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Abstract

This paper exploits nationalistic biases in Olympic winter sport judging to study the prob-

lem of designing a decision making process that uses the input of potentially biased agents.

Judges score athletes from their own countries higher than other judges do, and they appear

to vary their biases strategically in response to the stakes, the scrutiny given the event, and

the degree of subjectiveness of the performance aspect being scored. Ski jumping judges

display a taste for fairness in that they compensate for the nationalistic biases of other panel

members, while figure skating judges appear to engage in vote trading and bloc judging.

Career concerns create incentives for judges: biased judges are less likely to be chosen to

judge the Olympics in ski jumping but more likely in figure skating; this is consistent with

judges being chosen centrally in ski jumping and by national federations in figure skating.

The sports truncate extreme scores to different degrees; both ski jumping and, especially,

figure skating are shown to truncate too aggressively; this may contribute to the vote trad-

ing in figure skating. These findings have implications for both the current proposals for

reforming the judging of figure skating and for designing decision making in organizations

more generally.



1 Introduction

Organizations rountinely make decisions for which they need to rely on the informed, but

potentially biased opinions of their members. For example, in deciding whether to promote

a certain individual or undertake a certain project, the managers who know the individual

or project best are often those most likely to be biased. In deciding how much to count the

opinions of those who are closely involved, organizations face a trade-off between information

and bias. A common solution to this problem is to involve more than one person in the

decision. In doing so, organizations face a complicated design problem: how many people to

involve, how to aggregate opinions when they differ, how to treat extreme opinions, whether

and how to include the opinions of interested parties, whether to strive for continuity in the

membership of committees that make similar decisions, and whether and how to adjust the

opinions of members based on their histories.

This paper attempts to inform theoretical analysis of this complicated organizational

design problem by studying how biased decision makers behave in a team decision making

setting. In order to do meaningful empirical work about biases that one might expect to

be fairly subtle, we need a large dataset of comparable decisions where individual opinions

can be observed and quantified and the expected biases of decision makers can be readily

observed by the researcher. As one might imagine, this proved very difficult to obtain in

a business setting, so instead we examine an analogous setting in sports: the judging of

winter Olympic sports.

Olympic judges represent a particular country and, in the sports we study, they display

biases in favor of athletes from the same country. These nationalistic biases can be quite

large. Using individual judges’ scoring data from the 2002 Olympics and other major

international competitions, we find that both figure skating and ski jumping judges score

their compatriots about 0.13 standard deviations higher than other judges. In figure skating,

where placement is determined entirely by subjective judging, this bias translates to an

average placement 0.7 positions higher. These biases are appear even larger when compared

to the standard deviation of scores awarded a particular performance; they are about 45

percent of the within-performance standard deviation of scores in both sports. Nationalistic

biases are smaller but still positive in mogul skiing, aerials, and the snowboarding halfpipe

competition.
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In most settings, attempts to study favoritism empirically would be frustrated by the

difficulty of observing where we should expect favoritism (e.g., who is “friends” with whom).

In this study, judges are biased nationalistically, and thus in a way that we can observe.

This allows us to study how the degree of favoritism varies with strategic considerations

and how organizational design can be effective or ineffective in dealing with favoritism.

We can examine how biases vary with the stakes and with the subjectivity of the aspect

being judged. We can examine how judges react to other judge’s biases: do they attempt to

compensate for each other’s biases, or do they form reciprocal arrangements to reinforce each

other’s biases? In principal, one might expect reputational or career concerns to restrain

judges’ biases, and we can test whether this is the case. Finally, we can examine whether the

methods used to aggregate judges’ opinions are appropriate: whether they make optimal

use of the information in opinions and whether they create incentives for judges that are

conducive to achieving accurate results.

Since both the magnitude of nationalistic biases and our sample size are larger in ski

jumping and figure skating than in the other sports, we focus our analysis on these sports.

Despite the similarly sized nationalistic biases, in many other respects, ski jumping achieves

better results. Ski jumping judges compensate for each other’s biases, and do so enough

that the net effect on an athlete’s total score of having a compatriot on the judging panel is

actually slightly negative. In figure skating, however, the compensating biases are positive,

so an athlete is much better off when she is represented on the panel. Since judging panels

tend to always include the countries that produce the most Olympic skaters, these judging

biases represent a sizeable barrier to entry to other countries. The size of nationalistic biases

varies significantly by country and judge in both sports. In ski jumping, judges compensate

more against athletes from countries represented by a more nationalistically biased judge.

The apparent strategic variation of biases depending on the composition of the judging panel

is inconsistent with nationalistic biases being the result of only non-strategic differences in

tastes; tastes of judges for a certain national style are often given by the ISU as a reason

for apparent nationalistic biases in figure skating scores.

The compensating biases in ski jumping, and the fact that they increase when there is

more nationalism to be compensated for, are consistent with a desire of judges to maintain

the fairness of results in the face of nationalism. In contrast, the positive compensating
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biases in figure skating seem less consistent with a desire for fairness than with reciprocity

or vote trading. Further evidence of vote trading emerges from the fact that there appear to

be long-lived reciprocal relationships between countries. The bias of a judge from country

A in favor of an athlete from country B is positively correlated with the bias of a judge

from country B in favor of an athlete from country A. The data suggest that the countries

most often represented on judging panels can be divided into two blocks, with the U.S.,

Canada, Italy, and Germany in one block and Russia, the Ukraine, France, and Poland in

another block. The ski jumping data rejects similar tests for vote trading. The composition

of the voting blocks and the roughly one position size of the bias might seem familiar to

those who followed the controversy surrounding the top two finishers in the 2002 Olympic

Pairs competition. In fact, these results suggest that the only thing about the judging in

the pairs competition that was unusual was that people noticed.1

So despite the fact that judges in both ski jumping and figure skating appear to be

nationalistically biased, nationalistic biases in ski jumping appear to nearly cancel each

other out and thus have a minimal effect on the results, while nationalistic biases in figure

skating are magnified by vote trading and long-term coalitions. Although ski jumping and

figure skating differ in many ways that might produce these differences, the sports do have

institutional features that theory suggests might be contributing factors. Ski jumping and

figure skating have different methods for selecting judges for events such as the Olympics.

Ski jumping judges are selected by a centralized body (the judges sub-committee of the

International Ski Federation [FIS]) while figure skating judges are selected by national fed-

erations. Probit regressions predicting selection to judge in the Olympics find that judges

with a greater past nationalistic bias are less likely to be selected in ski-jumping but more

likely to be selected in figure skating.

Consistent with the importance of reputational concerns, biases rise with the stakes in

ski jumping. Biases are largest in the Olympics and near the top of the standings, and

are larger in final rounds than in qualifying rounds. At the same time, nationalistic biases
1Furthermore, the results in Table 5 imply that with figure skating, nationalistic biases are actually the

smallest for Pairs competitions, for major competitions such as the Olympics, and at the top of the standings.

While the reports about the role of the Russian mafia in influencing the placement of the top skaters in the

2002 Olympics may lead one to believe that the judging problems in the Olympics were a once-off scandal,

the results in this paper suggest that the problems are much more widespread.
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exist even for the scored warmup jumps of the top-seeded jumpers who are pre-qualified

for the finals; this is despite the fact that these jumps have no effect on the results of the

competition. In figure skating, in contrast, biases actually decline slightly with the stakes;

they are larger for the compulsories, near the bottom of the standings, and in junior events.

These results suggest a tension between the increased extent to which judges care about

the results of major events on the one hand and the increase scrutiny given the judging of

those events on the other.

Another difference across the sports is the aggregation of scores, specifically, the treat-

ment of extreme scores. In ski jumping, five judges score each jump on style, and the

athlete’s style points score is the sum of the middle three scores. This method involves

some truncation of extreme scores, but the likelihood that a particular judge’s score will

be influential remains high. In figure skating, the relative ranking of any pair of entrants

is determined by which entrant is ranked higher by a majority of judges. This represents

the most aggressive truncation of extreme scores possible. Although truncation of extreme

scores would be justified if these scores were more likely to reflect observational error or

bias than information about the quality of the performance, we present empirical evidence

that information content remains high for even those scores. In particular the information-

to-noise and information-to-bias ratios do not begin to decline until opinions become 2− 3
times more extreme than the point at which they are normally truncated in ski jumping

and about 8− 10 times more extreme than the normal truncation point in figure skating.
Aggressive truncation not only results in less informed judgements, but it can also create

incentives for vote trading that lead to further information loss. The intuition is as follows.

If a judge from country A wants to influence the results in favor of a compatriot, under ag-

gressive truncation, she can only do it through her own vote to a certain degree. If she cares

much more about the ranking of her own-country athletes than she does about the ranking

of country-B athletes, and a judge from country B has opposite preferences, the two judges

can benefit from vote trading. Assuming that vote trading is non-contractable, however, it

must be sustained through repeated interaction. Aggressively truncating opinions by turn-

ing them into votes can create a bright line between cooperating with and defecting against

a vote trading scheme, since it is easier to determine whether a judge voted for a particular

athlete than whether they added 0.2 to the score they would have otherwise given. This
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can not only make vote trading easier to sustain, it can also give judges less flexibility to

deviate from the agreement in response to the quality of the performances without upsetting

the whole agreement.2 If many observers leave figure skating competitions suspecting that

order of finishing was been fixed in advance of the contests, this may be part of the reason

why.3 Although extreme truncation in figure skating is usually justified as a response to

judging biases, this paper outlines reasons to believe that it may be making things worse.

The results presented in this paper are potentially interesting at two levels. First, in

light of the number of people who watch the Olympics and their non-trivial economic size,

the fairness of judging at the Olympics and other sporting events is presumably of direct

interest. Second, to the extent that organizations make committee decisions that are similar

to Olympic judging and to the extent that institutional features such as the selection of

judges and the aggregation of opinions affect the quality of these decisions, the behavior of

Olympic judges may have implications for organizational design.

