s propensity to patent and the number of patent applications, while a 
desire to acquire a stronger position in technology negotiations and the avoidance of infringement suits are 
associated with a higher number of patent applications.  However, these studies do not address the question of the 
relationship between patenting and R&D behavior.  



 5

We should not, therefore, assume that patent rights necessarily induce innovation.  Nor, 

however, should we assume the contrary.  First, the fact that patents are less featured than 

other means of protecting inventions in the majority of industries does not imply that they yield 

little return in those industries. Levin et al. [1987], Mansfield [1986], and Cohen et al. [1987] also 

observe that in selected U.S. manufacturing industries, such as drugs or medical equipment, 

patents are indeed critical to the protection of inventions.  Moreover, in contrast to the findings 

for the U.S., Japanese firms report patents to be among the most important means of protecting 

their inventions (Cohen et al. [2001]). 

The paper is organized as follows. In section 2 we present a model of R&D and patenting 

behavior. Section 3 presents the empirical specification of the model to be estimated. Section 4 

describes the data and measures used for estimation, whereas section 5 contains estimation 

results and their discussion, including a simulation of the impact of increasing patent premia on 

R&D and patenting behavior. A conclusion follows. 

2.  A firm level model of R&D and patenting 

We focus on a typical product related invention, which is the output of an R&D project. A 

schematic representation of our model of the decision to patent, to invest in R&D, and the 

structure of payoffs is presented in figure 1.  

Figure 1.  R&D and patenting: the payoff structure. 

 
where3: 

xij = εij+µi: Patent premium, (greater than one if patent provides additional benefits relative 
to the case without the patent); 
εij: Invention-specific random component of the patent premium observed by the firm at the 
time of the R&D investment, but not the econometrician ~ N(0, σ2); 

                                            
3 The subscript i indexes firms (i=1,…,n), and j indexes inventions (j=1,…,m). The subscript i is suppressed from v 
and c. 
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µi: Firm specific component of the patent premium, observed by the firm at the time of the 
R&D investment. Treated as a parameter in the analysis 
v: Private value of an invention without patents; function of firm and industry characteristics 
c: Cost of applying for a patent, independent of a grant; function of firm characteristics 

If a firm applies for a patent and the patent is granted it would earn (xv-c). The patent premium 

is defined as x=εij+µi and represents the incremental payoff due to patent protection as 

compared to the value of an invention without a patent.4 A patent premium less than one would 

actually reflect a loss, possibly because information disclosure costs may be large relative to 

benefits. If the firm applies for a patent and the patent is not granted the firm would earn v-c (the 

value of the invention without patent protection minus the cost of applying for a patent). If the 

firm does not apply for a patent, it would earn v.  

Note that the payoff structure presented above also reflects, albeit implicitly, the impact of 

patents held by other firms on the expected returns from R&D.  Patents held by others may 

increase the likelihood that own inventions infringe those patents and thus reduce the expected 

value of own inventions when not patented, thus reducing v.  They may also negatively affect 

the returns from patenting an invention, and thus the own patent premium, x, to the degree that 

rivals' patented technologies compete with own patented inventions.  In contrast, rivals' patents 

may increase own R&D productivity through the information that they must disclose.  To allow 

the own patent premium to reflect fully such indirect (though possibly offsetting) effects of patent 

protection, our subsequent estimation includes the effectiveness of patents held by others in the 

determinants of v and R&D productivity, as explained in section 3. 

2.1.  The decision to patent 

Let y be a binary variable taking the value of 1 if, given an innovation, a firm applies for a patent 

and zero otherwise. Given an innovation, y=1 if the expected net benefit from patenting is 

greater than the expected net benefit without patenting, that is if and only if: 

(1) vcvgcvg iij >−−+−+ ))(1(])[( µε , 

Where g is the probability that a patent is granted. If we define π as the theoretical probability of 

applying for a patent given an innovation, equation (1) implies that 

(2) π = Pr(y=1)= 







−+> iij gv

c µε 1Pr = 







−+− igv

cF µ11  = 







−

−
Φ

gv
ci

σσ
µ 1  

                                            
4 For example, x=1.2 means that the value from patenting an invention is 20% higher than the value without a patent. 
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Where Φ is the standard normal distribution of εij and σ its standard deviation. With data 

grouped at the firm level, the average probability of applying for a patent for a firm – its patent 

propensity, is equal to: 

(3) p
i

gv
c η

σσ
µπ +








−

−
Φ=

1~  

with ηp representing sampling error. 

2.2.  The production of inventions 

The invention production function is specified as 

(4) mmserm ηηβ ++= ˆ  

where m is the number of inventions, r is the R&D expenditures, and s the factors affecting the 

average productivity of R&D, such as information flows from other firms, universities and 

government research labs. β is the elasticity of the number of inventions with respect to R&D. 

We also assume that other unobserved firm-specific factors affect the productivity of R&D. In 

particular, mη and mη̂  are i.i.d. normal errors, with zero mean and variance 2
η

σ  and 2ˆ
η

σ , 

respectively. The former is observed by the firm but not the econometrician, whereas the latter 

is unobserved by both the firm and the econometrician and represents the inherent uncertainties 

in the R&D process. 

2.3.  The optimal level of R&D 

The firm maximizes the expected profit from its inventive activity, that is the expected payoff per 

invention, h, multiplied by the expected number of inventions, E(m), net of the cost of R&D, 

which for simplicity is measured as the dollars spent on R&D, r.5 The maximization problem is: 

(5) Max [h E(m) - r], 
r 

A key component affecting the returns to R&D is the expected value per invention (h), which is 

modeled as a function of the expected value of the invention and the expected payoff from 

patenting, weighted by the probabilities of applying for a patent and not, where the decision to 

patent is made optimally after observing the patent premium, x: 

                                            
5 Thus we are assuming that any unobserved variations in the value of the invention, v  are uncorrelated with the 
invention specific component of the patent premium. 
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(6)   vcvgcvgh i )1())(1()~( ππµπ −+−−+−=  

with the probability of patenting, π, defined in (2), and iµ~ being the “conditional patent premium”, 

that is the expected patent premium, conditional on having chosen to patent the invention:  

(7) 



























−

−
Φ








 −
−

+=−+>+=

vg
c

vg
c

gv
cE

i

i

iiijijii

σσ
µ

σ
µ

σ
φ

σµµεεµµ
1

1

)1|(~ . 

With further simplifications and substitutions we obtain: 

(8) [ ] vcgv
gv
c

gv
c

gvh i
ii +−−








−

−
Φ+







 −
−= )1(11

µ
σσ

µ
σ

µ
σ

φσ  

To obtain the equilibrium level of R&D investment we solve (5) and obtain:  

(9) [ ] β
η

η ωβ −+= 1
1

msher , 

with h defined in (8), and )( ˆmeE η
ηω =  being an unobserved firm specific error term. The first 

and the second order conditions imply 0<β<1, which reflects the assumption of diminishing 

returns to R&D6.  

3.  Unobserved variables and empirical specification  

We  model the invention specific random component of the patent premium as a latent variable 

observed by the firm at the time of patenting, but not the econometrician. We observe the patent 

propensity, the total number of patent applications and the R&D investments of the firm.  We do 

not observe the other firm and invention specific variables: cost of patenting, value of an 

invention, the productivity of R&D, the probability of patent grant, the firm specific average 

patent premium, and the number of inventions. We do have R&D lab, firm and industry specific 

cross-section data. Accordingly, we specify the estimating equations as follows. 

3.1.  Number of inventions (m) 

We first transform the invention equation into an estimable relationship. We thus multiply both 

sides of the inventions production function (4) by the firm patent propensity, π~ , that is the 

fraction of inventions for which a firm applied for a patent: 

(10) mmsekra ηηβπ +++= ˆ)1(~  

                                            
6The F.O.C. for the maximization problem (5)  is 01ˆ1 =−+− msher ηββ , and  the S.O.C. is ( ) 01 ˆ2 <− +− msher ηβββ .  
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with: 

a: total number of patent applications; 

1+k: the (unobserved) number of patent applications per-invention, with k≥0; 

:~π  patent propensity, defined as the % of innovations for which a firm applied for a patent. 

We have measures of both patent propensity and the number of patent applications at the 

respondent level. k is unobserved and will be part of the error term.  

3.2.  The patent premium (µi) 

We do not observe µi, the firm specific component of the patent premium. We do have, 

however, a self reported measure, grouped in five classes, of the percentage of a firm’s 

inventions for which patent protection was effective.  We assume that firms in a given 

effectiveness class have the same average patent premium, µi. Further, we interpret the 

probability that a patent is effective, θij, as the probability that the patent premium for each 

invention (xij =εij+µi) is greater than unity, reflecting the idea that patent protection is effective if 

the payoff from a patented invention is greater that the payoff without patenting. More formally, 

we assume that:  

(11) θij = Pr(xij > 1 ) = Pr(εij> 1-µi ) = 1-F(1-µi) = 





 −

Φ
σ

µ 1i  

with µi and σ already defined and Φ the standard normal c.d.f. The relationship (11) clarifies the 

relationship between a survey based patent effectiveness rating and the firm-specific patent 

premium.  In particular, it implies that 
σ

µ 1−i  = Φ-1(θj).  In the empirical analysis discussed in 

section 4 below, we treat the self-reported measure θ as an ordinal rather than cardinal variable 

and thus treat µi as a parameter to be estimated.  We also allow for possible measurement error 

and the possibility that our measure of patent effectiveness is correlated with other unobserved 

factors affecting R&D productivity and estimate a specification where we instrument for patent 

effectiveness.  

