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Section One:  Introduction 
 

Innovative activity in the university sector is generally studied at the institutional 
level.  This paper refocuses the lens by examining characteristics that relate to the 
innovative behavior of individual faculty members.  Using data from the 1995 Survey of 
Doctorate Recipients, we analyze the patent activity of a sample of 10,962 doctoral 
scientists and engineers working in institutions of higher education. 
 

Technology transfer is the subject of numerous studies (Agrawal and Henderson 
2002, Colyvas et al. 2002, Henderson, Jaffe and Trajtenberg 1998, Jensen and Thursby 
1991, Murray 2002, Mowery et al. 2001, Owen-Smith and Powell 2001, 2002, Thursby 
and Kemp 2001, Thursby and Thursby 2002a, Thursby and Thursby 2002b).1 These 
studies provide important insight into institutional factors that relate to patent activity and 
the importance (or unimportance) of the Bayh-Dole Act2 to the dramatic increase in 
university patenting.  The work of Thursby and Kemp, for example, shows that 
technology transfer offices play an important role in determining the number of 
disclosures that are made on a campus.  The work of Owen-Smith and Powell (2002) 
suggests that academic medical centers can play a facilitating role in technology transfer. 
Mowery and his coauthor’s work suggests that Bayh-Dole did not cause the dramatic 
increase in university patent activity but rather that the “principal effect of Bayh-Dole 
was to accelerate and magnify trends that already were occurring” in academe (Mowery 
et al., 2002, p. 2).  

  
 The institutional focus of technology transfer studies precludes insights 

concerning personal characteristics that affect patent activity and the interplay between 
these personal and institutional factors. We know remarkably little about who in the 
university is patenting and personal characteristics related to patenting.  By contrast, we 
know considerably more concerning the publishing activity of university scientists and 
engineers.  We know, for example, that the activity itself is highly skewed; that 
publishing and co-authorship patterns vary considerably by field; and that life-cycle 
effects are generally present in a fully specified model that controls for individual fixed 
effects such as motivation and ability (Levin and Stephan 1991, Stephan 1996, Stephan 
and Levin 1992).  We also know that the human capital model comes up a bit short in 
modeling publishing activity (Stephan 1996). Stephan (p. 1219) attributes this failure to 
the “fact that the production of scientific knowledge is far more complex than the human 
capital model assumes and that these complexities have a great deal to say about patterns 
that evolve over the life cycle.” She argues that a further reason human capital models 

                                                 
1 The number of patents issued to academic institutions has grown dramatically in recent years.  For 
example, in 1965, fewer than 100 U.S. patents were granted to 28 U.S. universities or related institutions.  
By 1992 almost 1500 patents were granted to over 150 universities or related institutions.  This dramatic 
increase in patenting activity occurred during a time in which total U.S. patenting increased by less than 
50% and patents granted to U.S. inventors remained almost constant (Henderson, Jaffe and Trajtenberg, 
1998).  This trend has continued throughout the 1990s, with more than 3000 patents being issued to 
academic institutions in 1998. 
2 The Bayh-Dole Act of 1980 gave universities the right to retain title to and license inventions resulting 
from research supported on federal grants. 
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come up short is that they place undue emphasis on the declining value of economic 
returns over the life cycle.  It is not that scientists are not interested in economic rewards.  
They are.  But, as Stephan and Levin argue (1991), scientists also value priority of 
discovery and the intrinsic returns that come from engaging in puzzle-solving behavior. 

 
This paper examines the effects of individual and institutional characteristics on 

patent activity of scientists and engineers employed in institutions of higher education.  
Moreover, the level of analysis permits us to examine a question of widespread policy 
concern: whether the move towards commercialization at universities comes at the 
expense of placing knowledge in the public domain through publication.  We address this 
“crowding out” issue by examining the relationship between patenting and publishing.  

 
In section two we discuss factors leading university scientists and engineers to 

patent.  We relate this to the crowding-out hypothesis that faculty patent instead of 
publish and offer an alternative hypothesis which suggests the presence of 
complementarity between patenting and publishing.  In section three of the paper we 
discuss personal as well as institutional characteristics that we hypothesize to be related 
to patenting activity of academics.  We also comment on why we expect these 
relationships to differ by field.  Section four summarizes the data used for this study and 
the methodology employed.  Section five presents our results and research findings.  Of 
most importance for this study is the finding that publishing is a potent predictor of patent 
activity.  We conclude that publishing and patenting at the individual level are 
complementary activities and that any crowding that is occurring is of an inward, not an 
outward, nature.   
 
Section Two:  Incentives to Patent in Academe:  Crowding out? 
 

Considerable concern has been expressed that the move towards 
commercialization in the university community comes at the expense of the production of 
basic knowledge (Stephan and Levin 1996). There are at least two variants of the 
crowding-out hypothesis.  One variant argues that in the changing university culture 
scientists and engineers increasingly choose to allocate their time to research of a more 
applied as opposed to basic nature.  Another variant of the crowding-out hypothesis is 
that the lure of economic rewards encourages scientists and engineers (and the 
universities where they work) to seek IP protection for their research results, eschewing 
(or postponing) publication and thus public disclosure.3  Much of the work of Blumenthal 
and his collaborators (1996) focuses on the latter issue in the life sciences, examining the 
degree to which university researchers receive support from industry and how this relates 
to publication.    

 
There is, of course, reason to believe that patenting is positively related to the 

activity of publishing.  To see why, we first take a step back and ask why scientists in 
academe, for whom priority that comes from publication is widely held to be of primary 
importance, patent at all.  
   
                                                 
3 Clearly, these two variants are not mutually exclusive. 
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Scientists and engineers in academe patent for several reasons.  First, in many 
instances, it is the stated policy of the university that disclosure is required.  But scientists 
and engineers patent for other reasons as well.  Economic gain is clearly one.  
Considerable evidence exists concerning the large financial returns that have been 
realized by certain academic scientists engaged in technology transfer (Stephan and 
Everhardt 1998).   In addition to economic protection, patents can also protect discoveries 
from being put in the private domain by others.  Owen-Smith and Powell (2001) report 
that several university scientists gave this as a reason for seeking patents in the interviews 
that they conducted.  Patenting can also be seen by university scientists as a means of 
building their reputation.  Owen-Smith and Powell (2001) state that “many inventors 
reveal that they patent, in part, because they feel it increases their academic visibility and 
status by “reaffirming” the novelty and usefulness of their work.”4  Patents can also be 
used to leverage existing research by creating a chit to trade with industry. This may be 
particularly the case in the physical sciences where inventions tend to be incremental 
improvements on established processes of products.  By exchanging patents on 
incremental innovations with industry, scientists can receive propriety technology, such 
as access to equipment or other opportunities (Owen-Smith and Powell 2001).    