Several recent papers have studied related issues. Recent papers on bias or collusion in

sports have found evidence that soccer referees increase the amount of injury time when

the home team is behind (Garicano, Palacios, and Prendergast, 2001), that sumo wrestlers

throw matches to each other in response to non-linearities in incentives (Duggan and Levitt,

2000), and of point shaving in college basketball games (Wolfers, 2002). Campbell and Gal-

braith (1996) have measured the nationalistic bias in past Olympic figure skating competi-

tions and found nationalistic biases of similar magnitude to what we find. Others have used

data from sports to test theories about behavior in business settings: for example, Bronars

and Oettinger (2001) examine the effect of incentives for risk taking in golf tournaments,

Goff, McCormick, and Tollison (2002) examine racial integration in baseball to determine

whether leaders or followers are more likely to innovate, and Romer (2002) examines the
2In some cases, colluding judges attempt to get around the simultaneity problem by communicating in

real-time about whether their vote trading agreement still applies given the quality of the performance.

For example, on 4/28/02, 60 Minutes broadcast a tape of two judges communicating with glances and foot

signals. The difficulties of communicating in real-time, however, particularly with cameras rolling, make it

very difficult to make collusive agreements contingent on performance quality.
3For example, prior to the 1998 Olympic Ice Dancing competition, Ukrainian judge Yuri Balkov was

taped by another judge announcing the order in which he would rank contestants. As further evidence

that career concerns do not create strong incentives for fairness in figure skating, Balkov was temporarily

suspended by the International Skating Union but was selected by Ukraine to judge at the 2002 Olympics.
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decision to punt on fourth down in American football as a dynamic programming problem.

There is also an extensive theoretical literature on the problems of relying on information

from potentially interested parties. The simple model in the next section takes an approach

that is closest to that of Prendergast and Topel (1996), who examine the problem of relying

on the opinion about employee performance from one potentially biased supervisor.4 Aghion

and Tirole (1997) and Athey and Roberts (2001) examine the related problem of trusting the

opinion of an employee about the quality of a project from which she will derive some private

benefit. Milgrom and Roberts (1986) examine the situation where employees cannot falsify

but can hide information, and find that under certain circumstances, having one advocate

on either side of an issue yields full revelation of information. Finally, there is an extensive

recent theoretical and empirical literature on the career concerns of forecasters or opinion

producers.5 While this literature primarily focuses on the career concern of appearing

to have high-quality signals, our empirical evidence suggests that the career concerns of

appearing unbiased (or, in the case of figure skating, biased) is more important for Olympic

judges.

The remainder of the paper is divided into four sections. The first section considers the

problem of a principal who is attempting to design a mechanism for aggregating the opinions

of potentially biased judges, and informally discusses the effects of reputational concerns or

a taste for fairness. The second section contains the empirical results summarized above.

Two concluding sections follow. One discusses the proposals for reform of figure skating

judging made after the 2002 Olympics, and the extent to which they appear sensible in light

of the results of the paper. The second discusses the extension of the results to a corporate

setting, in which committees iterate until a consensus or near consensus is reached, rather

than aggregating simultaneously announced opinions.

2 Aggregating opinions of biased judges

This section analyzes the mechanism design problem faced by a principal who is attempting

to construct an evaluation of a particular performance (or project) quality using the opinions
4It is also similar to Meyer, Milgrom, and Roberts (1992) in which an employee who does not want to

get fired incurs influence costs to raise her employer’s signal of project quality.
5CITES
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of potentially biased judges (or committee members). Judges observe a noisy signal of the

quality of the performance and choose their opinion to balance two conflicting objectives:

biasing the result of the evaluation in a particular direction and reporting an accurate

opinion to maintain their professional reputation. Performance quality is assumed to be

objective or, alternatively, defined according to the tastes of the principal; we consider any

difference in taste’s with the principal that affects their scores to be part of a judge’s bias.

Judges announce their opinions simultaneously, and the principal’s mechanism aggregates

these opinions into an evaluation of the performance.

We assume that judges construct their opinions using a prior belief that is common to all

judges and other observers and a private, noisy signal of performance quality. Performance

quality is unidimensional and is given by q, and we calibrate performance such that the

common prior is that q ∼ N(0, 1). Each of the J judges observes the prior plus a noisy

signal sj = q + nj, where nj is the judge’s observational error, with E(nj |q) = 0.
Judge j chooses her opinions mj to solve the following problem:

max
mj

E[−(mj − q)
2

2
+ bj · y(m)|sj ], (1)

where y(m) is the function used to aggregate the opinions into an evaluation. The variable

bj captures the judge’s bias: the extent that she cares about the evaluation y(m) directly,

relative to her concern for issuing an accurate opinion. For simplicity, the setup above

assumes that judges care directly about absolute evaluations, not the evaluation of one

performance relative to another as might be in case in a tournament. Of course, in a

two-competitor tournament, we could simply define q to be the difference in performance

quality, and mj and y(m) to be opinions about and evaluations of this difference.

A judge’s bias is known to the judge, but not to the principal or other judges. We

assume for the moment that judges have no long-run concerns (e.g., reputational concerns)

and that they care only about the accuracy of their opinion, i.e. about (mj − q)2, not
the accuracy (or fairness) of the final evaluation, i.e. about (y − q)2. The judge’s optimal
opinion is:

mj[sj , bj , y()] = E(q|sj) + bj · E( ∂y
∂mj

|sj). (2)

Judges report their best estimate of performance quality, plus the product of their bias and

the extent to which they expect their opinion to be influential.
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The principal’s problem is to produce the best possible evaluation; we will assume

a quadratic loss function for the principal, so best means minimum mean-squared-error.

If she cannot commit to a mechanism and has no long-run concerns, then she just sets

y = E(q|m) taking the opinions as given. If she can commit, then she solves the problem

max
y()

E{−[y(m(s),b, y())− q]2}. (3)

The principal will want to put more weight on opinions that are more likely to be infor-

mative: either because they come from a judge who the principal believes to make smaller

observational errors and/or be less biased or because the opinion’s magnitude causes the

principal to expects the signal-to-noise and/or signal-to-bias ratios to be especially high.

For example, if extreme opinions are more likely to reflect noise or bias than less extreme

opinions, then the principal would want to discount extreme opinions. The problem is, the

act of putting more weight on an opinion that is from a certain judge or in a certain range

will increase the bias content of that opinion, making the principal at least partly regret

putting the extra weight on it.

This problem limits the extent to which a principal will be able to benefit from commit-

ting to aggregate scores in a certain way. In Appendix A, we argue that when observational

errors and biases are normally distributed, and thus signal-to-bias and signal-to-noise ra-

tios do not decline for extreme opinions, then the optimal aggregation scheme is very close

to linear, even when the principal has commitment power. We later find that the actual

aggregation mechanisms used by figure skating and ski jumping truncate scores well before

the point at which the signal-to-noise and signal-to-bias ratios begin to decline, suggesting

that they are deviating from optimality.6

6 In Appendix A, we assume a quadratic loss function for the principal, but the result that she does not

want to deviate from linearity should not be very sensitive to the shape of her loss function, so long as the

loss function is symmetric, since if prior beliefs, biases, and observation errors are normally distributed, then

a principal’s posterior belief will be as well, and a principal’s expectation of q will also be her modal belief.

The result in Appendix A could be different if a principal had perferrences about things other than y − q.
For example, if the principal cared directly about the appearance of a consensus, as a sport’s governing body

might, then this would create a new rationale for truncating extreme opinions.
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2.1 Effect of reputational concerns and a taste for fairness

Biased judges receive utility from changing the outcome of the mechanism in the direction

of their bias. If the principal uses a linear mechanism, with y =
P
j wj ·mj − c, then this

extra utility is equal to the product of the judge’s bias bj , her weight in the mechanism wj ,

and the extent to which she will bias her opinion: bjwj, i.e. a extra utility of (bjwj)2. If

judges’ biases are uncorrelated, then a judge whose w is reduced will lose some of this extra

utility, since her weight given her opinion will be replaced by an weight on opinion that is

unbiased in expectation.

When a principal has information on a judge’s history, then she should be able to

improve upon a symmetric mechanism by taking this history into account. The simplest

case to analyze is that of a principal without commitment power who sets y = E(q|m). If
judge’s observational errors and biases are uncorrelated, then the principal will subtract a

judge’s expected bias and then weight each opinion in proportion to the inverse of its mean

squared error:

y =
X
j

wj · (mj − bbj · wj),
with wj given by

wj =
λ

w2j · dV ar(bbj) + dV ar(nj) ,
where λ is some constant and bbj is the principal’s expectation of judge j’s bias. Judges
who will issue future opinions face a trade-off between the utility gain from biasing their

opinions today at the cost of increasing the perceived bias that will be backed out of their

future opinions. These reputational concerns have effects analogous to those in Holmstrom

(1999): “young” judges will surpress their biases in order to retain influence in the future,

while judges nearing retirement will bias their opinions more fully.

In addition, judges may have an incentive to issue opinions that are similar to other

judges’, since deviating from the opinion’s of other judges might reduce the principal’s faith

in her observation ability and increase dV ar(nj). For the same reason, judges may have
an incentive to be consistent in their appraisal of the performance of a given athlete, to

the extent that performance quality is influence by athlete ability about which there is

uncertainty.

If a judge has better information than the principal about another judge’s biases, then
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the incentive to issue opinions that are similar to other judges’ can lead a judge to bias her

opinion in the direction of other judge’s biases (Prendergast, 1993). At the same time, if

a judge has a concern about the fairness of the evaluation, as opposed only caring about

the accuracy of her own opinion, then we might expect judges to partially undo biases in

other judges opinions. Thus if we observe judges reinforcing each other’s biases, we might

interpret this as resulting from reputational concerns, while if we observe them undoing

each other’s biases, this might be the result of a taste for fairness.

3 Evidence on nationalistic biases

In this section, we will analyze individual judges scoring of athletic performances in winter

sports. While judges can be biased in favor or against an athlete for many reasons, one of the

easiest to observe is nationalistic biases. Once we document the rather large nationalistic

biases that exist in the data, we will conduct several tests motivated by the theoretical

discussion above:

1. Do nationalistic biases increase with the stakes? If judges care more about the out-

come of events such as the Olympics, we would expect larger biases in scoring.

2. Do judges strive for consistency? The highest seeded ski jumpers are pre-qualified

for the finals, but are still allowed to take a scored warm-up jump in the qualifying

round. If judges are attempting to maintain consistency in their scoring of a particular

athlete, we should still observe a bias even for these scores for which the stakes are

zero.

3. Do judges undo or reinforce the nationalistic biases of other judges? If judges have a

taste for fairness, then we should expect them to bias against an athlete from a country

that is represented on the judging panel, especially when the judge is question has a

history of nationalistic bias. At the same time, the judges may reinforce each other’s

biases in order to appear less biased themselves, or as part of a collusive arrangement.

