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Abstract

Many different preference specifications have been proposed as a way of addressing
the equity premium. How should we pick between them? We suggest one possible
metric, namely these utility functions’ ability to explain other evidence on attitudes to
risk. We consider some simple observations about attitudes to monetary gambles with
just two outcomes and show that the vast majority of utility functions used in asset
pricing have difficulty explaining these observations. However, utility functions with
two features — first-order risk aversion and narrow framing — can easily explain them.
We argue that by this metric at least, such utility functions may be very attractive
to financial economists: they can generate substantial equity premia and at the same
time, make sensible predictions about attitudes to monetary gambles.



1 Introduction

In their efforts to understand the historical equity premium, economists have made use of
a large range of preference specifications. Power utility functions, preferences with external
or internal habit, recursive utility and loss aversion preferences are just a few examples. In
principle, all of these functional forms can match the historical premium for some choice
of parameter values. How, then, can we pick between them? Which one offers the most
attractive way of addressing the equity premium, or of capturing people’s attitudes to stock
market risk?

In the past, economists have typically judged these different preference specifications on
their ability to match other variables of interest: the risk-free rate, say, or the volatility of
returns. For example, the fact that when calibrated to match the historical premium, power
utility preferences often also predict a counterfactually high risk-free rate, has been used as
an argument against such preferences.

In this paper we suggest an additional metric for assessing different preference specifi-
cations, namely their ability to explain attitudes not only to stock market risk, but also to
other simple risks. To this end, we start with some evidence on how people react to the
simplest imaginable form of risk — monetary gambles with just two possible outcomes, a gain
and a loss, with stakes both large and small — and ask what kinds of utility functions are
able to explain these observations. In particular, we are interested in the fact that people
often turn down small-stakes gambles whose outcomes are independent of other risks, even
if they are actuarially favorable: for example, most people turn down a 50:50 bet offering a
$110 gain against a $100 loss.

Surprisingly, we find that a wide range of utility functions, including the vast majority
of those used in asset pricing, have great difficulty capturing these attitudes to monetary
gambles. The only utility functions that can address these observations with any degree of
satisfaction are those exhibiting both first-order risk aversion and narrow framing. First-
order risk aversion means that a utility function is locally risk averse, unlike many standard
preferences that are smooth and therefore locally risk-neutral; a utility function with a kink
at the agent’s current wealth, for example, would exhibit this feature. Narrow framing means
that to some extent, the agent evaluates new gambles she is offered in isolation from other
risks that she faces. More formally, her utility function depends on the outcomes of specific
gambles she faces over and above what those outcomes mean for her aggregate wealth risk.

To see why these two features are necessary, consider first a utility function without
first-order risk aversion, in other words, one which is locally smooth. Since the agent is
locally risk-neutral, she will normally be very happy to accept a small, actuarially attractive
gamble like the coin flip bet to win $110 or lose $100. In order to explain the commonly
observed rejection of such gambles, then, we need to push risk aversion up to very high levels.
However, risk aversion will then be so high as to make the agent reject some apparently very



favorable gambles with larger stakes. To avoid such counterfactual predictions, we need to
choose utility functions that are locally risk averse, not locally risk-neutral; in other words,
utility functions exhibiting first-order risk aversion.

This argument for first-order risk aversion has already appeared in various guises in the
literature. Our more novel contribution is to show that to explain attitudes to monetary
gambles and in particular, aversion to small gambles, we need not only first-order risk aver-
sion but narrow framing as well. The intuition for why first-order risk aversion is not enough
is straightforward. Suppose that an investor with first-order risk aversion is offered a small,
independent gamble to be resolved at some point in the future, and that the gamble is
actuarially attractive. Now also make the reasonable assumption that the investor faces
some pre-existing risks: labor income risk perhaps, house price risk, or other financial mar-
ket risk. The investor will decide whether to take on the new gamble by merging it with
her pre-existing risk and checking to see if the combination is attractive. It turns out that
the combination is almost always attractive: since the new gamble is independent of the
agent’s other risks, it brings her useful diversification benefits. Even though she is first-order
risk averse, she happily accepts it. The only way to get the agent to reject the gamble is,
once again, to set risk aversion to extraordinarily high levels. However, this again implies,
counterfactually, that the agent would reject some attractive gambles with larger stakes.

In order to explain the commonly observed aversion to a small gamble, then, it must be
that the investor does not fully merge it with pre-existing risks, but that to some extent, she
evaluates it in isolation. Put differently, her decision utility must depend on the outcome of
the gamble over and above what that outcome means for the risk exposure of his aggregate
wealth; more simply, her utility function must exhibit narrow framing.

In summary, then, we show that the vast majority of utility functions used to address the
equity premium have great difficulty explaining typical attitudes to the simplest imaginable
form of risk, namely monetary gambles with two outcomes. In our view, this is an important
metric by which to assess utility functions and one that points to preference specifications
based on first-order risk aversion and narrow framing as being attractive ways of modelling
the equity premium: such utility functions can capture aversion to stock market risk and
make sensible predictions about attitudes to other simple risks.

Towards the end of the paper, we respond to a possible critique of our approach, namely
that in discrediting a vast array of standard utility functions, we appear to rely heavily on
the widely observed aversion to small gambles like the 50:50 bet over a $110 gain or $100
loss. To some people, such gambles might appear unimportant: it is enough, they might say,
for utility functions to capture attitudes to large gambles. We disagree with this point of
view, and argue that for financial economists, small gambles are important, because stocks
are, in many ways, a small gamble: for the typical investor, stock market holdings constitute
only a small fraction of total wealth. We also provide analytical evidence to support this
view: we take two utility specifications, calibrate them so that they deliver similar attitudes



to large gambles but very different attitudes to small gambles and show that the preferences
exhibiting greater aversion to small gambles also deliver a much higher equity premium. In
short, attitudes to stocks appear to be closely tied to attitudes to small gambles, making it
important to find preferences that can explain the latter.