 
Interest in patenting among university scientists and engineers may also be piqued 

through interaction with industry.  Mansfield’s work (1995) demonstrates that scientists 
and engineers often gain inspiration for their research through interaction with industry.  
Interviews by Agarwald and Henderson (2002) suggest that, in addition, interaction with 
industry may also steer scientists and engineers towards patenting.5 

 
Complementarity between publishing and patenting can occur for several reasons. 

One argument for complementarity between patenting and publishing relates to the fact 
that scientists and engineers can selectively publish research findings while at the same 
time monopolizing other elements of their research.  Rebecca Eisenberg (1987) argues 
that such behavior is more common among academics than might initially be presumed.  
Furthermore, she argues that this ability of faculty to have one’s cake and eat it too is not 
only manifested in patenting and publishing from the same line of research.  It is also 
manifested when professors refuse to share data or cell lines.  This ability is facilitated by 
the fact that publication is not synonymous with providing the ability to replicate and that 
techniques can often be transferred only at considerable cost, in part because their tacit 
nature makes it difficult, if not impossible, to communicate in a written codified, form.   
 
 The ability to have one’s cake and eat it too provides one reason why 
complementarity may exist between patenting and publishing.  There are at least two 
other reasons why complementarity may exist.  One relates to the low marginal cost of 

                                                 
4 In this respect views have changed considerably during the past 90 years.  In 1917 T. Brailsford 
Robertson patented a substance thought to promote growth, and donated the patent rights to the University 
of California, where he was head of the biochemistry department.  Weiner recounts how this action was 
perceived as tarnishing Roberton’s reputation (1986). 
5An engineer told Awarwald and Henderson (58): . . .” it is useful to talk to industry people with real 
problems because they often reveal interesting research questions—but sometimes they try to steer you 
towards patenting. Sometimes that research results in something patentable, sometimes not.”    
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disclosure when publication is used as the means of communicating the disclosure. 6  
Owen-Smith and Powell (2002, p. 11) report that “invention disclosures made by 
academic inventors to university technology transfer offices often take the form of article 
manuscripts.”   Murray (2002, p. 6) states that, particularly in biomedical innovation “the 
same idea is often inscribed in both a patent and paper (scientific publication). 
 
 The other reason to expect publication and patenting to be complements, rather 
than substitutes, relates to what we call “the right stuff” argument.  It is a well-established 
fact that science has extreme inequality with regard to scientific productivity and the 
awarding of priority.  One indication of this is the highly skewed nature of publications, 
first observed by Alfred Lotka (1926) in a study of nineteenth century physics journals.  
The distribution that Lotka found showed that approximately six percent of publishing 
scientists produced half of all papers.  Lotka’s “law” has since been found to fit data from 
several different disciplines and varying periods of time (Price 1986).7  Moreover, several 
recent case studies of patenting behavior of scientists and engineers show that patenting 
activity is highly skewed.  Narin and Breitzman (1995) examine the number of patents 
per inventor for four companies in the semiconductors business.  They find a Lotka-like 
distribution in all four cases, with a large number of inventors with their names on only 
one patent and a relatively small number of highly productive inventors with their names 
on ten or more patents.  Ernst, Leptien and Vitt (2000) examine the patent activity of 
inventors working in 43 German companies in the chemical, electrical, and mechanical 
engineering industry.  They, too, find that a small group of key inventors is responsible 
for the major part of the company’s technological performance.  Agrawal and Henderson 
(2002) find a highly skewed distribution of patents for the MIT engineers in their study:  
44% were never an inventor on a patent during the 15-year period; less than 15% had 
been granted more than 5 patents; and less than 6% had been granted more than 10.   
   
 To the extent that inequality in scientific productivity results from differences 
among scientists in ability and motivation, one would expect patenting and publishing to 
be strongly correlated, since both are indicators that the scientist has the (unmeasurable) 
“right stuff” to be highly productive.  But scientific productivity is not only characterized 
by extreme inequality at a point in time; it is also characterized by increasing inequality 
over the careers of a cohort of scientists, suggesting that at least some of the processes at 
work are state dependent.  Weiss and Lillard (1982), for example, find that not only the 
mean but also the variance of publication counts increased during the first ten to 12 years 
of the career of a group of Israeli scientists. 
 
 Merton christened this inequality in science the Matthew Effect, defining it to be 
“the accruing of greater increments of recognition for particular scientific contributions to 
scientists of considerable repute and the withholding of such recognition from scientists 

                                                 
6 Work by Thursby and Thursby  (2002) suggests that the cost to the scientist of patenting comes, not at the 
time of disclosure, but afterwards, in working with the company that licenses the patent.   See also Jensen 
and Thursby (2001). 
7 Lotka’s law states that if k is the number of scientists who publish one paper, then the number publishing 
n papers is k/n2.  In many disciplines this works out to some five or six percent of the scientists who publish 
at all producing about half of all papers in their discipline.   
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who have not yet made their mark.” (1968, p. 58).  Merton argues that the effect results 
from the vast volume of scientific material published each year, which encourages 
scientists to screen their reading material on the basis of the author’s reputation.  Other 
sociologists (Allison and Stewart 1974; and Cole and Cole 1973, for example) have 
argued that additional processes are at work that result in scientists accumulating 
advantage, as they leverage past success into future success.  While we have yet to 
understand these processes completely, a strong case can be made that a variety of factors 
are at work in helping able and motivated scientists leverage their early successes and 
that some form of feedback mechanism is at work.  All of which gives reason to suspect 
that patents and publishing, both indicators of success, are correlated. 
 

Although the two activities are correlated, it does not follow that there is a one-to-
one relationship.  A great deal of research that results in publications is unpatentable or is 
but one piece of a line of research, producing numerous articles but upon which only one 
patent is based.  Moreover, as changing patterns in authorship demonstrate so well, 
increasingly scientists work in teams (Adams et al. 2002).   But the article team is 
generally larger than the patent team.  Recent research by Ducor (2000) matches 50 
article-patent pairs and reports that the average number of authors was 10 while the 
average number of inventors was three.  Murray (2002) reports similar results in her 
study of patent-paper pairs in tissue engineering.  

 
The only paper to examine the relationship between patents and papers at the 

individual level for university faculty is by Agrawal and Henderson (2002).8  In their 
study of engineers at MIT in the departments of Mechanical Engineering and Electrical 
Engineering and Computer Science, they relate patent activity, in a fixed-effects model, 
to publishing activity.  They restrict their sample to faculty members who have either 
patented or published or done both during the period 1983-1997.  They find absolutely no 
evidence that the two activities are substitutes; neither do they find evidence that they are 
complements.  They do, however, demonstrate that “increased patent activity is 
correlated with increased rates of citation to the faculty member’s publicatio -
59).  This may be related to the fact that industry seeks out well-known scientists to work 
on projects and in the process the scientists are steered towards patenting.  
 