4. Do judges’ actual career concerns encourage unbiased judging? We can observe the

correlation between being chosen for the Olympics and a judge’s apparent bias in

judging earlier events to examine the incentives created by career concerns.

10



5. Are extreme scores informative? Both ski jumping and figure skating use non-linear

mechanisms for aggregating scores that underweight extreme scores. The discussion

in Section 2 and Appendix A suggests that this would only be optimal if extreme

scores were more likely to indicate bias or observational error than information about

performance quality. We can test whether this is the case.

3.1 Data

The data are individual judge’s scorings of figure skating, ski jumping, mogul skiing, aerials,

and snowboarding performances from the 2002 Winter Olympics and other events imme-

diately before or after the Olympics. For figure skating, the sample includes all events for

which score sheets containing individual judge’s scores were available either on the Inter-

national Skating Union website or elsewhere on the web.7 For the other sports, the sample

includes the Olympics, all World Cup events, and the World Junior Championships; for

these events, score sheets, as opposed to just results, were available on the International

Skiing Federation web site.

Table 1 summarizes the dimensionality of the dataset. We have data on 16 figure skating

events, 25 ski jumping events, and about 8 events each for moguls, aerials, and snowboard-

ing. All but one figure skating event includes separate competitions for men, women, pairs,

and ice dancing, while almost mogul, aerials, and snowboarding events include competitions

for both men and women. About half of figure skating competitions include compulsory

rounds, and likewise about half of ski jumping, mogul, and aerials contests include quali-

fying rounds. All figure skating competitions include two performances in addition to any

compulsories; in ski jumping the finals include two jumps for each competitor, while in

snowboarding and aerials finals the top competitors after the first performance are allowed

a second. We have data on close to 3,000 athletic performances in figure skating and ski

jumping, but only roughly 1,000 or less in the other sports.
7The ISU and other skating organizers use a software program called IceCalc to tabulate results and

generate score sheets. Score sheets on websites other than the ISU’s were found by conducting a google

search for “Created by IceCalc,” which is inserted on every score sheet. In addition to the Olympics, the

figure skating sample includes the 2001 and 2002 European championships, the 2001World and World junior

championships, the 2001 and 2002 Four Continents competition, the ISU junior championships, and several

other events.

11



Table 2 presents summary statistics for the judges’ scores. In figure skating each of 5,

7, or, usually, 9 judges scores each performance on two dimensions, technical merit and

artistic impression. Skaters are then ranked ordinally by each judge based on the sum

of these scores. We analyze both the judges’ ordinal ranking and the sum of the scores,

although the results are understandably very similar. In ski jumping, each jump is scored on

style by five different judges. In the other three sports, judges are assigned specific aspects of

the performance to judge. Especially in moguls and aerials, the scores for different aspects

have different means, standard deviations, and ranges, suggesting that they are not strictly

comparable. This is important because we identify nationalistic biases partly by comparing

the scores given the same performance by different judges, and the extent to which scores

are not comparable across the aspects being judged further reduces the amount of data we

have to work with in these sports.

The aggregation of scores differs across the sports, particularly in the extent to which

extreme scores are truncated or underweighted. In snowboarding there is no truncation;

the five scores are summed to yield a total score. In ski jumping, the total style score is the

mean of the middle three of five scores. Moguls and aerials use a combination of these two

approaches: the mean of the middle three scores for the aspect judged by five judges (turns

in moguls, air and form in aerials) is added to the two scores for the other aspect (air in

moguls, landing in aerials). In aerials, the score is then multiplied by a degree of difficulty

factor for the jump attempted.

Figure skating uses the most extreme form of truncation. The scores given each perfor-

mance for technical merit (TM) and artistic impression (AI) are added together and then

each judge assigns each competitor an ordinal rank, with any ties broken in favor of TM in

the short program and AI in the long program. Placement in each round is then determined

by majority vote: a competitor is ranked ahead of another if he/she/they place higher with

a majority of the judges.8 Overall placement is then determined by ranking the skaters on a

weighted average of their placements in each round, with the short program weighted more

than the complusories but less than the long program. In summary, the only aspect of a

judge’s scores that matters is the relative ranking of two skaters: the difference in the scores
8This leads to occasional non-transitive preferrences in which majorities prefer skater A to B, B to C,

and C to A. These are resolved in favor of the skater of the three who wins the most bilateral comparisons.
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assigned to the two skaters does not affect the results of the competition. The ranking of

the sports in terms of the extent to which they truncate extreme scores is therefore: figure

skating, ski jumping, moguls/aerials, and snowboarding.

A final note is that while subjective scoring accounts for 100 percent of a performance’s

score in figure skating, aerials, and snowboarding, in ski jumping and moguls there is also an

objective component: distance jumped and time, respectively. In ski jumping, the objective

component accounts for a large share of the variance in results: the standard deviation of

distance points, style points, and total points are 20.9, 3.3, and 22.9, respectively. In moguls

the reverse is true: time points, turns and air points, and total points have standard devi-

ations of: 1.0, 3.1, and 3.8, respectively. In both sports, the covariance between subjective

and objective scores is positive.

3.2 Measuring nationalistic biases

Our primary empirical problem in measuring nationalistic biases is that we do not observe

an objective measure of performance quality. We can, however, draw inferences about

performance quality from other judges’ scores, scores given to other performances by the

same athlete, and, in the case of ski jumping and mogul skiing, objective measurements of

the distance and speed of the jump or the time of the run.

We can write the score given by judge j to performance p by athlete i as:

sijp = qip +Bij + eijp, (4)

where sijp is the score, qip is the objective quality of the performance, Bij is the bias of

judge j in favor of athlete i, and eijp is the judge’s observational error.9 We write Bij for the

bias in scores to distinguish it from the bias parameter of the utility function bj in the prior

section; B corresponds to b · w above. As in Section 2, performance quality is considered
to be objective, and any influence of a judge’s personal tastes on the scores is considered to

be bias. We likewise write eijp for the observational error component of the judge’s score;
9 In figure skating, we take our primary measure of the score given a performance by a judge to be the

sum of the technical merit and artistic impression scores. Given the fact that only the ordinal ranking given

by each judge matters for the final standings, we also repeated our analysis using the ordinal placement as

the dependent variable, and obtained very similar results.
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when judges have prior information about performance quality, this will be smaller than

the observational error nj in section 2.

Two strategies for identifying nationalistic biases are to: 1) compare the scores for the

same performance given by different judges, or 2) use other observables to infer performance

quality and assume that the remaining uncertainty in performance quality is uncorrelated

with judge and athlete affiliation. The first approach is the less data-intensive of the two,

but it only allows one to measure the difference between judges’ bias in favor of their

own athletes (nationalistic bias) and in favor of or against athletes from other countries

that are represented on the panel (compensating bias). If we are willing to assume that

compensating biases are small, then we can view this difference as being an approximation

of the nationalistic bias.

Estimating average nationalistic bias using this first approach involves estimating the

model:

sijp = B ·Φ(I = J) + qip + eijp (5)

where B is the average nationalistic bias, I and J index athlete and judge countries, and qip

is a performance fixed effect. Table 3 reports results from this method for the five sports.

Statistically significant biases exist in figure skating, ski jumping, and mogul skiing. These

biases are arguably also “economically significant,” particularly given their size relative to

the within-performance standard deviation of scores.

Table 4 uses the second identification approach, which allows us to relax the assumption

of zero compensating bias. In focuses on the sports with both a large sample size and a

significant nationalistic bias: figure skating, ski jumping, and the turns aspect of mogul

skiing. The second approach involves estimating the model:

sijp = Bnat · Φ(I = J) +Bcomp ·Φ(I ∈ P, I 6= J) + ai + βxip + eqip + eijp (6)

where P is the set of countries represented on the judging panel, ai is an athlete fixed effect,

xip is a vector of observables about the performance, and eqip is a performance random effect
that captures the variation in performance quality that is unexplained by ai or xip. Identi-

fication involves assuming that the component of performance quality that is uncorrelated

with ai or xip is uncorrelated with the composition of the judging panel.

For figure skating, the xip includes fixed effects for meet*event*round combinations.
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Identification thus involves assuming that a particular athlete’s performance is not corre-

lated with the composition of the judging panel, except to the extent that all athletes score

higher or lower in a given meet*event*round. For moguls and ski jumping, the xip also

includes the time (for moguls) and the distance jumped and takeoff speed for each jump

(for ski jumping). All else equal, a mogul skier with better form will descend faster, and a

ski jumper with the same takeoff speed but better form while airborne will travel further.

For example ski jumping, if we regress style points on distance and speed, we find positive

and negative coefficients on distance and speed respectively, with the regression explaining

about 50 percent of the variation in style points. If we call the style that is statistically

explained by distance and speed “airborne” style and the residual “landing” style, then in-

cluding jump characteristics relaxes our identification assumption to assuming that a given

athlete does not have especially good or bad landings (as opposed to overall performances)

when judges from particular countries are on the scoring panel.

The results in Table 4 suggest that measuring Bnat−Bcomp is much easier than separately
measuring its components, but we can obtain statistically significant estimate of Bcomp for

figure skating and ski jumping. These estimates imply that there is a negative compensating

bias in ski jumping but a positive bias in figure skating. Ski jumping judges undo the

nationalistic biases of their colleagues, while figure skating judges reinforce them. The

net effect of nationalistic and compensating biases in ski jumping on the total style point

score is actually ambiguous: a regression of total style point score on the presence of a

compatriot on the panel and skier and meet*round fixed effects yields a point estimate of

−0.042 (SE = 0.15); a similar regression for the median score in figure skating yields a

estimate of 0.116 (SE = 0.025), which implies that having a compatriot on the judging

panel is very important. The positive Bcomp in figure skating and negative Bcomp in ski

jumping also implies that the first identification approach overstates nationalistic biases in

ski jumping while understating them in figure skating.

3.3 Variations in nationalistic biases

In this subsection we estimate nationalistic biases for subsamples of the data. When ex-

amining subsamples, we use the first identification approach and limit the analysis to ski

jumping and figure skating due to sample size constraints. Table 5 presents estimates of
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nationalistic bias for subsamples of the data.

