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Abstract

In this paper, we present a general equilibrium model of the market for higher education.
Our model simultaneously predicts student selection into institutions, financial aid, and
educational outcomes. We show that the model gives rise to a strict hierarchy of colleges
that differ by the educational quality provided to the students. We develop an efficient
algorithm to compute equilibria for these types of models. To evaluate the model, we
develop an estimation strategy that accounts for the fact that important variables are likely
to be measured with error. We estimate the structural parameters using data collected
by the National Center for Educational Statistics and aggregate data from Peterson’s and
NSF. Our empirical findings suggest that our model explains observed admission and price
policies reasonably well. The findings also suggest that the market for higher education is

quite competitive.

Keywords: higher education, peer effects, school competition, non-linear pricing, equilib-

rium analysis, empirical analysis.
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1 Introduction

Over the past several years, research has investigated normative and positive consequences
of competition in primary, secondary and higher education, and the likely effects of policy
changes including vouchers, public school choice, and changes in education financing.! Some
of this research has relied on a set of general equilibrium models. Given the absence of
large scale policy experiments, these models have been a primary tool to evaluate the
impact of a variety of education reform measures. To date, the predictions of these models
have been subjected to little formal empirical testing. This paper provides an integrated
approach for estimation and inference based on this class of models. For this purpose, we
focus on the market for higher education. Colleges and universities provide a promising
environment for developing this approach because a variety of data sets collected by the
National Center for Education Statistics and commercial companies such as Peterson’s are

available to researchers.

In the first part of the paper, we present a general equilibrium model of the market for
higher education that extends earlier work on competition in the market for primary and
secondary education. In our model, schools seek to maximize the quality of the educational
experience provided to their students. The quality of the educational experience depends
on peer ability of the student body, a measure of income diversity, and on instructional
expenditures per student. If peer quality is an important component of school quality,
students and their parents will seek out schools where the student body offers high quality

peers.? Likewise, schools will attempt to attract students who contribute to improving peer

!Theoretical studies include Arnott and Rowse (1987), Bearse, Glomm, and Ravikumar (1996), Benabou
(1996a, 1996b), Caucutt (2002), deBartolome (1990), De Fraja and Iossa (2002), Ehrenberg and Shermam
(1984), Epple, Newlon, and Romano (2002), Epple and Romano (1998, 1999), Fernandez and Rogerson
(1996, 1998), Manski (1991), Nechyba (1999, 2000), Rothschild and White (1995), and Stiglitz (1974).
Empirical studies include Bergstrom, Rubinfeld, and Shapiro (1982), Cullen, Jacob, and Levitt (2000),
Carlton, Bamberger, and Epstein (1995), Coleman (1966), Downes and Greenstein (1996), Dynarski (1999),
Epple, Figlio, and Romano (1998), Fuller, Manski, and Wise (1982), Hoxby (1997, 1999, 2000a), Hsieh and
Urquiola (2001), Rouse (1998), and Venti and Wise (1982).

*There is a large, growing, and controversial literature on peer effects by social scientists. Here we mention
just some of the empirical studies by economists that are most closely related to our model. Most of the
literature on peer effects on educational success concern primary and secondary education. Early studies are
Coleman (1966), Henderson, Mieszkowski, and Sauvageau (1978), and Summers and Wolfe (1977). Manski



quality. In higher education, schools have the latitude to choose price and admission policies
to attempt to attract a high quality student body. Our model thus yields strong predictions
about the hierarchy of schools that emerges in equilibrium, the allocation of students by

income and ability among schools, and about the pricing policies that schools adopt.3

In the second part of the paper, we provide an integrated approach for testing predic-
tions from this class of models. The central idea of the estimation strategy is to match the
admission and financial aid policies observed in the data to those predicted by our equilib-
rium model. The estimation is computationally intensive since it requires us to solve for the
general equilibrium of the model at each step of the estimation algorithm. We develop an
efficient computational algorithm to compute the equilibrium of our model. This allows us
to estimate the structural parameters of the model using a Maximum Likelihood Estimator.
We implement our estimation strategy using micro data collected by the National Center

for Educational Statistics and school level data collected from a variety of other sources.*

Our empirical findings suggest that individuals sort based on abilities of their peer
group. We also find that income diversity plays a significant role in the determination
of school quality. One interpretation of this finding is that schools and students believe
that the quality of a student’s educational experience is enhanced by interacting with peers
from diverse socioeconomic backgrounds. We also find that expenditure per student is

a substantial component of school quality. Given schools’ posted tuitions and financial

(1993) details the several difficulties in empirically identifying peer effects. Evans, Oates, and Schwab (1992)
find no peer effects in predicting teenage pregnancy or school drop-out once selection is taken into account.
Robertson and Symons (1996), Zimmer and Toma (1998), Hoxby (2000b), and Ding and Lehrer (2001) are
more recent studies that find evidence of peer effects on educational success. Turning to research on peer
effects in higher education, Sacerdote (2001) and Zimmerman (2000) find peer effects between roommates
on grade point averages. Betts and Morell (1999) find that high-school peer groups affect college grade
point average. Arcidiacono and Nickolson (2000) find no peer effects among medical students. Dale and
Krueger (1998) has mixed findings and is discussed further below. This literature investigates how an
outcome variable for an individual (e.g., school achievement) is affected by the individual’s peers. We adopt
a somewhat different but complementary approach, investigating whether college financial aid policies and
the equilibrium allocation of students among colleges are consistent with predictions derived from a model
in which peer effects are present.

3An insightful overview of the college quality hierarchy and its determinants is provided by Winston
(1999).

4For empirical evidence on tuition policies see among others Hoxby (1997, 1999) and Epple, Romano,
and Sieg (2002).



endowments, our model endogenously generates a distribution of expenditures per student
among schools that matches the empirical distribution well. Our model also predicts the
allocation of students across schools and the allocation of financial aid across students. The
model replicates reasonably well both school admissions and the variation in financial aid

packages received by students in the data.