Our research builds on earlier work investigating how, in static settings, individuals
with various preference specifications react to monetary gambles of different sizes. Kandel
and Stambaugh (1990) point out that power utility functions have trouble simultaneously
explaining attitudes to both large and small scale gambles, while Rabin (2000) shows that
this problem extends to all expected utility functions. One contribution of our research is to
check whether these static arguments apply to the intertemporal setting used by financial
economists. Another is to show that even more general types of preferences, including
those exhibiting first-order risk aversion, also have difficulty capturing attitudes to monetary
gambles.

Epstein and Zin (1990) and Epstein (1992) argue that stocks are effectively a small risk,
making it important that the preferences we use to model attitudes to stocks should do a good
job capturing attitudes to small gambles. They use this reasoning as a way of motivating an
investigation of first-order risk averse preferences. We agree with this line of thinking, but
show that to capture attitudes to small gambles successfully, both first-order risk aversion
and narrow framing are required, not first-order risk aversion alone.

In Section 2, we discuss common attitudes to simple monetary gambles and introduce
various classes of utility functions whose ability to match those attitudes we are interested
in. In Section 3, we show that without first-order risk aversion, it is hard to match these
attitudes. In Section 4, we show that even first-order risk aversion is not enough and that
narrow framing is required as well. In Section 5 we discuss our apparent over-reliance on
the rejection of small gambles as well as possible reasons for why people engage in narrow
framing in the first place. Section 6 concludes.

2 Attitudes to Monetary Gambles

Consider the small gamble

1 1
Gg¢ = (110, —=; —100, =
g ( 72; 72)7

which we read as “get $110 with probability % and —$100 with probability %”. It is the
premise of this paper that most people find this gamble and others like it unattractive. We
base this premise on hundreds of experimental studies, some with real money and some based
on hypothetical questions. Since economists are often skeptical of answers to hypothetical
questions, and since experiments are rarely done with real money, we conducted a small

experiment to add further support to our premise.



The subjects in our experiment are a group of part-time MBA students. They were asked
to fill out a short survey that included one real money question, namely whether they would
play the $110/100 gamble above. They were told that if they wished to accept this gamble,
they should indicate so on the experimental form, and then come to class the following week
with the $100 they would need to pay in case they lost the gamble. They were informed that
if they won they would be paid immediately in cash. Of the 41 students that participated
in the experiment, only 4 were willing to accept the gamble (9.75%).

Aversion to small losses is not confined to the laboratory, but occurs in numerous real-
world settings as well. One example is automobile collision insurance, where people seem to
fear small losses so much that they request remarkably low deductibles. Grgeta and Thaler
(2002) find that in the 1994-96 period, more than half the purchasers of such insurance
elected a deductible of $250 or less. For the typical consumer, increasing the deductible from
$250 to $500 would save about $80 a year. To justify the lower deductible people would have
to file claims one year in three, but in fact the probability of a claim is less than one in ten.!

In Sections 3 and 4, we investigate what kinds of utility functions can capture the com-
monly observed aversion to gambles like G5. Of course, many utility functions can explain
this evidence simply by assuming sufficiently high risk aversion. To provide a reasonable
upper bound on individual risk aversion, we introduce two new gambles; the first is again a
small stakes bet, the second involves larger stakes:?

_ 1 1
= (400, =; —100, =
Gy (400, 55 =100, 7)
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G = (20,000,000, 5: ~10,000, ;).

It is the premise of this paper that these bets are typically accepted. To provide some
evidence for this, we presented these bets to the same subjects that participated in our
real money experiment, though budget constraints prevented us from offering to play these
gambles out. Instead, we simply asked the subjects to think hard about how they would
actually choose. We found that these gambles were indeed much more attractive: 29 of the
41 subjects were willing to accept G, and 30 were willing to take Gp.3

In summary, then, we are interested in what kinds of preference specifications can explain
the three observations,

!Even though such real-world examples are very suggestive, it is hard to know whether they are driven
by aspects of individual preferences, or by irrational beliefs: in our insurance example, it may simply be that
people are mis-estimating the probability of a claim. We therefore focus primarily on trying to make sense
of the laboratory evidence, where probabilities are known.

2The S subscript on G5 and G'g stands for “small,” and the L subscript on G, for “large.” The underline
in Gg denotes an unfavorable small gamble, and the overline in @5, a favorable small gamble.

3Typically, to get a majority of subjects to accept a 50-50 bet at moderate stakes requires that the gain
be more than twice the loss.



I. Gy is rejected
II. Gg is accepted

ITI. G, is accepted.

We do not insist that a utility function be able to explain these observations at all wealth
levels. Rather, we make the weaker demand that they explain them over a range of reasonable
wealth levels — neither too high nor too low. To be precise, we check observation I for wealth
levels below $100, 000, observation II for wealth levels above $1,000 and observation III for
wealth levels above $50, 000.

When we check utility functions’ ability to explain these observations, it can make a
difference, for certain utility specifications, whether the three gambles are “immediate” or
“delayed.” A gamble is immediate if its uncertainty is resolved at once, before any further
consumption decisions are made. A delayed gamble, on the other hand, might be played out
as follows: in the case of Gg, the subject is told that at some point in the next few months,
she will be contacted and informed either that she has just won $110 or that she has lost
$100, the two outcomes being equally probable and independent of other risks.

Although certain utility functions make a distinction between immediate and delayed
gambles, we think that in reality, people do not treat the two kinds of bets very differently.
To test this intuition we asked our sample of students one additional hypothetical question,
which was whether they would accept G, the $110/100 gamble, if it were played out on
a day picked at random during 2003. (The survey was conducted in October 2002.) The
subjects largely shared our intuition: only 9 of the 41 subjects were willing to accept the
delayed gamble.*

In view of this evidence, we insist that the preference specifications we consider be able
to capture observations I-III in either case, immediate or delayed. For the first part of our
analysis, we will only need to work with the computationally simpler immediate gambles:
it turns out that many classes of utility functions have trouble explaining attitudes to im-
mediate gambles alone. In cases where utility functions are able to capture attitudes to
immediate gambles, we challenge them with delayed gambles as well.