3.3.  The value of an invention, the cost of applying for a patent, the grant probability (v, c, g) 

We do not observe the value of the invention if not patented, v and the cost of applying for a 

patent c.  Accordingly we set v=Vα and c=Cδ, where V and C are vectors of firm and industry 

characteristics and α and δ are vectors of unknown parameters to be estimated. Similarly, the 

patent grant rate, g, is not observed.  Note that even if g is invariant across firms, it cannot be 

estimated because g and σ are not independently identified. One reasonable way to proceed is 
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set g equal to the average patent grant rate in the U.S. Patent Office, which was about 0.7 in 

1999.7 

3.4.  Other factors affecting R&D productivity (s) 

R&D productivity is assumed to be a function of industry specific factors such as the underlying 

scientific and technological knowledge base and information flows from other firms and 

universities (see Jaffe [1986] and Cohen [1995], among others). More formally, we set: 

(12) s = λ0 + λ1S1 + λ2S2 + λ3S3 

with λ0, .., λ2  being structural parameters to be estimated and S1, S2, and S3 representing: 

S1 : organizational specific component related to R&D productivity; 

S2: information flows from other firms (rivals, suppliers, customers, other); 

S3: information flows from universities and government research labs. 

3.4.1.  The determinants of information flows from other firms (S2)  

We allow for unobserved organization-specific technical capabilities affecting both R&D 

productivity and information flows from firms and universities, S2 and S3. In particular, the 

scientific and technical capabilities of the lab’s researchers, which are observed by the firm but 

not the econometrician, are likely to be correlated with the amount of useful information flows 

from other firms and universities.  Thus, we instrument for both types of flows. However, since 

patents disclose information and in effect, contribute to information spillovers, we explicitly 

specify the relationship between patenting and information flows from other firms as:   

(13) S2 = γ0+γ1 Z1+γ2Z2+…+γkZk + ηs 

with being γ’s being parameters to be estimated, Z1  representing the information flows due to 

patent disclosures, the other Z’s representing the exogenous factors related to the external 

stock of knowledge, and ηs representing other unobserved organization-specific factors 

affecting information flows from other firms.  

                                            
7Reflecting recent findings that the patent approval rate may be as high as .9 (Quillen and Webster [2001]), we have 
rerun our analysis setting g to .9, with the result that the estimated σ decreases slightly. 
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3.5.  The system of equations to be estimated 

Taking logs of the R&D and patent equations, (9) and (10) respectively, using the patent 

propensity equation (3), and the information flows from other firms equation (13), we obtain an 

estimable system of non-linear simultaneous equations: 

(14) 

( )
















++++=

++++++
−

=

+++++=−

+







−

−
Φ=

s

r

a

p
i

hSSSr

rSSSa
gv
c

ηγγγ

ηλλλλβ
β

ηβλλλλπ

η
σσ

µπ

kk1102

3322110

3322110

Z... ZS

loglog
1

1log 

log~loglog 

1~

 

with: 

ηp = sampling error; 

mma k ηηη +++= ˆ)1log( ; 

( )ηωη
β

η +
−

= mr ˆ
1

1 ; 

( ) vcgv
gv
cgvh i

i +−−+






 −
+= πµπ

σ
µ

σ
φσ 11 . 

3.6.  Exclusion restrictions and identification 

The parameters of the model, α, β, δ, λ, σ, and τ  are estimated with non-linear three stage least 

squares. The exogenous variables related to the value of an invention without a patent (v), and 

the cost of patent application (c) are excluded from the invention equation, which allows 

identification of β.  

All the exogenous variables of the model are included in the R&D equation, except the variables 

determining the external stock of knowledge, which are thus used to consistently estimate the 

parameters associated with the endogenous components of s, that is the information flows 

variables S2 and S3. The relationships between endogenous and exogenous variables are 

summarized in Figure 2, which shows how the decision to patent and to invest in R&D are co-

determined by the same sets of variables. Since the equations have a number of common 

parameters, estimating them together not only provides identification of some key parameters, 

such as β and σ, but also provides greater efficiency in estimation.   



 12

Figure 2.  Relationship between endogenous and exogenous  

 
*: The exogenous variables are denoted by italics, whereas the endogenous by bold characters. We estimate 
two model specifications: one with exogenous and one with endogenous firm specific patent premium. 

4.  Data and measures 

We use the recently collected Carnegie Mellon survey (CMS) on industrial R&D8 (Cohen, W., 

Nelson, R., and J. Walsh [2000]). The population sampled is that of all R&D labs located in the 

U.S. conducting R&D in manufacturing industries as a part of a manufacturing firm. The sample 

was randomly drawn from the eligible labs listed in the Directory of American Research and 

Technology (Bowker [1995]) or belonging to firms listed in Standard and Poor's Compustat, 

stratified by 3-digit SIC industry. R&D lab managers were asked to answer questions with 

reference to the "focus industry" of their R&D unit, where focus industry was defined as the 

principal industry for which the unit was conducting its R&D. Valid responses were received 

from 1,478 R&D units, with a response rate of 54%.9  The survey contains a broad range of 

information on R&D and patenting activity, such as firms’ reported patent propensity, patent 

effectiveness, the number of patent applications, R&D expenditures. The data refer to the 1991-

93 period.   

For the analysis we restricted the sample to firms with business units with 10 or more 

employees. After dropping observations with missing data, we obtain a sample of 758 R&D 

units10. This sample includes firms ranging from less than 10 to almost 700,000 employees, with 

                                            
8 The survey was administered in 1994 by sending questionnaires by mail and conducting follow-ups by telephone. 
See Cohen, Nelson, and Walsh [2000]. 
9The raw response rate was 46%.  A nonrespondent survey found, however, that 28% of the nonrespondents in the 
U.S. were not in the target population (for example, they did no manufacturing).  After correcting the sample size 
accordingly for ineligible cases, the U.S. response rate was adjusted upward to 54%.  
10 The sample of 758 observations also reflects the exclusion of 8 R&D units reporting a number of patent 
applications per mil. $ of R&D greater than 17 (the 99th percentile value of the distribution). 
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annual sales ranging from more than $100,000 to over $130 billion. The median firm has 3,000 

employees and annual sales of $540 million. The average firm has 21,282 employees and sales 

of $4.3 billion. The business units range from 10 employees to 448,000, with annual sales from 

zero to over $120 billion. The median business unit has 550 employees and $540 million in 

sales. The average business unit has 6,168 employees and sales of about $1 billion. The 

average R&D intensity (R&D dollars divided by total sales) for the firms is 4.3%. 

We have thus far used the term firm to refer to the unit of analysis and we shall continue to do 

so to simplify exposition. However, we stress that the unit of analysis is the business unit within 

the parent firm, operating in the “focus industry” of the responding R&D lab.  We shall explicitly 

distinguish between business unit measures and firm level in the empirical analysis.  Indeed, as 

discussed below, we exploit the different industry sectors to which the business unit and the 

parent firm belong in developing instruments for reported patent effectiveness. 

4.1.  Measures of the endogenous variables 

PRODUCT R&D:  We estimate the model for the case of product innovations. To compute the 

product R&D expenditures we multiply the company financed R&D unit expenditures in dollars 

in the most recent fiscal year by the percentage of the R&D unit’s effort devoted to new or 

improved products. The sample average value of product R&D is about $8 million.  

PRODUCT PATENT PROPENSITY: R&D managers were asked to state the percentage of 

R&D unit’s product innovations in the 1991-’93 period for which they applied for a patent. Patent 

propensities in the sample range from zero to 100%, with a mean of 33%.  

PRODUCT PATENT APPLICATIONS: R&D managers were also asked to state the total 

number of patent applications inventions generated by the R&D lab during 1991-93. To 

calculate the annual number of product-related patent applications we multiply the total number 

of patent applications by the percentage of R&D unit effort devoted to product innovations and 

divide by three.11 The average number of annual product patent applications in the sample is 5, 

with actual values ranging from zero to 283. 

                                            
11 By so doing we assumed that firms are characterized by equal product and process patent propensities. It can be 
easily shown that if such an assumption does not hold the error term of the patent equation in the system (14) would 
be correlated with the product and process patent propensities as well as the share of R&D effort devoted to product 
innovations. Given that the CMU survey contains data on process patent propensity - whose sample average is 
substantially lower then for product innovations, we also estimated our model using an adjustment factor for the 
number of product patent applications. We found that the results presented in this paper are unaffected by the use of 
the correction. The intuition for this result is that almost all the right hand side variables in the patent application 
equation are endogenous, and thus instrumented for in the analysis, thus correcting for any potential bias arising from 
their correlation with the error term.   
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INFORMATION FLOWS FROM OTHER FIRMS:  We do not directly measure information flows 

from rivals, and other firms such as suppliers and customers. However, the CMS contains 

several related variables reflecting two dimensions of the spillover mechanism: a) the frequency 

with which the R&D lab obtains useful technical information from rivals, customers and suppliers 

in the U.S.; b) the contribution of information flows from rivals, customers, and suppliers to 

suggesting or completing R&D projects. We used factor analysis to develop a single factor- 

based measure of information flows from other firms. The Appendix provides the details.  