In addition to contributing to understanding of the market for higher education, our
paper attempts to advance the state of the art in unifying theory, computation of equilib-
rium, and estimation. We propose a theoretical framework characterizing equilibrium with
quality competition, and we derive equilibrium implications of that theory. A counterpart
computational model is then developed and solved for equilibrium. The model predicts
sorting along two dimensions of the type space (household income and student ability), and
entails equilibrium price discrimination with respect to both of these dimensions. Formulat-
ing and solving this computational model is a challenging undertaking. To set the stage for
estimation, we obtained and merged three databases uniting student-level and college-level
data. These data and our computational equilibrium model are then brought together for
estimation of the parameters of the model. In the search for the maximum likelihood esti-
mates, the computational model is solved for each set of parameters at which the likelihood
function is evaluated. The result is, we believe, the first instance in which an equilibrium

model with sorting and price discrimination along multiple dimensions has been estimated.

The paper is organized as follows. Section 2 lays out the general equilibrium model
and derives a set of conditions that characterize the equilibrium allocation. The estimation
strategy is explained in Section 3. Section 4 provides information about our data set,
which is created by drawing together information from the National Center for Education
Statistics, the National Science Foundation, and Peterson’s. The empirical results are
discussed in Section 5, and Section 6 presents the conclusions of the analysis and discusses

future research.



2 A Theoretical Model of Higher Education

In this section, we sketch our theoretical model of provision of undergraduate education.

2.1 Preferences and Technologies

There is a continuum of potential students who differ with respect to their income, y , and
their ability level, b. The joint distribution of income and ability is continuous with joint
density f(b,y). Each student chooses among a finite set of J schools. The quality of school
j is given by

g =107 d w, v, ¢>0 (2.1)

where 6; is the peer-student measure, equal to mean ability level in the student body, I; is
the expenditure per student in excess of minimal or “custodial costs,” and d; is a measure of
income diversity. As noted above, the data suggest that school quality includes an income
diversity component. Denote mean income in school j by u?, and mean income in the
population of all households by p3. When ,u? > py (as holds empirically), a simple but

appealing diversity measure is the ratio of mean income in the population to mean income

in school j:
My
dj =% 2.2
= (22)
The schooling cost function is
C(kj,Ij) =F + V(kj) + kj Ij V’,V” >0 (2.3)

where k; is the size of the school j’s student body, and I; is per student expenditure on
quality enhancing inputs. Schooling costs include components that are independent of

educational quality, the custodial costs mentioned above. In the empirical implementation



of the model we assume that variable custodial costs are cubic in k;:

V() =cikj + %2 k2 + e [k — kP (2.4)

F4V(k)
3

where k* = argmin is the efficient school size.

Substantial financial aid to many undergraduates in the form of grants, loans, and work-
study funding is provided by the federal government and to a lesser extent by other entities
that are also independent of the student’s school. We refer to such aid as non-institutional
aid. Much of this aid is based on the federal government’s calculation of the family’s ability
to pay. Let p; denote the tuition at school j. We presume that the value of non-institutional

aid to the student at school j, denoted a;, can be written as:

aj = aj(by,p;) (2.5)

Most noninstitutional aid is need based, implying it depends on income and tuition of the
school attended. Some noninstitutional aid seems to be meritorious, so we will allow it to

depend on ability as well.?

We assume that the decision to attend college is made by the student’s household.
Household utility depends on numeraire consumption and educational attainment (7') of
the college-aged member. Educational attainment is a function of quality and ability:

T = T(qgj,bj). Specifically, household utility from attendance at school j is given by:
Uy —pj + a5, T(g, b)) = (y—pj+a;) ¢ b (2.6)

Let r; = 7;(gj,b,y) denote a student’s reservation price for attending a school of quality g;.

That is, r;, satisfies:

Uly —rjq5,b) = U (by) (2.7)

®More detail on types of aid is provided below, when we empirically estimate the non-institutional aid
formula.



where U]-A(b, y) is the maximum alternative utility to school j that type (b,y) can attain
in equilibrium. Households choose among schools (or no school) taking as given school

qualities and their tuition and admission policies.

2.2 School Optimization

Schools are assumed to maximize their quality. Schools take types’ (b,y) utilities as given.
They must satisfy a profit constraint, with revenue equal to the sum of all tuition from
students plus earnings on exogenous endowment. Denote the latter earnings R;. R; also
includes any other non-tuition revenues like state subsidies. We assume that there are J
schools with differing endowment earnings: R; > Rjy_1 > ... > Ry > 0.5 While schools will
condition tuition on student characteristics, we presume that school j charges a maximum
tuition denoted p}*. We do not have an explicit theory to explain or determine the magnitude
of pi" so we treat it as exogenous. Our motivation for introducing price caps is empirical.
We interpret the price maximum as the school’s posted tuition, with lower tuition framed

as financial aide, a scholarship, or, perhaps, a fellowship.”

Given the school’s objective function, it will be optimal for j to set tuition p7 such that:

Tj = pj — a; (2.8)

if p} satisfying (2.8) is below p;". This is simply because schools always want to maximize

revenue for a given student body. School j’s optimization problem may be written:

_ )
max q; = 0] I? d: (2.9)
a;j (byy),p; (byy) kj 05,45 dj ! e

5The number of schools and their endowments are taken as exogenous. We do not allow for entry and
restrict attention to cases where all J schools can cover their costs.

"Having a price cap below the maximum tuition chosen by an unconstrained quality maximizer might
help a school market itself. We assume, however, that households observe all prices relevant to them, so
our argument for price caps is somewhat incomplete. One can also conceive of the self-imposed price cap as
reflecting some limit on revenue making, whether motivated by altruism or, again, related to marketing.



such that:

[y—r] 0] Iy dY P = Uf(by) VY (by) (2.10)
pi(b,y,q;) = ri(by,q;) + aj(b,y,pj(b,y,q;)) V(b,y) (2.11)
pi(b,y,q;) = min{p]",pi(b,y,q;)} V(by) (2.12)

F+Vk) + kI = // pi(y,b,a;) ai(y,b) f(by) dbdy + R;  (2.13)

aj(y,b) € [0,1] V (b,y) (2.14)
ki = // a;(y,b) f(y,b) dy db (2.15)
4 = 5 //baj(y,b) F(y,b) dy db (2.16)
W=y vt sen dya (217)
d = Hy (2.18)

Hy

where here and henceforth integrals are over the support of (b,y) unless otherwise indi-
cated. Constraint (2.10) defines, again, the reservation price, and (2.11) and(2.12) the
implications for the school’s optimal price given noninstitutional financial aid and the price
cap constraint. (2.13) is the budget constraint, which will obviously hold with equality as
specified at the school’s quality maximum. The function a;(y,b) is an admission function
that indicates the proportion of type (b, y) in the population that school j admits.® In equi-
librium, admission sets and attendance sets must coincide. The constraints (2.15), (2.16),
(2.17), and (2.18 ) define school size, the peer group measure, the mean school income, and

the diversity measure respectively.