In ski jumping, nationalistic biases are larger when the stakes are higher, consistent with

judges caring more about the outcomes when the stakes are higher. Nationalistic biases are

larger: 1) in the Olympics, 2) among the higher placing skiers in the final round, 3) among

skiers that have not already pre-qualified in the qualifying round, 4) for team events, and

5) on the 90m hill, where style points account for a large amount of the variance in total

scores. Nationalistic biases exist even for the scored qualifying jumps of pre-qualified skiers,

which have no effect on the competition.

In figure skating, the pattern is different. Nationalistic biases are smaller when the

stakes are higher. Biases are smaller in the Olympics than in other major events, and they

are largest in junior competitions. Biases are larger for the short program, which receives

a lower weight, than for the long program. Biases are also larger for the complusories,

which are weighted less than either the short or long programs. Biases are larger where

scoring is more subjective, as it is for ice dancing, where skaters do not have as many

mandatory deductions for falls, and for artistic impression as opposed to technical merit

scores. Arguably, this is also true in mogul skiing, where biases are larger for turns than

for air, since a component of the score for air is the height of the jump, which might be

considered more objective than the form of the turns.

A possible explanation of this difference is that whereas the scrutiny of style judging in

ski jumping may be limited, in 2001-2 scrutiny was fairly significant in figure skating and

was probably especially so for more important competitions and for non-complusory rounds

that are watched by larger audiences. In terms of the model in Section 2, b, the ratio of

the importance of the event and the reputational costs of appearing biased, may actually

be lower in figure skating for higher stakes events.

Another source of variation in nationalistic bias is by country. Table 6 presents estimates

of country-specific nationalistic bias estimated using the following model, which is a version

of (5):

sij = BJ ·Φ(I = J) + LJ + qip + eijp. (7)

BJ captures the bias of judges from a particular country in favor of their own athletes. LJ

captures the “leniency” of the judge country: the extent to which all scores issued by judges

from that country are higher or lower than their counterparts. The qip are performance
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fixed effects as in (5). One might note that nationalistic biases appear to rise with eastern

longitude, and they also appear to rise with the various indices of country-level corruption

that have been calculated.

If a desire for fairness explains the negative compensating bias in ski jumping, we should

observe judges compensating more against athlete from countries with a history of being

more nationalistic. Table 7 presents results from estimating a version of (6) that allows

Bcomp to vary with the nationalistic bias of the athlete’s representative on the judging

panel:

sij = Bnat ·Φ(I = J) + (Ccomp +Dcomp · bBI) ·Φ(I ∈ P, I 6= J) + ai + βxip + eqip + eijp, (8)
where Dcomp < 0 indicates a desire for fairness and Ccomp is the “panel representation

effect”, or the bias in favor of athletes represented by a judge from an unbiased country. In

results in Table 7 imply that both ski jumping and figure skating judges are more biased

against athletes from countries with more biased judges. The major difference is in the

size of the panel representation effect, Cother, which in figure skating is positive and large

enough that the net compensating bias is still positive on average. In addition, Dcomp is also

slightly larger in ski jumping, indicating that the extra nationalism of a particular judge is

more than compensated for in each of the other judges’ scores.

The fact that Dcomp is negative in both sports is inconsistent with career concerns being

the explanation for the fact that figure skating judges bias in favor of represented athletes. If

judges were concerned with being outliers and therefore thus biased in favor of represented

athletes since they knew that the judge representing this athlete would be biased, then we

would expect Dcomp to be positive, i.e. for judges to bias the most in favor of athletes from

the most nationalistic countries.

One remaining potential explanation is collusion: judges bias in favor of represented

athletes because they expect something in return. To test for collusion, we can test for

whether biases are reciprocal. To do this, we estimate a version of (6):

sij = BIJ + ai + βxip + qip + eijp, (9)

where BIJ is the average bias of a judge from country J in favor of an athlete from country

I. We can then perform a simple test for reciprocity by examining the correlation betweenbBIJ and bBJI . In figure skating, the bBIJ and bBJI are positively correlated, with a correlation
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coefficient of 0.122 (p-value 0.07) for the top-10 judging countries, while in ski jumping, they

are negatively correlated, with a coefficient of −0.125 (p-value 0.24).
Given the suggestions of “bloc judging” in figure skating, we also test for whether bloc

voting can help explain the patterns in the bBIJ . We estimate by maximum likelihood a

model in which there are two voting blocs, and BIJ = Bsame if I and J are members of

the same bloc or BIJ = Bdiff if they are different. We allow the nationalistic biases, i.e.

the BII , to vary freely for each country. In figure skating, likelihood is maximized for the

top-10 countries by a model in which the U.S., Canada, Germany and Italy are in one

bloc, and France, Poland, Russia, and the Ukraine are in another. Japan and China are

not consistently classified in one bloc or the other, and thus could be thought of as non-

aligned (Table 8).10 The estimate bBsame = 0.001 and bBdiff = −0.051, so together with
Table 2 these results imply that a typical judge biases by 0.17 in favor of her own athletes

and by −0.05 against athletes from the other voting bloc. Given the lack of reciprocity in

ski-jumping noted above, the data rejects the voting bloc model.

3.4 Career concerns of judges

As we argued in Section 2.1, the desire to maintain influence in the future may motivate

judges to moderate their biases. A principal who is attempting to minimize the mean

squared error of the evaluations would want to underweight the opinion of judges who have

appeared to be biased in the past or who appear to make large observation errors (see

equation 4, above).

In sports judging, the only way to underweight a judge’s opinion is to exclude her

from the judging panel; once the judging panel is chosen, all judges opinions are given

equal weight.11 Olympic judges are unpaid, so presumably their only career concern is

maintaining their future influence by being chosen to judge important competitions. Given

that our sample ends with the 2002 Olympics, a natural way to test whether Olympic judges

face career-concern related incentives to moderate their nationalistic biases is to examine

the determinants of being selected to judge in the Olympics.
10The results exclude the top 2 couples in the Pairs competition at the 2002 Olympics, in which the media

speculated there had been bloc voting along roughly these lines.
11This excludes the very rare cases when a judge’s opinion is invalidated after the fact, such as when the

French judge’s opinion was discarded in the 2002 Olympic Pair competition.
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Table 6 examines the relationship between a individual judge’s performance in the 14-17

pre-Olympic events and whether or not she is chosen to judge in the Olympics. Panel A

compares the judges chosen with those not chosen along three dimensions: the leniency of

their scoring, their observed nationalistic bias, and the consistency of their scoring with

that of the other judges. If we call d-score the difference between a particular judge’s

scoring of a performance and the average score of the other judges, then leniency is defined

as the average d-score across all observations, nationalism as the difference between the

average d-score for compatriots and for all athletes, and consistency the average absolute

value of d-score. Since the selection process for judges is often two-stage, which countries

to be represented chosen first and representative chosen second, we compare the chosen

judges with both all the judges who were not chosen and with those that were not chosen

but represent the same country, but the results are similar in character regardless of the

comparison group.

Panel A suggests that the most important distinction of the ski jumping judges who

were selected for the Olympics was that they displaced essentially no nationalistic bias.12

This difference is statistically significant, as is the coefficient in the multivariate probit

regression in Panel B. For figure skating, however, the judges chosen for the Olympics are

both statistically significantly more lenient and more nationalistic. The probit regressions

find these two factors to be jointly significant (p-value = 0.02), but neither individually

significant.

The finding that nationalistically biased judges are less likely to be chosen in ski jumping,

but more likely to be chosen in figure skating, is not surprising as it might first appear given

how the judges are actually selected. In ski jumping, judges are selected by a centralized

committee, which could potentially act as a principal interested in achieving minimummean-

squared error scoring. In figure skating, judges are nominated by their national federations.

Given that federations presumably get considerable utility from seeing their own athletes

win, sending a biased judge is presumably privately optimal. Since 20 different national

federations send judges to the Olympics, it is quite plausible that cooperation on selected

unbiased judges is difficult to sustain.
12Although six ski jumping judges judged in the 2002 Olympics, only three judged 2001-2 World Cup

events that were in our sample.
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3.5 Non-linear aggregation of scores

Both ski jumping and figure skating underweight extreme opinions. In ski jumping, total

style points are the sum of the middle three of five scores. If a score is already tied for

the highest or lowest, raising or lowering it (respectively) does not affect the total style

points awarded. Figure skating is even more extreme: all that matters is which skater

ranks higher on a judge’s scorecard, by how much does not matter (except when resolving

non-transitivities as discussed above).

The discussion in Section 2 and Appendix A implies that the optimal aggregate mech-

anism should only underweight extreme opinions if the signal-to-noise and signal-to-bias

ratios of opinions decline as they become more extreme. The logic behind this is that if

signal-to-noise and signal-to-bias ratios remain high, then there is information in extreme

opinions, and underweighting them would be discarding this information. Underweighting

extreme opinions is often justified in terms of reducing the incentive to bias opinions, but as

we discuss above, deviating from linearity has the perverse effect of underweighting exactly

those opinions that will be less biased.

How can we determine whether the signal-to-noise and signal-to-bias ratios decline as

opinions become more extreme? If we observed an objective measure of performance quality,

we could examine the predictive power of extreme opinions. In other words, we could ask:

when one judge’s opinion is very different from the others, how much weight should we be

putting on the extreme opinion in constructing an estimate of performance quality? If we

take the mean of the opinions of J − 1 judges as a starting point, how should we revise our
expectation of quality based on the difference between the Jth opinion? We would like to

estimate the function f() in:

E(qip|mipj ,−→m ip,−j)−E(qip|−→m ip,−j) = f(mipj −mip,−j). (10)

If we observed qip and had a method for estimating bE(qip|−→m ip,−j), we could estimate

this function by non-parametrically estimating:

qip − bE(qip|−→m ip,−j) = f(mipj −mip,−j) + εipj. (11)

εipj = [qip −E(qip|mipj,−→m ip,−j)] + [E(qip|−→m ip,−j)− bE(qip|−→m ip,−j)]

This estimate will be consistent if the expectation of the error term is zero for all values of

the right-hand side variable: E[εipj|mipj −mip,−j ] = 0. We know this is true for the first
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term, the expected error in the expectation E(qip|mipj,−→m ip,−j) must be zero conditional

on all functions of mipj and −→m ip,−j. It will be true for the second term so long as we

do not construct our estimate of bE(qip|−→m ip,−j) in such a way that its error is correlated

with mipj − mip,−j. Up to this point, this methodology is similar to the methodology

used for estimating exaggeration and the information content of analyst’s earnings forecasts

introduced in Zitzewitz (2001) and Zitzewitz (2002).

