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Abstract

This paper explores information disclosure in matching markets,
e.g. the informativeness of transcripts given out by universities. We
show that the same amount of information is disclosed in all equilib-
ria. We then demonstrate that if universities disclose the equilibrium
amount of information, unraveling does not occur; if they reveal more,
some students will find it profitable to contract early.

∗We are grateful to Muriel Niederle, Al Roth, and Adam Szeidl for comments and
suggestions.
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1 Introduction

The words “grade inflation” suggest that the inflation of grades is similar
to the inflation of currencies. The analogy is very imprecise. A period of
financial inflation merely adds zeros to prices, without making a long-term
impact on the economy. Not so with grade inflation: years of grade inflation
make grades permanently less informative (if half of the class gets A’s, a
lot of information is thrown out, thus making grades more noisy). This
begs a question about costs and benefits to a school from making grades
less informative.1 Thus, in order to understand grade inflation we should
think systematically about how informative a school would like to make its
transcripts. This is the question addressed in this paper. We consider the
equilibrium amount of information that schools would like to convey in their
transcripts and offer a framework for estimating long-term costs and benefits
of reducing their informativeness. We show that even if there is no short-
run benefit from inflating grades, schools may prefer to make transcripts less
than perfectly informative. Thus, reducing the informativeness of grades
(by means of grade inflation) may be an optimal response to a changing
environment, even if employers can not be temporarily fooled by high grades.

We assume that the ability of each student and the distribution of stu-
dents among schools is given exogenously. The ability of students is perfectly
observed by schools but not by outsiders. Each school decides how much
information to reveal in its transcripts in order to maximize the average de-
sirability of placement of its alumni. Outsiders use transcripts to infer the
expected ability of students and rank them solely according to their expected
ability. The desirability of each position is common knowledge, and students
rank positions based on desirability (thus all students have the same prefer-
ences and so do all recruiters). We assume that supply of placement slots
of given desirability is fixed exogenously. This is a sensible assumption if
we think of schools as high schools and placement positions as college slots.
There is a “rent” attached to being admitted to a good college. The amount
of “rent” captured by successful applicants probably has little relation to the
quality of the application pool. We can also think of “schools” as colleges
and placement slots as admission to professional schools2, or “schools” as

1Clearly, less informative grades are good for bad students and bad for good students.
The tradeoff, however, is not obvious.

2It is a reasonable approximation to assume that professional schools do not adjust
tuition and the number of admission slots based on the ability of available applicants.
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law schools and placement slots as clerkships in the US courts3, or in general
placement slots as any jobs that have rents associated with them.

Consider competition for admission to law schools. Strategically intro-
ducing noise into transcripts may enable a school to substantially increase
placement into moderately desirable law schools at a cost of slightly reduc-
ing the number of students placed into top law schools. Essentiality, a school
changes the distribution of placement desirability of its graduates by in-
troducing noise into transcripts. Notice that the aggregate distribution of
positions does not change as a result of noisy transcripts, and so the total
desirability of placements is unchanged. However, we will see that in a broad
range of situation noise is a necessary feature of equilibrium transcripts.

The relationship between the distribution of desirability and the informa-
tiveness of grades is often not transparent. For example, one may think that
if the premium for excellence goes up, i.e. the world becomes more and more
of a “winner takes all” environment, grades should become more informative
to clearly indicate star students. However, this is not necessarily the case.
Suppose over time the difference in desirability between law schools ranked 1
and 10 increases, but the difference in desirability between law schools ranked
10 and 20 increases even more (one may think of a law school’s desirability
as a fixed effect that it has on its students’ subsequent wages). Then the
equilibrium amount of noise in transcripts should increase, because it be-
comes more profitable to use pooling, thus “minting” more students of the
top ten level. The number of students in the tenth-ranked law school does
not change, rather the equilibrium expected ability of students going there
increases.

The change in the expected ability of students in the tenth-ranked school
is not due to the change in the distribution of true ability in the student pop-
ulation; the latter is exogenously fixed. Rather, it is due to schools varying
the amount of noise in their transcripts, thus changing the distribution of
expected ability. The more noise the transcripts contain, the less informative
they are, and hence the more compressed the distribution of expected ability
is. In Section 3 we show that the amount of information disclosure can be

3The pay of clerks can be viewed as determined exogenously. There is a more or less
clear hierarchy of clerkships in terms of desirability. We can assume that post-clerkship
wages of lawyers are a sum of ability and enhancement of human capital obtained during
the clerkship. Then, the desirability of a clerkship can be defined as the enhancement of
human capital obtained during clerkship net of costs associated with it. If the ability of
clerks changes the desirability of clerkship need not change.
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meaningfully quantified by the aggregate distribution of expected ability.
Theorem 1 establishes that both the equilibrium amount of information

disclosure and the utility of every employer are the same in all equilibria.
The equilibrium information disclosure is independent of how students are
distributed among colleges. It is solely determined by the aggregate distri-
butions of student ability and position desirability.

We also show that there is no unraveling under the equilibrium infor-
mation disclosure. Intuitively, if a student finds it profitable to withhold
some information by signing a contract earlier, his school would also find it
profitable to exclude this information from its transcripts. Thus, if schools
behave optimally and disclose the equilibrium amount of information, a stu-
dent can not benefit by moving early and getting “insurance” against further
information. Moreover, we show that if more than the equilibrium amount
of information is disclosed (for example, if students can signal their ability
using test scores not controlled by schools), some students do benefit from
contracting early. These results allow us to better understand when unrav-
eling can be explained by the demand for insurance.4

The rest of the paper is organized as following. In Section 2 we introduce
the formal model of grade inflation. Section 3 defines equilibrium information
disclosure and shows some of its properties. Section 4 considers unraveling
and shows that it can not happen under equilibrium information disclosure.
Section 5 concludes.