INFORMATION FLOWS FROM UNIVERSITIES:  We lack a direct measure here as well. The 

CMS provides measures which reflect two dimensions of spillovers: a) the frequency with which 

the R&D lab obtains useful technical information from universities or government research labs 

in the U.S.; b) the contribution of information flows from universities or government research 

labs to suggesting or completing R&D projects.  We construct a single factor-based measure of 

flows from universities. Once again, the Appendix provides more detail.  

4.2.  The patent premium (µi) 

EFFECTIVENESS OF PATENT PROTECTION: Respondents were asked to indicate the 

percentage of their product innovations for which patent protection had been effective in 

protecting their firm's competitive advantage from those innovations during the prior three years. 

There were five mutually exclusive response categories which are linked to 5 discrete points of 

the patent premium distribution. In particular, we can set: 

(15) 
σ

µ 1−i  = τ1Ti1+ τ2Ti2 + τ3Ti3  + τ4Ti4 + τ5Ti5 

with τ  being a vector of five coefficients to be estimated, and 

Ti1 =1 if patent protection was rated effective for 0-10% of the firm innovations,  
     = 0 otherwise; 
Ti2 =1 if patent protection was rated effective for 11-40% of the firm innovations,  
     = 0 otherwise; 
Ti3 =1 if patent protection was rated effective for 41-60% of the firm innovations,  
     = 0 otherwise; 
Ti4 =1 if patent protection was rated effective for 61-90% of the firm innovations,  
     = 0 otherwise; 
Ti5 =1 if patent protection was rated effective for over 90% of the firm innovations,  
     = 0 otherwise. 

This implies that: 

 (16) . 1 ; 1 ; 1 ; 1  ; 1 5544332211 +=+=+=+=+= στµστµστµστµστµ   
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As explained below, we estimated the model with both exogenous and endogenous patent 

effectiveness dummy variables.  

4.3.  Measures of the exogenous variables 

4.3.1.  Value of an invention (v) 

BUSINESS UNIT SIZE: Business unit size, measured by the natural log of the number of 

business unit employees. A firm may profit from an invention by incorporating it in its own 

output, so that the payoff is increasing in output (Cohen and Klepper [1996]).  

TOTAL NUMBER OF RIVALS AND TECHNOLOGICAL RIVALS IN THE US:  The effect of 

competition on the expected returns to inventive activity is not clear a priori. Theory does argue 

for distinguishing between total rivals and the number of technological rivals.12 Technological 

rivals are owners of innovative capabilities (and hence, potential sources of spillovers) as well 

as potential imitators of the inventions generated by each firm. Both the number of rivals and 

technological rivals are available from the CMU survey, measured categorically, reflecting the 

following ranges: 0,1-2, 3-5, 6-10, 11-20, or >20 competitors13. These responses were then 

recoded to category midpoints. These variables vary across respondents within industries 

because they represent each respondent’s assessment of his focus industry conditions, often 

reflecting a particular niche or market segment. 

RIVALS’ AVERAGE PATENT EFFECTIVENESS: Increases in the patent effectiveness of a 

firm’s rivals diminishes the "technology space" in which the firm can work without the risk of 

infringing rivals’ patents thus reducing the expected value of the invention. We thus included the 

average patent effectiveness for all firms in an industry, excluding the respondent, computed 

using category midpoints.14 

GLOBAL, FOREIGN, PUBLIC: We include binary variables indicating whether the firm owning 

the lab is GLOBAL (sells products in Japan or Europe), is FOREIGN (the respondent R&D lab is 

located in the U.S. but the parent firm is located abroad), or it is PUBLIC (publicly traded 

companies15), as controls. Global firms should face larger, global markets. Public companies, on 

the other hand, may have lower capital costs, and hence, lower R&D costs.  Finally, about 190 

                                            
12 See for example Needham, [1975]. Recent articles by Ceccagnoli [1999] and Boone [2000] show that the effect of 
competition on R&D incentives depends on the firm technological capabilities relative to that of its rivals. 
13 Technological rivals are defined in the CMS questionnaire as the number of US competitors capable of introducing 
competing innovations in time that can effectively diminish the respondent’s profits from an innovation, with reference 
to the lab’s focus industry.  
14The patent effectiveness survey response could be summarized in a number of ways. We could use the % of firms 
in an industry (excluding the respondent) in each of the five classes. We preferred to use midpoint of the intervals and 
average to save degrees of freedom. Using the other measure yields very similar point estimates. 
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R&D labs in our sample are located in the US but owned by companies whose headquarters are 

located outside the U.S. (about 25% of the sample). We do not have priors about the expected 

sign of the effect of this variable, but the parent companies will certainly face different 

unobserved country specific conditions that might influence the expected value of an invention. 

INDUSTRY FIXED EFFECTS: We include 19 industry dummy variables in V. We constructed 

the binary variables using the SIC code assigned to the focus industry of each respondent, 

where focus industry was defined as the principal industry for which the unit was conducting its 

R&D. The dummies are based on industry groupings described in table A1 in the appendix 

4.3.2.  Cost of applying for a patent (c) 

FIRM EMPLOYEES: We hypothesize that overall firm size (rather than business unit size), 

measured by the natural logarithm of the total employees of the firm, plausibly decreases the 

unit cost of patenting because larger firms are more likely to have more developed legal 

capabilities that they can spread across a greater number of activities16. 

4.3.3.  Factors affecting R&D productivity (S1) 

INFORMATION TECHNOLOGY IN ORGANIZATION: We include an organization related 

dummy variable indicating whether computer network facilities are used within the firm to 

facilitate the interaction between R&D and other functions. This variable should proxy for 

progressive management practices and should increase s, the R&D productivity factors. 

4.3.4.  Factors affecting information flows form other firms (S3) 

DEGREE OF OVERLAP WITH COMPETITORS’ R&D PROJECTS: This variable reflects the 

technology overlap with rivals’ R&D projects. We expect greater overlap to increase beneficial 

information flows. The survey asks a subjective assessment of the percent of projects started by 

the R&D unit with the same technical goals as an R&D project conducted by at least on of its 

competitors measured in scale (with 1: 0%; 2: 1-25%; 3: 26-50%; 4: 51-75%; 5: 76-100%). 

Responses were then recoded to category midpoints.  

PATENT-RELATED STOCK OF KNOWLEDGE: To reflect the information flows due to patent 

disclosures, we construct a survey based measure of the stock of patent-related knowledge 

relevant to the lab. For each respondent it is calculated as the sum of industry R&D employees 

multiplied by the industry average patent propensity of those industries for which the field of 

                                                                                                                                             
15 Specifically, those contained in Standard & Poor Compustat. 
16 Total firm employees were obtained from sources such as Compustat, Dun and Bradstreet, Moody’s, and Ward’s. 
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science and engineering considered the most important in term of research findings contribution 

to R&D activity in the industry is the same as that indicated by the R&D lab17. 

RIVALS’ AVERAGE PATENT EFFECTIVENESS: Greater patent effectiveness of other firms 

reduces the likelihood that a firm can benefit from information disclosed by patents, thus 

negatively affecting the productivity of R&D.  

NUMBER OF TECHNOLOGICAL RIVALS IN THE US: this variable, already described above, is 

also included among the factors affecting information flows from other firms. It should proxy for 

the stock of knowledge contributed by rivals in the respondent’s focus industry. 

INDUSTRY FIXED EFFECTS: We also included 19 industry dummy variables in the equation 

explaining information flows from other firms. 

Table 1 provides summary statistics for the variables used for estimation. 

5.1.  Estimation issues 

We estimate the parameters of the non-linear system of equations (14) with the method of 

nonlinear three stage least squares using the sample of 758 observations described in section 

4, imposing the cross-equation restrictions18. 

5.1.1.  Sources of variation in patent effectiveness 

Since our analysis hinges upon this variable, it is worth explicitly discussing its interpretation 

and limitations.  The first is that in the exposition of the model we assumed that a patent is 

deemed effective for an invention if patenting increases the return to an invention (gross of 

patenting costs) over what it would be in the absence of a patent.  However, in the empirical 

analysis, we treat the reported effectiveness classes as ordinal.  If we were to use the cardinal 

information available (e.g., using the mid-points of the response classes) we could allow for 

differing thresholds.19   

                                            
17 More formally, the measure is computed as follows:  ∑=

j
jjiji RpaZ   ,~ with i=1,…,N, denoting R&D units; j denoting 

industries defined at the 2/3 digits SIC; jp~ is the industry average product patent propensity; jR is the sum of R&D 

employees in industry j; aij is a respondent specific dummy equal to 1 if wij = Wj , zero otherwise where: wij is a character 
variable representing the lab’s reported field of science and engineering whose research findings contributed the most to 
its R&D activity during the most recent three years (possible fields include Biology, Chemistry, Physics, Computer 
Science, Materials Science, Medical and Health Science, Chemical Engineering, Electrical Engineering, Mechanical 
Engineering, Mathematics); Wj is the modal value of wij in industry j. All measures available from CMS. 
18 See Gallant [1987], p. 427-444, for the procedure used to estimate the system.  
19 There is some concern about whether the reported effectiveness scores accurately reflect the ways firms 
appropriate the returns to patenting. As suggested by Cohen et al. [2000], firms patent for reasons that often extend 
beyond directly profiting from a patented innovation through its commercialization or licensing. In addition to the 
prevention of copying, prominent motives for patenting include the prevention of rivals from patenting related 
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A more important question relates to the sources of variation in patent effectiveness across 

respondents within an industry, and whether these are correlated with unobserved variations in 

R&D productivity and spillovers.  Patent policy, technology itself, as well as differences in the 

codifiability of the underlying engineering and scientific knowledge may cause patent 

effectiveness to vary, especially across industries (Arora and Gambardella, 1994; Anand and 

Khanna, 2000).  But patent effectiveness will also vary across firms within an industry, 

depending on the emphasis placed upon patenting, and on the ability to manage intellectual 

property more broadly.  Managers who favor patents are more likely to institute policies that 

reward patentable inventions, invest in in-house legal resources and so on.  It is also plausible 

that such managers are also likely to favor investments in R&D.  Put differently, it is plausible 

that unobserved sources of variation in the reported effectiveness of patents are correlated with 

unobserved sources of variation in R&D productivity. 