2.1 Utility Functions

We now introduce the different classes of preferences whose ability to capture observations
[-1IT we are interested in. We list them in increasing order of sophistication, along with the
abbreviations we use to refer to them.

4We are not sure why people are less averse to the delayed version of Gs. Potential explanations include
the fact that this question was hypothetical, producing somewhat more courage, and the possibility that
some of the students may be graduating and anticipating more income and fewer tuition payments.



Expected utility preferences [EU]

Non-expected utility preferences:
Recursive utility with EU certainty equivalent [R-EU]
Recursive utility with non-EU, second-order risk averse certainty equivalent [R-SORA]
Recursive utility with non-EU, first-order risk averse certainty equivalent [R-FORA]

Expected utility preferences are familiar enough. What about non-expected utility spec-
ifications? In an intertemporal setting, non-expected utility is typically implemented via a
recursive structure in which time ¢ utility, V;, is defined through

Vi= W(Ctaﬂ(f/tHUt))- (1)

Here u(Viy1]I,) is the certainty equivalent of the distribution of future utility Vi1 condi-
tional on time ¢ information, and W is an “aggregator function” which aggregates current
consumption C; with a summary of future utility to give current utility.

We consider three kinds of recursive utility. They differ in the properties they impose on
(. One property that plays an important role is the order of risk aversion built into u, and
in particular whether p exhibits “second-order risk aversion” or “first-order risk aversion,”
terms originally coined by Segal and Spivak (1990). An agent’s utility function exhibits
second-order risk aversion if the premium the agent pays to avoid an actuarially fair gamble
kg is, as k — 0, proportional to k2. In simple terms, such utility functions are smooth and
the investor is almost risk-neutral for small risks. First-order risk averse utility functions,
on the other hand, are preferences where the premium paid to avoid an actuarially fair
gamble k€ is, as k — 0, proportional to k. In this case, the investor is risk averse even over
infinitesimal bets. A simple example of a utility function with this property is one exhibiting
loss aversion, or a kink at the agent’s current wealth.

Utility functions in the expected utility class can only exhibit second-order risk aversion.
This is because, as Epstein (1992) points out, an increasing, concave utility function can
only have a kink at a countable number of points. Non-expected utility functions, on the
other hand, can exhibit either second-order risk aversion or first-order risk aversion, and it
is important to consider the two cases separately.

We now describe the three kinds of recursive utility in more detail. First, we look at
recursive utility preferences in which the certainty equivalent function p has the expected
utility form,

w(X) = h ' Eh(X).

As noted above, we denote preferences in this class as R-EU.% Almost all implementations of
recursive utility that have appeared in the asset pricing literature, including those of Epstein

5Note that even though p is in the expected utility class, intertemporal utility V; is still non-expected
utility.



and Zin (1991a), Campbell (1996) and Campbell and Viceira (1999), are of the R-EU form.
Researchers have made use of such preferences primarily because they offer a simple way of
separating risk aversion and intertemporal elasticity of substitution, something which cannot
be done satisfactorily within the expected utility class (Epstein, 1992).

Next we consider recursive utility in which p is in the non-expected utility class and
exhibits second-order risk aversion (R-SORA). Such preferences appear more rarely in the
asset pricing literature: since the main objective of using recursive utility — the separation of
risk aversion and intertemporal substitution — can be accomplished with the simpler R-EU
preferences, fewer studies adopt R-SORA preferences. One exception is Epstein and Zin
(1991Db).

Finally, we consider recursive utility in which p is again non-expected utility, but now
exhibits first-order risk aversion (R-FORA). Such preferences have again only rarely appeared
in the asset pricing literature, although they have been studied by Epstein and Zin (1990)
and Bekaert, Hodrick and Marshall (1997) among others.

In Section 3, we show that utility functions without first-order risk aversion — in other
words, the EU, R-EU and R-SORA classes — have difficulty explaining the attitudes to
monetary gambles listed in observations I-I11. In Section 4, we show that even utility functions
with first-order risk aversion, namely those in the R-FORA class, have a hard time explaining
the observations, and that a second ingredient, narrow framing, is required.

3 The Importance of First-order Risk Aversion

3.1 Expected Utility

In the expected utility framework, preferences are generally defined over an intertemporal
consumption stream,

E(U(Cy,C4,...,Cp)). (2)

Under mild conditions, one can show that optimizing expected utility over consumption leads
to an indirect value function over wealth,

J(Wt, -[ta C—t) = max Et(U(C(), Ceey Ct7 ét—l—la ey éT)), (3)

where C'; = {Cy,Cy,---,Cy 1} denotes the individual’s past consumption history and I;
denotes information available at time ¢ about the state of the economy. We make the
reasonable assumption that the outcomes of our monetary gambles do not affect I; and are
independent of all other economic uncertainty.

We now ask whether the expected utility preferences in (2) can explain the attitudes to
large and small gambles listed in observations I-III. The following proposition establishes



that no utility function in this class can do so.

Proposition 1.

(a) Consider an individual with an expected utility preference in which future utility does
not depend on past consumption, so that her value function is J(Wy; I;). Suppose that for
given I, she rejects Gg at wealth levels below $100,000. Then she rejects G at all wealth
levels.

(b) Consider an individual with an expected utility preference in which future utility does
depend on past consumption, so that her value function is J(Wy; I, C ;). Suppose that for
given I, and C_y, she rejects Gg at wealth levels below $100,000. Then she rejects G at all
wealth levels.

Proof: See Appendix.

In words, the proposition says that any utility function able to explain observation I —
the rejection of Gg, the $110/100 bet — will inevitably fail to explain observation III, namely
the acceptance of G, the $20,000,000/10,000 bet.

The proposition covers a wide range of utility specifications, including most of those
used in asset pricing. Part (a) of the proposition includes time-separable/state-independent
utility of the form

U(Co,...,Cr) = ;iout(ct)

as well as external habit dependence (Abel 1990, Campbell and Cochrane 1999). Part (b)
covers internal habit dependence (Constantinides 1990, Sundaresan 1989).