2 The Model

Consider a population of students, each with some level of ability—a real
number a in the interval [a, a]. Each student attends one of I schools. We
assume that the distribution λi(a) of ability levels at school i is given exoge-
nously and is common knowledge. Without loss of generality we assume that
schools observe the true abilities of their students5.

Each school decides how precise to make its transcripts. A school can

4See Li and Rosen (1998), Li and Suen (2000), Suen (2000) for the models of insurance-
driven unraveling.

5Suppose nobody observes the true ability, but each school observes a signal regarding
the true ability of each of its students. Based on this signal a school can form expectation
about a student’s ability. All results in the paper continue to hold if instead of “true
ability” we use “expected ability based on information available to schools.”
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make transcripts completely informative, revealing the ability level of each
student, or it can make them completely uninformative, or anything in be-
tween. For example, Harvard Business School has a policy that prohibits
employers to ask students about grades. The only information the school
reveals is whether a student is in the top decile of the class.

More formally, a school chooses a transcript structure, which consists of
two parts. First, it chooses a set of all possible transcripts. Second, it chooses
how to map abilities of students into these transcripts. This mapping may
be stochastic, i.e. for each ability a there is a probability distribution over
the set of transcripts that a student of this ability can get.

Definition 1 A transcript structure TS is a pair (T, f(.)), where T is a set
of possible transcripts, and f(t|a) is a probability density function with which
a student of ability a ∈ A receives transcript t ∈ T .6,7

On the other side of the market is a continuum of available positions.
The desirability of each position, q ∈ [q, q], is common knowledge. The
distribution of desirability has density µ(q). We assume that the mass of
positions is equal to the mass of students.8

After schools announce transcript structures and give transcripts to their
students, employers can compute each student’s expected ability conditional
on his transcript.9 Notice that generally the distribution of expected ability
(conditional on transcripts) will be different from the distribution of true

6Here and elsewhere in the paper, in the interests of clarity we sacrifice some rigor by
omitting such technical details as integrability of f(t|a) on T ×A (to be able to compute
conditional expectation) and its treatment in the space of generalized functions (to allow
for point masses).

7This definition is very similar to the definition of “information structure” in Berge-
mann and Pesendorfer (2001). That paper, however, considers information disclosure in
a very different environment—a single-seller, single-object auction, whereas we consider a
matching market.

8This assumption is not too restrictive because unemployment can be considered as a
position of the lowest desirability, and because if the mass of positions is greater than the
total mass of students, the same subset of positions gets assigned a student under any
information disclosure.

9We assume that schools can commit to their transcript structures. However, even if
they could not, the equilibrium information disclosure would still remain an equilibrium
outcome of the resulting cheap-talk game (see Crawford and Sobel (1982) for a formal
analysis of cheap-talk games). On the other hand, there are many other equilibria in the
resulting cheap-talk game, in some of which even more information may be disclosed.
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ability (unless transcripts are completely informative, i.e. any two students
of different true abilities get different transcripts). In the Harvard Busi-
ness School example above, the resulting distribution of expected ability is
concentrated on two points (assuming that no information aside from the
transcript is available to recruiters), even though true ability could have any
distribution.

Students rank schools by desirability, and employers rank students by
expected ability. The resulting rankings induce a unique (up to permutations
of equally desirable positions) assortative stable matching between students
and positions. Note that the assumption that employers are risk-neutral and
rank students solely by expected ability allows for a wide variety of employer
payoffs, including the ones commonly assumed in the matching literature—
e.g. Suen (2000)—F = θ(a)φ(q); Li and Suen (1998)—F = aq, F = aq2;
Haruvy, Roth, and Unver (2001)—F = aq.10

Each school selects a transcript structure to maximize the average desir-
ability of positions obtained by its students. Each school is small relative
to the labor market and is a “price taker”—its actions have no effect on
placement of students of a given expected ability.11

The following example is an illustration of our model.

Example 1. Consider a simple setup: student abilities at each school are
distributed uniformly on [0, 100], and position desirabilities are distributed
uniformly on [0, 200]. If all schools fully reveal student abilities (e.g. set
t ≡ a), the resulting mapping from abilities to position desirabilities is linear
(Q(a) = 2a) and no school can benefit by deviating. Thus fully informative
transcripts form an equilibrium, and, as we later show in Corollary 2, no
other equilibria exist.

Let us now see what can happen out of equilibrium. Suppose for an

10This is true because as long as the output of a worker is a function of his ability, we
can find a rescaling of ability such that a particular firm is indifferent between having
a worker of ability a0 for sure and a worker of uncertain ability with expectation a0.
However, we do have to assume that this rescaling is the same for all firms. This does not
preclude a possibility of complementarity between worker ability and position desirability:
for example, it is consistent with our model if the output of a worker in a firm of desirability
q is a product of his ability and some function of desirability, g(q)a, because Ea[g(q)a] =
g(q)Ea[a].