There is a related issue.  Levin et al. [1987] and Cohen et al. [2000] point out that firms use 

many appropriability mechanisms, such as lead time and secrecy, in addition to patents. The 

other mechanisms may be substitutes or complements for patenting. We do not observe the use 

of these alternative appropriability mechanisms.  This has two implications.  The first implication 

is that our estimate of the patent premium reflects the incremental payoff to patenting when the 

firm optimally adjusts its use of other mechanisms.20 Second, systematic differences across 

firms in the effectiveness of alternative appropriability mechanisms may also be a source of 

variation in reported patented effectiveness.  Insofar as these alternative mechanisms also 

condition v, the payoff without patenting, this may bias our estimate of the patent premium. As a 

corollary analysis, we estimated a model in which the effectiveness of other strategies such as 

secrecy and lead times advantages are included among the determinants of v, without 

significant changes in the reported results, suggesting that the included fundamental firm and 

industry characteristics represent good controls for v. 

                                                                                                                                             
inventions (i.e., “patent blocking”), the use of patents in negotiations and the prevention of suits. Here, the issue is 
whether the reported patent effectiveness rating underestimates the true patent appropriability premium when firms 
profit from patenting in less conventional ways. As a corollary exercise, to probe whether respondents considered the 
uses of patent broadly in their evaluations of  patent effectiveness, we employed the CMS data to analyze the 
relationship of firms' reasons to patent with respondents' patent effectiveness scores, using an ordered probit model. 
We found that  firms who use patents for both conventional (e.g., licensing) as well as less conventional reasons 
(e.g., "patent blocking", or for forcing respondents into cross-licensing negotiations) are significantly more likely to 
report higher patent effectiveness scores, suggesting that the respondents indeed interpreted the patent 
effectiveness survey question broadly.  
20This is similar to estimating the long run impact of a change in a given factor price on the profit function.  This 
impact assumes that the firm optimally changes not only the use of the factor whose price has changed, but also of 
the other factors inputs.   Effectiveness measures are analogous to factor prices. 
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It is possible, therefore, that the patent effectiveness measure has both measurement error, and 

more important, is correlated with the error terms in the R&D, patent and spillover equations.  

To address these possibilities, we exploit differences in the focus industry of the R&D lab (i.e., 

the industry sector of the business unit) and the industry sector to which the parent firm belongs. 

We posit that factors that condition patent effectiveness and patenting behavior in the industry 

of the parent firm will shape the organizational structure of the parent firm itself, and thereby 

affect the perceived effectiveness of patents.  We have in mind notions such as -- how carefully 

do scientists and researchers document their work; how skilled the in-house lawyers are in 

managing patent prosecution; and how effectively researchers and in-house lawyers can 

communicate.  We posit that the principal industry sector of the firm shapes how “patent savvy” 

the firm is, and this spills over to operations of the firm in other industry sectors as well. Simply 

put, our instrumentation strategy is based on the premise that a business unit whose parent firm 

is a pharmaceutical firm is more patent-conscious, and therefore, perceives a higher 

effectiveness of patents, than an otherwise identical business unit whose parent firm is in textile. 

Although we do not have such information about the management of intellectual property for the 

parent firm of each R&D lab, but we observe the primary SIC of the parent firm as well as the 

SIC of the industry that is the principal focus of the lab R&D effort. Roughly half of the 

responding business units belonged to an SIC different from that of the primary SIC of the 

parent firm.  We thus use the industry average patent effectiveness and other survey based 

measures on the reasons to patent and not to patent at the 2 and 3-digit SIC industry of the 

parent firm as instruments for each respondent patent premium dummy class21.  We assume 

this source of variation in reported patent effectiveness to be orthogonal to the unobserved 

variation in the R&D productivity of the responding R&D lab, and orthogonal to unobserved 

variation in the effectiveness of alternative appropriation strategies.  

5.1.2.  The endogeneity of the information flows from universities (S3)  

Although we do not model the determinants of information flows from universities, we use a 

measure of the external stock of university related knowledge as an instrument for S3.  This is 

measured by the total R&D spending of doctoral granting institutions by state and field of 

                                            
21More specifically, we use the following five variables computed at the 2 or 3 digit SIC industry level of the 
respondent’s parent firm as instruments: 1) the average % of innovations for which patent protection had been 
effective (using category midpoints); 2) The % of firms who indicated the amount of information disclosed in a patent 
application as a reason not to patent; 3) The % of firms who indicated the ease of legally inventing around as a 
reason not to patent; 4) The % of firms who indicated the prevention of other firm's attempts to patent a related 
invention ("patent blocking") as a reason to patent; 5)  The % of firms who indicated  the earning of licensing revenue 
as a reason to patent.  We also estimated a specification using predicted patent effectiveness classes as instruments, 
using these and other exogenous variables as predictors, with very similar results. 
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science and engineering, assigned to each respondent according to its state location and its 

rating of the importance of science and engineering field. 

5.1.3.  Within industry group estimation 

The distribution of the patent premium and its impact on R&D and patenting behavior may differ 

across industries. Further, Cohen et. al [2000], show that in industries such as drugs and 

chemicals firms mostly patent to block the development of substitutes by rivals, whereas in 

industries such as computer and electronics firms are more likely to use patents as bargaining 

chips to gain access to rivals’ technologies and to prevent suits. Thus, in electronics, the size of 

the patent portfolio more than the intrinsic value of each patented invention may determine the 

payoff from innovative activities. In such an environment, we would expect less heterogeneity in 

the patent premium distribution, that is, a distribution with less mass in the tails.  

Hall and Ziedonis [2001] also suggest in the semiconductor industry there was a surge of 

patenting during the 1980s following a strengthening of patent rights. They claim that the effect 

of stronger patent protection was predominantly to stimulate firms’ patent propensities and 

patent applications, but not R&D and innovation. They also suggest that the semiconductor 

industry differed from industries such as pharmaceuticals in this respect. 

To investigate these issues, we estimate the system of equation (14) within the drugs and 

chemicals industries (SIC 28), including biotech companies, and the computer and electronics 

industries (SIC 36 – electronics and electrical equipment, plus SIC 357 – computers). Summary 

statistics for these two industry groups are give in table 1. The privately financed product R&D 

performed by these two industry clusters amount to more than 60% of the total in our sample.   

5.1.4.  Other issues 

The existence of an heteroscedastic sampling error in the patent propensity equation, suggests 

the use of heteroscedasticity-consistent standard errors. One way to implement the correction is 

to estimate the system with GMM, but we were not able to achieve convergence with GMM. We 

thus estimated the model with NL3SLS, but the estimates are not robust to heteroscedasticity.22 

The use of logarithms in the patent and R&D equation should, however, mitigate the problem. 

                                            
22 Gallant [1987] suggests a way to generalize NL3SLS to handle heteroscedasticity of unknown form, which will be 
implemented in the next draft. Note also that NL3SLS is a method of moments type estimator, where instrumental 
variables are used to form the moment equations. We used the exogenous variables included in the equations, the 
additional instruments explained above, and the squares and cross-products of the continuous exogenous and 
instrumental variables as instruments.  
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Another issue is related to the presence of outliers in our sample. As already pointed out, our 

sample already reflects the trimming of 1% of the observations with unrealistic high levels of 

patent per million dollars of R&D investment. We also tried a more conservative trimming 

procedure by excluding observations with patents per million dollars R&D above the median 

plus twice the interquantile range. Estimation with the more conservative trimming procedure led 

to parameter estimates that are similar to the one presented here. 

5.2.  Estimates of the structural parameters of the model 

Table 2 shows the results of estimation of the nonlinear system (19) of four simultaneous 

equations with cross-equation restrictions imposed. We present estimates of the vectors of 

parameters τ, α, δ, λ, and γ, which represent, respectively, the expected patent premium, the 

value of an invention without patent protection, the cost of applying for a patent,  R&D 

productivity, and the information flows from other firms. The table shows three sets of results, 

where specification I treats patent effectiveness as exogenous and specification II instruments 

for patent effectiveness, allowing comparisons across samples (the full sample as well the 

computer-electronics and drugs-chemicals sub-samples) and estimation methods. The sign and 

significance of the estimated coefficients can be directly evaluated. Unless otherwise noted, we 

focus on estimates from specification II, though the results from specification I (exogenous 

patent effectiveness) are similar in magnitude.  In general, specification II yields smaller 

estimated responses of patenting and R&D to changes in patent premia. 