An important difference between the judging data and the analyst data is that in the

judging data we do not observe an objective measure of qip, so we cannot estimate (11).

What we can do instead is take the opinion of judge k to be the objective measure and then

study how our expectation of mipk changes with f(mipj−mip,−jk). This adds a term to the
error term: mipk − qip = Bik + eipk, the sum of the bias and the observational error, which

we abbreviate xipk = mipk − qip. If we use mip,−jk as our proxy bE(qip|−→m ip,−jk), then the

regression equation and error term become:

mipk −mip,−jk = f(mipj −mip,−jk) + εipj . (12)

εipj = [qip −E(qip|mipj,−→m ip,−jk)] +

[E(qip|−→m ip,−jk)−mip,−jk] +
mipk − qip

As above, the first term must be zero in expectation for all values ofmipj−mip,−jk. The
third term is xipk while the second term is equal in expectation to −xip,−jk for all values of
mipj−mip,−jk. Sincemipj−mip,−jk = xipj−xip,−jk, our identification assumption becomes:
E(xipk − xip,−jk|xipj − xip,−jk) = 0.

An easy way of ensuring that xipk − xip,−jk is uncorrelated with xipj − xip,−jk is to
include all combinations of j and k for each observation, which make them uncorrelated by

construction. For identification, however, it is necessary that xipk − xip,−jk not be related
to higher moments of the distribution of xipj − xip,−jk. Given our finding that there is a
surprising amount of information in extreme opinions, what we should worry most about

is xipk − xip,−jk being positively related to the skew in the xipj − xip,−jk. This might be
the case if judges made errors and had biases that were large in absolute value with a

small probability and if these large errors and the likelihood of making them for a given

performance were correlated. After discussing the results, we will discuss their robustness
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to this potential problem.

The slope of our estimated f() gives us the incremental signal-to-message ratio. The

signal-to-message ratio could be low due to either noise or bias. To get an understanding of

the bias-to-message ratio, we also estimate the function g(mipj −mip,−jk) = E(BIJ |mipj −
mip,−jk). This captures only the nationalistic and related biases of the judges, but should

give an indication of how the bias-to-message ratio varies with the extremeness of the

message.

Both of these functions are graphed in Figures 1 and 2 for ski jumping and figure

skating, respectively. In addition, we graph the probability of the judge being from the same

country as the athlete, conditional on the difference between her score and the average of

the others. We also graph the probability of a score being influential. A score is regarded

as fully influential if both up and down one-increment changes would affect the athlete’s

score and half influential if either up or down movements would affect the score, but not

both. For example, in ski jumping, where the athlete’s score is the average of the middle

three scores, the second highest score is fully influential, a score that is tied for the highest

is half influential, and the highest is not influential.

Figures 1 and 2 reveal that the functions f() and g() are approximately linear even for

scores that are up to 1.5 points different from the mean of the other scores in each case.

For ski jumping, this is three scoring increments; for figure skating, it is 15. This range of

scores contains 99.8 percent of the sample in each sport. Given the aggregate methods used

by the sports, scores cease to be influential at much less extreme levels, especially in figure

skating. The linearity of f() implies that there is valuable information in these scores that

is being truncated, and the linearity of g() implies that the bias-to-message or bias-to-signal

ratio of these scores is not higher. Of course, if the aggregation mechanisms increased the

weight placed on extreme scores we might also expect the bias to increase, but these results

suggest movement in this direction is likely to be optimal.

As mentioned above, f() and g() might appear artificially linear at extreme values if

judge’s errors or biases were occasionally large in absolute value and if these large errors

and the likelihood of making them were correlated for a given performance. Without data

on actual performance quality, it is impossible to resolve whether this is a problem in our

judging data. What we can do is simulate how misleading the analysis we just performed
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in the presence of the above problem.

Figure 3 presents a comparison of a estimate of f() using objective performance quality

with one that uses the method of this paper. The data is simulated assuming a panel of

9 judges. Performance quality is distributed N(0, 1) and each judge observes this quality

plus an i.i.d. noise term that is distributed N (0, 1). In addition, with 0.2 probability, 2

of the 9 judges are also affected by an additional noise term, distributed N(0, 4). Several

aspects of this setup are meant to be fairly extreme in a way that should create problems for

the methodology: the fact that only 2 of 9 judges suffer from the large error (to maximize

positive skew), that the large error is identical for the two judges, and its magnitude. The

dataset we construct includes 50, 000 simulated performances. These parameters produce a

distribution of mipj −mip,−jk with fatter tails than we observe in the data: the simulated
kurtosis is 8.5 compared with 6.2 for the ski jumping data and 4.9 for figure skating. And

all of the excess kurtosis in the simulated data comes from the large, perfectly correlated

errors that affect exactly two of the nine judges so as to create maximum difficulties for our

methodology; presumably, the excess kurtosis that exists in the real data is not nearly as

problematic.

Figure 3 suggests that whereas the actual f() function would remain roughly linear for

score differences of up to 2.9, our method would suggest that it was linear for score differences

up to 3.5. In terms of the percent of the sample, our method would lead us to truncate

the 2 percent most extreme scores, whereas if we could observe objective performance

quality we would decide to truncate the 3 percent most extreme. Notice that while the

conclusion about the incremental signal-to-message ratio is different in the 2.9 to 3.5 range,

the conclusion about performance quality is roughly the same and only begins to diverge

for score differences of greater than 3.8.

Setting truncation points optimally appears to make an economic meaningful difference

to the quality of evaluations. If can we compare the mean-squared error of three different

aggregation methods using our simulated data: the mean score, the median score, and the

mean of all scores with scores more than 2.9 different from the mean of the others truncated

at that point. Indexing the MSE of the mean score to 100, the three methods yield MSEs of

100, 70.2, and 71.7. If we exclude the observations with large common errors then the mean

minimizes MSE, but truncation at 2.9 still does quite well: 100, 149.7, 100.1. In neither

23



case does the mean of truncated scores have the lowest MSE, but it appears to be the best

method if one is uncertain of the distribution of the data.

3.6 Extreme truncation and vote trading

Two interesting cross-sport correlations emerge from the results above. First, the sports that

engage in the most truncation of extreme opinions (figure skating, ski jumping, moguls/aerials,

and snowboarding in that order) have the most nationalistically biased judging results. Sec-

ond, figure skating, a sport with extreme truncation, displays evidence of vote trading, while

in ski jumping and moguls, judges appear to compensate for each other’s biases.

These correlations do not imply a direction of causality. Figure skating has a long

history of suspicion of biased judging, and Campbell and Galbraith (1996) find evidence of

a roughly similarly sized bias in 1976, the first Olympics they analyze. The truncation of

extreme scores into “votes” is usually justified as an attempt to reduce the extent to which

one particular biased judge can influence the results, and so it is possible that the direction

of causality is from the behavior of judges to the aggregation method. But it is worth

considering whether the truncation may actually be contributing to vote trading, especially

since the results of the previous section suggest that a considerable amount of information is

being lost through truncation and that signal-to-bias ratios are roughly constant for extreme

scores.

There are at least two reasons to worry that it might be. The first is that if the

extent to which judges bias their opinions is constrained by reputational concerns, then the

truncation of judge’s opinions into votes makes the trade-off between the efficacy of biases

and their reputational costs very favorable for biasing. To see this, suppose that judges

observe q + nj , where q is the true difference between the quality of two performances and

nj is an observational error. Suppose that in one system, judges report mj = q + nj + bj ,

and the evaluation is the average of these reports across judges; whereas in another system,

the judges report only the sign of mj , and the evaluation is determined by majority vote.

In the second system, judges report a positive sign unless their observed quality difference

is below some threshold: q + nj < −bj . In the first system, the principal observes a less
noisy signal about the bj used by the judge, mj − bq, instead of simply observing whether
bj was greater than of less than −(q+ nj), so updating prior beliefs about judge’s biases is
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faster, and thus the reputation cost of biasing opinion is higher.

A second reason is that reducing judges’ opinions to votes can make reciprocal arrange-

ments easier to sustain. Voting as agreed is a bright line that makes defecting against a

reciprocal arrangement easier to detect; with continuous scores, it is more difficult to dis-

tinguish observational errors from defection against an agreement to bias a certain amount.

The 60 Minutes tape mentioned in footnote 1, of two judges attempting to signal each other

in real time about whether a vote trading agreement still applied, illustrates this difficulty.

4 Implications for judging reform

Following the figure skating judging scandal at the 2002 Olympics, four proposals for judging

reform were considered by the International Skating Union (ISU). The proposal that was

adopted at a June 2002 ISU meeting was a Canadian proposal to have 14 judges judge

each competition, but to only have nine randomly selected judges’ rankings count. All

14 scorings would be reported, along with the aggregate ranking, but which nine judges’

rankings were used would not be revealed, and which judge issued which scores would also

not be revealed. This proposal was adopted in favor of U.S. and Australian proposals that

also would randomly select 9 of 14 judgings, but would in addition change the way that

they are aggregated. The Australian proposal was to aggregate scores roughly as they are

aggregated in ski jumping: ranking skaters based on the mean of the middle five of nine

scores. The U.S. proposal was to replace the voting with a ranking based on the median

score.

In addition, the ISU agreed to study a longer-term proposal from ISU leadership for

replacing the technical merit score with the product of an objective “degree of difficulty”

rating and a subjective scoring of execution, similar to the scoring system used in aerials

and diving. In addition, the ISU proposed that it, rather than the national federations,

select which judges represent particular countries, as the FIS does in skiing.

The results of this paper yield some insights that allow us to comment on these proposals

(Table 10). First, the results on judge’s reputational concerns in Section 3.4 suggest that

allowing a central organization to select judges is likely to yield less biased judges. This is

logical, given that the economic interest of the central organization is to maintain viewer

interest in the sport (and thus revenue for the organizers), and presumably unbiased judging

25



is important to doing so.

Second, replacing a completely subjective technical merit score with a partly objective

scoring also sounds like a positive change. Aerials, which uses this system, does have the

smallest estimated nationalistic bias of the five sports studied.