 
Section Three:  Characteristics Related to Patent Activity 
 
 We expect the patent activity of faculty to be related to institutional as well as 
individual characteristics.  The institutional characteristics most likely to affect patent 
activity are the culture of the university and the field of specialization.  The work by 
Thursby and Kemp (2001) concerning the role that technology transfer offices play in 
determining the number of disclosures at a university is consistent with the observation 
that although academic scientists don’t need to be taught how to publish they do need to 
be educated concerning the patent process.  A strong technology transfer office can 

                                                 
8 Colyvas et al. report case studies of  inventions created at Columbia University and Stanford University.  
Five of the eleven cases involved publication.  IP protection, usually in the form of a patent, was involved 
in all of the eleven.    



 6

facilitate that process and create an entrepreneurial culture on campus.9  We expect this 
culture to be proxied by the number of patents that the institution has received in the past. 
 

We also expect patent activity to be related to field of specialization.  For 
example, in certain fields patenting is not the preferred means of intellectual property 
protection.  In computer sciences, by way of example, it is much more common to 
copyright than to patent research in the area of software.  In other fields with a strong 
emphasis on applied research, such as engineering, it is fairly common to apply for 
patents for intellectual property protection.  Murray makes the case (2002) that in the 
field of biomedical research the marginal cost of patenting can be quite low and may flow 
directly out of a line of research  This is one reason why the majority of both issued 
patents and revenues resulting from innovation at most universities come from 
innovations in the biomedical field (Powell and Owen-Smith 1998, Henderson, Jaffe and 
Trajtenberg 1998.)10 There are also fields where the innovation that is patented is an input 
into the scientist’s research, as in the case with the invention of equipment designed to 
advance a line of research or discovered serendipitously during the course of a larger 
research project.  This can, for example, be the case in the physical sciences.11    
 
 Personal characteristics expected to relate to patent activity include age (or some 
variant of age such as the number of years since receipt of the Ph.D.) in a non-linear 
form, citizenship status, gender and receipt of federal funding.  If patenting and 
publishing are, indeed, substitutes, we might hypothesize that older scientists are more 
likely to patent than younger scientists, choosing later in their careers to cash in their 
reputation for commercial gain.12  But, to the extent that the two activities are 
complements we would expect the rate of patenting to decline (or eventually decline) 
with age, following a pattern similar to that observed in age-publishing profiles.  
Citizenship status may be a factor because certain research opportunities (especially those 
related to defense) require citizenship.  We include it here for this reason and because of 
the widespread interest in issues related to citizenship in science and engineering (Levin 
and Stephan 1999).  The large number of studies examining publishing differentials 
between men and women (see Levin and Stephan 1998 for a summary) leads us to  
include gender as well. Federal support is included to see if, holding other variables 

                                                 
9 Owen-Smith and Powell (2001) report that Jim Helfenstein, a faculty member who has never disclosed an 
invention, though his research has many potential commercial applications, stated to them that “For people 
like me it [awareness of patenting] is essentially zero.  I probably know less about that than I do about 
Medieval European social history.  Really, that happens to be something I’m interested in.  It just 
no information provided here, no advice urged upon us.  If we wanted to do anything about this we’d have 
to be very highly motivated to go out and seek the information, get the advice.  We’d have to, I think, be 
more sophisticated than most of us are – than I certainly am –to know when to do that or what sort of thing 
should trigger it.” 
10 This is not to downplay the tremendous importance of demand factors in leading scientists to seek patent 
protection in areas of biomedical research.  
11 Colyvas et al (2002). report a case study of a patent granted for a “proof of concept”  for a process 
generating light of a particular wavelength.  The discovery occurred in the course of a funded basic 
research project in the field of astrophysics.   
12 Audretsch and Stephan (1999) make such an argument, contrasting scientists in industry with scientists in 
academe.  Dasgupta and David (1987) discuss the difference between being in the “science club” and in the 
“technology club” and how this affects incentives. 
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constant, individuals who receive federal support for research are more likely to patent 
than those who do not.    
 
  
 
Section Four: Data Description and Methods 
 
  Data for this study come from the biennial Survey of Doctorate 
Recipients13, which in 1995 included a question on patent activity and publishing activity 
during the past five years.14  For the purposes of this paper, we use the number of patent 
applications made in the past five years as an indicator of patent activity and the number 
of articles published in the past five years as a measure of publishing activity.  We restrict 
the sample to those working fulltime in academic institutions which grant a four year 
degree or higher and exclude individuals working in areas other than science and 
engineering, such as the humanities, the social sciences (including psychology) and 
business. We further subdivide the sample into four fields:  computer sciences, life 
sciences, physical sciences and engineering. 
 

Both the patent and paper measures are highly skewed, as is shown in Table 1. 
The distribution of patents is considerably more skewed, however, than that of 
publications.  For example, while only about 9% of the sample made a patent application 
(and only .5% made more than five applications) almost 85 percent published at least one 
article and almost 45% published more than five in the past five years.  Among the 
sample, engineers are most likely to patent, computer scientists the least likely to patent.  
Computer scientists are also the least likely to publish one or more articles and have the 
lowest percent reporting 10 or more articles during the previous five years.15   
 

Table 2 explores the degree to which patents and publications are related, by 
examining the joint distribution of those who produce one or more patent applications 
during the period and publish one or more articles.  Approximately 14% neither publish 
nor patent; almost 9% do both.  The table demonstrates that the two measures of 
productivity are strongly related to each other.  In all instances, Chi Square tests indicate 
that the hypothesis of independence in the distributions can be rejected at the .001 level.  

 
In order to investigate the relationship more thoroughly, we initially estimate a 

zero-inflated negative binomial (ZINB) model.  We choose this model given the discrete 
nature of the data and the high occurrence of zeros.  The ZINB model adds an additional 
mass at the zero value of patent applications resulting in higher proportion of zeros than 
is consistent with the underlying negative binomial regression.   The main justification 
for using zero-inflated counts is to allow for the potential of misrecording of zero patents. 
                                                 
13 National Science Foundation, Science Resources Statistics.  Morgan, Kruytbosch and Kannankutty 
(2002) use the Survey of Doctorate Recipients to explore characteristics of academics who patent 
14 The specific patent question was “Since April 1990, have you been named as an inventor on any 
application for a U.S. patent?”  If the answer to this question was “Yes,” survey participants were asked 
“How many applications for U.S. patents have named you as an inventor?” 
15 Agrawal and Henderson (2002) find patents to be more highly skewed than publications for the MIT 
engineers that they study.   
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The zeros reported by individuals who did not make patent applications may arise from 
two sources.   Zero patents may be recorded for those who either never made patent 
applications or for those who do but did not do so during the past five years.  Ignoring 
this potential error in recording would lead to misspecification.    