5.2.1.  The elasticity of product inventions w.r.t. R&D (β) 

We obtain an elasticity of the number of inventions with respect to R&D (β) of about 0.5-0.6 in 

the full sample, consistent with other studies that have looked at the relationship between 

patents and R&D (see for example Adams [2000]). The elasticity however is higher in the 

computer-electronics sample, where it is about 0.6, relative to the drugs-chemicals cluster, 

where it is slightly more than 0.4. These elasticities are significant at the 1% significance level. 

5.2.2.  The parameters of the patent premium distribution: the full sample 

As expected, we find that respondents with higher patent effectiveness scores are characterized 

by higher patent premium levels. This is shown by the increasing estimated coefficients for the 

τ‘s in Table 2, in particular the estimates in the first two columns.  Table 3 shows the expected 

patent premia computed from the estimated coefficients. The average (unconditional) expected 

patent premium is less than one, equal to about 0.94 in specification I and 0.59 in specification 
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II. This means that on average the expected value of an invention if patented is between 6% 

and 40% lower than in the case without a patent. The conditional patent premium – whose 

expression is shown in (7) - suggests that conditional on having patented the invention, the 

expected premium varies between 120% and 180%. One possibly anomalous result is the 

negative estimate of the patent premium for the lowest effectiveness class in specification II.  

Although conceivable that patenting can yield a negative payoff (gross of the cost of patenting), 

it is unlikely.23 The negative premium may be driven by the much higher estimate of σ, 1.7, in 

specification II, compared to slightly above unity in specification I. 

An average patent premium less than unity confirms that the opportunity cost of patenting, such 

as the cost of information disclosure and being “invented around” are quite high.24  This result 

both confirms earlier findings but also marks an advance.  Earlier studies (e.g., Levin et al. 

[1987], Cohen et al. [2000]) had found that patents were not very effective except in selected 

industries.  The patent premium quantifies what has hitherto been a somewhat loose notion of 

effectiveness. Further, our estimates of the unconditional patent premia confirm what the earlier 

literature had hinted at: In many industries, patenting the typical invention is not profitable.  

However, even in these industries, some inventions are profitable to patent.  

Table 4 shows averages of both the conditional and unconditional premium by industry, which 

differ because industries differ in the distribution of reported patent effectiveness.  The average 

premium is greater than one across both specifications only in the health care related industries 

(biotech, drugs, medical instruments), a finding consistent with the high propensity to patent in 

those industries.  Industries with the lowest premium, like food or electronic components, are 

characterized by average patent premia close to zero or even mildly negative in specification II, 

reflecting the large fraction of low effectiveness scores in these industries (almost 70% in food).  

Conditional on patenting an invention, the premium from patenting is substantial: Firms on 

average earn, excluding the cost of application, more than twice as much they would have 

earned without patenting the invention. The conditional premium is highest in industries such as 

biotechnology and medical instruments and lowest in food and petroleum. The variation across 

industries is, however, low. There is much more variation across industries in the average 

unconditional patent premium.  

                                            
23 A negative unconditional premium does not imply that firms patent with a negative premium or they realize negative 
profits from patenting; rather that firms will patent inventions with a large enough invention specific premium, εij. 
24 Interestingly, we find that respondents who indicated the amount of information disclosed in a patent application or 
the ease of legally inventing around a patent as reasons not to patent have a 50% and 30% lower premium than 
those who did not report them, respectively. 
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5.2.3.  The parameters of the patent premium distribution: Drugs-Chemicals and 
Computer-Electronics sample estimates 

The estimates within the drugs-chemical sample and the computer – electronics sample yield τ 

coefficient estimates that are quite different.  The estimate of the standard deviation, σ, is also 

much higher in the drugs-chemical sample, where it is greater than 3, whereas is between 0.4 

and 1.4 in the computer and electronics sample.  The estimates (table 2) imply that in the drugs-

chemical case there is more heterogeneity across inventions in the patent premium. The 

opposite is true in the computer-electronics case, where there is less heterogeneity across 

inventions in terms of the expected patent premium, which might be suggested by the findings 

of Cohen et al. [2000].   

We caution against over-interpreting the within industry cluster results.  For one, the sample 

sizes are small: For the chemicals-drugs sample we estimate 29 parameters with 156 

observations, whereas we estimate 26 parameters with 184 observations in the computer-

electronics sample.  The findings however are consistent with the result that patents provide, on 

average, a positive expected premium in only a few industries, namely those belonging to the 

health care related industries. The estimates also suggest that, conditional on patenting, the 

premium is much higher, with patenting an invention yielding rents that are 2 to 8 times higher 

than not patenting in the health care-related industries. The estimates are lower in the case of 

computer-electronics, where conditional on patenting, returns are 2 to 3 times higher than in the 

case without a patent. (See table 5.)  

5.2.4.  The determinants of the value of an invention and the cost of applying for a patent 

We find that firm size decreases the cost of applying for a patent in the full sample, but the 

effect is insignificant.25 Table 2 also shows that being public, being global and being large are all 

associated with higher expected value per invention.  More technological rivals decrease the 

value of an invention. An increase in the number of total rivals, holding the number of 

technological rivals constant, instead increases the value of an invention, but the effect is 

significant at the 1% only in the drugs-chemical sample (α5).26 

                                            
25One possibility is that the cost function is misspecified. This would occur, for example, if c captures any other 
component of the payoff from patenting which is independent of the value of an invention and the probability that a 
patent is granted. This may reflect the existence of other unobserved components of the returns to patenting. 
26 These results are consistent with Ceccagnoli [1999], who analyzes the relationship between market structure and 
R&D incentives, when only some firms are capable of R&D.  Non R&D rivals decrease the average profits of R&D 
firms. However, an increase in the number of such rivals may increase the marginal payoff from R&D under a wide 
range of parameter values.  R&D performing rivals, by potentially increasing spillovers, can also have a potentially 
beneficial effect on R&D. However, we explicitly control for the spillover effect in our model. 
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The impact of the rivals’ patent premium on v (α6) is unexpectedly positive albeit insignificant in 

the full sample. It is, however, negative in both the chemical-drugs and the computer-electronics 

cases and at the 10% confidence level in the latter. This suggests that the industry fixed effects 

included in v may not fully control for other industry level effects. Estimation within a more 

homogenous group of industries, such as chemical-drugs and computer-electronics, yields the 

expected sign. Alternatively, other industry participants may not in fact be rivals. Using the 

estimated structural coefficients for the full sample and specification II, we find that, v, the 

average predicted value per invention if not patented is roughly half a million dollars.  

5.2.5.  The determinants of R&D productivity and spillovers 

The hypothesized effects of the technological opportunity-related variables is confirmed. In 

particular, the use of I.T. (λ1)  has a positive and significant impact on R&D productivity, across 

specifications and samples. We also find that information flows from both other firms as well as 

from universities increase R&D productivity. 

The percentage of overlap with competitors R&D projects has a positive and significant impact 

on R&D productivity (γ1), suggesting that the closeness between rivals in the technological 

space stimulates R&D productivity, consistent with Jaffe [1986].  However, contrary to our 

priors, the effect of the patent spillover stock (γ2) is negative, albeit small and insignificant in the 

full sample, although it is positive in the computer electronics case.27  

5.3.  The impact of patents on R&D 

5.3.1.  The predicted rate of return to private R&D 

We estimated an average predicted private rate of return to product R&D, computed as 
r

rmh
ˆ

ˆˆˆ − , 

that is the net returns to product R&D as a fraction of product R&D investment. Given an 

average expected value of an invention of $0.67 millions, an average predicted number of 

annual inventions per firm of 20.3, and an average predicted annual R&D investment of $11.2 

millions, we obtain a private rate or return about 21%, which is in the range of previously 

estimated numbers (see for example Mansfield [1977] and Griliches [1992]). It is noteworthy that 

our model was not developed to estimate the return to R&D, and indeed we lack direct 

measures of the payoff to invention. Instead, we use industry and firm characteristics, and data 

                                            
27 The insignificance of this variable may be due to the inclusion of other industry level variables that are related to 
the patent spillover variable on the right hand side of the equation representing information flows from other firms. In 
particular, we find that a greater number of technological rivals stimulates spillovers and thus R&D productivity 
(although the coefficient is negative and insignificant in the computer and electronics case). We also find that the 
average rivals patent premium has a negative and significant effect  on information flows from other firms, as 
expected (although the coefficient is insignificant for the computer-electronics sample). 
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on patenting behavior to measure the payoff from R&D. The estimated return on R&D of 21% is 

reassuring and suggests that at least on average, our estimates of the unmeasured value of an 

invention is correct. This also provides us with greater confidence in our estimates of the patent 

premium. 

5.3.2.  Simulating the impact of increasing the patent premium 

The main objective of this study is to evaluate empirically the R&D incentive effect of patent 

protection. We simulate the effect of an increase in the patent premium (µi) on the patent 

holder’s R&D investments. This simulation reflects the direct incentive effects of patents. In an 

additional run, we also reflect the indirect effects represented by associated changes in the 

effectiveness of rivals’ patents as well as changes in the potential stock of patent-related 

knowledge.  The magnitudes of the empirical estimates for these indirect effects are, however, 

small.  

The marginal effect of increasing the patent premium on R&D can be computed by first taking 

the derivative of the natural logarithm of R&D w.r.t. µi  in (14) and then dividing by the predicted 

R&D investment. In particular,  gv
h

r
i

π
βµ

1
1

1log
−

=
∂

∂ . This “semi-elasticity” measures the 

percentage change in the firm R&D for a unit change of the firm patent appropriability premium, 

where a unit change refers to a 100% increase in the patent premium. 