8Since a; = 0 is feasible, it is innocuous to have specified that ( 2.12) holds for all students, i.e. , including
those that will not be admitted.



The optimal admission criterion may be written:®

aj(b,y) | €[0,1] | as pj | = | EMG;(b,y) (2.19)
=0 <
where
0q;/06 9q;/ou
EMC; = V'(k; I; 277 (g, — )Y — 2.2
Ciby) = V'(ks) + L + G000 (6-0) + 5ol —y)  (2:20)

Equation (2.20) defines the “effective marginal costs (EMC)” of admitting a student of type
(b,y) to school j. EMC is the sum of the marginal resource cost of educating the student,
the cost of maintaining quality due to the student’s impact on the peer group, and the
cost associated with the diversity criterion. The peer effect is captured by the third term
on the right-hand side in (2.20), which equals the peer measure change from admitting a
student of ability b, multiplied by the expenditure change that maintains quality. Note
that this term is negative for students with ability above the school’s mean, and EMC;
itself can be negative. The diversity effect is captured by the last term in (2.20), which
equals the diversity measure change from admitting a student of income gy, multiplied by
the expenditure change that maintains quality. Note that this term is positive for students
with income above the school’s mean, assuming the mean school income is higher than the

mean income in the population.

Students whose maximum feasible tuition exceeds EMC; permit quality increases and

are all admitted, and the reverse for students who cannot be charged a tuition that covers

“Beside the constraints, the remaining first-order condition regards the choice of I;. Letting A > 0 denote
the multiplier on the revenue constraint (2.13), this condition may be written:

9p; 04; W
dg; Il afdbdy —k; =

This result establishes that school j elects to spend more than the Samuelsonian amount on educational
inputs, because school j values quality per se.



their EMC;. Define

i(b, if p;(b,y) = p~(b,
0 otherwise
Let, then, A7 = {(b,y) | &j(b,y) > 0} denote the set of students that attend school j
and pay their reservation price, and AT = {(b,y) | @j(b,y) > Oand (b,y) ¢ A7} denote

the remaining students that attend j. Let A; = A7 U AT denote school j’s admission and

attendance sets of student types.'®

2.3 Market Equilibrium

In market equilibrium, households choose among the J schools or choose no school, taking
school qualities and tuition and admission policies as given. The J schools choose admission
and tuition policies to maximize quality, taking as given their endowment and students’
alternative utility possibilities. The assumption of utility taking is a generalization of price
taking that has been utilized in the competitive club goods literature.!! The model is
closed with the market clearing condition: )} «a;(b,y) < 1 V (b,y), where types for
whom the inequality is strict are attending no school. Given our assumptions, the following

Proposition holds:
Proposition 1 A market equilibrium satisfies the following three conditions:
1. There is a strict quality hierarchy of colleges in equilibrium. The hierarchy follows the

endowment ranking.

2. There exists a locus bj(y) for each college which defines the minimum ability that a
student with income y must have to be admitted to school j. This threshold function

is implicitly defined by the minimum b satisfying EMC;(b,y) = p;(b,y).

19The market-clearing condition presented below can be used to show that schools’ attendance sets do not
overlap with positive measure in the support of (b, y).
11See, for example, Gilles and Scotchmer (1997) and Ellickson, Grodal, Scotchmer, and Zame (1999).



~

8. Choosing among the set of schools J(b,y) = {j € J|[EMC;(b,y) < pJ'} and no college,
student-type (b,y) attends the school that would mazimize utility if p; = EMC}(b,y)

~

for all j € J(b,y). School pricing in excess of EMC is to take away consumer surplus

(constrained by the price cap for some students).

A proof of Proposition 1 is in Appendix A.

Figure 1: An Example of College Admission Spaces

Not

in

College

This figure illustrates the boundaries of college admission sets.

Figure 1 shows an example of how type space is partitioned into schools, assuming just
two schools. The tipped-L solid lines, or boundary loci,” separate types into schools and
no college. Those to the right of the right-most boundary locus attend the higher-quality

school 2. Those between the boundary loci attend school 1, with the rest not attending

10



college. '2 The upward-sloping part of each boundary locus satisfies pi = EMC;(b,y) < p!,
and the downward-sloping part satisfies p; = EMC;(b,y) < p}", where ¢ is the number of
the school to the right of the locus. The value of p] depends on the student’s type, including

the options available to the student.

Consider students attending college 2 in this equilibrium. They all have access to college
1 at EMC1(b,y), since this is below p7* for all these students.!® Their reservation price
for college 2 is then determined by the utility they could obtain at college 1 at tuition
EMCi(b,y). All students in college 2 not on the downward-sloping part of the boundary
locus would strictly prefer college 2 at tuition equal to EMCy(b,y). College 2 charges
all those in A% their reservation price, which is below p7*, taking away their consumer
surplus relative to attending college 1. Those in AY" have reservation price exceeding both
EMC5(b,y) and p7*, so college 2 can “only” charge them pJ' leaving them some surplus.
Those in college 1 may or may not have access to college 2 (depending respectively on
whether EM Cy(b, y) is less than or greater than p5'), and those with access to college 2 may
have it or no college as their preferred option. This somewhat complicates the determination
of prices, but it is nevertheless straightforward to make the calculations. Note that students
near the left-side boundary locus will pay tuition close to their EMC(b,y) at their school,
as will also students near the downward sloping portion of the right-side boundary locus
(i.e., the latter being students who have access to the next best school.) Hence, the presence
of a relatively large number of schools will squeeze attendance sets and lead to relatively

competitive outcomes with tuition close to EMC for most students.

While we can prove a number of theoretical properties of the model, additional insights
can be gained by solving the model numerically and conducting comparative static exercises.