Proposition 1 can be thought of as an intertemporal generalization of a recent result of
Rabin (2000), who shows that in a static one-period setting, no EU specification with an
increasing concave utility function can explain both observations I and III. The intuition for
Rabin’s finding, and hence also for Proposition 1, is straightforward. An individual with the
preferences in Proposition 1 is locally risk-neutral; since gamble G involves small stakes,
she would normally take it without hesitating. To get her to reject it, in accordance with
observation I, we need to make her locally risk averse. Moreover, since she must reject G
over a wide range of wealth levels, she must also be locally risk averse over a wide range
of wealths. Proposition 1 simply states that this immediately implies a level of global risk
aversion so high that she even rejects the apparently favorable large gamble, G7..

The proof of Proposition 1 depends crucially on a property of the expected utility pref-
erences in (2) and (3), namely that for fixed I, and C_;, the utility difference between two
wealth levels does not depend on current wealth: the increase in utility from having $21, 000
rather than $20,000 is the same, whether current wealth is $10, 000 or $20,000. Therefore,
knowing that someone will turn down a small gamble like G5 at a wealth level of $20, 000



provides valuable information about how, at a wealth level of $10,000, she would react to a
large risk like G, that might bring her into the neighbourhood of $20, 000.

At first sight, it might seem from Proposition 1 that Rabin’s (2000) argument transfers
easily to the intertemporal setting. However, this is not completely true. The argument
works much better for certain types of utility functions than for others. As is reasonable in
a one-period context, Rabin (2000) considers utility functions that are defined over wealth
alone. In an intertemporal setting, value functions often depend not only on wealth but,
as shown in (3), on state variables I; and past consumption C_; as well. In order to apply
Rabin’s argument, then, we need the assumption given in each part of the proposition,
namely that keeping these other variables fized, G is rejected at a range of wealth levels.
The problem is that this assumption may sometimes be difficult to verify.

Consider an individual with internal habit preferences, covered in part (b) of the proposi-
tion. There, we assume that for fixed C'_;, the investor rejects G¢ at a range of wealth levels.
To provide evidence that this assumption actually holds, we would want to ask people with
different wealth, but the same past consumption, how they feel about Gs. The problem
is now clear: it is very hard to find a group of subjects to do this experiment on, because
people with different wealth will also tend to have different past consumption. Since it is
difficult to show that the premise of the proposition is true for internal habit preferences,
using the proposition to dismiss such preferences may be too harsh. This caveat does not let
habit-based preferences off the hook though, because they are still subject to more general
criticisms that we make later of all utility functions displaying second-order risk aversion,
whether expected utility or non-expected utility.5

Initial indications of the problem with EU preferences appear in Kandel and Stambaugh
(1990), who show that in a one-period setting, power utility preferences

Wi
=1

have trouble simultaneously capturing attitudes to both small- and large-scale risks. What-

UWw)

ever value of 7 is chosen, Kandel and Stambaugh (1990) show that the resulting preferences
make counterintuitive predictions either about large-scale or about small-scale wealth gam-
bles. Rabin (2000) and Proposition 1 above show that this problem arises not only for
power utility functions but for all expected utility specifications: if they are calibrated to fit
attitudes to small-scale gambles, they will be unable to fit attitudes to large-scale gambles.

SRubinstein (2001) points out that Rabin’s (2000) argument applies only when utility is defined over
wealth, not when it is defined over wealth changes, say. In general, this critique is not relevant to our analysis.
Financial economists define utility over consumption streams and as discussed in the main text, such utility
functions lead quite generally to value functions defined over wealth, not changes in wealth. However, there
is a sense in which the difficulty we raise in the case of internal habit preferences is very similar to the
difficulty raised by Rubinstein (2001). In the case of internal habit, the value function J(W;;I;,C_;) comes
close to being a function of wealth changes, since past consumption C_; is likely to be closely related to past
wealth.

10



Ezxample

We illustrate the proposition with a simple example. Consider an investor with power

utility preferences
c

L=y

and with i.i.d. investment opportunities. The investor’s value function is then given by

LKC%,”.,C&)::Eipt (4)

1—
w, ™"

=TI
T =TT

(5)

for some constant I' (Ingersoll, 1982).

We now check that any v able to explain observation I will be unable to explain obser-
vation III. To see this, note that the investor rejects an immediate gamble v iff

E(J(W, + 7)) < J(W,).
For v > 1, and © = (z, 3; —y, 3), this reduces to

(Wy+2)' 77+ (W — )7 > 277, (6)

Suppose that the investor’s preferences fit observation I, so that she rejects Gg, the
$110/100 gamble, at any wealth level below $100,000. Then, in particular, she rejects G at
a wealth level equal to $100,000. A simple computation shows that the lowest integer value
of risk aversion v that satisfies (6) for

W, = 100,000, z = 110, y = 100

is ¥ = 90. But at this level of risk aversion, the investor rejects Gz, the $20,000,000/10, 000
bet: for v > 90, inequality (6) is violated when

z = 20,000,000, y = 10, 000,

whatever the investor’s initial wealth. In other words, if the investor’s risk aversion 7 is
high enough to explain the rejection of G in observation I, it will be so high as to make it
impossible to explain observation III.

3.2 Non-expected Utility

Having shown in Proposition 1 that EU preferences are unable to explain observations I-I1I,
we turn to non-expected utility specifications.

Recursive utility with expected utility certainty equivalent [R-EU]

11



We begin with the following proposition, which shows that the first type of recursive
utility preference — R-EU — cannot explain observations I and III.

Proposition 2. Suppose that an individual has the recursive utility preferences
Vi = W(Cy, u(Visa 1))

with H(Vt+1|[t) the certainty equivalent of the distribution of future utility Vi1 conditional
upon information at time t, and where p has the expected utility form

u(X) = h™'Eh(X)
for some increasing, concave h, so that the value function is
J(Wy; I,) = max W (Cy, (Vi |1)).

Suppose that for given I, the individual rejects G at wealth levels below $100,000. Then
she rejects G, at all wealth levels.

Proof: See Appendix.