11This can be reconciled with a finite number of schools using the standard general
equilibrium approach—assume that there are I types and an infinite number of schools of
each type.
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exogenous reason all schools but one inflate grades and thus make their tran-
scripts noisy. Namely, suppose a student of ability a receives transcript t—a
random draw from U [a, a + 100]. Then transcripts range from 0 (the least
able student with the least lucky draw) to 200 (the most able student with
the most lucky draw). The distribution of transcripts is triangular with the
peak at 100. If t ≤ 100, the true ability could be anywhere from 0 to t (dis-
tributed uniformly on this interval, since both noise and the underlying true
ability are uniform and independent) and the expected ability is t/2. Simi-
larly, if t ≥ 100, the distribution of true abilities of students with transcript
t is uniform on [t − 100, 100] the expected ability of a student conditional

on his transcript is also given by â(t) = E[a|t] = (t−100)+100
2

= t
2
. Thus â

has triangular distribution F with the peak value of 1
50

at 50. A student of
expected ability â gets a position of the same rank as his own. This student
is better than

∫ â

0
dF fraction of the student population, and thus gets a po-

sition of desirability Q(â) = 200
∫ â

0
dF . Computing the integral, Q(â) = â2

25

for â ≤ 50 and 200− (100−â)2

25
for â ≥ 50; Q(â) is S-shaped.

To solve for the best response of U-State (a representative school) to this
form of grade inflation, notice that it will pool together students from the
concave part of Q(â) until the amount gained by the marginal added student
a∗, Q(a∗+100

2
) − Q(a∗), equals the total amount lost by the pooled students

of higher ability due to the decrease in the average pool ability, (100 − a∗)·
Q′(a∗+100

2
)

2
. Thus,

Q(a∗+100
2

)−Q(a∗)
100−a∗

2

= Q′(
a∗ + 100

2
). (1)

Solving (1), we find that the best response of U-State is to reveal ability
truthfully if it is less than a∗ and pool together all students with ability above
a∗, where a∗ = 100

7
(3−

√
2). Notice that the best response to grade inflation

of a better than average school that has a distribution of student types given
by U [50, 100] is to make the grades completely uninformative.

3 Equilibrium Information Disclosure

In our setup, the behavior of students and positions is straightforward—they
get matched to the agent of highest quality available to them on the other
side of the market (in the next section we give students and positions some
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flexibility by allowing them to sign contracts earlier). Thus, we focus on the
actions of schools and the resulting transcript structures. Transcript struc-
tures form an equilibrium if no school can increase the average desirability
of its students’ placement by changing its transcript structure.

The main result of this section is that in all equilibria employers of a
given desirability get workers of the same expected ability (even though the
distributions of workers they get may be different). This result holds even
if we allow the distributions of student abilities within schools to change, as
long as the distribution of ability in the entire student population remains
the same. Before we prove the result, we present several properties of an
equilibrium.

3.1 Properties of an Equilibrium

In this subsection we establish several lemmas describing some interesting
properties of an equilibrium. These lemmas are also used later to prove
the main results. In the lemmas and all subsequent results we assume that
density functions of position desirability and student ability in each school
are atomless, continuous, and have full support on closed intervals. We also
assume that if all abilities are revealed truthfully, function QT (a) mapping
ability level a to position desirability QT (a) of the same rank does not switch
from convexity to concavity infinitely often (i.e. there exists a finite sequence
of ability levels ai, starting at the lowest and ending at the highest true ability,
such that QT is convex or concave on each interval [ai, ai+1]).

We first show that in equilibrium there is a one-to-one mapping from ex-
pected ability to position desirability, i.e. students of the same expected abil-
ity get equally desirable positions. This allows us to talk about this mapping
as an invertible function Q(â), with the inverse function A(q). A(Q(â)) ≡ â.

Lemma 1 In equilibrium, any two students of the same expected ability â
obtain equally desirable positions.

Proof. See Appendix.
Function Q(â) is monotonically increasing. This, however, does not nec-

essarily mean that a student of a higher true ability will get matched to a
better position than a student with a lower true ability: if a school gives
out transcripts that are not fully informative, the lower ability student may
receive a better transcript than higher ability student and thus get a better
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position. If in a given equilibrium better students always get better tran-
scripts we say that the equilibrium is fair.

Definition 2 An equilibrium is fair if for any two students the more able
one secures a position that is at least as good as the position secured by the
less able one.

Definition 3 An equilibrium is fair at a particular value of position desir-
ability q if there is an ability level that is necessary and sufficient for receiving
a position of this quality. More precisely, equilibrium is fair at desirability q
if for any δ > 0 there exists a positive ε < δ and ability levels aL and aH such
that all12 students who are hired into positions of desirabilities [q − ε, q + ε]
have ability in the interval [aL, aH ] and among the students with ability in the
interval [aL, aH ] nobody receives positions of desirability outside the interval
[h− ε, h + ε].

It is straightforward to show that an equilibrium is fair if and only if it
is fair at every position desirability.

Another property that we introduce is “connectedness.” We will say that
an equilibrium is connected if, roughly, there exists a sequence of schools,
from best to worst, such that the first one produces some students of the
highest expected ability in the population, the last one produces students
of the lowest expected ability, and each school in the sequence produces a
positive mass of students who are worse in expectation than the next school’s
best student. The following definition formalizes this idea.

Definition 4 Let âL be the lowest and âH the highest expected ability levels
produced in an equilibrium. Then we say that the equilibrium is connected if
for any point â ∈ (âL, âH) there exists a school that produces students of all
expected abilities in some ε-neighborhood of â.