Finding an equilibrium for the model is a classical fixed-point problem. To compute the fixed

12The no-college option is associated with given (high-school) educational quality qo, an option for anyone
at zero tuition. The example also assumes non-institutional financial aid is independent of ability as we find
empirically (see below).

13To confirm the statement in the text, use that the upward-sloping line of the left-most boundary locus
satisfies pT* = EMC:(b,y) and EMC1(b,y) is decreasing in b.

“In our model, EMC,(b,y) also equals the equilibrium social marginal cost of type (b,y)’s attendance at
school j.

11



point, we must solve a 4% J dimensional system of nonlinear equations. Solving this system
of equations is challenging, since it requires computation of price and admission functions
for each school. These are potentially highly nonlinear functions of ability and income.
Appendix B provides a general algorithm which can be used to compute an equilibrium of

the model.

In order to solve the model, we need to assign numerical values to the parameters of
the model. Previous research has largely relied on calibrated parameters. Estimating the
parameters is clearly more desirable, since little is known about reasonable magnitudes of
most parameters of this model. Furthermore, estimation provides a more rigorous analysis
of the empirical properties of the underlying equilibrium model. However, estimation is
computationally intensive. The next section derives a general strategy which can be used

to estimate the parameters of the type of models developed in this paper.

3 Identification and Estimation

3.1 A Maximum Likelihood Estimator

As we have seen in the previous section, our model yields strong predictions regarding
admission and pricing by income and ability of students. We would like to investigate
whether these predictions are consistent with the observed regularities in the data. In this
section we develop a strategy to estimate the underlying parameters of the model. We
assume that the joint distribution of log-income and ability among students who attend

college is bivariate normal:'?

2
In(y) | N || e | Tin(y)  POn(y)Tb (3.1)

b b POn(y)0b 0 Z

5Tn our empirical analysis, we simplify somewhat relative to our theoretical model by assuming that
there is no outside option to attending college. Thus, our empirical analysis allocates the students observed
to attend college among the available set of colleges, assuming every college student has the option of
attending the worst college at its price cap. We adopt the log-normal distribution as an approximation of
the distribution of types that attend college.

12



Notice that the parameters of this distribution can be directly estimated from the data. The
remaining parameters of the baseline model to be estimated are ( = (w,~, %, F,c1,c2,c3).1%
In this section we discuss how to estimate these parameters based on observed data on

prices, ability and income.

Given the structure of our model the probability of observing (y,b) in school j is given

by:

fily,b) = ’ o (3.2)

0 otherwise
where f(:) is the joint density function of (y,b) and A; = {(b,y)| a(b,y) > 0} is the set of
individuals admitted to school j. As above, let p;(y,b) denote the price predicted by our
model, which is a deterministic function of (y,b).!” Assuming the difference between the

predicted price p and the observed price p is independent of (y, b), then the joint likelihood
of (y,b,p) is given by:

g — pj(y,b)) f(y,b) / k; if (y,b) € A,

0 otherwise

fj(ﬁay’b) = (33)

where g(-) is the density of the measurement error for price.

This likelihood function assigns zero probability to observations (y,b) ¢ A;. Hence
the likelihood function for any particular sample will not realistically be well defined. We
therefore assume that income and ability are also measured with error.!® Let b (y) de-
note unobserved ability (income), and b () the observed ability (income) which includes

measurement error. Let hy(b|b) and hy(f]y) be the corresponding density functions. The

16The parameter 3 is neither identified nor relevant to the properties of equilibrium in this study. This is
a property of the Cobb-Douglas specification of the utility function.

1"We suppress ¢; as a an argument of p;(-) henceforth.

180Qur approach is thus similar in spirit to pioneering work on kinked budget constraints by Hausman
(1985).

13



probability of observing (5, 9, b) in school j is then given by:

5658 = [ 56.0..5.6) dbdy

J

= [, 95— p;(0:5)) ho(Bl8) by @) S (0:) / Ky db dy (3.4

J

where the admission space A; is implicitly defined by the admission policies «;(b,y). We
assume that measurement errors in log income, ability, and price are additive, distributed

normally, and drawn independently with standard deviations (an(y), of,0%) respectively.

The integral on the right-hand side of equation (3.4) is evaluated numerically.'® The

log-likelihood function for a sample of N students is then simply given by

N J
L(¢) = Z Z wp, djn, ln(fj(ﬁna b, Jn)) (3.5)

n=1j=1
where wy, is the weight associated with observation n and dj, is equal to 1 if individual n
attends school j and zero otherwise. Weights are necessary to reflect the sampling design

of the NCES data set used in the analysis.

The parameters of the likelihood function { can be decomposed into the structural
parameters of the equilibrium model {; and the parameters of the distributions of the
measurement errors (. Maximization of the likelihood function is computationally intensive
since we need to solve for the equilibrium of the model for each evaluation of the likelihood
function. The estimation procedure consists of an outer loop, which searches over the
parameter space; and an inner loop which computes the equilibrium, boundary loci and the

choice probabilities, and evaluates the likelihood function for each parameter vector.2°

For a discussion of simulation in estimation, see, for example, Pakes and Pollard (1989), McFadden
(1989) and Gourieroux and Monfort (1993).

20The main difference between the estimation procedure used in this paper and the ones outlined in Berry,
Levinsohn, and Pakes (1995), Epple and Sieg (1999), and Epple, Romer, and Sieg (2001) is that we solve
for equilibrium of the model in the estimation.

14



4 Data

4.1 The Distribution of Income and Ability

Our primary data source is the National Post-secondary Student Aid Study (NPSAS) ob-
tained from the National Center for Education Statistics (NCES). The NPSAS contains
extensive information for a sample of students. Of particular relevance for our work, the
NPSAS contains the student’s performance on standardized tests (either SAT or ACT),
income of the student’s family, and information about the financial aid received by the stu-
dent. We have secured from the NCES a restricted-use version of the NPSAS that contains
student-level data for 1995-96 and links each student in the sample to the school the student
attended in academic year 1995-96. We study four-year private colleges and universities.
For a given wave of the NPSAS survey, the NCES chooses a set of colleges and universities.
It then selects a sample of students from within each of those institutions. Our sample con-
sists of 1837 incoming freshman students attending 159 different colleges and universities.?!