In words, the proposition says that if an R-EU preference specification is calibrated to
match observation I — the rejection of Gg, the $110/100 bet — it fails to match observation
III, in that it predicts the rejection of G, the $20,000,000/10,000 bet. The idea behind
the proof is straightforward. Even though the preferences in Proposition 2 are non-expected
utility, attitudes to risk are governed by the certainty equivalent functional p, which s
in the expected utility class. Therefore just as expected utility functions cannot explain
observations I and III — our result in Proposition 1 — so recursive utility with an expected
utility functional p cannot explain them either.

Ezample

To illustrate Proposition 2, consider an investor with the following preferences, which
belong to the class studied in the proposition,

W(C ) = ((1—6)0”?Lﬁu”)%,p<1,p7é0 (7)
u(V) = (B(V'7)™, (8)

and with i.i.d. investment opportunities. Epstein and Zin (1989) show that in this case, the
investor’s value function takes the form

J(W,) =TW, (9)

for some constant I

12



We now check that any calibration of (7) able to explain observation I is unable to explain
observation III. An investor with recursive utility evaluates an immediate gamble ¥ in the
following way. He inserts an infinitesimal time step At at time ¢ and checks whether the
utility from taking the gamble,

W0, u(J (Wiyar))) = WO, w(J (Wi +0))) = W(0, p(D(W; +0))) = W(0, Lp(W,+7)), (10)
is greater than the utility from not taking the gamble
W0, u(J(Wizar))) = W(0, u(J(We))) = WO, u(TWy)) = W (0, T (W) (11)

The decision therefore comes down to comparing u(W; + v) and p(W;). Given the form of

fin (8), an investor with > 1 will reject an immediate gamble (z, 3; —y, 1) at wealth level
W, iff

(Wt + 37)177 + (Wt — y)li7 > 2Wt1777

exactly the condition that emerged in the example following Proposition 1. Precisely the
same reasoning shows that the preferences in (7)-(8) cannot simultaneously explain observa-
tions I and III.

Recursive Utility with second-order risk averse certainty equivalent [R-SORA]

We now turn to the second kind of recursive utility preference, R-SORA. In this case, it
is impossible to prove that such preferences can never explain observations I-II1. In partic-
ular, the Rabin (2000) argument can no longer be applied to the same extent as before. As
mentioned earlier, the expected utility preferences in (2) and (3) have a very useful property,
namely that the utility difference between two wealth levels does not depend on current
wealth. As a result, attitudes to small risks at one wealth level provide very valuable infor-
mation about attitudes to larger risks at other wealth levels. Without the EU assumption,
however, this logic fails: the knowledge that someone rejects Gg at a wealth of $20,000
provides little information about their attitudes to G, at $10, 000 wealth.

While R-SORA preferences can, in principle, explain observations I-I1I, we argue that
they can only do so for extreme parameterizations. One reason for this is already well-known
in the literature. R-SORA preferences are locally smooth, which means that the investor is
locally risk-neutral: she will accept an infinitesimally small, actuarially fair gamble. While
Gy is not literally infinitesimal, it is virtually so; R-SORA preferences therefore need to
adopt extreme parameters to explain its rejection.

This argument is a standard one. But we can go further. While it is certainly a challenge
for R-SORA preferences to explain observation I, it is an even greater challenge for them to
explain both observations I and II. The reasoning is essentially a “local” version of Rabin’s
argument. Suppose that R-SORA preferences are calibrated to explain the rejection of G,
the $110/100 bet. They must therefore exhibit a very high level of risk aversion, making it

13



very likely that the individual will reject, at the same wealth level, a more attractive gamble
with larger stakes, such as

1 1
2000, —; =500, -). 12
( 727 ’2) ( )

For the standard case where the certainty equivalent functional p is homogeneous, rejecting
the gamble in (12) at wealth level W is equivalent to rejecting (400, 3; —100, 1) at wealth
level W/5. To summarize, an R-SORA specification which explains the rejection of G at
one wealth level will typically predict the rejection of Gg, the $400/100 bet, at a lower
wealth level, making it especially hard for such preferences to explain observations I and II

simultaneously.”
Ezxample

To see the difficulties faced by R-SORA preferences, consider a simple example of a utility
function in this class,

W(C,p) = (1= B)CP + Buf)e, p<1, p#0 (13)

where p takes a form suggested by Chew and MacCrimmon (1979) and Chew (1983), namely
“weighted utility”. Given a gamble

V= (xlapl;x%p?; ce ;xnapn)a

1 is defined as

N 1—y+6 1—yts\ /=)
(plxl + ...+ DT, > o (14)

pV) =

V) Pl + ...+ ppad
Risk aversion increases as 7y increases or as o falls. When 0 = 0, these preferences reduce to
the standard power utility specification.

When investment opportunities are i.i.d., Epstein and Zin (1989) show that the individ-
ual’s value function is given by
J(Wt) = FWt

An investor with such preferences therefore decides whether or not to take on an immediate
gamble in the way laid out in equations (10) and (11). In particular, she accepts a gamble

p(We +0) > u(Wy),

or if

(15)

(W, + x)1*7+5 + (W, — y)1—7+6 1/(1—) W
(W +2)0 + (W, — y)? t

"In the more general case where the certainty equivalent functional p is not homogeneous, the same kind
of argument can still be applied: massive aversion to local risks is likely to imply implausible aversion to
larger bets. The nice feature of homogeneity is that we can scale these larger bets down into equivalent
smaller bets, which are easier to play for real money in the laboratory.
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The area shaded with “+” signs in the top panel of Figure 1 shows the range of values
of v and 0 consistent with observation I, in other words, with the investor rejecting G, the
$110/100 bet, at all wealth levels below $100,000. Mathematically, these are the values of
v and ¢ for which inequality (15) fails for all W, < 100, 000 when

z =110, y = 100.

The diagram shows, just as we predicted, that extreme values of v and ¢ are needed just to
explain observation I. For example, when 6 = 0, so that the preferences in (13)-(14) collapse
to power utility preferences, we see, consistent with our earlier evidence, that v > 90 is
needed to explain the rejection of G5. The shaded area is concentrated in the bottom-right
of the panel because risk aversion increases as we move towards the south-east, or as -y
increases and ¢ falls.