 
To specify the zero-inflated model, let h(yi , θ Xi) denote the negative binomial 

density with mean exp(X iβ),  dispersion parameter α, and  θ = (β′ α)′.   Here i = 1, 2, ... , 
n denotes individuals, X is a vector of explanatory variables having direct impact on the 
number of patent applications, defined here as y = Usapp95, and β is the parameter vector 
associated with X.  The zero-inflated negative binomial density for patent applications 
can be presented as 

 
= λi + (1 - λi) h(yi  = 0, θ Xi) ,   for  yi = 0  

(1) 
 

Pr(yi) ={ 
=  (1 - λi) h(yi , θ Xi),                 for yi = 1,2 . . .,  

 
where the parameter λ  (0 < λ < 1) is used to increase (inflate) the proportion of zeros; 
that is, the proportion of individuals with zero number of patent applications during the 
last five years.  For generality, we allow the zero-inflation parameter, λ, to depend on 
observed vector of covariates, Z, shown in Column 4 of Table 3.  The parameter is 
specified as a logit function of Z: 

 
λi  =  exp(Ziγ) / (1 + exp(Ziγ)).                                          (2) 

 
This ensures that the inflation parameter is restricted to be between 0 and 1, as it should 
be16.  Gurmu and Trivedi (1994) and Cameron and Trivedi (1998), and references therein 
discuss zero-inflated and related models.   

  
In the zero-inflated negative model, the mean number of patent applications, 

given explanatory variables in Xi and Zi, is   
 

(1 - λi)  exp(Xiβ).                                                                       (3) 
 

Using equations 3 and 2, the marginal effect (ME) of a specific explanatory variable, say 
u, on the mean number of patent applications takes the form 

 
MEu = (1 - λi) exp(Xiβ) βu – λi (1 -λi) exp(Xiβ) γu,                    (4) 

 
where βu is the coefficient of u in the main equation; u is in X.  Similarly, γu is the 
coefficient of u in the inflation part; u is in Z17.  If u is a dummy variable, the marginal 
                                                 
16 The density in (1) may be thought of as a mixture of two distributions, a distribution whose mass is 
concentrated at zero number of patents and a negative binomial distribution.  That is, the density for the 
number of patent applications can be represented as yi = 0 with probability λi  and  yi  is distributed as  
negative binomial with probability (1 – λi ). 
17 So, the first component in (4) gives the direct effect.  The first component will be zero if u is not included 
in the y = Uspapp95 equation – as in the case of the variable Instpat in Table 3. The second component in 
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effects will be computed for discrete change in (3) from u = 0 to u = 1.  The elasticity of 
the number of patent applications with respect to factor u is 
 

Elasticityu =  MEu ×  u/(predicted # of patent applications),            (5) 
 

where  predictions are obtained from equation 3.  Equations 4 and 5 show that   
elasticities are also composed of two components. 
 

 As argued in section three above, the two measures of productivity of scientists – 
patenting and publishing – are likely to be strongly correlated.  Since the latent variable 
on scientific productivity is unobserved, the variable ‘Article95’ used as a regressor in 
patent equation is likely to be endogenous.    As such, Article95 is likely to be correlated 
with unobservable determinants of the patent equation.   For now, we assume that the 
number of articles published during the past five years follows a negative binomial 
distribution.   The mean number articles published, given observed characteristics, is 
specified as  

exp(Wiδ),                                               (6)                  
 
where Wi  is a vector covariates affecting Article95, listed in Column 5 of Table 3, and  δ  
is the associated vector of unknown parameters.   Predictions from 6 are used as 
instrument for Article95 in the zero-inflated negative binomial model18.        
 

Variables are defined in Table 3.    The table also indicates the component of the 
model in which the variable is to be used:  the main equation for Uspapp95, inflation 
(logit) part for Uspapp95 or, in light of “the right stuff” discussion above, instrumental 
variables for the number of articles published, Article95.  Means and standard deviations 
by field are given in Table 4.   
 
   
Section Five: Estimation Results and Research Findings 
                            

The ZINB results, ignoring endogeneity in Article 95, are presented in Table 5.  A 
positive coefficient in the inflation part of the model implies a negative impact on the 
number of patent applications; a negative coefficient implies a positive impact.  Results 
are given for “all” scientists and engineers working in academe regardless of field as well 
as those in the broad fields of the life sciences, computer sciences, physical sciences and 
engineering.   

 

                                                                                                                                                 
(4) gives the indirect impact of u on Uspapp95.   Note that if γu > 0 (γu < 0) the second component is 
negative (positive).  The second component of equation 4 will be zero if u is not included in the zero-
inflation part of the model (as is the case of article95 in Table 3).  If w is included in both parts of the 
model, the marginal effect will be composed of both components in (4) 
18 In future versions of this paper, we will formally test and correct for endogneity in publications using a 
generalization of Mullahy’s (1997) non-linear instrumental variable approach.  Identification issues will 
also be discussed.  
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Table 5 demonstrates the need to estimate the model in two components as well as 
by field.  Variables included in both the inflation part  and the negative binomial often 
have opposite effects or lack significance in one equation but have significance in the 
other.  For example, while there is no indication that the number of patents relates to 
gender, in three of the equations (“all,” life sciences, and physical sciences) women are 
significantly less likely to patent than are men.  Likewise, there is no indication that in all 
but the physical sciences citizenship status affects the number of patent applications.  
However, in both the “all” field and in engineering, citizens are more likely to patent than 
non-citizens.  In the physical sciences, we find just the opposite, notably that citizens are 
less likely to patent than their non-citizen peers but once they do patent, patent more than 
non-citizens.  Another case in point is tenure.  With the exception of computer science, 
the influence of tenure, to the extent it matters, is on the probability of patenting, not on 
the number of patents.  Moreover, the influence is negative—that is tenured faculty are 
less likely to patent than non-tenured faculty.  Likewise, individuals who say their 
primary or secondary work activity is in applied or basic research, development or design 
are (with the exception of computer scientists) more likely to patent than those who do 
not but there is no indication that work activity affects the number of patents.  We also 
find evidence that computer scientists and engineers trained at research and doctoral 
institutions are more likely to patent than those who do not receive their degrees from 
such institutions.  The number of patents awarded is positively related to working in a 
medical institution for computer scientists, physical scientists and engineers.  Receipt of 
federal support increases the likelihood of patenting across all fields, but when the 
analysis is done at the field level, it is only in the physical sciences that the effect is 
observed.  Particularly of interest is the fact that we find no indication that receipt of 
federal funds in the life sciences—the most heavily federally funded area—relates to 
either component of the model. 