The mean SAT score is 1040 with a standard deviation of 200.22 Mean income is 58,753

with a standard deviation of 39,035. The correlation between income and SAT score is 0.24.

23

2Tn selecting our sample of students we deleted observations for students with athletic scholarships, since
their criteria for admission may not conform to the spirit of our analysis. We also deleted a small number
of observations for students with reported income near zero.

*Dale and Krueger (1998) present evidence that future earnings increase in college quality. Their results
cast doubt on use of mean SAT as a measure of college quality, but they find evidence of positive impacts on
students from lower-income households and that increasing within-college SAT variance tends to favorably
affect students’ future earnings. They also find in one selection specification that mean SAT has a positive
impact on graduation and obtaining an advanced degree. They observe that their findings about the lack of
effect of mean SAT score on future earnings might be because “the average SAT score is a crude measure
of the quality of one’s peer group.” Consistent with this, we find substantial measurement error in SAT
as a measure of quality. We model quality as dependent upon mean SAT, expenditure per student, and
income diversity, capturing three components of college quality. Our theoretical model can be extended to
a peer measure that is the mean of an increasing function of individual student scores, allowing increased
variability in scores to have a positive effect. Dale and Krueger’s results point to the potential importance
of extending our empirical analysis to encompass this generalization of the peer measure.

23The estimates for Min(y) and 0y, (y) are 10.798 and 0.605. We use these estimates as the parameters of
the distribution of income and ability in our computational analysis. We then estimate the model allowing
for measurement error in both income and ability while treating the estimated moments from the data as
characterizing the true distribution of income and ability. Technically, this is a valid procedure for the means
of the distribution, but not for the variances because of the measurement error.

15



4.2 Market Structure and Aggregation

In addition to data for individual students, we use college level data. Peterson’s conducts a
survey of all colleges and universities, obtaining information on faculty resources, financial
aid, the distribution of standardized test scores, and a host of other variables. We have
supplemented this data set with information on educational expenditures and endowments
from the NSF Web accessible Computer-Aided Science Policy Analysis and Research (Web-
CASPAR) database. The Peterson’s database contains a total of 1868 four year colleges and
universities within the United States. We view our model as being better suited to charac-
terizing private than public institutions. We have therefore eliminated public universities

24 We also do not consider private colleges that are highly

and colleges from our sample.
specialized, do not have a regular accreditation and have missing values for key variables
that are the focus of our analysis. This leaves us with a sample of 824 private universities

and colleges.

Before we conduct our empirical and computational analysis, we need to define the
appropriate choice set faced by households. A natural starting point of the analysis is to
treat each college as a differentiated product. The relevant choice set is then the total
number of colleges in our sample which is 824. This approach has some obvious limitations
that arise due to the large number of potential choices. One of the drawbacks of this
approach is that we would need to observe the complete choice set faced by the individuals
in order to test the predictions of our model. The NPSAS, however, does not sample all
colleges in the population, but only a representative sample of colleges. The most recent
NPSAS sample only contains students of 146 colleges of the 824 colleges in the Peterson’s

sample.

Perhaps more importantly, we do not expect that the strong predictions of our under-

lying equilibrium model hold with great accuracy at the college level. There are many

24Given the presence of a substantial number of selective public institutions, this is an important simplifi-
cation. Modifying our theoretical framework to reflect objectives and constraints of public institutions is an
important task for future research. First, however, it seems prudent to investigate how well the framework
we have developed is able to capture the admission and pricing decisions of private institutions.
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idiosyncratic factors that influence individuals’ college choices that are likely to be omitted
in our relatively parsimonious equilibrium model. However, we expect that the model will
be more successful in explaining patterns of choice, and admission and pricing behavior at
a more aggregate level. The basic idea is that most of the idiosyncrasies are irrelevant on
the aggregate level. For example, our model is better suited to explain whether a student
with given income and ability attends a top private college or mediocre private college than
whether a student attends Bowdoin or Middlebury College. By aggregating colleges with
similar observed characteristics, we abstract from a number of factors such as regional pref-
erences that may be important at a disaggregate level, but are likely to be less important
at a more aggregate level. We rank the 824 private colleges by their mean SAT score and
divide them into six groups each having the same number of students by partitioning the
support of the mean SAT distribution accordingly.?> Table 1 reports the student-weighted

means for the six school types in our analysis.

Having assigned colleges to one of the six ranks, we then assign each student in the
NPSAS sample to the same school rank to which his or her college is assigned. The results
of this assignment are also shown in Table 1. We find that there is a hierarchy in mean
income that follows the SAT ranking among schools. Mean income ranges from $47,721
in the lowest ranked school to $73,616 in the highest school. The same hierarchy holds
for tuition, institutional aid per student, expenditure per student, and endowment per
student. In particular, the average price caps (i.e., posted tuitions) range from $8,992 in
the lowest ranked school to $19,674 in the highest ranked alternative. Students receive
substantial amounts of financial aid from the institution they attend. Mean institutional
financial aid ranges from $2,346 to $7,611. In addition, students receive large amounts of

non-institutional aid as we discuss in detail below.

ZWe also explored K-means cluster analysis to aggregate colleges and found that it produced similar
results to the ones reported in the paper (Epple et al., 2002).
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4.3 Noninstitutional Financial Aid

To construct a computational general equilibrium analysis that incorporates the effects of
federal and other non-institutional financial aid, we need a simple representation of the
noninstitutional aid formula. Approximating this formula is challenging, however, because
noninstitutional aid comes as federal aid, state aid or private aid, and aid from each source
comes in a variety of forms. Noninstitutional financial aid takes the form of grants, loans,
work study aid, and other forms. Federal grants include PELL grants, supplemental educa-
tional opportunity grants and other grants and fellowships. Federal loans include Perkins
and Stafford loans and loans through the Public Health Service. Work study aid reflects
aid under the Federal Work Study Program. Other federal grants include Byrd scholarships
for undergraduates, and Bureau of Indian Affairs scholarships. There is also a multitude of
state aid programs, such as the State Student Incentive Grants and state loans. Individuals
may also receive private grants or loans that are not tied to a particular institution. Given
the great many sources and forms of non-institutional aid, we estimate relationships that
characterize the dependence of aid on student and college characteristics. Fortunately, the

NPSAS data includes all noninstitutional aid received by the sampled students.