This shaded area reappears, again marked with “+” signs, in the bottom panel of Figure
1. This panel also shows, now with “x” signs, the values of v and ¢ consistent with observation
I1, i.e., for which the investor would accept G, the $400/100 bet, at all wealth levels above
$1,000. Mathematically, these are the values of v and ¢ for which inequality (15) holds when
W, > 1,000 and

x =400, y = 100.

This region is located in the top-left corner of the picture: once risk aversion climbs too high,
the investor is no longer willing to accept GJ.

The picture shows that while it is difficult to explain just observation I, explaining both
observations I and II is even harder, with only a thin sliver of parameter values in the upper
right-hand corner able to do the task. The intuition, once again, is that if the investor is so
risk averse as to reject the $110/100 bet at some wealth level, she will probably reject more
attractive gambles with larger stakes, such as a $2000/500 bet, at the same wealth level, and
therefore also the $400/100 bet at lower wealth levels.

Recursive Utility with first-order risk averse certainty equivalent [RU-FORA]

Finally, we turn to the last class of recursive utility preferences, R-FORA, in which the
certainty equivalent y is non-expected utility and exhibits first-order risk aversion. Such
preferences certainly do a better job addressing observations I-III than the other specifica-
tions we have seen so far. In particular, they have no trouble explaining the attitudes in
observations I-III, so long as the gambles are played out immediately, a critical caveat we
return to shortly.

The intuition for why R-FORA preferences can explain atttitudes to immediate gambles
is straightforward. The essence of the difficulty with EU, R-EU, and R-SORA preferences
is that the investor is risk-neutral to small gambles, forcing us to push risk aversion up to
dramatically high levels in order to explain the rejection of G, the $110/100 bet. An agent
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with R-FORA preferences, on the other hand, is by definition, locally risk averse. Risk
aversion over large gambles does not, therefore, need to be increased very much to ensure
that G is rejected.

Ezample

To illustrate, consider an investor with the following specific R-FORA preferences:
W(C, ) = (1 = B)C? + Bu”)'/?, (16)
where p takes a form developed by Gul (1991),
p(Vie)'7 = BV + (A= DE((VET" = (Vo)) )1 (Vi < u(Virn)). (17

These preferences are often referred to as “disappointment aversion” preferences. The in-
vestor gets disutility if the outcome of the gamble V falls below its certainty equivalent
where the degree of disutility is governed by A. This parameter effectively controls how
sensitive the agent is to losses as opposed to gains. Any A > 1 implies first-order risk
aversion.

For i.i.d. investment opportunities, Epstein and Zin (1990) show that the investor’s value
function is given by

We now check that (16)-(17) can easily be parameterized to explain all of observations
[-1IT for the case of immediate gambles. As in our earlier examples of recursive utility, the
investor evaluates an immediate gamble v by checking whether the utility from taking the
gamble, given in (10), is greater than the utility from not taking the gamble, given in (11),
which again reduces to comparing u(W; + v) and u(W;). Given the functional form of y, a
little algebra shows that observations I-IIT can be simultaneously explained if there exist
and A such that

(W, 4 110)=7 4+ A(W, — 100)*7 > (1 + )W, (19)

holds for all wealth levels below $100, 000,
(W, + 400)1 7 + A(W, — 100)* 7 < (1 4+ )W, ? (20)

hold for all wealth levels above $1,000 and
(W + 20,000, 000)"=7 + X\(W; — 10000)' = < (1 + \)W,'™? (21)

holds for all wealth levels above $50,000. Condition (19) ensures that G is rejected, con-
dition (20) that Gg is accepted and condition (21) that G, is also accepted, all at the
appropriate wealth levels. A quick computation confirms that all three of (19), (20) and
(21) can be satisfied with v = 2 and A = 2. The intuition is that since A controls sensitivity
to losses as opposed to gains, we need A to be somewhere between 1.1 and 4 so that the
$110/100 bet is rejected and the $400/100 bet accepted.
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4 The Importance of Narrow Framing

At first sight, then, it appears that preferences with first-order risk aversion can explain
observations I-III. However, we now show that they can only do so in a very special case,
namely when the monetary gambles are immediate. In the more realistic and general setting
where the gambles are played out with some delay, however small or large, they have a
much harder time explaining observations I-I1I. In other words, while they can easily explain
aversion to small, immediate gambles, they have great difficulty — in a sense that we make
precise below — capturing aversion to small, delayed gambles. This is a serious concern
because as we saw in Section 2, people seem to be just as averse to the $110/100 bet when
it is played out quickly as when it is played out with delay. More generally, most real-world
risks are delayed, making it important to get attitudes to such gambles right.

Before giving a precise statement of the difficulty with R-FORA preferences, we give
an informal example to illustrate the idea. Consider a simple one-period utility function
exhibiting first-order risk aversion,

T z>0
= f - .
w(z) {2x o r <0

It is easy for such a utility function to explain why someone might reject the small, imme-
diate gamble (110, 3; —100, ): the individual would assign the gamble a value of 110(3) —
2(100)(3) = —45, the negative outcome signalling that the gamble should be rejected. But
how would this individual deal with the more realistic case of a small, delayed gamble?

In answering this, it is important to recall the essential difference between an immediate
and a delayed gamble. The difference is that over the time interval that the uncertainty
surrounding the delayed gamble is being played out, the individual is likely to be facing
other sources of risk at the same time, such as labor income risk, house price risk, or risk
from other financial investments. This is not true for the immediate gamble.

For the R-FORA preferences in (16)-(17), this distinction can have a big impact on
whether a gamble is accepted. Suppose that the individual is facing the pre-existing risk
(30,000, %; —10, 000, %), to be resolved at the end of the period, and is wondering whether or
not to take on an independent delayed gamble (110, %; —100, %), whose uncertainty is also to
be resolved at the end of the period. The correct way for him to think about this is to merge
the new gamble with the pre-existing gamble, and to check whether the combined gamble

offers a high utility. Since the combined gamble is

1 1 1 1
110,=;2 L. 2. 10.100. =
(30,110, 7:29,900, 9,890, -: ~10,100, ).

the comparison is between

1 1
30,000(3) — 2(10,000)(5)) = 5000
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and 1 1 1 1
30, 110(7) +29,900(3) — 2(9890) — 2(10,100) 7 = 5007.5.