Third, the Canadian proposal that 14 judges score the competition but only nine judge’s

scores count, can be considered in three separate stages: 1) expanding the number of judges

whose scores may count to 14, 2) using only 9 of the 14 scores, and 3) not revealing which

judge issued which scores. The stated reason for expanding the number of potential judges

to 14 is to make collusion more difficult to sustain, and economists would generally agree

that collusion becomes more difficult as the number of parties increases (e.g., Bain, 1956).

Having incurred the costs of using 14 judges, however, the decision to count only nine of

the scores is more difficult to rationalize. The results from aggregating 9 of the 14 scores

will simply be the results from aggregating all 14 scores plus noise (or 13 out of 14 if an

odd number is required). The rationale seems to be that the uncertainty about whether

scores will count 1/9 or 0 will lead to less collusion than if all scores counted 1/14, but, if

colluding judges care about the expected effect of their collusive arrangement on results,

they should be indifferent between these two arrangements.

While it is not clear what is accomplished by not revealing which 9 judgings were

used, not revealing which judges issued which scores should make cheating on a collusive

arrangement easier, making collusion more difficult to sustain. At the same time, not

revealing who issued which score makes it impossible for outsiders to monitor nationalistic

biases in judging, and given how we find smaller biases when scrutiny is likely to be higher,

a lack of monitoring by outsiders may lead an increase in nationalistic biases. The ISU has

addressed this concern by stating that they would keep track of which judge gave which

score and review the scores for evidence of judging biases. Whether or not revealing which

judge gave which score is a good idea depends on the extent that the ISU can be trusted

to pursue this monitoring task vigorously.

Fourth, the Australian proposal would have involved less truncation of extreme scores.

The cross-sport evidence suggests that judging biases are smaller and that more likely

to cancel each other out in sports that do not truncate extreme scores. Although this

relationship is not necessarily causal, the analysis in Section 3.5 suggests that this truncation
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involves substantial loss of information, and there are reasons to believe, as outlined in

Section 3.6, that truncation encourages vote trading. Perhaps the Australian proposal

deserves reconsideration.

5 Implications for organizations

An example of a corporate setting that is roughly analogous to Olympic judging is a pro-

motion committee in a professional services firm, in which senior partners from different

offices or practice groups meet to determine which associates to promote. The chair of such

a committee faces the problem that the partners who know each associate best are also

likely to be biased in their favor. Different committees take different approaches to this

problem: excluding partners who are likely to be biased, allowing them to participate but

correcting for the likely bias when interpreting their opinions, discouraging biased report-

ing by the partners by linking their future credibility to their track record for accuracy and

unbiasedness, or requiring them to provide evidence, as opposed to just an opinion.

Olympic judging is most similar to a committee that takes the approach of allowing

biased partners to participate and offer opinions. The organizers do not adjust for known

biases, but, as we have observed in ski jumping, sometimes the other judges do, and the

organizers can use career concerns to create incentives for limiting biases.

Unlike in sports judging, most organizations do not insist on simultaneous voting, they

instead iterate and attempt to reach a consensus. Formal voting is often viewed as a last

resort. The primary effect of iteration is to reduce the role of observational errors, since

committee members can condition their final opinions not only on their private information,

but also on the opinions of the other committee members. Committee member opinions

should differ only if members do not have common priors, if some overweight their private

information, or if they differ in their objectives, for example, due to favoritism.

The resulting reduction of observational errors makes biases easier to detect. If an

uninformed principal observes two committee members disagreeing, she is quite likely to

conclude that one or both of them is biased. The committee members are thus better off

agreeing on an immediate opinion, instead of disagreeing, appearing biased, and having the

principal average their opinions in some manner anyway. This practice is sometimes called

“having the meeting before the meeting,” in other words, reaching a consensus privately
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instead of airing differences publicly. This process is likely to result in bargaining, with

bargaining power depending on who the principal attributes bias to if the parties disagree.

A committee member with a professional relationship with the evaluatee may be more likely

to have bias attributed to them in the event of a disagreement. This can lead to the effective

reclusal of the potentially biased committee member from the decision; she can share her

information and opinion with other committee members, but if she is unable to convince

them, she is likely to conform to their opinion. On the other hand, she has a strong incentive

to seek allies in order to appear less biased, probably in exchange for pushing her allies’

candidates, creating incentives for the sort of vote trading we observe in figure skating.

Despite the differences between sports judging and most other team decision making

settings, several of the findings in Sections 2 and 3 translate into lessons for organizations.

1. Valuing fairness. The existence of compensating biases in ski jumping, and their

absence in figure skating suggests that the extent to which judges care about the

fairness of results can vary. When judges care about fairness, they compensate for each

other’s biases, producing evaluations that are less biased than they might otherwise

be. To the extent that organizations can cultivate a value of fairness among decision

makers, it can lead to nearly unbiased decision making even with biased decision

makers.

2. Using career concerns. Delegating the selection of judges to interested parties within

the organization is likely to produce biased judges, as it appears to in figure skating.

A strong but disinterested committee chair, who can adjust the credence paid to

members based on their apparent biases and who can create additional incentives for

unbiasedness as needed, is likely to improve decision making.

3. Recognizing the costs of opinion truncation. The results in Section 3.5 suggest that

truncating opinions into votes uses information inefficiently, and the discussion in

Section 3.6 suggests that it is likely to encourage bias and vote trading. But trun-

cation may be the only option if a concern for accuracy or reputational concerns fail

to restrain opinions, and committee members seek to increase their influence by ex-

aggerating their opinions on every subject. In the absence of a strong chair who can

discourage this sort of behavior, there is the possibility for multiple equilibria. In a
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good equilibrium, extreme opinions are respected and given higher weight, and com-

mittee members police themselves to ensure that they are not extreme too often. They

do this to avoid collectively slipping into the bad equilibrium, in which every opinion

is extreme, and voting becomes the only way to aggregate opinions. Maintaining the

good equilibrium, where information contained in the strength of opinions is not lost,

is important, but for the usual reasons, may be impossible in too large a committee.
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A Optimal aggregation with normal errors and biases

For simplicity, we will analyze the case with only one judge. With one judge, the principal’s

aggregate problem is one of deciding how much to update her prior belief about performance

quality q in response to an extreme or less-extreme opinion. Assume that observational

errors and biases are normal and i.i.d.: E(q|s) = q + e, q ∼ N(0, 1), e ∼ N(0, Ve) and

b ∼ N(0, Vb).
The principal’s problem is to

max
y()

E[−(y{m[s, b, y()]}− q)2],

with the agents opinion given by her first order condition as in Section 2:

m = q + e+ b · y0(m).

We will assume that this expression uniquely defines m for a given q, e, and b. This requires

that y0 does not increase rapidly for extreme scores, which turns out to be the case. The

principal’s objective function can be written:

min
y()

ZZZ
[y(m)− q]2 · f(m, q, b) · dq · db · dm

f(m, q, b) = φ(q) · φ( b

V
1/2
b

) · φ[m− q − b · y
0(m)

V
1/2
e

],

where φ() is the standard normal p.d.f. This yields a first order condition for each y(m).

We can instead write the FOC for an increment to y0(m):

−2
Z ∞

m

Z
b

Z
q
[y( em)− q] · f(q, b, em) =

Z
b

Z
q
[y(m)− q]2 · df(m, q, b)

dy0(m)

=

Z
b

Z
q
[y(m)− q]2 · b · e

Vn
· f(m, q, b),

which must hold for all m. Differentiating this expression by m yields:Z
b

Z
q
[y(m)− q] · f(q, b,m) =

Z
b

Z
q
[y(m)− q] · 2 · y

0(m) · b · e+ [y(m)− q] · [b− b2 · y00(m)] · (1− e2 · V −1e )

2Ve
· f(

y(m) = E(q|m) + E{[y(m)− q] · 2 · y
0(m) · b · e|m}

2Ve

+
E{[y(m)− q]2 · b · (1− e2 · V −1e )|m}

2Ve

−E{[y(m)− q]
2 · b2 · y00(m) · (1− e2 · V −1e )|m}

2Ve
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Solving this expression for y(m) in closed form difficult, but we can use it to describe

y(m). The first term in the expression above yields a linear scheme, y(m) = E(q|m). We
are interested in whether the slope y0(m) increases or decreases with the absolute value of

m, and thus in whether y00(m) has the same sign as m (overweighting extreme opinions) or

the opposite sign (underweighting extreme opinions) as opinions become extreme. In other

words, we are interested in the sign of y000(m) > 0 as m becomes large.

The second term has an unambiguously positive third derivative. The third term has a

positive third derivative until the expected value of e given m becomes large relative to its

variance — or equivalently, until m becomes large relative to its variance, after which it has a

negative third derivative. The fifth derivative of the third term is unambiguously negative,

so as m becomes extreme, y0(m) will change to the opposite sign of m. The fourth term

acts to dampen any curvature in y(m) for values close to zero and reinforce it for values

further away, since the third derivative of the term will be have the opposite sign as y00 for

values close to zero and the same sign as m becomes large relative to its variance.

Taking these terms together suggests that y(m) will have a positive third derivative

until the absolute value of m is some critical value, after which it will have a negative third

derivative. Simulations for values of Vb and Ve between 0.25 and 4 suggest that this causes

the sign of y0(m) to change as m is about two standard deviations from its mean. Until this

point, y0(m) is very close to linear.

Since the optimal mechanism seems to be approximated by linearity up to a critical

value, we can approximate it by analyzing this more tractable class of mechanisms. In

particular, we now assume that y(m) is α ·m, but its absolute value is constrained to be
less than c.

In response to this mechanism, the judge will report m = q + e + b · α, or ±c · a−1

whichever is closer to zero. The principal chooses α and c to maximize:

max
α,c

−
Z
q

Z
b
{
Z cα−1

m=−cα−1
(αm− q)2 · f(m, q, b)− 2

Z
q

Z
b

Z ∞

m=cα−1
(c− q)2 · f(m, q, b).

The expectation E(q|m) = m(1+α2 ·Vb+Ve)−1 = γ ·m = m ·V −1m . The first order condition

for increasing c is:

E(q|m > cα−1)− c = E(q|E(q|m) > cγ
α
)− c.

This implies c =∞ unless α > γ. To get a first order condition for α, we rewrite the first part
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of the maximization expression can be written E(m2||m| < cα−1)·(α−γ)2+V ar(q|m, |m| <
cα−1) and then differentiate:

α = γ − 1

2 ·E(m2||m| < cα−1) · [
dE(m2||m| < cα−1)

dα
· (α− γ)2 + dV ar(q|m, |m| < cα

−1)
dα

].