We define total noninstitutional aid, a,, as a weighted sum of grants g, loans [,, work

study aid w,, and other forms, o,,.

an=gn + on + 0251, + 0.5 w, (4.1)

The weights used in this formula are somewhat arbitrary, but are similar to ones used in
the literature (Clotfelter, Ehrenberg, Getz, and Siegfried, 1991). To construct a noninsti-
tutional aid formula, we need to express financial aid as a function of student and college
characteristics. Most of the non-institutional aid is need-based. We would therefore expect
that need-based non-institutional aid is primarily a function of income and tuition. Income
is measured as total household income. Tuition is measured as the institution’s price cap

in 1995/96.
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Table 1 provides some descriptive statistics of the main variables by school type.?6 We
find that the vast majority of students in our sample receives some sort of federal financial
aid. The fraction of students in each rank of schools receiving positive amounts ranges from
0.9 to 0.95. Mean financial aid amounts are similar across school types. The mean aid

ranges form $3,490 to $4,917.

We estimate the financial-aid function directly based on observed financial aid payments
and student characteristics.?” Given that the vast majority of students receive positive aid,
we use a simple regression framework.?® Regressions for each school rank reveal that income
has a negative coefficient ranging from -0.021 to -0.047. Ability measured by the SAT score
is insignificant in 5 of the 6 regressions. Tuition is always positive with coefficients ranging
from 0.083 to 0.223. Minorities only receive more financial aid in lower ranked schools.
The coefficient ranges from 109 to 1721. We conclude that noninstitutional financial aid
is primarily a function of income and tuition. In contrast to institutional financial aid,
noninstitutional aid does not depend on ability, except for students in the highest ranked
schools. Since it adds further complexity to an already challenging estimation problem, we
reserve for future work the estimation of an extended model that includes minority status.?’
We therefore capture the noninstitutional aid in the computational equilibrium model by
estimating a linear regression in income and the price cap, combining data for all students

in our sample: aj, = 3912 — 0.025 y, + 0.132 p".

26 All empirical results reported in this paper use weights provided by the NPSAS to account for the
sampling design used by the NCES.

2TThis approach is closely related to work in the welfare literature which focuses on the estimation of
benefits functions for welfare recipients using data on welfare payments (Fraker, Moffitt, and Wolf, 1985)
and in the income tax literature which estimates effective tax functions using observed income and tax
payments (Sieg, 2000).

28We also estimated Tobit models and the results are similar.

*Epple, Romano, and Sieg (forthcoming) develops an extension of the framework here to incorporate
minority status.
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5 Empirical Results

5.1 Parameter Estimates

We estimate our model using full information MLE. Price caps and endowment income
along the college hierarchy are first specified as approximately observed in the data. The

parameter estimates and estimated standard errors are reported in Table 2.

Table 2: Parameter Estimates

alen( v) og o cl c2 c3 F ¥ w P

estimate 0.688 172.32 143.70 255.47 10755 3255208 169.91 0.761  0.089  0.054
std error 0.005 0.1326 0.1113 0.1667 4.657 2177 0.078  0.0005 0.0001 0.0001

We find that the parameters of the utility function are estimated with good precision
and have the expected signs. The estimate for y, which measures the peer effect of ability,
is positive and approximately 0.76. This finding supports our model’s prediction that
individuals sort based on the perceived quality of their peer group. We find, as expected,
that 1, the coefficient measuring income diversity, is positive. This implies that school
quality increases with increasing income diversity. To attract students from lower-income
backgrounds, schools give financial aid that is inversely related to income. We also find that
the estimate of w, the coefficient determining the demand for expenditures, is approximately
0.089. Expenditures per student are a substantial component of school quality, but with

markedly lower elasticity than the peer measure.

The parameters of the custodial cost function influence the admission spaces in equi-
librium in two ways. First, the costs of providing education affect the level of educational
expenditures per student through the budget constraint. Second, marginal custodial costs
are a key component of marginal costs. Cost function parameters also determine equilib-
rium college size. We have chosen a cubic cost function to provide flexibility in capturing

these effects. The primary focus of our analysis is to characterize the allocation of students
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across colleges of differing qualities and the financial aid policies. Explaining choice of size
by individual colleges is a secondary concern, and we have largely abstracted from that
issue in our analysis by forming composite colleges. Rather than explaining the choice of
size by individual institutions, our cost function parameters serve to match predicted and
actual populations along the college quality hierarchy. Our estimates in Table 2 imply that
total custodial costs at the optimal size, k*, are approximately $2167. The estimate of the
parameter c3 is relatively large. This parameter penalizes deviations from the efficient scale
and is key to matching predicted and actual populations across the college quality hierarchy.
We expect that a large value of ¢3 would also arise at the school level. Peer effects and
endowments create a strong force for schools to reduce size to increase student quality—in
the limit maximizing quality by admitting a handful of brilliant students and lavishing the
entire endowment on educating those students. The countervailing effect of scale economies

is captured in our cost function primarily by the ¢3 term in the cost function.

5.2 Admission and Aid Policies in Equilibrium

The estimates reported in Table 2 imply an equilibrium in the market for higher education.

Table 3 summarizes the most important features of this equilibrium.

Comparing the equilibrium outcomes in Table 3 with the outcomes in the data reported
in Table 1, we find that our equilibrium model fits the data well. Our findings suggest that
our model predicts aggregate mean income levels in all six school types reasonably well.
The differences between observed mean income and predicted mean income are small for
all six schools. Our equilibrium model also matches mean SAT score for most schools. It
underpredicts the mean SAT score for the lowest school and overpredicts it for the highest

school in the hierarchy.

To get a better understanding of how well the model fits the data we compare the
observed admission decisions with the predicted decisions for each school. The results of
this comparison are illustrated in Figures 2 and 3 which plot the observed data and a

simulated sample generated from the equilibrium model. Note that the model fits the data
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reasonably well. However, the estimates of standard deviations of the measurement errors
are substantial, indicating that there is a significant amount of variation left in the data

which is not explained by our model.