 
Life-cycle effects are found for “all scientists” and for life scientists, with 

significant coefficients of the predicted sign on the measures yearsofphd and (in the case 
of life scientists) phdsq.  There is no indication that life-cycle issues affect whether or not 
an application is made or affect the number of applications in other fields. Caution must 
be taken interpreting these results, of course, since it is well known that cross-sectional 
data produce biased estimates on variables related to time, such as years since receipt of 
Ph.D. (Levin and Stephan 1991). 

  
The measure for the number of patents that the institution has received during the 

past five years (Instpat) is included in the inflation equation but not in the main patent 
equation to control for the patenting culture of the institution.  The variable consistently 
has the expected sign but only in the case of “all” fields and computer sciences does it 
approach being significant at the 5% level.   

 
The variable of most interest to this study, the number of articles published in the 

past five years (articl95), is included in the negative binomial; not in the inflation part. 
With but one exception, we find it to have a strong and highly significant effect on the 
number of patents issued, demonstrating that patents and articles are complement, not 
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substitute, outputs of productive scientists.  The exception, once again, is computer 
sciences where article counts is insignificant. 

 
Given that independent variables often affect both parts of the zero-inflated 

negative binomial models in opposite ways, and given the large differences that exist 
across fields, marginal effects and elasticities, for ease of interpretation, are presented in 
Table 6.   Using expressions in equations 4 and 5, all marginal effects and elasticities are 
evaluated at the sample average values of explanatory variables.   Unlike the coefficient 
estimates reported in Table 5, marginal effects and elasticities in Table 6 give the total 
impact of a given explanatory variable on the number of patent applications.   As such, 
when the coefficients from the two parts of the ZINB are marginally insignificant, it is 
possible for the marginal effects to be significant.  (See also notes to Table 6.) 
 

For all fields combined, the evidence suggests that certain environments are more 
conducive to patenting than others.  For example, those working in a medical institution 
have about .10 more patent applications than those who do not work in medical schools.  
Likewise, those working in a university research institute make about .07 more patents 
than those not working in such an institute.  Individuals whose primary or secondary 
activity is R&D make almost .12 more patent applications than those whose primary or 
secondary activity is not.  Likewise, and again looking at the effects for all fields 
combined, those with federal support submit about .06 more patent applications over a 
five-year period than those who do not have federal support.   In terms of personal 
characteristics, we find that women submit approximately .08 fewer patent applications 
than men; citizens about .05 more than non-citizens. Tenured faculty make .07 fewer 
patent applications than non-tenured faculty and those who were trained at Research I 
institutions about .04 more than those who were not trained at Carnegie-rated institutions. 

 
Patent elasticity with regard to publishing is .347.  This indicates that, starting 

from sample values of characteristics,  a 1% increase in articles  published raises the 
number of patent applications by more than 1/3 percent.    Because this is the first 
elasticity of patenting with respect to publishing that we know to have been computed, 
we cannot compare it with others.  But the estimated magnitude suggests that technology 
transfer offices would benefit not only from encouraging disclosure of existing research 
but also by augmenting the research (and publication activity) of faculty. 

 
Table 6 emphasizes the strong variation in patent behavior across fields that was 

already noted above.  First and foremost, in terms of broad differences and in comparison 
to the life sciences, we see that engineers make about .28 more patent applications; 
physical scientists about .05 more and computer scientists about .07 fewer.  But, the 
differences are also manifest in the elasticities and marginal effects.  Unlike the other 
fields, the elasticity of patenting with respect to publications is not significantly different 
from zero in computer science while the other three elasticities are reasonably close to the 
“all” elasticity, especially those of engineering and life sciences. Differences in marginal 
effects are particularly noticeable in the field of computer science. First, and as noted, we 
find absolutely no indication that publications and patent applications are complements in 
the field of computer science.  Neither do we find that working in a research institute or 
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medical school, or heavy involvement in R&D activity, are predictive of patenting among 
university computer scientists.  On the other hand, computer scientists receiving federal 
support applied for almost .09 more patents than their non-supported colleagues and 
computer scientists who were citizens made a slightly larger number of applications.  
Another difference between computer scientists and scientists and engineers in other 
fields comes in the impact that doctoral institutional ranking has on patent activity.  We 
find that computer scientists who received their Ph.D. at Research I institutions are more 
likely to patent than are those who did not attend a Carnegie-rated institution.    
 

In section three we argue that one reason to expect patents and article counts to be 
complements stems from the fact that both are directly affected by unmeasurable 
characteristics, which we have labeled “the right stuff.” Specifically, the article counts in 
the patent model may be endogenous.   Consequently, the parameter estimates given in 
Table 5 are tenuous19.  We have estimated ZINB regressions using instruments for 
Article95; see the discussion around equation 6.  As expected, the results from our 
preliminary estimates are noisy and not reported here.  However, Table 7 reports 
preliminary elasticities derived from the ZINB, which uses instruments for Article95.  
Overall we find minimal change in the “all” elasticity while the size of the life sciences 
elasticity has increased considerably.  The computer science elasticity remains 
insignificant.  Somewhat troubling is the fact that in these preliminary estimates the 
elasticity for the physical sciences and engineering are now insignificant.  In future 
revisions of this paper, we will consider a general approach of modeling patent counts 
making allowance for excess-zeros and endogeneity.   

 
  
Section Six:  Summary and Conclusion 
  

This research uses the Survey of Doctorate Recipients to examine the relationship 
between publishing and patenting at the level of the individual scientist.  We find the 
marginal effect of another article on patents to be significant for faculty working in the 
life sciences, the physical sciences and engineering.  Patent elasticities with respect to 
publishing are largest for engineers and smallest for physical scientists.  Not surprisingly, 
given the relative unimportance of patent protection among computer scientists, 
especially those working in software, we find the relationship between publishing and 
patenting to be insignificant in this field.  We also find that considerable variation occurs 
across fields in terms of variables affecting patenting such as receipt of federal support 
for research, gender and citizenship status.     

 
We find little evidence of life-cycle effects but the cross-sectional nature of our 

data detracts from the robustness of this result.  We do find that tenured faculty in several 
fields are less likely to patent than non-tenured faculty.  This may be a cohort effect that 
will disappear as new faculty (trained in the technology transfer environment) join the 

                                                 
19  If unobserved characteristics are correlated with the number of published articles in the patent equation, 
then standard estimation methods will be inconsistent. 
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professoriate, or it may be related to the inclusion of “non-faculty” in the sample.20  Our 
data will permit us to examine the latter possibility; not the former.   

 
Our results lead us to conclude that patents and publications are complements, not 

substitutes.  From a policy perspective this is of considerable importance, given the 
widespread concern that has been expressed that patents are crowding out publications in 
the university sector.  It also suggests that technology transfer offices at universities 
should work closely with offices of institutional research in stimulating overall research 
activity. 