Connectedness is a mild restriction. Indeed, if at least one school gives out
some transcripts implying the worst and the best possible expected abilities,
and everything in between, this restriction is satisfied.13

Desirability mapping Q(â) is defined on [âL, âH ] and is monotonically
increasing. We are now ready to characterize it further. Suppose a school

12Up to a set of measure zero.
13In the appendix we show that a sufficient condition for the existence of a connected

equilibrium is for schools to be symmetric.
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produces students of expected abilities b and c. This could only be optimal
for the school if by mixing students of these abilities it could not raise its
payoff, i.e. if αQ(b)+(1−α)Q(c) ≥ Q(αb+(1−α)c) for any α ∈ [0, 1]. Since
this reasoning can be applied to every pair of points, and in a connected
equilibrium there is a school producing students in a neighborhood of any
point, Q(â) has to be convex.

On the other hand, if a school does mix in any neighborhood of some
desirability ν0, i.e. the equilibrium is not fair at that point, then it has to be
the case that Q(â) is concave there—otherwise the school could do better by
producing students of expected abilities ν0 − ε and ν0 + ε. If the equilibrium
is unfair on an interval, Q(â) thus has to be both convex and concave there,
and therefore linear.

Conversely, if Q(â) is strictly convex at a certain expected ability level â,
it is fair at Q(â). Moreover, it is unprofitable for a school to mix students of
abilities higher than â and lower than â, and so all more able students get
positions better than Q(â) and all less able students get positions worse than
Q(â). The following three lemmas summarize these results.

Lemma 2 In any connected equilibrium function Q(â) is convex.

Lemma 3 Suppose for some range of desirability [ν1, ν2], a connected equi-
librium is not fair. Then Q(â) is linear in â on[A(ν1), A(ν2)].

Lemma 4 If Q(â) is strictly convex at â, then schools do not mix students
of ability higher than a with students of ability lower than â.

Our final lemma in this section shows that the lowest expected ability
produced by schools in the job market is equal to the lowest true ability.
This is similar to the “lowest type not signalling” in a separating equilibrium
of a signalling game.

Lemma 5 In a connected equilibrium, let âL be the lowest expected ability
level, and aL be the lowest true ability level. Then âL = aL.

Proof. See Appendix.
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3.2 Uniqueness of the Equilibrium Amount of Infor-
mation Disclosure

In this section we show that the equilibrium amount of information disclosure
is unique. We start with the definition that makes the words “amount of
information disclosure” precise. Let τ denote a profile of transcript structures
and let F denote the distribution of expected abilities generated by τ . Note
that if each school introduces more noise in its transcripts, the resulting
distribution of expected abilities becomes more compressed.14 This leads to
a natural partial ordering on profiles of transcript structures.

Definition 5 Profile of transcript structures τ is more informative than pro-
file of transcript structures τ ′ if distribution F of expected abilities generated
by τ is second-order stochastically dominated by distribution F ′ of expected
abilities generated by τ ′.15

This partial ordering has two extreme elements: the completely uninfor-
mative profile, which has zero variance, and the profile revealing all student
abilities, which has the highest possible variance.16 Also notice that if two
profiles produce different distributions of expected student abilities, the re-
sulting desirability mappings Q1(â) and Q2(â) will also be different, and so
identical desirability mappings can only be generated by identical distribu-
tions of expected abilities in the student population.

We are now ready to state and prove the main result of this section. It says
that in all connected equilibria function Q(â) is the same or, equivalently,
the same amount of information is disclosed. The equilibrium amount of
information is independent of how students are assigned to schools—only
the aggregate distribution of student abilities and the distribution of position
desirabilities matter.

14To add noise, school i creates new transcript structure (T ′
i , f

′
i(t

′|a)) where f ′
i(t

′|a) ≡
f ′

i(t
′|t(a)); (Ti, fi(t|a)) is the old transcript structure. If τ ′ is the new profile of transcript

structures, and F ′ is the distribution of expected abilities corresponding to τ ′, then F is
a mean-preserving spread of F ′. This is true because τ ′ is obtained by mixing students of
different expected abilities under τ .

15Slightly abusing terminology, we will identify different transcript structures if they
generate the same distributions of expected student abilities. For example, a transcript
structure that gives the same grade to every student is, for our purposes, the same as a
transcript structure that gives completely random grades to all students.

16It is clear that a more informative profile has a higher variance than a less informative
one, since the former is a mean-preserving spread of the latter.
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Theorem 1 Suppose there is a connected equilibrium with desirability map-
ping Q1(â). Now suppose some students are exogenously moved to different
schools17, and there is a new connected equilibrium with desirability mapping
Q2(â). Then Q1(â) = Q2(â).

Proof. See Appendix.
A straightforward corollary is that when there are two equilibria in a

market, their desirability mappings coincide.

Corollary 1 Suppose there is a market that has two connected equilibria,
with desirability mappings Q1(â) and Q2(â). Then Q1(â) ≡ Q2(â).

Another corollary is that if truthful revelation of abilities, i.e. no grade
inflation, is an equilibrium, then there are no other connected equilibria.

Corollary 2 Suppose there are two connected equilibria in a market, and
one of them is fair. Then the other one also has to be fair, and therefore the
same.

Proof. By Corollary 1, desirability mappings for these two equilibria have
to be the same. Therefore, distributions of expected abilities generated in
these equilibria also have to be identical (since they are uniquely determined
by the mapping and the distribution of position desirability). But the fair
equilibrium is strictly more informative than any unfair one, and so the
second equilibrium also has to be fair, hence the same.