Overall, the impact of a change in the patent premium appears to be substantial. As shown in 

Table 6,  the results indicate that a unit change in the patent premium would, on average, 

increase patent holder R&D by $5.38 million for the endogenous premium case and by $6.26 

million for the exogenous premium case.28 The average elasticities, not shown, indicate that a 

1% increase in the patent premium would stimulate the patent holder R&D by about 0.5% in 

both the exogenous and endogenous premium cases.  The average “semi-elasticity” of R&D 

with respect to the patent premium for the endogenous premium case is 0.33, shown in table 7. 

Table 7 shows the percentage change in R&D, patent applications, and patent applications per 

R&D dollar from a unit change in the patent premium. These results suggest the impact of 

increasing the net payoffs from patenting on innovation is reasonably high and that the impact 

significantly varies across industries. In particular, table 7 shows that a unit increase in the 

premium would increase R&D between 40-60% in the health care related industries, and to a 

                                            
28 Recall that the estimates and elasticities are conditional on a patent grant rate of 0.7. We also experimented setting 
higher grant rate probabilities obtaining lower standard deviation for the patent premium distribution, without 
significantly affecting the R&D elasticity. 
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lower extent in industries such as electronics and semiconductors, where R&D would increase 

by about 20-30%. Given that these industries also differ substantially in their average patent 

premium, the standard elasticities – not shown – suggest even larger differences, being about 

0.9 in biotech and about 0.3 in semiconductors.  The results are consistent with Hall and 

Ziedonis [2001] who note that the strengthening patent protection in the U.S. did not have 

significant impact on R&D in the semiconductors industry during the 80s, but largely stimulated 

patenting itself, with the consequence that the patent per million R&D dollars increased 

significantly.29  It is important to highlight, however, that even where the returns to patenting 

inventions are lower (and firms rely more heavily on other means such as first mover 

advantages to protect their inventions (cf. Cohen et al. [2000])), as in semiconductors, growth in 

the patent premium still clearly stimulates R&D.  

We also simulated the impact of increasing the patent premium on patenting. Table 7 shows 

that, on average, a 10 % increase in the patent premium (recall that the premium is itself a 

percentage) increases R&D by 3.4%, patent applications by 9.3% and patent applications per 

R&D dollar by 5.9%. We find that semiconductors have a very high response for patent 

applications (unity) with respect to the R&D premium.  Indeed, a 10 percentage point increase in 

the patent premium would increase the number of semiconductor patents by 10% and the 

number of patents per R&D dollar by almost 7.5%.  In other words, R&D would only increase by 

2.5%. By contrast, a similar increase in the patent premium would increase biotech patenting by 

nearly 8% and R&D by approximately 5%, implying that patents per R&D dollar would increase 

by less than 3%, reflecting a much greater increase in R&D relative to patenting than that 

observed in but relative to semiconductors.  Thus, our model not only fits well on average, it 

also appears to accord with the experience of, for example, the drug industry versus that of the 

semiconductor industry.   

6.  Conclusion 

Understanding the determinants of R&D is of first order importance given the central role of 

R&D in productivity growth. Patents are believed to provide an important stimulus to R&D.  

However, to our knowledge, this study is the first to systematically study the link between patent 

effectiveness and investments in R&D.  We provide the first systematic estimates of the average 

expected patent premium for the U.S. manufacturing sector.  By modeling how the patent 

                                            
29 The foregoing results only looked at the direct impact of increasing patent premia. We also computed the net 
impact of a general increase in the premium taking into account the impact of the rivals’ premium on the patent holder 
R&D.  However, since the indirect effects are small (and in the case of the impact on v, close to zero and 
insignificant), the net impact is very similar to the direct impact.    
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premium conditions, along with other factors, the decision to invest in R&D and to apply for a 

patent, we simulate the impact of increasing the patent premium on R&D.   

We address the empirical gap in the literature by using a unique data set based on the 1994 

Carnegie Mellon survey of R&D performing units in US manufacturing in the United States, 

which measures of R&D, patent propensity (measured as the percentage of inventions for which 

a firm applies for a patent), patent effectiveness, and information flows from other firms and 

universities, among other variables, at the R&D lab level.  As noted above, having a measure 

for the percentage of innovations that are patented—along with our measures of R&D and 

patenting—allows us to treat the share of inventions that are patented and R&D as distinct 

constructs, which in turn provides for flexibility when estimating the relationship between the 

two. As good as our measures are, however, we are well aware that measures based on 

surveys and reported behavior and perceptions are subject to various caveats and qualifications 

which are discussed more fully in the text. 

Subject to these qualifications, and consistent with earlier findings, we find that on average 

patents provide positive (greater than unity) expected premium in only a few industries, namely 

drugs, biotech and medical instruments, with chemicals, computers and machinery close 

behind.  We also show that a shift in a firm’s patent premium distribution would significantly 

stimulate its own R&D in the manufacturing sector as a whole.  That impact is, however, 

conditioned by industry characteristics. In particular, in industries where the patent premium 

tends to be higher, such as drugs, biotech and medical instruments, an increase in the patent 

premium has a substantially higher proportional impact on R&D. In other industries where the 

patent premium tends to be lower, such as electronics and semiconductors, the impact is more 

limited.  A more limited impact notwithstanding, we underscore that even in such industries 

where patent premiums are lower and firms rely more heavily on means other than patents to 

protect their inventions, an increase in the patent premium clearly stimulates R&D. 

Our study points to a number of further research questions.  A key question is what fundamental 

factors drive patent effectiveness, and the role that other appropriability mechanisms play in 

conditioning the effectiveness of patents.  A second, and related question, is how the ways that 

patents are used condition their effectiveness in appropriating rents from invention.  Clearly, the 

uses of patents are themselves functions of the underlying technology and the policy 

environment, but also of market structure and the strategies of the major industry players.  As 

noted earlier, we have ignored the impact of patent effectiveness on entry, and on vertical 

industry structure, both important determinants of the rate and direction of technical change. 
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Table 1.  Descriptive statistics 

Variable   Mean    St. Dev.    Median     Min.     Max.   

 Full
Sample

Chem. &
Drugs

Comp. &
Electron.

Full
Sample

Chem. &
Drugs

Comp. &
Electron.

Full
Sample

Chem. &
Drugs

Comp. &
Electron.

Full
Sample

Chem. &
Drugs

Comp. &
Electron.

Full
Sample

Chem. &
Drugs

Comp. &
Electron.

 (N=758) (N=156) (N=184) (N=758) (N=156) (N=184) (N=758) (N=156) (N=184) (N=758) (N=156) (N=184) (N=758) (N=156) (N=184)

% prod. innov. applied for patent  0.33 0.38 0.33 0.32 0.34 0.32 0.25 0.35 0.23 0 0 0 1 1 1
Product R&D (Mil. $) 8.11 17.39 7.38 30.79 49.74 32.65 1.3 2.5 1.2 0.02 0.02 0.03 420.8 360 421.8
No. of Product Patent Applications 5.3 7.61 6.77 16.58 16.88 25.77 1.2 1.9 1 0 0 0 283 117 283
Spill-in-other-firms (factor measure) 0.06 0.06 -0.02 0.68 0.65 0.68 -0.02 -0.02 -0.02 -1.44 -1.14 -1.44 2.14 2.14 2.14
Spill-in-university (factor measure) 0.03 0.09 -0.03 0.7 0.73 0.66 -0.24 -0.24 -0.24 -0.63 -0.63 -0.63 1.91 1.91 1.91
Patent premium dummy, class 1 0.34 0.25 0.35 0.47 0.43 0.48 0 0 0 0 0 0 1 1 1
Patent premium dummy, class 2 0.24 0.22 0.23 0.43 0.42 0.42 0 0 0 0 0 0 1 1 1
Patent premium dummy, class 3 0.17 0.13 0.20 0.37 0.34 0.40 0 0 0 0 0.00 0 1 1 1
Patent premium dummy, class 4 0.14 0.20 0.10 0.35 0.40 0.31 0 0 0 0 0 0 1 1 1
Patent premium dummy, class 5 0.12 0.20 0.13 0.32 0.40 0.33 0 0 0 0 0 0 1 1 1
Other ind. participants pat. effectiveness* 0.36 0.41 0.33 0.11 0.11 0.09 0.35 0.40 0.31 0.05 0.17 0.18 0.68 0.68 0.53
Business Unit Employees 6,168 2,214 6,588 27,031 7,283 29,984 550 470 300 10 13 10 448,000 81,600 256,200
No. of U.S. Technological Rivals 3.98 6 3.42 4.82 7 3.78 4 4 1.5 0 0 0 30 30 30
No. of Total U.S. Rivals 10.29 14 7.86 9.27 11 6.91 8 8 8 0 1.5 0 30 30 30
Firm Employees 21,282 15,887 26,251 52,161 30,557 60,351 3,009 2,000 1,450 10 10 10 710,800 222,000 330,637
Firm is Global 0.78 0.78 0.77 0.41 0.41 0.42 1 1 1 0 0 0 1 1 1
Firm is Public 0.65 0.58 0.70 0.48 0.50 0.46 1 1 1 0 0 0 1 1 1
Firm is Foreign 0.1 0.21 0.09 0.3 0.41 0.29 0 0 0 0 0 0 1 1 1
I.T. Used in Organization 0.54 0.54 0.55 0.5 0.50 0.50 1 1 1 0 0 0 1 1 1
Patent Spillovers 0.31 0.26 0.36 0.23 0.17 0.17 0.38 0.38 0.45 0 0 0 0.72 0.72 0.72
% Overlap with Rivals’ R&D 0.56 0.56 0.62 0.24 0.24 0.22 0.63 0.63 0.63 0 0 0 0.88 0.88 0.88

*: Computed using industry averages of mid-points of the five patent effectiveness response classes. 
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Table 2.  System estimates of the structural parameters 

 Full Sample Chemicals-Drugs Computer-Electronics  
 I II I II I II  

σ 1.070** 1.709** 3.911** 3.339* 0.379 1.447* 
 (0.306) (0.613) (1.467) (1.272) (0.297) (0.731) St. dev. of patent prem. distr.  