 
Our results must be considered preliminary.  In future work we will expand the 

work that we have done using instruments for publication counts, explore the patenting 
activity of the non-faculty and further divide the field of computer science to see if 
distinctions are found between software researchers and hardware researchers.  There are, 
however, areas of research that our data preclude.  For example, we have no information 
on citations, either to articles or patents, and thus have no prospect of relating the quality 
of publications to the quality of patents.  Moreover, we are limited to using cross 
sectional data while longitudinal data would be preferred.  It is our hope that this research 
whets the appetite of others doing research in the area of technology transfer—and of 
data gathering agencies—to continue this line of research.   
 
   

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

                                                 
20 We define non-faculty to include individuals working in post doctorate positions and in non-tenure track 
positions such as research scientists. 
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Table 1 
Distribution of Patents and Articles 

Percent 
 

Sector 0 1-5 6-10 >10 

Academe (n=10,962) 
 

90.9 
14.4 

8.7 
40.8 

0.4 
20.9 

0.1 
23.9 

Computer (n=1,159) 97.8 
23.5 

2.2 
47.3 

*** 
16.7 

*** 
12.5 

Life (n=5,936) 91.6 
12.7 

7.9 
0.3 

0.3 
12.5 

0.1 
25.2 

Physical (n=2,156) 90.7 
15.5 

8.7 
37.3 

.5 
20.4 

0.1 
27.1 

Engineer (n=1,711) 83.5 
12.6 

15.5 
41.8 

1.0 
22.7 

*** 
23.0 

 
 
 
 
 

Table 2 
Patent by Publish Distribution  

Frequency 
Percent 

Row PCT 
Col PCT 

PATENT PUBLISH   
 0 1 Total 
0 1541 

14.1 
15.5 
97.7 

8418 
76.8 
84.5 
89.7 

9959 
90.9 
 

1 36 
.33 
3.6 
2.3 

967 
8.82 
96.4 
10.3 

1003 
9.2 

Total 1557 
14.4 

9385 
85.6 

10962 
100.00 

Chi Square = 104.49; prob <.0001 
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Table 3 
Definitions of Explanatory Variables Affecting Various Model Components 

 
Variable Description  Uspapp95  

Equation 
Zero-

Inflation 
Part  

Article95 
Equation) 

Uspapp95  Number of patent applications during 
the past 5 years.  

   

Patent Zero-one dummy if one or more 
patents applied for during past 5 years 

   

Article95 Number of articles published during 
past 5 years 

×   

Yrsofphd Years since individual has earned 
highest degree 

× × × 

Yrsofphdsq Yrsofphd-squared  × × × 
Femdum Zero-one dummy if female × × × 
Ctzusdum Zero-one dummy if U.S. citizen × × × 
Fedsup Zero-one dummy if receive federal 

research support. 
× × × 

Lifefield* Zero-one dummy if in field of life 
sciences 

   

Compfield Zero-one dummy if in field of 
computer sciences 

× × × 

Phyfield Zero-one dummy if in field of 
physical sciences 

× × × 

Engfield Zero-one dummy if in field of 
engineering 

× × × 

Univemp* Zero-one dummy for individuals 
employed in four-year college or 
university, excluding Medidum and 
Reserdum 

   

Reseremp Zero-one dummy if employed in a 
university research institute 

× × × 

Medemp Zero-one dummy if employed in a 
medical school or center 

× × × 

Tenure  Zero-one dummy if individual works 
in academe and has tenure 

× × × 

Instpat Number of patents awarded to 
academic institution individual 
worked for between 1990-1994 

 ×  

Ru1empc Zero-one dummy if working for 
school with Carnegie classification of 
Research University I. 

  × 
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Ru2empc Zero-one dummy if working for 
school with Carnegie classification of 
Research University II 

  × 

Doc1empc Zero-one dummy if working for 
school with Carnegie classification of 
Doctoral Granting I. 

  × 

Doc2empc Zero-one dummy if working for 
school with Carnegie classification of 
Doctoral Granting II. 

  × 

Mediempc Zero-one dummy if working for 
school with Carnegie classification of 
a Medical school. 

   

Otherempc* Zero-one dummy if Carnegie 
classification of school employed at 
is anything besides Ru1, Ru2, Doc1, 
Doc2, Medi dummies 

   

Ru1deg Zero-one dummy if Carnegie 
classification of school awarding 
degree is Research University I. 

× ×  

Ru2deg Zero-one dummy if Carnegie 
classification of school awarding 
degree is Research University II 

× ×  

Doc1dg Zero-one dummy if Carnegie 
classification of school awarding 
degree is Doctoral Granting I. 

× ×  

Doc2dg Zero-one dummy if Carnegie 
classification of school awarding 
degree is Doctoral Granting II. 

× ×  

Medideg Zero-one dummy if Carnegie 
classification of school awarding 
degree is Medical school. 

× ×  

Rdactivity Zero-one dummy if primary or 
secondary work activity is in applied 
or basic research or development or 
design 

 × ×  

     
* Indicates the benchmark or control group. 
× Means the variable is an explanatory variable included in the equation 
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Table 4 
Means (Standard Deviations) of Variables By Field 

 
Variable Academe 

Total 
Life 

Sciences 
Computer 
Sciences 

Physical 
Sciences  

Engineering  

Uspapp95 0.196 
(0.96) 

0.167 
(0.80) 

0.033 
(0.25) 

0.218 
(1.09) 

0.376 
(1.45) 

Patent 0.091 
(0.29) 

0.084 
(0.28) 

0.022 
(0.15) 

0.092 
(0.29) 

0.165 
(0.37) 

Article95 8.090 
(10.43) 

8.358 
(10.36) 

4.969 
(7.44) 

9.093 
(11.91) 

8.013 
(10.06) 

Yrsofphd 13.898 
(10.13) 

13.946 
(9.98) 

14.890 
(9.98) 

15.422 
(10.83) 

11.136 
(9.20) 

Yrsofphdsq 295.659 
(364.46) 

294.139 
(356.72) 

321.144 
(344.59) 

355.165 
(405.72) 

208.69 
(330.86) 

Femdum 0.241 
(0.43) 

0.324 
(0.47) 

0.201 
(0.40) 

0.151 
(0.36) 

0.099 
(0.30) 

Ctzusdum 0.896 
(0.31) 

0.933 
(0.25) 

0.852 
(0.35) 

0.891 
(0.31) 

0.802 
(0.40) 

Fedsup 0.524 
(0.50) 

0.541 
(0.50) 

0.279 
(0.45) 

0.575 
(0.69) 

0.565 
(0.50) 

Lifefield 0.541 
(0.50) 

** ** ** ** 

Compfield 0.106 
(0.31) 