Our equilibrium model generates tipped L-shaped admission spaces. Figures 2 and 3
show that there is a reasonable congruence between admission spaces in equilibrium and
the observed admission spaces. The panels show the observed (b,y) of the NPSAS sampled
students in each consecutive rank of school (+’s) and a forecast of the same number of
students in that school using our estimated model (x’s). We see that observed admission

spaces are somewhat more spread out than those predicted by the model.

Table 4: Goodness of Fit

school | number of correct prediction error less
number | students predictions than or equal to one

1 239 0.456 0.715

2 169 0.189 0.675

3 326 0.206 0.577

4 289 0.183 0.606

5 422 0.230 0.664

6 392 0.515 0.745

We also compute goodness of fit statistics. Using the estimated parameters of the model
and assuming that income and ability are measured without error, we assign the sampled
students to the six schools. We then compute the fraction of students classified correctly
into each school. These results are shown in Table 4. We find that for schools 1 and 6 we
predict the admission of approximately 50 percent of the students in the sample correctly.
For schools 2 through 5 the fraction ranges between 18 and 23 percent.?® We also compute

the fraction of students for whom our model’s predictions are off by at most one rank.

30With random assignments, we would, of course expect to predict about 16.67 percent correctly.
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The results are reported in column 4. We find that our model’s predictions are only off by
one rank in the majority of observations in each school.3! We conclude from this analysis
that, on the whole, our model provides a reasonably good approximation for the observed

admission policies in the sample.

We now turn our attention to financial aid policies. As explained in the previous section,
the equilibrium of our model reflects noninstitutional financial aid received by students.3?
Table 1 suggests that individuals in our sample receive on average $4000 in noninstitutional
aid. Table 3 shows that our model matches these levels of noninstitutional aid closely. The
predicted mean of the distribution of noninstitutional aid is close to the observed mean in

each school type.

The most challenging part of our analysis is to explain institutional financial aid policies.
We observe in the data that a large fraction of students receives quite substantial amounts
of institutional aid. We would like to know whether our model can replicate these generous
financial packages. A comparison between Table 3 and Table 1 shows that our model

explains observed financial aid well.

To get additional insights into the nature of price discrimination predicted by our model

we compute the shadow prices for ability and income. Recall that equation (2.20) implies

that the shadow price for ability is given by ggﬁ;gg. Similarly, the shadow price for income

is %_ Table 5 reports the estimates of the shadow prices for each school. We find
that the shadow price for income ranges between -0.044 and -0.088. The estimated model
predicts a $10,000 increase in household income raises tuition to students at the margin
of switching schools by $440 and $880 at the bottom and top ends of the school quality

hierarchy respectively. Our model thus predicts that schools will offer less financial aid

to higher income students. Higher quality schools engage more aggressively in pricing by

31With random assignment, we would expect about one-third correct predictions for the bottom and top
schools, and about one-half correct predictions for the middle schools.

32The model also predicts inputs and per student expenditure levels. If one adds in custodial costs to the
input levels reported in Table 3, predicted per student expenditures along the school hierarchy are 5113,
5581, 6926, 7538, 9322, and 14163. Comparing these to the empirical expenditures in Table 1, we predict
a flatter ascension. Obviously, the empirical expenditures depend heavily on the conventions used in their
measurement.
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Table 5: Shadow Prices for Ability and Income

college | shadow price of ability shadow price of income
1 31.50 -0.044
2 32.01 -0.048
3 36.45 -0.049
4 42.60 -0.052
5 52.16 -0.056
6 73.59 -0.088

income. Our model also predicts quite significant financial aid for higher ability students.
The shadow price for ability ranges between 31.5 and 73.6. The estimated model predicts
100 SAT points lowers tuition to students at the margin of switching schools by $3150 and
$7360 at the bottom and top ends of the school hierarchy respectively.

We can also estimate linear financial aid regressions using simulated data from our
equilibrium model. For the highest ranked school, we find that the coefficient of income is
approximately -0.18. The estimated coefficient of ability is 45.1. Comparing these estimates
with the corresponding shadow prices indicates that the highest ranked school has significant
market power. The estimated coefficients for the other five schools do not differ as much
from the estimated shadow prices. We thus conclude that highly ranked colleges exercise
some market power over students that are located in the inside of the admission sets. These
students receive less favorable financial aid packages than those on the boundary. Market

power decreases substantially as one moves down in the quality hierarchy.

These predictions are qualitatively in line with reduced form estimates. The magnitudes
of the marginal effects of income and ability on financial aid are, however, larger than those
found in reduced form studies. There are at least two reasons why our estimates are larger.
First, reduced form estimates often control for multiple measures of ability such as GPA in

college and high school. More importantly, ability is most likely measured with error which
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biases reduced form estimates towards zero.33

Another measure of market power is obtained by calculating the ratio of each school’s
tuition revenue to the revenue it would obtain if all students were charged effective marginal
cost. We find that this measure of market power ranges from 1.01 in the lowest ranked
college to 1.72 in the highest ranked college. The measure ranges from 1.08 to 1.17 for the

other four colleges.

Our equilibrium model matches observed admission and tuition policies relatively well.
We can, in principle, use it to perform policy experiments and evaluate education reform
measures. Admittedly, our model relies on a number of strong assumptions. More serious
policy analysis would clearly demand improvements in the model. We will discuss these
improvements in the next section. To illustrate the mechanics of our equilibrium model
and to gain some additional insights into the properties of the model, we consider a simple
policy experiment. Policy makers are interested in the impact of financial aid on admission,
pricing, and educational outcomes. We analyze a 10 percent change in the noninstitutional
aid formula, by multiplying the coefficients in the estimated financial aid formula by 1.1.

Table 6 summarizes our main findings.

We find that a 10 percent increase in financial aid does not affect the admission policies
in equilibrium by much. College expenditures increase on average by roughly $40 per
student which indicates that approximately 10 percent of the increase in financial aid can
be extracted by the colleges through higher tuition. We also find that institutional aid
decreases on average by approximately 1 percent which suggests that noninstitutional aid
only slightly crowds out institutional aid. Hence, students are better off in equilibrium
largely because of the income effect. The results of the policy experiment thus indicate
that the market is highly competitive. The expenditure increase in schools is on the order
of what students want given an income elasticity of 1 and a 10 percent increase in aid.