4 Unraveling

This section explores unraveling, i.e. contracting between students and po-
sitions before full information about the former is available. The literature
on unraveling broadly divides the causes of early contracting into two cate-
gories: strategic considerations that only arise in discrete environments and
the demand for insurance, which can arise in both discrete and continuous
frameworks. We focus on the insurance aspect of unraveling.

There is a close, albeit not obvious, connection between information dis-
closure and unraveling. Theorems 2 and 3 show that if the equilibrium

17I.e. aggregate distribution of student abilities remains the same, but distributions of
abilities within schools change.
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amount of information is revealed, no unraveling occurs. Consequently, if
schools can control the amount of information disclosed to potential employ-
ers, the insurance reason for unraveling disappears. The intuition is simple:
in equilibrium, due to convexity of Q(â), the expected position desirability
that a student will get tomorrow is higher than the position desirability that
he could get today.

That there is no unraveling under the equilibrium amount of informa-
tion disclosure seems surprising—after all, imagine all positions have similar
desirability except for a few which are terrible, e.g. unemployment. Then
one might think that students would be eager to sign contracts earlier to
avoid this outcome. However, as the following example shows, this does
not happen. What happens instead is that equilibrium distribution of tran-
scripts “mimics” the distribution of desirability—a small group of students
gets very bad transcripts, and the rest get compressed transcripts with little
information beyond being much better than the bad transcript.

Example 2. Suppose there are positions of five desirability levels: 0,
110, 120, 130, and 140. Each has mass .2. At each school, ability is dis-
tributed uniformly on [0, 100]. First, note that it is not an equilibrium for
all schools to lump all students into one category. If they do, then a school
can profitably deviate by separating a small fraction of the worst students
into a new category. Second, providing fully informative signals is not an
equilibrium either—in this case a school can achieve the average desirability
of placement of 120 by pooling all students together instead of 100 by fully
separating them. Thus, schools have to partially mix in equilibrium.

The following transcript structure is an equilibrium of the market. There
are five possible transcripts—we’ll call them A, B, C, D, and E, from best
to worst. Entries in the following table are the probabilities of receiving a
particular transcript for students of different ability levels.

E D C B A
a ≤ 20 1 0 0 0 0

20 < a ≤ 56 0 7
11
· 5

9
18
33
· 4

9
15
33
· 4

9
4
11
· 5

9

56 < a ≤ 60 0 0 1 0 0
60 < a ≤ 64 0 0 0 1 0

a > 64 0 4
11
· 5

9
15
33
· 4

9
18
33
· 4

9
7
11
· 5

9

The expected ability of a student with the worst transcript, E, is equal
to 10. â(D) = (7 ·38+4 ·82)/11 = 54, â(C) = 58, â(B) = 62, and â(A) = 66.
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The resulting mapping Q(â) is linear: Q(â) = 5
2
(â − 10), and so a school

can not increase the average desirability of placement by deviating from this
transcript structure.

Notice that under this equilibrium there is no unraveling (or, more ex-
actly, no incentive to unravel) since students become effectively risk-neutral.
Consider a student whose first-year transcript indicates an expected ability
level corresponding to a particular job desirability. This student can secure
a job corresponding to his current expected ability or he can wait for second-
year grades. In the absence of private information about ability the expected
change in ability implied by the transcript must be zero. It is easy to see
that the expected change in position desirability can not be negative as a
result of arrival of new information.

Even if students did have private information, unraveling would still not
occur, and the result would in fact become even stronger. In the absence of
private information unraveling is a matter of indifference for both students
and positions. If students do have private information, adverse selection
works against unraveling, because the lowest ability students have higher
payoff from unraveling than observationally equivalent students of higher
ability. Essentially, only the lowest ability students are eager to unravel, and
unraveling can not occur under equilibrium information disclosure except for
a set of measure zero.18

In the remainder of the section, we first present a simple two-period model
where no information is available in period 1, which is very similar to the
model of Suen (2000). This similarity brings into focus the fact that the
schools’ ability to control information undermines the insurance reason for
unraveling. We then move to a more general framework, where new infor-
mation arrives continuously, and show a striking result—“no unraveling”,
i.e. contracting at the last possible moment, after all information becomes
available, is an equilibrium only if the transcript structures eventually re-
vealed by the schools form an equilibrium, and is not an equilibrium if more
information is revealed.

18It is straightforward to make the above statement entirely formal.
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4.1 Two-period Model, No Unraveling under Equilib-
rium Information Disclosure

Suppose students stay in school for 2 periods. In period 1 no information
about them is known, and so for all students in school i expected ability
in period 1 is the same, âi. A student has no private information about his
ability19. Suppose employers can hire a student in either year of study based
on the information available in his transcript at that period, and the hiring
contracts are binding.

Theorem 2 If schools’ transcript structures in period 2 form a connected
equilibrium, then no position can increase the expected ability of its match by
making an early offer.

Proof. Take a student from school i in period 1. His expected ability in
period 1 is âi. If he waits until period 2, he will get a position of desirabil-
ity Q(â2). From the law of iterated expectations, Ei[â2] = âi. Desirability
mapping Q(â2) is convex, and therefore Ei[Q(â2)] ≥ Q(âi). Thus, a student
will only accept an early offer from a position that is at least as desirable
as Q(âi). But positions of desirability Q(âi) and higher get a student of ex-
pected ability at least âi if they wait until period 2, and so can not benefit
form moving early.

4.2 Continuous-Time Model of Information Arrival

We now set up a continuous-time model of information arrival, and show a
close connection between unraveling and equilibrium information disclosure.