β 0.581** 0.544** 0.430** 0.440** 0.641** 0.565** 
 (0.051) (0.046) (0.058) (0.052) (0.079) (0.068) 

Elast. of inventions w.r.t. R&D 

PATENT PREMIUM:  
τ1 -0.756** -1.169** 0.065 -0.242 -0.953* -1.931 
 (0.162) (0.305) (0.618) (0.546) (0.388) (1.288) Patent premium dummy, class 1 

τ2 -0.088 -0.495* 0.958 0.475 -0.179 -0.151 
 (0.146) (0.223) (0.582) (0.489) (0.348) (0.340) Patent premium dummy, class 2 

τ3 0.400** 0.553* 1.365* 1.146* 0.490 0.536a 
 (0.146) (0.232) (0.550) (0.441) (0.337) (0.314) Patent premium dummy, class 3 

τ4 0.536** 0.557** 1.772** 1.479** 0.420 0.342 
 (0.142) (0.193) (0.548) (0.442) (0.354) (0.334) Patent premium dummy, class 4 

τ5 0.653** 0.822** 2.061** 1.916** 0.529 0.236 
 (0.150) (0.242) (0.574) (0.480) (0.347) (0.329) Patent premium dummy, class 5 

VALUE OF INVENTION WITHOUT A PATENT:  

α0 -0.152a -0.182* -0.126 -0.117 0.096 0.094 Constant 
 (0.092) (0.090) (0.085) (0.079) (0.068) (0.061)  

α1 0.062** 0.065** 0.075** 0.081** 0.043** 0.046** 
 (0.016) (0.016) (0.021) (0.020) (0.014) (0.013) Log of business unit employees 

α2 -0.005* -0.005* -0.005* -0.005** -0.003 -0.004 
 (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) N. of U.S. technological rivals 

α3 0.057* 0.051* 0.008 0.006 0.064* 0.060* Firm is global 
 (0.022) (0.023) (0.027) (0.025) (0.029) (0.028)  

α4 0.077** 0.072** 0.022 0.019 0.100* 0.111** Firm is public 
 (0.025) (0.025) (0.027) (0.026) (0.039) (0.037)  

α5 -0.001 0.000 0.005** 0.005** -0.001 -0.0002 Tot. N. of U.S. rivals 
 (0.001) (0.001) (0.002) (0.002) (0.001) (0.001)  

α6 0.062a 0.060 0.073a 0.067 -0.014 -0.006 
 (0.036) (0.039) (0.044) (0.043) (0.033) (0.035) Firm is foreign 

α7 0.166 0.164 -0.012 -0.112 -0.149 -0.287a 
 (0.132) (0.140) (0.165) (0.168) (0.140) (0.149) 

Other industry participants 
patent effectiveness 
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Table 2.  System estimates of the structural parameters (cont.) 

 Full Sample Chemicals-Drugs Computer-Electronics  
 I II I II I II  
COST OF APPLYING FOR A PATENT:  

δ0 0.166* 0.271* 1.069a 0.503 0.035 0.113 
 (0.068) (0.126) (0.617) (0.354) (0.035) (0.089) Constant 

δ1 -0.001 -0.012 0.103 0.103a 0.000 -0.005 
 (0.005) (0.011) (0.068) (0.055) (0.004) (0.013) 

Log of firm employees 

FACTORS AFFECTING R&D PRODUCTIVITY:  
λ0 1.182** 1.190** 1.602** 1.653** 1.392** 1.465** 
 (0.173) (0.173) (0.121) (0.117) (0.113) (0.116) Constant 

λ1 0.110* 0.116* 0.365** 0.308** 0.130a 0.138 
 (0.045) (0.049) (0.120) (0.110) (0.070) (0.084) I.T. used in organization 

λ2 0.269* 0.339** -0.037 -0.054 0.356** 0.201a 
 (0.108) (0.100) (0.117) (0.096) (0.135) (0.105) Spill-in-other-firms-FACTOR 

λ3 0.328** 0.279** 0.003 0.112 0.160* 0.150a 
 (0.087) (0.076) (0.127) (0.092) (0.080) (0.080) Spill-in-university-FACTOR 

FACTORS AFFECTING INFORMATION FLOWS FROM OTHER FIRMS:  
γ0 0.255a 0.258a 0.464a 0.458a -0.538a -0.497a 
 (0.150) (0.150) (0.276) (0.276) (0.274) (0.277) 

Constant 

γ1 0.344** 0.358** 0.482* 0.481* 0.793** 0.724** 
 (0.104) (0.103) (0.211) (0.211) (0.216) (0.221) 

Degree overlap with rivals R&D 

γ2 -0.009 -0.0161 -0.365 -0.358 0.132 0.099 
 (0.116) (0.115) (0.311) (0.311) (0.273) (0.281) 

Patent spillovers 

γ3 0.016** 0.016** 0.016* 0.016* -0.004 -0.004 
 (0.005) (0.005) (0.008) (0.008) (0.013) (0.013) 

N. of U.S. technological rivals 

γ4 -1.038** -1.050** -1.639* -1.622* -0.028 0.015 
 (0.379) (0.378) (0.629) (0.629) (0.552) (0.550) 

Other industry participants 
patent effectiveness 

N 758 758 156 156 184 184 
 

N. of 
parameters 
estimated 80 80 29 29 26 26 

 

**: Significant at the .01 confidence level; **: Significant at the .05 confidence level; a: Significant at the .10 confidence level. 
Note 1: Specification I refers to the system with EXOGENOUS patent premium dummies (4 equations and 5 endogenous variables - patent propensity - π~ , 
the log of the n. of patent applications - loga, the log of R&D - logr, information flows from other firms – s2 , and information flows from universities – s3). 
Specification II refers to the system with ENDOGENOUS patent premium dummies (4 equations and 10 endogenous variables – which include the 5 
endogenous variables mentioned above and the five patent premium dummies). 
Note 2: Industry fixed effects estimates (54 parameters) are omitted for the case of the full sample estimation.  A full set of 18 industry dummies is indeed 
included in the loga equation, v, and the spill-in from other firms equation (we dropped the 19th dummy, “Other manufacturing industries”).  Industry dummies are 
not included in the sub-samples, except a biotech-drugs dummy for the estimation using the chemicals-drugs sample, included in the loga equation, v, and the 
spill-in from other firms equation. 
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Table 3.  Estimates of the patent premium 

 Expected Patent Premium Conditional Patent Premium 

 I II I II 
µ1 0.19 -1.00 2.06 2.42 
µ2 0.91 0.15 2.16 2.54 
µ3 1.43 1.95 2.32 3.10 
µ4 1.57 1.95 2.35 3.06 
µ5 1.70 2.40 2.43 3.33 
Average 0.94 0.59 2.21 2.76 
 
 
Table 4.  Patent premium by industry 

 N Expected Patent Premium 
Conditional Patent 

Premium 
  I II I II 
Biotech 19 1.37 1.59 2.29 3.04 
Medical instruments 51 1.28 1.41 2.28 3.01 
Drugs and medicines 25 1.25 1.26 2.20 2.84 
Computers and other office equipment 20 1.13 1.01 2.21 2.82 
Machinery, excl. computers 88 1.11 0.98 2.28 2.90 
Industrial chemicals 52 1.02 0.78 2.18 2.73 
Transportation, excl. Aircrafts 37 0.98 0.67 2.29 2.88 
Other chemicals 60 0.98 0.63 2.17 2.71 
Other electrical equipment 43 0.90 0.57 2.22 2.81 
Aircraft and missiles 33 0.94 0.51 2.22 2.68 
Communication equipment 25 0.92 0.50 2.09 2.56 
Metals 42 0.87 0.41 2.20 2.70 
Petroleum refining and extraction 11 0.83 0.37 2.09 2.53 
Semiconductors 19 0.82 0.31 2.26 2.78 
Other manufacturing industries 73 0.80 0.28 2.25 2.75 
Instruments, excl. Medical 64 0.82 0.26 2.17 2.65 
Rubber products 23 0.75 0.09 2.31 2.96 
Electronic components, excl. Semicond. 17 0.66 0.00 2.17 2.65 
Food, kindred, and tobacco products 56 0.51 -0.37 2.08 2.41 
All industries 758 0.94 0.59 2.21 2.76 
Note: Sorted by the expected patent premium estimated with specification II (model with endogenous patent premium dummies)  
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Table 5.  Patent premium, within industry estimates 

 N Expected Patent Premium Conditional Patent Premium
    
Industrial chemicals 52 3.53 8.65
Drugs and medicines 25 4.77 8.12
Biotech 19 5.21 8.18
Other chemicals 60 3.43 8.12
All drugs-chemical 156 3.90 8.30

Computers and other office equipment 20 0.86 2.40
Communication equipment 25 0.37 2.26
Electronic components, excl. Semicond. 17 -0.49 2.09
Semiconductors 19 -0.07 2.26
Other electrical equipment 39 0.01 2.21
Electronic instruments, excl. Medical 42 0.03 2.21
Electronic medical instruments 22 1.05 2.52

All computer-electronics 184 0.22 2.27

 
Table 6.  Impact of increasing the patent premium on R&D: marginal effects 

 No. of 
obs. 