The variance V ar(q|m) = (1− γ)2 ·V ar(m) = (1− γ)2γ−1 for all m. Its derivative with
respect to α is 2αVb(1− γ2). Since the other term is zero when α = γ and increases with α

quadratically, this implies that α will be less than γ. This in turn implies that the optimal

c is infinite, so the condition above reduces to

α = γ − αVb(1− γ2)γ−1

= γ · [1 + Vb · (Vm − γ)]−1.

The incentive scheme is linear, its slope is less than without pre-commitment, and the slope

decreases with Vb.

Taken together, these analyses imply that any deviation from linearity should involve

some truncation of extreme scores, but that if the principal is limited to a linear scheme

with truncation at a critical value, then truncation is no longer optimal. This suggests

that the commitment value in truncating extreme scores is probably minimal, so long as

signal-to-bias and signal-to-noise ratios do not decline for extreme scores.
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Table 1.  Dataset dimensionality

Figure skating Ski jumping Moguls Aerials Snowboarding
Events 61 25 16 16 15

Olympics 4 3 2 2 2
Pre-Olympics, Olympic-level 41 17 10 14 5
Post-Olympics, Olympic-level 0 5 4 0 6
Junior level 16 0 0 0 2

Rounds/jumps 181 62 28 42 31
Compulsory (skating)/Qualifying (skiing) 59 12 11 10 0
Short/Long programs (skating)/Finals (skiing) 122 50 17 32 31

Performances 2,976 2,920 1,016 1,067 643
Scores 25,068 14,600 7,112 7,469 3,147
Unique athlete countries 54 28 21 18 28
Unique athletes 584 243 125 108 249
Performances per athlete 5.1 12.0 8.1 9.9 2.6
Scores per performance 8.4 5.0 7.0 7.0 4.9
Unique judge countries 41 15 15 11 9
Unique judges 314 75 31 15 12
Events per judge 2.0 1.7 3.6 7.5 6.1

Sport



Table 2.  Summary statistics for scores

Score type
Number of scores 
per performance Range

Minimum 
increment Mean Overall

Within 
performance

Figure skating Technical Merit (TM) 5, 7, or 9 0 to 6 0.1 4.48 0.69 0.20
Artistic impression (AI) 5, 7, or 9 0 to 6 0.1 4.72 0.61 0.19
Total (TM + AI) 5, 7, or 9 0 to 12 0.1 9.20 1.28 0.35
Ordinal placement 5, 7, or 9 1 to 32 1.0 11.11 7.11 1.59

Ski jumping Style points 5 0 to 20 0.5 17.57 1.09 0.33
Moguls Turns 5 0 to 5 0.1 4.00 0.78 0.18

Air 2 0 to 7.5 0.01 4.84 1.22 0.19
Aerials Air & Form 5 0 to 7 0.1 5.61 1.43 0.25

Landing 2 0 to 3 0.1 2.01 0.98 0.06
Snowboard halfpipe Standard Air 1 0 to 10 0.1 5.51 1.97 NA

Rotations 1 0 to 10 0.1 5.39 2.45 NA
Amplitude 1 0 to 10 0.1 5.53 1.97 NA
Overall impression 2 0 to 10 0.1 5.34 2.09 0.18
All scores 5 0 to 10 0.1 5.43 2.12 1.08

Notes:
1.

2. The within performance standard deviation of all scores for snowboarding allows for fixed effects for score type.

Standard deviation

Sport

In figure skating, each of 5, 7 or 9 judges issues scores for both technical merit and artistic impression.  In moguls, aerials, and 
snowboarding, judges are assigned different aspects of the performance to judge, and thus their scores are not necessarily 
comparable across aspects.



Table 3.  Nationalistic bias by sport

Sport Performances Scores Coeff. S.E. Overall Within perf.
Figure skating

Technical merit (TM) 2,976 25,068 0.077 0.006 0.111 0.394
Artistic impression (AI) 2,976 25,068 0.089 0.005 0.147 0.482
Technical merit + Artistic Impression (TM + AI) 2,976 25,068 0.166 0.010 0.130 0.474
Ordinal placement 2,976 25,068 -0.704 0.045 -0.099 -0.443

Ski jumping 2,920 14,600 0.145 0.011 0.132 0.443
Mogul skiing

Turns 1,016 5,080 0.084 0.010 0.108 0.479
Air 1,016 2,032 0.053 0.032 0.043 0.270

Aerials
Air & Form 1,067 5,335 0.014 0.012 0.010 0.057
Landing 1,067 2,134 0.010 0.009 0.010 0.158

Snowboard Halfpipe 643 3,147 0.099 0.091 0.047 0.092

Notes:
1.

Estimated bias in points In standard deviations

Nationalistic bias is estimated by regression scores on a dummy variable for the judge and athlete being from the same country, plus performance 
and judge country fixed effects (the same specification as in Table 4, Line 1).



Table 4.  Alternative specifications and identification approaches
Dependent variable: style/turns point score (ski jumping and moguls) or TM+AI score total (figure skating)

Panel A.  Ski jumping

Line Performance Effects Skier FEs Jump characteristics Obs. Coeff. S.E. Coeff. S.E.
(1) Fixed No No 14,600 0.145 0.011
(2) Random No No 14,600 0.148 0.011
(3a) Random Yes No 14,600 0.146 0.011
(3b) Random Yes Yes 14,600 0.144 0.011
(4a) Random Yes No 14,600 0.104 0.036 -0.040 0.015
(4b) Random Yes Yes 14,600 0.123 0.038 -0.021 0.017
Panel B.  Figure skating (TM + AI)

Line Performance Effects Skater FEs Objective characteristics Obs. Coeff. S.E. Coeff. S.E.
(1) Fixed No N/A 25,068 0.166 0.010
(2) Random No N/A 25,068 0.169 0.010
(3) Random Yes N/A 25,068 0.167 0.010
(4) Random Yes N/A 25,068 0.258 0.026 0.092 0.025
Panel C.  Figure skating (Ordinal placement)

Line Performance Effects Skater FEs Objective characteristics Obs. Coeff. S.E. Coeff. S.E.
(1) Fixed No N/A 25,068 -0.704 0.045
(2) Random No N/A 25,068 -0.712 0.045
(3) Random Yes N/A 25,068 -0.702 0.045
(4) Random Yes N/A 25,068 -2.400 0.218 -1.696 0.215
Panel D.  Mogul skiing (Turns)

Line Performance Effects Skater FEs Run characteristics Obs. Coeff. S.E. Coeff. S.E.
(1) Fixed No No 5,080 0.084 0.010
(2) Random No No 5,080 0.085 0.010
(3a) Random Yes No 5,080 0.084 0.010
(3b) Random Yes Yes 5,080 0.083 0.010
(4a) Random Yes No 5,080 -0.044 0.058 -0.128 0.077
(4b) Random Yes Yes 5,080 -0.031 0.043 -0.115 0.062

Notes:
1. All regressions include judge country fixed effects.
2.

3.

Same country Different country

Same country Different country

Same country Different country

To capture differences in conditions, judging standards, etc., the regressions that use performance random effects include fixed effects for 
meet*round combinations.
Regressions that control for jump and run characteristics include distance jumped and takeoff speed (for ski jumping) and time (for moguls), 
and interactions of these variables with meet fixed effects.

Same country Different country



Table 5.  Nationalistic biases in subsamples of the data

Panel A.  Ski jumping

Obs. Coeff. S.E.
All 11,670 0.155 0.013
Olympics 1,945 0.258 0.033
Non-Olympics (World Cup events) 9,725 0.137 0.014
Final round 7,010 0.147 0.015
Qualifying round 3,215 0.149 0.025
Final round, top 10 finisher 1,710 0.212 0.028
Final round, not top 10 finisher 5,300 0.121 0.018
Qualifying round, not-pre qualified 2,855 0.153 0.027
Qualifying round, pre-qualified 360 0.107 0.059
Team competition 1,445 0.218 0.043
Individual competition 10,225 0.147 0.013
Individual competition, K90 hill 1,725 0.232 0.037
Individual competition, K120 hill 8,500 0.133 0.014

Panel B.  Figure skating (TM+AI)

Obs. Coeff. S.E.
All 25,068 0.166 0.010
Olympics 2,134 0.128 0.028
Non-Olympics, senior 16,643 0.165 0.012
Junior 6,291 0.180 0.021
Long program 9,145 0.140 0.013
Short program 10,050 0.172 0.017
Long or short program, top 10 finisher 9,951 0.141 0.012
Long or short program, not top 10 finisher 9,244 0.183 0.020
Ice dancing 8,166 0.198 0.016
Men's, Women's, or Pairs 9,388 0.148 0.013
Women's 7,136 0.174 0.021
Men's 6,597 0.137 0.022
Pairs 2,791 0.116 0.023
Ice dancing, short or long 4,519 0.179 0.017
Ice dancing, complusories 5,873 0.224 0.029
Technical Merit (TM) 25,068 0.077 0.006
Artistic impression (AI) 25,068 0.089 0.005

Notes:
1.
2.

p-value of bias difference 
with next category

p-value of bias difference 
with next category

This table replicates the regression in Table 4, Line 1 for subsamples of the data.
To avoid a sample selection bias, which athletes are "top 10" or "not top 10" is determined by replacing 
the score in the current observation and then reranking the competitors in that contest.