** ** ** ** 

Phyfield 0.197 
(0.40) 

** ** ** ** 

Engfield 0.156 
(0.36) 

** ** ** ** 

Univemp 0.628 
(0.48) 

0.499 
(0.50) 

0.895 
(0.31) 

0.728 
(0.44) 

0.767 
(0.42) 

Reseremp 0.121 
   (0.33) 

0.077 
   (0.27) 

0.081 
   (0.27) 

0.215 
   (0.41) 

0.178 
    (0.38) 

Medemp 0.252 
(0.43) 

0.423 
(0.49) 

0.024 
(0.15) 

0.057 
(0.23) 

0.055 
(0.23) 

Tenure  0.467 
(0.50) 

0.434 
(0.50) 

0.646 
(0.48) 

0.467 
(0.50) 

0.458 
(0.50) 

Instpat 56.142 
(109.15) 

59.717 
(111.00) 

39.006 
(94.45) 

56.923 
(116.42) 

54.365 
(101.23) 

Ru1empc 0.454 
(0.50) 

0.488 
(0.50) 

0.325 
(0.47) 

0.415 
(0.49) 

0.475 
(0.50) 

Ru2empc 0.080 
(0.27) 

0.077 
(0.27) 

0.084 
(0.28) 

0.070 
(0.25) 

0.098 
(0.30) 

Doc1empc 0.042 0.033 0.070 0.045 0.052 
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(0.20) (0.18) (0.26) (0.21) (0.22) 
Doc2empc 0.057 

(0.23) 
0.043 
(0.20) 

0.063 
(0.24) 

0.059 
(0.24) 

0.098 
(0.30) 

Mediempc 0.081 
(0.27) 

0.138 
(0.34) 

0.008 
(0.09) 

0.017 
(0.13) 

0.016 
(0.12) 

Otherempc 0.286 
(0.52) 

0.221 
(0.41) 

0.450 
(0.61) 

0.394 
(0.57) 

0.260 
(0.55) 

Ru1deg 0.673 
(0.47) 

0.665 
(0.47) 

0.632 
(0.48) 

0.692 
(0.46) 

0.705 
(0.46) 

Ru2deg 0.087 
(0.28) 

0.081 
(0.27) 

0.114 
(0.32) 

0.093 
(0.29) 

0.081 
(0.27) 

Doc1dg 0.037 
(0.19) 

0.030 
(0.17) 

0.076 
(0.27) 

0.036 
(0.19) 

0.034 
(0.18) 

Doc2dg 0.023 
(0.15) 

0.023 
(0.15) 

0.026 
(0.16) 

0.025 
(0.15) 

0.020 
(0.14) 

Medideg 0.025 
(0.16) 

0.045 
(0.21) 

0.001 
(0.03) 

0.000 
(0.00) 

0.001 
(0.02) 

Rdactivity 0.482 
(0.50) 

0.246 
(0.55) 

0.246 
(0.43) 

0.481 
(0.50) 

0.418 
(0.49) 

Sample 
Size 

10962 5936 1159 2156 1711 
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Table 5 
Results from Zero-Inflated Negative Binomial Regression 

Dependent Variable: Uspapp95a 
Model Variable Academ

e Total 
 

Life 
Sciences 

Computer 
Sciences 

Physical 
Sciences  

Engineering  

Uspapp
95 

      

 Article95 0.0430 
(12.22) 

0.0456 
(10.07) 

0.0354 
(0.62) 

0.0269 
(3.50) 

0.0454 
(1.81) 

 Yrsofphd 0.0498 
(2.81) 

0.0844 
(2.61) 

-0.0142 
(-0.08) 

0.0617 
(1.79) 

-0.0143 
(0.32) 

 Phdsq -0.0004 
(-0.94) 

-0.0014 
(-1.92) 

0.0023 
(0.58) 

-0.0003 
(-0.45) 

0.0010 
(2.09) 

 Femdum -0.0055 
(-0.03) 

0.2041 
(0.46) 

0.7469 
(1.02) 

-0.1974 
(-0.68) 

-0.3509 
(-0.16) 

 Ctzusdum -1.2552 
(-2.03) 

-0.0650 
(-0.24) 

0.1034 
(0.06) 

0.6937 
(2.08) 

-0.3683 
(-2.64) 

 Fedsup -0.0018 
(-0.01) 

0.0311 
(0.14) 

2.2817 
(1.85) 

-0.4994 
(-1.75) 

-0.0674 
(-0.98) 

 Compfield 0.5116 
(1.24) *** *** *** *** 

 Phyfield 0.5098 
(2.89) *** *** *** *** 

 Engfield 0.9309 
(6.27) *** *** *** *** 

 Reseremp 0.4183 
    (2.75) 

0.2535 
(0.82) 

3.6062 
(4.67) 

0.9944 
(3.08) 

0.1047 
(0.44) 

 Medemp 0.2355 
(1.64) 

-0.0911 
(-0.40) 

2.4409 
(3.16) 

1.3878 
(4.12) 

0.7911 
(2.92) 

 Tenure  0.0095 
(0.07) 

-0.0689 
(-0.38) 

3.5400 
(4.13) 

-0.2438 
(-0.66) 

0.0225 
(0.10) 

 Ru1deg 0.0841 
(0.56) 

-0.0252 
(-0.11) 

-4.1979 
(-2.04) 

-0.5029 
(-1.07) 

0.5606 
(1.54) 
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 Ru2deg 0.0295 
(0.12) 

0.1450 
(0.33) 

-3.0607 
(-1.67) 

-0.3380 
(-0.52) 

-0.2449 
(-0.52) 

 Doc1deg -0.1472 
(-0.46) 

0.4082 
(0.30) 

-2.2716 
(-1.01) 

0.2228 
(0.35) 

0.1086 
(0.17) 

 Doc2deg -0.6543 
(-1.35) 

-0.3162 
(-0.34) 

-5.8932 
(-2.92) 

-0.5336 
(-0.54) 

-1.0275 
(-1.88) 

 Medideg 0.4383 
(1.46) 

0.4541 
(1.18) *** *** *** 

 Rdactivity 0.6043 
(2.07) 

0.6472 
(1.29) 

-0.4328 
(-0.54) 

-0.8829 
(-1.56) 

-0.0376 
(-0.11) 

 Constant -3.3095 
(-6.85) 

-3.2749 
(-4.18) 

-1.7778 
(-0.79) 

-1.6233 
(-2.20) 

-1.1501 
(-2.00) 

Inflatio
n 
(Logit)  

      

 Yrsofphd 0.0281 
(0.56) 

0.0472 
(0.38) 

0.0561 
(0.19) 

-0.0124 
(-0.12) 

-0.0140 
(-0.15) 

 Phdsq -0.0001 
(-0.13) 

-0.0009 
(-0.38) 