The important point here is that the combined gamble offers higher utility. In other
words, the investor would want to accept the small delayed gamble, even if she would reject
an immediate gamble with the same stakes. The intuition is that since the investor is
already facing some pre-existing risks, adding a small, independent gamble represents a form
of diversification, which she willingly takes on.

This simple example suggests that even if the certainty equivalent p exhibits first-order
risk aversion, it may be very difficult to explain the rejection of G, the $110/100 bet. In
Proposition 3 below, we make the nature of this difficulty precise. In brief, while an individual
with R-FORA utility acts in a first-order risk averse manner toward immediate gambles, she
acts in a second-order risk averse manner towards independent, delayed gambles, so long as
she is already facing other pre-existing risks.

This immediately reintroduces the same two difficulties that we saw in Section 3 when
discussing preferences with second-order risk aversion (R-SORA). First and foremost, since
the agent is second-order risk averse over delayed gambles, and since the delayed gamble G
is virtually infinitesimal, she will be very keen to accept it. In order to explain why it is
typically rejected, extreme parameterizations are required.

Second, if the agent rejects the delayed gamble (110, %; —100, %) at some wealth level, the
local risk aversion will need to be so large that she will probably also reject, at the same wealth
level, a more attractive gamble with larger stakes, such as (2000, %; —500, %) Together with
the standard homogeneity assumption on the certainty equivalent g, this implies that she
will reject (400, %; —100, %) at lower wealth levels, a counterfactual prediction. We illustrate
both of these difficulties in an example following the proposition.

While Proposition 3 is proven for just one implementation of first-order risk aversion,
namely the Gul (1991) implementation through the recursive utility, the argument used in

the proof is very general and applies readily to other formalizations.

Proposition 3: Suppose an individual has first-order risk aversion preferences as implemented
through the recursive utility framework of Gul (1991) laid out in (16)-(17) above, where the
function W s strictly increasing and differentiable with respect to both arguments, and where
h is strictly increasing with a positive first derivative and negative second derivative.

Suppose that the individual is offered an actuarially favorable gamble k& to pay off between
time t and t+1 , and that the payoffs do not affect, and are independent of, I, and the future
economic uncertainties. Finally, suppose also that prior to taking the gamble, the distribution
of the agent’s t + 1 utility value \N/H_l does not have finite mass at .

Then, the individual will be second-order risk averse over the new gamble; in other words,
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for sufficiently small k, she will accept it.

Proof: See Appendix.

Ezample

We now illustrate the difficulties faced by R-FORA preferences with the help of a more
formal example. The analysis closely mirrors the computations we did for the example of
R-SORA preferences in Section 3. We first show that it is very difficult for the R-FORA
preferences to explain the rejection of the delayed gamble Gg = (110, %; —100, %), and that it
is even more difficult to explain both the rejection of G and the acceptance of the delayed

gamble Gg = (400, %; —100, %) — in fact, we show that it is impossible to explain both facts.

To do the computations, we again consider an investor with the R-FORA preferences in
(16)-(17). We assume, for simplicity, that the only investment opportunity available to the
investor is a risky asset with gross return R, which each period takes the value 1.2 or 0.98
with equal probability and which is i.i.d. over time. As before, the investor’s value function

takes the form
J(Wt) == FWt

In order to decide whether the agent takes on a delayed gamble, we need to compare the
utility from not taking it,

W (Ch, i(J(Wes))) = W (Ci, p(TWo1)) = W (Co, T (W), (22)
to the utility from taking it,
W (Ch, i(J (Wi +0))) = W(Cp, p(T(Wisy +0))) = W(Ch, Tu(Wip1 + 7). (23)

The hat over C; is a reminder that if the investor takes on the gamble, her optimal consump-
tion choice will be different from what it is when she does not take the gamble.

Figure 2, which has the same structure as Figure 1, presents the results. The shaded
area in the top panel shows the range of values of v and A for which the agent rejects the
delayed gamble G = (110, %; —100, %) The figure confirms that extreme values are required
to explain this rejection.

”

This shaded area reappears in the bottom panel, again marked with “+” signs. The

panel also shows, marked with “x” signs, the range of values of v and A for which the agent
accepts Gg = (400, %; —100, %) As the figure shows, there is no overlap between the two
shaded regions. In other words, there are no parameter values for which these R-FORA

preferences can explain both observations I and II.

The intuition bears repeating: in the presence of pre-existing risk, the investor acts in
a second-order risk averse manner towards small, delayed gambles. It therefore takes huge
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risk aversion to explain why a delayed gamble is rejected, so much, in fact, that she rejects
more attractive gambles with larger stakes, such as (2000, %; —500, %), at that wealth level,

and therefore also (400, %; —100, %) at lower wealth levels.

4.1 Incorporating Narrow Framing

So far, we have shown that three simple observations — I, II and III — pose considerable diffi-
culties for almost every utility specification that has appeared in the asset pricing literature.
What, then, can satisfy these observations? Clearly, first-order risk aversion is a necessary
ingredient: we need it to explain why small gambles like G5, played out immediately, are re-
jected. However, the analysis earlier in this section shows that first-order risk aversion is not
enough. Its weakness is that when an agent evaluates a small, delayed gamble, she merges
it with pre-existing risks and since the resulting diversification is attractive, she is happy
to accept it. To explain the rejection of such delayed gambles, then, it must be that the
agent does not fully merge the gamble with pre-existing risks, but to some extent, evaluates
it in isolation. More formally, her preferences must depend on the outcome of the gamble
over and above what the outcome implies for aggregate wealth risk, a feature we call narrow
framing.