Schools having a preference for expenditure per se and thus would like to spend more, but

33Using simple regression and Tobit models, we find that much of institutional aid in our data set is not
related to ability, income or minority status. Institutional knowledge of financial aid policies suggest that
these reduced-form results are not plausible.
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the market will not allow this. Our analysis, thus, reinforces the importance of general

equilibrium effects in evaluating large scale policy changes.

6 Conclusions

In this paper, we have developed an equilibrium model of the market for higher education.
We have shown that this model has strong predictions regarding sorting of individuals by
income and ability. The model gives rise to a strict hierarchy of schools that differ by the
educational quality provided to the students. To evaluate the model, we have developed
an estimation strategy that accounts for the fact that important variables are likely to
be measured with error. We estimate the structural parameters of the model using a
combination of micro and aggregate data. The findings suggest that our equilibrium model

can replicate many of the empirical regularities observed in the data reasonably well.

To conduct the analysis, we had to make a number of hard choices and rely on some
restrictive assumptions. Some of these assumptions could be relaxed to improve the fit of
the model and to conduct more serious policy analysis. Future research should address the
question of how robust the results of this study are to different specifications of the utility
function. For example, one could introduce unobserved heterogeneity in tastes for education
along the lines suggested in Epple and Sieg (1999). Introducing taste heterogeneity into
the demand side of the model yields more realistic predictions about individual sorting.
It would also allow us to construct a well-behaved likelihood function without relying on
measurement errors. However, solving the colleges’ optimization problems and computing

equilibria in such models is a major extension of the analysis presented in this paper.

It would also be desirable to control for additional sources of observed heterogeneity.
An extension of our model which controls for minority status is feasible. Epple et al. (2002)
discuss different strategies of incorporating minority status into a similar equilibrium model.
Equilibrium of the model then depends on whether and how racial diversity measures enter

the objective functions of colleges and the different types of households. Incorporating racial
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diversity measures into the analysis is a necessary prerequisite for analyzing the impact of

affirmative action policies on admission and financial aid.

Another focus of future research should be to analyze jointly the markets for public and
private education. The benefits from modelling private and public colleges in equilibrium
would be substantial from the perspective of policy analysis. It is not particularly difficult to
include a public school sector as an outside option into our model as discussed, for example,
in Epple and Romano (1998). However, explaining stratification in both the public and
the private sector within an equilibrium model is clearly more challenging and may require

significant modifications of the underlying theory.

The computational analysis provided in this paper is pushing the boundaries of what
has been achieved in general equilibrium analysis of markets for differentiated products such
as higher education and estimation of these models. The extensions discussed above are
desirable and seem to be feasible. However, these extensions are nontrivial. Implementing

them in a meaningful empirical framework will be computationally challenging.

Finally, our research has important implications for research on differentiated products
outside of public economics. Most previous empirical work in health economics and indus-
trial organization treats product characteristics as exogenous and ignores price discrimina-
tion which can be quite prevalent in many markets. In contrast, our framework endogenizes
important product characteristics and offers a new approach for analyzing price discrimi-
nation. We, therefore, view the methods developed in this paper and our main empirical

results as quite promising for future research.
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A Proof of Proposition 1

1. Suppose that R; > R;. We show a contradiction to either g; = ¢; or ¢; < ¢;. In either
of the latter conjectured equilibria, let college 7 follow the admission and tuition policy
of college j and spend on inputs so as to have a balanced budget. College i would
attract the same student body as college j since ¢ would be spending more on inputs
than j and thus be of higher quality. Hence, we have a contradiction to quality

maximization by college 4 in the conjectured equilibrium.

2. For all types admitted to college j, pj(b,y) > EMC;(b,y), by the admission criterion
(2.19). To show a contradiction, suppose that p;(b,y) > EMCj(b,y) for student of
minimum ability b’ for given y. Since both p;(b,y) and EMC;(b,y) are continuous in
b, there exists types with b < ¥’ and p;(b,y) > EMCj(b,y). All these types would be

admitted to college j, a contradiction.?*

3. Only schools in J(b,y) would admit type (b,y) by (2.12) and (2.19). Now, to gen-
erate a contradiction, suppose that a student attends school i such that U(y + a; —
EMC;,qb) < U(y+a;—EMC},qj,b)for colleges i and j in j(b, y)- The student’s equi-
librium utility U; = U(y + a; — pi, q,b) < U(y +a; — EMC}, g;,b) since p; > EMC; by
(2.19). Then p; = min[p}, p'] > EMC}, implying (b, y) = 1 is optimal for college j.
The latter and attendance at college i contradicts market clearance: } ; a; < 1. An
analogous argument precludes choice of no college when attendance at tuition equal

to EMC; for j € J would yield higher utility.

34Bquilibrium requires that admission and attendance sets coincide, or market clearance will be violated.

33



B

Below is a sketch of an algorithm which can be used to compute approximate equilibria.
To implement this algorithm one needs a random number generator to simulate from the
underlying distribution of income and ability and an algorithm to solve a system of nonlinear
equations. Based on our experience, we suggest to use a variation of Broydn’s method

(Press, Teukolsky, Vetterling, and Flannery, 1988). The algorithm to compute equilibria is

Computation of Equilibrium

then as follows:

10.

11.

. Given starting values for 6;, I;, k; and u?.
. Generate random draws (b,y) from h(b,y).
. Admission is as if p; = EMCj(b,y)

. Choice set of a household (b,y) is given by all schools such that: EMCj(b,y) < pj".

. For each school in choice set compute utility:

Uj = (y— EMC;+a;(EMC;)) q; V.

. Rank schools by utility and determine first best (fb) and second best (sb) choices for

(b, y)-

. Compute utility of best alternative (second best choice):

UA(ba y) = (y - EMCsb + asb(EMCsb)) qsb bﬂ-

. Compute reservations price, p’j}b:

(y - p;”b + afb(p?b)) qfb bB = (y - EMCsb + asb(EMCsb)) dsb bﬂ-

. Compute price by comparing reservation price with price cap:

pso(byy) = min{ph,, p7}-
Update values for 6;, I;, k; and u?.

Iterate until convergence.
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