Students are in school from time t = 0 until time t = T. At time 0
no information about a student is known except for the school he attends.
While the student is at school, new information arrives continuously and is
added to his transcript (we assume that information about students can not
disappear). Namely, at each time t a potential employer can compute the
student’s expected ability ât based on the current transcript. Since employers
use Bayes’ rule to form beliefs about a student’s expected ability, the drift

19Allowing for private information does not change the result, except that the 0-mass of
students and firms who are indifferent between contracting in periods 1 and 2 is of lower
quality due to adverse selection.
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term must be zero and the process is a martingale. Consequently, ât follows
a diffusion process

dât = σ(·)dzt, (2)

where we assume σ(·) to be a bounded continuous function of ât and t, such
that the process does not leave the interval [aL, aH ] and for all â ∈ (aL, aH)
σ(â, T ) > 0. We also assume that for some t < T function Q̂(ât′ , t

′) =
E[Q(âT )|ât′ ] is twice continuously differentiable for all t′ ∈ [t, T ].20 Whenever
expected ability follows such diffusion process we will say that information
arrives gradually.

Each position’s desirability is common knowledge throughout the game,
and any student-position pair can enter into a binding match any time during
the game. Unraveling occurs if at some time t < T there is a pair S and P
that finds it profitable to sign such a contract.21

We now claim that it is an equilibrium for students and firms to sign
contracts at time T without unraveling if transcript structures generated by
schools on day T form an equilibrium. If more than equilibrium amount of
information is disclosed, some students and employers will find it profitable
to sign contracts earlier. The intuition for the first statement is the same
as in Theorem 2. The intuition for the second statement is that if more
information is revealed, some portion of the resulting mapping Q(âT ) will be
concave, thus making some students effectively risk-averse.

Theorem 3 Suppose that information about ability of students arrives grad-
ually (see equation (2)). If at time T transcripts contain an equilibrium
amount of information then it is an equilibrium for all students and posi-
tions to wait until time T to sign contracts. If at time T transcripts contain
more than an equilibrium amount of information then some agents are strictly
better off not waiting till time T to sign contracts.

Proof. See Appendix.

20More formally, Q̂(ât′ , t
′), is twice continuously differentiable on the set of points

{(a, t′)|t′ ∈ [t, T ], a is in the domain of Q̂(·, t′)}.
21It is profitable for the pair to sign such a contract if by waiting till time T P would get

a student of expected ability no higher than the expected ability of S given the information
available at time t; S, in expectation, would get a position of desirability no higher than
that of T ; and at least one of these two inequalities is strict.
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5 Discussion

Our results hinge on the assumption that the supply of jobs of various de-
sirability is fixed exogenously. However, as long as there are rents associated
with at least some positions the model remains relevant. Suppose the desir-
ability of some jobs is fixed exogenously (just like in the case of clerkships,
where work conditions and wages are fixed and are not adjusted depending
on the ability of the successful applicant.) Wages (and thus desirability) of
other positions are chosen by employers in a profit maximizing manner—we
can call these positions competitive market jobs. Productivity of workers
in competitive market jobs is proportional to workers’ ability level. In this
case the distribution of desirability of jobs would adjust in response to any
transcript structure so that the average ability of workers at any competitive
market job is proportional to the wage. (If all jobs where competitive market
jobs, any transcript structure is an equilibrium outcome and desirability is
always linear in ability.) However, if some jobs are associated with rents the
desirability may increase faster than linear in ability. In other words, our
model remains relevant for jobs at the right tail of desirability distribution.22

Notice that even if schools compete for students, our results remain rel-
evant. Indeed, in a two-stage framework (competition first, grade inflation
second) the equilibrium amount of information disclosure is not affected, be-
cause it only depends on the distribution of ability in the aggregate student
population23. Also note that we may observe noisy transcripts even if each
student knows his ability before starting school and if schools can commit
to fully informative transcripts. Of course, in the absence of transfers, if
all students know their ability before entering schools pooling is no longer
an equilibrium, however, if transfers are allowed, we should observe pooling
because less able students are willing to pay to be pooled with able students.
In fact, the equilibrium desirability schedule Q(·) remains unchanged if stu-
dents could negotiate with each other who pools with whom. (Merit based
fellowships might serve a role of transfer payments.)

Another assumption that we made is that a student’s ability is exoge-
nously fixed. If learning entails costly effort, noisy transcripts reduce the

22Note that in this model the payoff to employers that offer jobs with rent is not specified,
all that matters that these employers prefer to hire candidates with the highest available
expected ability.

23This argument hinges on the assumption that schools can not commit to informative
grades and that there is a range of students of various abilities attending each school.
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effort of at least some students (Becker 1982). However, the efficiency loss
may be small, because loss in ability is partially compensated by saved effort.
At least in theory, grade inflation does not necessarily reduce efficiency. If
signaling high ability is merely a ticket to high-rent jobs, then noisy tran-
scripts may be welfare improving. Our present model is not rich enough
to analyze efficiency implications of grade inflation, and extending it is an
interesting area for future research.

One can also consider the short-term benefits of inflating grades and costs
of deflating them. If there are “seignorage” benefits from raising grades, a
school may choose to overinflate and suffer the consequences later. Incorpo-
rating such short-run effects is an interesting topic for future analysis.

It is often said that “something should be done about grade inflation.”
Our analysis, however, shows that making transcripts more informative may
make some schools worse off. This is the case whenever the highest expected
ability under the equilibrium information disclosure is lower than the highest
true ability in the population. Also note that if transcripts at the time of
graduation are “too informative” unraveling will occur.