Nationalistic bias

Nationalistic bias

0.065

0.038

0.091

0.052

0.007

0.114                                          
0.262

0.109                                          
0.256

0.057

0.006

0.000

0.474

0.003

0.240



Table 6.  Nationalistic bias and leniency by judge country

Panel A.  Ski jumping

Country Abrev. Coeff. S.E. Coeff. S.E. All scores

Same-
country 
athlete

Korea KOR 0.386 0.203 0.175 0.049 80 4
Slovakia SVK 0.297 0.121 0.071 0.025 617 11
France FRA 0.292 0.111 0.017 0.026 583 13
Czech Republic CZE 0.255 0.082 0.000 0.021 467 25
Slovenia SLO 0.249 0.041 0.002 0.022 1,279 104
Sweden SWE 0.246 0.230 -0.101 0.025 610 3
Germany GER 0.180 0.027 0.079 0.020 2,046 245
Austria AUT 0.153 0.027 0.103 0.020 2,246 253
Poland POL 0.145 0.057 0.091 0.026 555 53
Italy ITA 0.144 0.100 0.119 0.024 762 16
Norway NOR 0.109 0.033 -0.093 0.021 1,839 158
Finland FIN 0.081 0.034 -0.035 0.023 1,256 153
Japan JPN 0.041 0.035 0.060 0.024 900 159
Switzerland SUI 0.024 0.077 0.008 0.025 542 28
USA USA 0.008 0.078 0.014 0.023 818 27

Panel B.  Figure skating

Country Abrev. Coeff. S.E. Coeff. S.E. All scores

Same-
country 
athlete

Azerbaijan AZE 0.316 0.075 0.001 0.051 699 28
Hungary HUN 0.310 0.068 -0.064 0.051 826 34
Slovenia SLO 0.306 0.113 0.057 0.052 480 12
Romania ROM 0.300 0.109 0.024 0.052 542 13
Korea KOR 0.290 0.124 0.018 0.055 258 10
Slovakia SVK 0.248 0.079 -0.015 0.051 739 25
Uzbekistan UZB 0.231 0.095 0.016 0.055 260 18
Poland POL 0.225 0.049 -0.033 0.050 929 66
Canada CAN 0.210 0.032 -0.108 0.050 1,610 158
Italy ITA 0.205 0.046 -0.083 0.050 1,167 76
Czech Republic CZE 0.174 0.058 -0.029 0.051 889 47
USA USA 0.172 0.033 -0.087 0.050 1,387 159
Belgium BEL 0.156 0.124 -0.064 0.053 392 10
Germany GER 0.155 0.045 -0.016 0.050 1,423 80
Finland FIN 0.144 0.063 -0.055 0.051 790 39
China CHN 0.132 0.057 0.082 0.053 454 52
Australia AUS 0.132 0.051 -0.076 0.051 1,077 60
Japan JPN 0.129 0.044 0.037 0.050 1,238 83
Russia RUS 0.117 0.030 0.063 0.050 1,603 190
Bulgaria BUL 0.115 0.079 -0.028 0.051 698 25
France FRA 0.114 0.038 -0.037 0.050 1,156 114
Switzerland SUI 0.114 0.060 -0.017 0.050 1,096 43
Ukraine UKR 0.110 0.040 0.000 0.050 1,331 101
Estonia EST 0.063 0.074 0.002 0.052 575 29
Great Britain GBR 0.041 0.074 -0.238 0.051 702 29

This table reports average nationalistic biases and softness by country of judge affiliation. Leniency is measured using 
judge country fixed effects in a regression using the same specification as in Line 1 of Table 4 (i.e. with performance fixed 
effects); nationalistic bias is the interaction of the judge country fixed effects with a dummy variable for the athlete being 
from the same country as the judge.  Only the 25 countries with the most same-country athlete observations are shown for 
figure skating; all 15 countries are shown for ski jumping.

Nationalistic bias Leniency Observations

Nationalistic bias Leniency Observations



Table 7.  Variation of compensating bias with the nationalistic bias of other judges
Dependent variable: style point score (ski jumping) or TM+AI score total (figure skating)

Coeff. S.E. Coeff. S.E.
Athlete country same as judge 0.101 0.046 0.280 0.030
Athlete country represented on panel 0.086 0.051 0.256 0.030
(Athlete country represented on panel)*(Athlete country judge bias) -1.259 0.213 -0.998 0.103
Athlete finishes within two places of athlete from judge country 0.004 0.015 0.005 0.015
Observations

Notes:
1. Each column is a regression.  Regressions include performance random effects and fixed effects for athletes 

and meet*event*round combinations (I.e., they use same specification as Line 4 in Table 4).

Ski jumping Figure skating

10,100 23,890



Table 8.  Bias matrix for figure skating

Panel A.  Bias matrix

Athlete country CAN USA GER ITA JPN CHN RUS UKR FRA POL
CAN 0.150 0.036 0.034 0.085 -0.016 -0.039 -0.018 -0.047 -0.044 -0.012
USA 0.032 0.125 -0.026 -0.048 -0.039 0.009 -0.061 0.014 0.012 -0.065
GER -0.079 -0.004 0.154 0.033 0.012 -0.044 -0.029 -0.018 -0.165 -0.008
ITA -0.051 -0.030 0.004 0.130 -0.077 0.087 0.038 0.080 -0.075 -0.054
JPN 0.074 -0.023 0.003 -0.024 0.112 -0.031 -0.086 -0.071 -0.005 0.043
CHN -0.016 0.003 0.022 -0.001 -0.033 0.134 -0.099 -0.028 0.017 0.042
RUS -0.023 -0.063 -0.002 -0.040 -0.014 -0.035 0.104 -0.030 0.008 -0.061
UKR -0.126 -0.048 -0.052 -0.008 -0.031 -0.111 0.036 0.113 0.027 -0.058
FRA -0.008 -0.068 -0.076 0.005 -0.008 -0.024 -0.024 -0.059 0.091 0.040
POL -0.238 -0.227 -0.066 -0.139 0.152 0.008 -0.029 0.030 0.098 0.176

Panel B.  Summary by bloc

Average bias Bloc A Bloc B Neither
For own athletes 0.140 0.121 0.123
For athletes in Bloc A (CAN, USA, GER, ITA) -0.001 -0.028 -0.013
For athletes in Bloc B (RUS, UKR, FRA, POL) -0.074 -0.002 -0.008
For athletes in neither Bloc (JPN, CHN) 0.005 -0.023 -0.032

Judge country

Judges from 

Average d-score (i.e., difference between score and the average of the other scores given that performance) for judge-athlete country 
combination less average d-score for judge country.  Results are for the sum of TM and AI scores.



Table 9.  Characteristics of ski jumping judges chosen to judge in the Olympics

Panel A.  Softness and nationalistic bias of judges chosen and not chosen to judge in the Olympics

Mean S.D. Mean S.D. Mean S.D. (1) vs. (2) (1) vs. (3)
Ski jumping

Leniency (average d-score) -0.046 0.127 0.002 0.096 0.004 0.107 0.449 0.405
Nationalism (average d-score for 0.010 0.011 0.128 0.121 0.100 0.082 0.000 0.000
      own-country athletes less average d-score)
Deviation (average absolute d-score) 0.235 0.050 0.244 0.050 0.253 0.051 0.730 0.454

Figure skating
Leniency (average d-score, TM and AI combined) 0.040 0.114 -0.019 0.114 -0.019 0.112 0.006 0.008
Nationalism (average d-score for 0.207 0.148 0.131 0.210 0.119 0.192 0.006 0.016
      own-country athletes less average d-score)
Deviation (average absolute d-score) 0.247 0.059 0.256 0.063 0.254 0.065 0.401 0.540

Panel B.  Probit regressions predicting selection to judge in the Olympics

Obs. Leniency Nationalism Deviation
Ski jumping

Including all countries' judges 50 0.044 -0.171* -0.128
(0.127) (0.129) (0.135)

Including six countries with judges at Olympics 35 0.052 -0.219* -0.211
  (AUT, GER, JPN, NOR, SLO, USA) (0.157) (0.242) (0.242)

Figure skating
Including all countries' judges 195 0.482 0.128 -0.508

(0.307) (0.117) (0.423)
Including 19 countries with judges at Olympics 160 0.503 0.268 -0.558

(0.344) (0.160) (0.479)
Including country fixed effects 160 0.645 0.296 -0.842

(0.409) (0.197) (0.539)

for comparing means

N = 130N = 30 N = 165

N = 32

country with judge

N = 47N = 3

Not chosen fromChosen for Olympics Not chosen P-values

This table compares the pre-Olympic judging history of judges that were chosen to judge in the Olympics with those that were not.  Judges are compared on leniency 
(their average d-score, the difference between their score and the average score given a performance), nationalism (the difference between the average d-score for 
compatriots and the average for all athletes), and deviation from other judges (the average absolute d-score).  All standard errors and p-values reported are 
heteroskedasticity robust.  Marginal probit coefficients are reported; asterisks indicate significance at the 5 percent level.

(1) (2) (3)



Table 10.  Implications of the results of the paper for current proposals for reforming figure skating judging

Proposal and aspect Adopted in June 2002? Sign Rationale
ISU proposal

ISU selects individual judges, rather than national 
federations

Yes + Career concerns results suggest that FIS chooses less 
biased judges in ski jumping, while figure skating national 
federations choose more biased judges. 

Technical merit scoring replaced with objective 
degree of difficulty measure, multiplied by score 
for execution

Tabled for further study + Less nationalistic bias in aerials, which uses similar system.  
Less bias for technical merit than for artistic impression, 
which is more objective.

Canadian proposal Yes
Have 14 judges instead of 9 + Increasing number makes vote trading more difficult to 

implement
Randomly select 9 out of 14 scores to count - Adds noise to results, relative to using 13 or 14.  Should not 

deter collusion if judges are risk neutral.
Reveal all 14 scores, but not which were used ?
Do not reveal which judge gave which scores +/- Should reduce collusive agreements harder by making 

defection from them easier, but we would then need to trust 
the ISU to monitor judges for bias.

Australian proposal No
Rank skaters using mean of middle 5 scores 
instead of voting

+ Truncation of extreme scores leads to loss of information 
and may help facilitate vote trading.  Less nationalistic bias 
in sports that truncate less.

U.S. proposal No
Rank skaters using median score instead of 
voting

Weakly + Involves slightly (but only slightly) less truncation of extreme 
scores than current system.

Implications of paper's findings for desirability



Figure 1.  Signal and bias content of extreme judge opinions -- ski jumping
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Figure 2.  Signal and bias content of extreme judge opinions -- figure skating

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Difference between eighth score and mean of first seven*

E
xp

ec
te

d
 v

al
u

e 
o

f 
va

ri
ab

le
 c

o
n

d
it

io
n

al
 o

n
 d

if
fe

re
n

ce
 b

et
w

ee
n

 
ei

g
h

th
 s

co
re

 a
n

d
 m

ea
n

 o
f 

fi
rs

t 
se

ve
n

Prob(Eighth judge influential) Prob(Eighth judge from same country as athlete)

Eighth Judge's Nationalistic Bias Ninth score (Proxy for performance quality)

*  For simplicity, this analysis includes only events judged by nine judges, which are about 80 percent of the sample.



Figure 3.  Comparison of approximate and ideal method for simulated data
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