0.0021 
(0.27) 

0.0006 
(0.27) 

0.0010 
(0.51) 

 Femdum 1.5725 
(3.33) 

1.6912 
(2.86) 

1.6676 
(1.23) 

1.9431 
(2.33) 

0.2591 
(0.32) 

 Ctzusdum -1.2552 
(-2.03) 

-0.7729 
(-0.69) 

-2.5893 
(-1.41) 

3.7760 
(2.39) 

-1.3906 
(-2.52) 

 Fedsup -1.2128 
(-4.01) 

-0.8651 
(-1.44) 

0.4975 
(0.26) 

-3.0967 
(-3.31) 

-0.6270 
(-1.19) 

 Compfield 2.1468 
(3.43) *** *** *** *** 

 Phyfield 0.5083 
(1.32) *** *** *** *** 

 Engfield -1.2797 
(-2.48) *** *** *** *** 

 Reseremp 0.0089 
(0.02) 

-0.2659 
(-0.44) 

8.3126 
(1.99) 

2.0104 
(1.81) 

-1.2515 
(-1.45) 

 Medemp -1.4479 
(-2.39) 

-1.6588 
(-1.76) 

8.1722 
(1.98) 

0.3115 
(0.32) 

0.3341 
(0.53) 

 Tenure  1.4824 
(2.06) 

0.7341 
(1.01) 

10.5842 
(2.30) 

2.0117 
(2.09) 

0.2178 
(0.41) 

 instpat -0.0047 
(-1.85) 

-0.0054 
(-0.86) 

-0.0061 
(-1.93) 

-0.0004 
(-0.16) 

-0.0035 
(-1.28) 

 Ru1deg -0.6926 
(-1.29) 

-0.1931 
(-0.22) 

-10.8257 
(-2.85) 

-3.4951 
(-2.64) 

0.4834 
(0.60) 

 Ru2deg -0.4301 
-(0.80) 

0.6196 
(0.68) 

-9.9962 
(-2.69) 

-1.5235 
(-0.98) 

-12.9557 
(-4.70) 

 Doc1deg -1.6572 
(-1.16) 

1.5847 
(0.69) 

-10.7038 
(-2.92) 

-2.3801 
(-1.42) 

0.3389 
(0.28) 

 Doc2deg -1.6413 1.1587 -14.2575 -2.7157 -11.8365 
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(-0.70) (0.78) (-3.12) (-1.14) (-4.69) 
 Medideg 0.2700 

(0.36) 
0.6849 
(0.84) *** *** *** 

 Rdactivity -1.1856 
(-2.64) 

-1.5833 
(-2.21) 

-0.0744 
(-0.07) 

-3.8841 
(-4.16) 

-1.3413 
(-1.99) 

 Constant 1.6779
(2.02) 

1.7675 
(1.45) 

4.2301 
(1.68) 

1.5025 
(0.76) 

2.0063 
(2.03) 

 Ln-alpha 1.5824 
(10.78) 

1.4676 
(3.74) 

-162.34 
     (0.00) 

1.704 
(13.38) 

0.9898 
(3.27) 

 Log-
likelihood 

-4345.2 -2149.84 -108.927 -883.94 -1130.56 

 N 10962 5936 1159 2156 1711 
(a) Figures with brackets are t-ratios based on robust standard errors.  
* (**) Statistically significantly different from zero at the 5% (1%) level of 
significance. 

 
 
 



 22

 
 

Table 6 
Marginal Effects and Elasticities: 

Estimates from Zero-inflated Negative Binomial Model  
Dependent Variable: Uspapp95a 

 
Variable Academe 

Total 
Life 

Sciences 
Computer 
Sciences 

Physical 
Sciences  

Engineering  

Article95 0.0060** 
(0.347)b,** 

0.0053** 
(0.381)** 

0.0010 
(.176) 

0.0062** 
(0.245)** 

0.0192** 
(0.364)** 

Yrsofphd 0.0043* 
(0.425)* 

-0.0227* 
(-3.220)* 

-0.0015 
(-0.814) 

0.0115 
(0.766) 

0.0033 
(0.086) 

Femdum -0.0786c,** -0.0588** -0.0183c -0.1660 -0.1430 
Ctzusdum 0.0546* 0.0312 0.0372* 0.0495 -0.0249 
Fedsup 0.0566** 0.0432* 0.0884* 0.1035* 0.0136 
Lifefield      
Compfield -0.0681**     
Phyfield 0.0491*     
Engfield 0.2830**     
Univemp      
Reseremp 0.0685** 0.0476 -0.0376 0.0392 0.1110 
Medemp 0.1005** 0.0603** -0.0317 0.5705* 0.4391* 
Tenure  -0.0679** -0.0415* -0.0279 -0.1789** -0.0045 
Instpat 0.0002** 

(0.089)* 
0.0003 
(0.130) 

0.0002 
(0.215) 

0.00002 
(0.006) 

0.0002 
(0.029) 

Ru1deg 0.0444* 0.0062 0.0544* 0.3148* 0.1895* 
Ru2deg 0.0238 -0.0156 0.0064* 0.0074 0.0614 
Doc1dg 0.0287 -0.0466 0.0214* 0.0317 0.0214 
Doc2dg -0.0389 -0.0716** -0.0225* 0.0052 -0.2321* 
Medideg 0.0559 0.0155    
Rdactivity 0.1167** 0.1172** -0.0111 0.1416** 0.0999 
Sample 
Size 

10962 5936 1159 2156 1711 

     * (**) Statistically significantly different from zero at the 5% (1%) level of 
significance. 

a) The underlying coefficient estimates and t-ratios are shown in Table 6.  In non-
linear models, such as ours, the t-ratios associated with coefficient estimates, 
marginal effects and elasticities may be somewhat different.  The t-ratios 
corresponding to coefficient estimates are generally more reliable because the 
underlying standard errors are less noisy.   

b) Figures within brackets indicate elasticities of the number of patent applications 
with respect to the variable. 

c) For a dummy variable, the marginal effect is for discrete change from 0 to 1. 
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Table 7. 

Elasticities: 
Estimates from Zero-inflated Negative Binomial Model Using Instruments for Article95 

Dependent Variable: Uspapp95a 
 

Variable Academe 
Total 

Life 
Sciences 

Computer 
Sciences 

Physical 
Sciences  

Engineering  

Article95 0.0059* 
(0.303)a,* 

0.0093* 
(0.538)* 

0.0014 
(0.024) 

0.0063 
(0.220) 

0.0146 
(0.262) 

Sample 
Size 

10962 5936 1159 2156 1711 

    * (**) Statistically significantly different from zero at the 5% (1%) level of 
significance. 

(a) Figures within bracket indicate elasticities of the number of patent applications 
with respect to Article95. 
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