In some markets unraveling is a fact of life. For instance, it is well doc-
umented that the market for federal judicial law clerks in the US courts has
unraveled (Avery, Jolls, Posner, and Roth 2001). Many market participants
view unraveling as a serious problem.24 In light of our model we believe that
unraveling may occur in that market because law schools can not control the
amount of information released about students abilities. Indeed, achieve-
ments like being an editor of a law review speak volumes about a student’s
ability, yet this information is not a part of the transcript and thus a school
can not suppress this information.

References

[1] Avery, Christopher, Christine Jolls, Richard A. Posner, and Alvin E.
Roth (2001), The Market for Federal Judicial Law Clerks, University of
Chicago Law Review, 68, 3, Summer, 2001, 793-902.

24Avery et. al. cite many colorful quotes from judges and students, such as “The
unseemly haste to hire law clerks is a disgrace to the federal bench” and “Some judges
scrapped decorum and even bare civility. One federal district court judge asked a student
to sneak into his office on a Sunday in January, through the service entrance. His court had
agreed not to conduct early interviews, he explained, and he wanted to cheat in secret.”

18



[2] Becker, William E., Jr. (1982), ”The Educational Process and Student
Achievement Given Uncertainty in Measurement,” The American Eco-
nomic Review, Vol. 72, No. 1. (Mar., 1982), pp. 229-236.

[3] Bergemann, Dirk and Martin Pesendorfer (2001), Information Structures
in Optimal Auctions, mimeo, Yale University.

[4] Crawford, Vincent P. and Joel Sobel (1982). Strategic Information Trans-
mission, Econometrica, 50, 6. (Nov., 1982), pp. 1431-1451.

[5] Haruvy, Ernan, Alvin E. Roth, and M. Utku Unver (2001), The Dynamics
of Law Clerk Matching: An Experimental and Computational Investiga-
tion of Proposals for Reform of the Market, mimeo, Harvard University.

[6] Li, Hao and Sherwin Rosen (1998), Unraveling in Matching Markets,
American Economic Review, 88(3), June 1998, pp.371-387.

[7] Li, Hao and Wing Suen (2000), Risk Sharing, Sorting, and Early Con-
tracting, Journal of Political Economy, 108(5), pp. 1058-91

[8] Roth, A.E. and X. Xing, Jumping the Gun: Imperfections and Institu-
tions Related to the Timing of Market Transactions, American Economic
Review, 84, September, 1994, 992-1044.

[9] Suen, Wing (2000), A Competitive Theory of Equilibrium and Disequilib-
rium Unravelling in Two-Sided Matching, RAND Journal of Economics,
31(1), pp. 101-120.

19



A Proof of Lemma 1

Suppose in equilibrium students of expected ability â get jobs of desirabilities
from q1 to q2, q1 < q2

25 Let q̂ be the average desirability that students of
expected ability â get. q1 < q̂ < q2. Since there is a positive mass of students
of expected ability â, there must be at least one school producing a positive
mass of such students. This school has to include some students of lower
and some students of higher ability in this mass. Thus, it can select a small
subset from the mass (say, ε-share of the mass) such that its expected ability
is â− δ, where δ is also small. Then the remaining mass has expected ability
higher than â, and therefore all students there get positions of desirability q2

or higher. For sufficiently small ε and δ, the net change in average desirability
is positive, i.e. the school was able to improve upon its equilibrium transcript
structure—contradiction.

B Existence and Connectedness of a Sym-

metric Equilibrium in a Symmetric Mar-

ket — Sketch of the Proof

Theorem 4 In a market where all schools have identical distributions of stu-
dents, there exist a symmetric equilibrium in pure strategies, and this equi-
librium is connected.

Proof. Existence. Let S be the set of school’s strategies. Let B(s) be the
best responce correspondence—the set of best responces for a school given
that all other schools play s. We need to show that B(s) has a fixed point.

Set S is the set of distributions that second-order stochastically dominate
the underlying distribution of student abilities. S is convex (if each of two
distributions dominates F , their average does too), compact, and the payoff
function is continuous on S (the metric that we use is L2; if the distance
between two distributions is zero, they can be identified since all schools’
payoffs are identical. Thus, by the generalization of Kakutani’s Fixed Point
Theorem (Glicksberg 1952) there exists distribution s∗ such that s∗ ∈ B(s∗).

25It does not matter for the proof whether this is an open or closed interval. What’s
important is that all students of expected ability higher than â get a job of desirability q2

or higher.
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Connectedness. Now suppose this equilibrium is not connected. This
implies that there is an interval (a, b) such that no school produces students of
ability in this interval, but each (since the equilibrium is symmetric) produces
positive masses of students on both sides of the interval, i.e. for any open
interval containing a or b. But then the school can increase its payoff by
mixing some students of ability slightly below a and some students of ability
slightly above b so that the expected ability in this mix is equal to a.

C Proof of Lemma 5

It is clear that âL ≥ aL, since it is impossible to produce students of expected
ability lower than the lowest true ability.

Suppose âL > aL. Take a school that has students of true ability aL

(i.e. a positive mass of students of abilities (aL, aL + ε) for any positive ε).
Since the school does not produce any students of ability below âL, it has
to “bundle” students in the interval (aL, aL + ε) with higher ability students
(0 < ε < âL − aL). But then, since Q(â) is increasing and convex, the
school would increase the average desirability of placements of its students
by “unbundling” these low ability students—contradiction.