Predicted Product 
R&D (Mil$) 

Predicted Patent 
Premium 

Marginal effect: R&D 
w.r.t. the Patent 

Premium 
 I II I II I II 

Food, kindred, and tobacco products 56 7.03 7.37 0.51 -0.37 2.45 1.98 
Industrial chemicals 52 12.07 13.09 1.02 0.78 7.37 6.59 
Drugs and medicines 25 23.19 25.44 1.25 1.26 16.23 14.09 
Biotech 19 16.28 15.87 1.37 1.59 10.62 8.55 
Other chemicals 60 10.89 13.06 0.98 0.63 6.90 6.68 
Petroleum refining and extraction 11 17.72 17.85 0.83 0.37 9.34 7.55 
Rubber products 23 7.37 7.91 0.75 0.09 4.19 3.81 
Metals 42 3.94 3.95 0.87 0.41 1.80 1.50 
Computers and other office equipment 20 12.26 11.64 1.13 1.01 6.97 5.28 
Machinery, excl. computers 88 6.86 6.99 1.11 0.98 3.85 3.33 
Communication equipment 25 37.21 39.23 0.92 0.50 23.90 20.18 
Electronic components, excl. Semicond. 17 3.44 3.86 0.66 0.00 1.53 1.48 
Semiconductors 19 14.81 17.87 0.82 0.31 9.95 9.52 
Other electrical equipment 43 5.62 6.34 0.90 0.57 3.21 3.01 
Transportation, excl. Aircrafts 37 10.36 9.12 0.98 0.67 5.71 3.94 
Aircraft and missiles 33 23.01 24.20 0.94 0.51 13.51 11.69 
Instruments, excl. Medical 64 8.28 8.56 0.82 0.26 4.54 3.80 
Medical instruments 51 7.90 7.54 1.28 1.41 4.89 3.91 
Other manufacturing industries 73 7.57 7.85 0.80 0.28 4.18 3.63 

All industries 758 10.66 11.22 0.94 0.59 6.26 5.38 
Note : Specification I refers to the system with EXOGENOUS patent premium dummies (4 equations and 5 endogenous variables - patent propensity - π~ , 
the log of the n. of patent applications - loga, the log of R&D - logr, information flows from other firms – s2 , and information flows from universities – s3). 
Specification II refers to the system with ENDOGENOUS patent premium dummies (4 equations and 10 endogenous variables – which include the 5 
endogenous variables mentioned above and the five patent premium dummies). 
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Table 7.  % change  in R&D, patent applications and patent applications per R&D $ w.r.t. a 
doubling of the patent premium  
 % change in R&D 

w.r.t. patent 
premium 

% change in patent 
applications w.r.t. patent 

premium 

% change in patent appl. per 
R&D $ w.r.t. patent 

premium 
Rubber products 24% 111% 87% 
Food, kindred, and tobacco products 20 106 86 
Electronic components, excl. Semicond. 23 103 80 
Semiconductors 28 100 72 
Other manufacturing industries 29 100 71 
Instruments excl. Medical 28 97 69 
Metals 31 95 64 
Other electrical equipment 32 94 62 
Transportation, excl. Aircrafts 33 94 61 
Petroleum refining and extraction 33 92 59 
Aircraft and missiles 34 93 59 
Other chemicals 34 90 56 
Communication equipment 35 90 55 
Industrial chemicals 37 87 50 
Machinery, excl. computers 39 87 48 
Computers and other office equipment 41 84 43 
Medical Instruments 45 79 34 
Drugs and medicines 44 78 34 
Biotech 48 76 28 

All industries 33 93 59 

Note: Sorted by the % change in patent applications per R&D $ w.r.t. the patent premium 



 36

APPENDIX 
A)  Industry groupings used to create industry dummies 

Description SIC N 
Food, kindred, and tobacco products 20,21 56 
Industrial chemicals 281–82,286 52 
Drugs and medicines 283 25 
Biotech30  various 19 
Other chemicals 284–85,287–89 60 
Petroleum refining and extraction 13,29 11 
Rubber products 30 23 
Metals 33-34 42 
Computers and other office equipment 357 20 
Machinery, excl. computers 35, exc.357 88 
Communication equipment 366 25 
Electronic components, excl. Semic. 367 exc. 3674 17 
Semiconductors 3674 19 
Other electrical equipment 361–65,369 43 
Transportation, excl. Aircrafts 37 exc. 372,376 37 
Aircraft and missiles 372,376 33 
Instruments, excl. Medical 38 excl. 384 64 
Medical instruments 384 51 
Other manufacturing industries 22-27,31-32,39 73 
All  758 

 
B)  Factor-based measures 

To measure the amount of information flows from other firms and public research benefiting the R&D lab we are faced with 
the problem that we cannot measure these variables directly. We do have however several survey measures that are available in 
the CMS which represent different dimensions of the variables of interest. In order to both develop measures of the underlying 
unobserved variables and to reduce the number of variables we have to deal with in our analysis, we used factor analysis to 
create new composite measures of information flows from other firms and public research. 

B1.  Information flows from other firms 
We have data related to the following dimensions of the information flows from other firms: 

1) Whether the R&D unit obtained information from RIVALS which either suggested new R&D projects or contributed to 
completion of existing R&D Projects (yes/no response); 
2) Whether the R&D unit obtained information from INDEPENDENT SUPPLIERS which either suggested new R&D 
projects or contributed to completion of existing R&D Projects (yes/no response); 
3) Whether the R&D unit obtained information from CUSTOMERS which either suggested new R&D projects or 
contributed to completion of existing R&D Projects (yes/no response); 
4) Frequency with which the R&D unit obtains useful technical information about NORTH AMERICAN COMPETITORS 
activities (response measured in ordinal scale, from 1 reflecting “rarely or never,” to 5, reflecting “daily”); 
5) Frequency with which the R&D unit obtains useful technical information from NORTH AMERICAN SUPPLIERS 
activities, measured in ordinal scale (response measured in ordinal scale, from 1 reflecting “rarely or never,” to 5, reflecting 
“daily”). 

 We think that the five variables should be related, and observation of the correlation matrix for the 5 items showed 
substantial correlations among groups of items. We then conducted an exploratory factor analysis of the respondent level data 
on the five measures to uncover the factor structure generating the correlations among the variables31. This factor analysis 
generated one underlying variable corresponding to the first extracted factor, the only one which accounted for meaningful 
amounts of variance. We then assigned each respondent the estimated factor score, which is a linear composite of the optimally 
weighted variables under analysis.  

                                            
30 Identified  from questionnaire product description and Compustat classification. 
31 A limitation of the implemented factor analysis is that we are treating all our raw measures as though they are continuous, although they are 
not; the response scales are categorical. The state of the art in factor analysis itself has only recently begun to address this issue. 
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The factor analysis results presented in Table A1 show the factor loadings (that is the correlations between the measures 
and the factor) and the eigenvalue (representing the amount of variance that is accounted for by the factor). The only two 
variables with factor loadings greater than 0.3 are the two frequency related measures. In other words, our factor based measure 
of information flows from other firms mostly reflects the frequency with which respondents obtain useful technical information 
about the activities of North American suppliers and competitors. 

Table B1.  Factor analysis of variables related to information flows from other firms 
 Factor Loading
Variable First Factor
Frequency of Interaction with North American Suppliers 0.39
Frequency of Interaction with North American Competitors 0.30
Independent Suppliers – Suggested or contributed to completion of R&D Projects 0.20
Competitors – Suggested or contributed to completion of R&D Projects 0.13
Customers – Suggested or contributed to completion of R&D Projects 0.06
Eigenvalue 0.77

B2.  Information flows from public research 
CMS contains data related to the following dimensions of the information flows from public research: 
1) Whether the R&D unit obtained information from UNIVERSITIES or GOVERNMENT RESEARCH INSTITUTES and 
LABS which either suggested new R&D projects or contributed to completion of existing R&D Projects (yes/no response); 
2) Frequency with which the R&D unit obtains useful technical information from UNIVERSITIES or GOVERNMENT 
RESEARCH INSTITUTES and LABS (response measured in ordinal scale, from 1 reflecting “rarely or never,” to 5, 
reflecting “daily”). 
As in the previous case, the factor analysis generated only one underlying variable corresponding to the first extracted 

factor accounting for meaningful amount of variance. The results suggest that the two survey-based measures reflecting both the 
frequency of interaction and the importance of contribution of external public research are highly correlated with the underlying 
factor – information flows from public research, as shown in table A2. 

Table B2.  Factor analysis of variables related to information flows from public research 
 Factor Loading
Variable First Factor

Frequency of interaction with North American universities/government research institutes and labs 0.40
Universities/ government research institutes and labs – suggested or contributed to R&D projects 0.40
Eigenvalue 0.70

As before, we assigned each respondent the estimated factor score, which is a an estimate of a respondent’s standing on 
the underlying factor and computed as a linear composite of the optimally weighted variables under analysis. 