D Proof of Theorem 1

Suppose Q1 6= Q2. From Lemma 5 we know that they are defined on inter-
vals starting at aL, and Q1(aL) = Q2(aL). Let aD be the first point where
these functions begin to differ, i.e. aD = sup{a|∀a′ < a, a′ ≥ aT Q1(a

′) =
Q2(a

′)}, aD ≥ aT . Notice that at least one of these equilibria (without loss of
generality, the first one) has to be unfair at aD (otherwise they would both
be fair and thus identical), and so Q1(a) has to be unfair (and thus linear)
on some interval (aD, x) (If no such x exists, there must exist a decreasing
infinite sequence xn → aD such that Q1 is fair at xn for every n. By assump-
tion, QT does not switch from convexity to concavity infinitely often, and
so for some n′ QT has to be convex or concave on [aD, xn′ ]. If it is convex,
then mixing is not profitable and the equilibrium has to be fair at aD; if
it is concave, then Q1 can not be convex—it equals QT at xn′ , xn′+1, and
xn′+2—contradiction). Let a1 be the largest x such that Q1(a) is linear on
(aD, x). Take point b such that Q2(b) = Q1(a1).
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There are three cases.

• Case 1. b < a1.

• Case 2. b > a1, Q2 is linear at aD. Then its slope has to be less than
that of Q1. Take point a′1—the largest x such that Q2 is linear on
(aD, x), and point b′ such that Q1(b

′) = Q2(a
′
1). Then b′ < a′1.

• Case 3: b > a1, Q2 is not linear at aD. Then there exists a point a′′1
arbitrarily close to aD at which Q2 is fair and is less than Q1. Take b′′

such that Q1(b
′′) = Q2(a

′′
1). b′′ < a′′1.

The common feature of all three cases is that we were able to find a point
at which ability is truthfully revealed in one equilibrium, and the correspond-
ing wage is higher at another. We now get a contradiction for case 1; for
other cases the proof is analogous.

Let Q∗ = Q1(a1) = Q2(b). By construction, in the first equilibrium every
position below Q∗ is filled by someone of higher expected ability than in the
second equilibrium. Thus, the total ability of people working at positions
below Q∗ is higher in the first equilibrium. But let us now look closely at
these two populations. By Lemma 4, in the first equilibrium this population
is just a group of least able students, since the equilibrium is fair at a1. In
the second equilibrium it is some mix of the least able students and more
able students. But since the total masses of two populations are equal (they
are equal to the share of positions below Q∗), the second one has average
ability at least as high as the first one—contradiction.

E Proof of Theorem 3

Suppose the transcript structures form an equilibrium, and there is no unrav-
eling. We then show that no student has an incentive to deviate, i.e. to sign
a contract earlier than T . Consider an arbitrary school i. Let the interval of
expected abilities of students at school i at time T be [ai, bi].

26 By the law of
iterated expectations, no student at school i can have expected ability out-
side of this interval at any time t ≤ T. Take any time t < T and any student
from school i who has expected ability ât inside the interval at time t. If he
signs now, the best position he can get is of desirability Q(ât). If he waits

26Proof is the same if the interval is open at one or both of the ends.
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until time T , the expected desirability of position he gets is E[Q(âT |ât)]. By
assumption, at time T the school produces a positive density of students on
an interval, and transcript structures form an equilibrium—thus, Q(âT ) is
convex on the interval. E[âT ] = ât, and so E[Q(âT |ât)] ≥ Q(ât), and the
student does not have an incentive to deviate.

Now suppose the transcript structures do not form an equilibrium, and
there is information that a school (say, school i) would like to suppress.
This means that by removing this information, and mixing students who are
differentiated by it, the school would achieve a higher payoff. But this implies
that there exist three points ϕ1 < ϕ2 < ϕ3 inside the interval [ai, bi] and
weight α such that ϕ2 = αϕ1+(1−α)ϕ3 and Q(ϕ2) > αQ(ϕ1)+(1−α)Q(ϕ3).
But then there exists some point ϕ strictly inside the interval [ai, bi] such that
Q′′(ϕ) < 0 (otherwise the function would be convex).

Since ϕ is strictly inside the interval [ai, bi], there exists some t1 < T
such that a positive mass of expected abilities is produced in a small ε-
neighborhood of ϕ for any t ∈ [t1, T ]. By assumption, Q̂(a, t) is twice contin-
uously differentiable; also, Q̂(a, T ) = Q(a). Therefore, there exists t2 < T ,
t2 ≥ t1 such that Q̂(a, t)′′aa(ϕ, t) < 0 for all t ∈ [t2, T ]. Finally, there exists
t3 < T , t3 ≥ t2 such that σ(ϕ, t) > 0 for all t ∈ [t3, T ].

By construction, Q̂ is a martingale, and therefore E[dQ̂(a, t)] = 0. By
Ito’s lemma, 0 = E[dQ̂(a, t)] = 1

2
σ2Q̂′′

aa+Q̂′
t. For t ∈ [t3, T ], 1

2
σ2Q̂′′

aa(ϕ, t) < 0,

and so Q̂′
t(ϕ, t) > 0. But this implies that Q(ϕ) = Q̂(ϕ, T ) > Q̂(ϕ, t3), and

so at time t3 a student of expected ability ϕ strictly prefers unraveling and
immediately matching with a position of desirability Q(ϕ) to waiting until
time T and getting, in expectation, Q̂(ϕ, t3), while the employer is indifferent
between unraveling and waiting until time T .
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