We now check that preferences incorporating both first-order risk aversion and narrow
framing can easily explain observations I-I1I, whether the gambles are played out immediately
or with delay. Preferences of this type were originally proposed by Kahneman and Tversky
(1979) and have been used in the context of asset pricing by Benartzi and Thaler (1995) and
Barberis, Huang and Santos (2001). Here, we adopt a more tractable specification proposed
by Barberis and Huang (2002), in which time ¢ utility is given by

Vi W [ct, W(Vis) + BB (3 T(Caren)) (24)

A
where

Wie,y) = (1-B)C"7+ gy (25)
_ z x>0
p(Vy = (B )Yem,

and where G, ;4 are specific gambles faced by the investor whose uncertainty will be resolved
between time ¢ and ¢ + 1.8

8The specification in Barberis and Huang (2002) has numerous advantages over earlier formulations like
that in Barberis, Huang and Santos (2001): it allows for a more tractable partial equilibrium analysis, offers
a natural way of checking attitudes to monetary gambles and individual preferences no longer depend on an
aggregate consumption scaling term.
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The term prefixed by by in (24) shows that relative to the usual recursive specification
in (1), we now allow utility to depend on outcomes of gambles G;;;; over and above what
those outcomes mean for aggregate wealth risk. In other words, we allow for narrow framing,
with the parameter by controlling the degree of narrow framing.

Barberis and Huang (2002) show that just like an investor with the R-FORA preferences
in (16)-(17), an investor with the preferences in (24)-(25) is first-order risk averse over im-
mediate gambles. This time, however, the first-order risk aversion does not come from p
itself: note that the p in (25) is of the expected utility class, and therefore second-order risk
averse. This time, first-order risk aversion comes from the kink in ¥ at the origin.

Barberis and Huang (2002) also show that an investor with the preferences in (24)-(25)
is first-order risk averse not only to immediate gambles but to delayed gambles as well. The
intuition is that when considering a delayed gamble, the investor does not fully merge it with
pre-existing risks, but because of the T term in (24), evaluates it in isolation to some extent.
The piece-wise linearity of ¥ then induces first-order risk aversion over the gamble.

The fact that the preferences in (24)-(25) predict first-order risk aversion over both imme-
diate and delayed gambles means that they should have little trouble explaining the rejection
of Gg, the $110/100 bet, whether in its immediate or delayed form. This stands in stark con-
trast to the preferences in (16)-(17): in that case, we saw that while the agent is first-order
risk averse over an immediate small gamble, he is second-order risk averse over a delayed
gamble, thereby predicting the rejection of the former but the acceptance of the latter.

We now check that the preferences in (24)-(25) can indeed explain the attitudes in obser-
vations [-1II without difficulty, whether the gambles are immediate or delayed. We consider
the same context as earlier in this section. The investor’s only investment opportunity is a
risky asset, with a gross return R of 1.2 or 0.98 each period with equal probability. Barberis
and Huang (2002) show that in this case, the investor’s value function is given by

J(Wy) =TW,.
The agent will therefore accept an immediate gamble 7 iff the utility from not taking it on,

W (0, Du(Wh))
is less than the utility from taking it,

W0, (W, + ) + by Ey(T(Z))] -
Analogously, he will take a delayed gamble 7 iff the utility from not taking it,
W(Ct, Tu(Wit1))

is less than the utility from taking it,

W [Co Tp(Wesr + ) + bo By (0(2))]

21



with the hat over C, again indicating that if the investor takes the gamble, his consumption
choice will be different from what it is in the case where he doesn’t take on the gamble.

We set (3, which has little direct influence on attitudes to risk, to 0.98, and by, which
controls the degree of narrow framing, to 1. The top panel in Figure 3 shows the range
of values of v and A consistent with observations I-III when the gambles are played out
immediately, while the bottom panel shows the range of values when the gambles are delayed.

The results in the top panel appear sensible. So long as the investor engages in some
narrow framing, in other words, so long as by is sufficiently positive, her attitude to small
gambles is largely determined by A, which controls sensitivity to losses relative to sensi-
tivity to gains. In order to explain why an investor rejects (110, %; —100, %) but accepts
(400, %; —100, %), we need A to range between 1.1 and 4, and this is roughly what the figure
shows.

The bottom panel shows that in the presence of narrow framing, attitudes to delayed
gambles are very similar to those for immediate gambles. It is therefore clear that there is a
wide range of parameter values for which the preferences in (24)-(25) can explain observations
[-1IT for both immediate and delayed gambles. This contrasts with R-FORA preferences,
which lack narrow framing, and which predict very different attitudes to immediate and

delayed gambles.

5 Discussion

5.1 Narrow Framing and the Equity Premium

In the previous section, we argued that preferences with first-order risk aversion and narrow
framing are attractive because they are easily able to explain observations I-III, whether the
underlying gambles are played out immediately or with delay.

One issue that we did not address is whether the parameter values consistent with ob-
servations I-III can also generate a substantial equity premium. Put differently, it may be
that the kinds of parameter values required to generate a large equity premium are no longer
consistent with observations I-III.

We now show that in a simple economy with a risky stock market, it is easy to find
parameter values for which the representative agent with the preferences in (24)-(25) would,
in equilibrium, demand a high equity premium and would also act consistently with obser-
vations I-IIT.7

9In assigning our preference specifications to the representative agent, we are clearly assuming that
properties of individual preferences survive under aggregation. We do not prove any results about aggregation
here — nor indeed, have aggregation results in the literature to date been proven in anything but the simplest

22



We consider an endowment economy with an infinite number of identical investors, and
two assets: a risk-free asset in zero net supply, with gross return R;; between time ¢ and
t+ 1, and a risky asset — the stock market — in fixed positive supply, with gross return R;
between time ¢ and ¢ + 1. The stock market is a claim to a perishable stream of dividends
{D,}, where

Dlt)_“;l — eI ToIDE (26)
and where each period’s dividend can be thought of as one component of a consumption
endowment C}, where

Cit1
Cy

(;i>AAN<<E;>,<i f)),iid.mmrmme (28)

In our quantitative analysis, we use the endowment process parameters listed in Table 1.

— 690+0'077t+1, (27)

and

These parameters are estimated from U.S. data spanning the 20th century and are standard
in the literature.

Suppose that the investors in the economy have the preferences in (24)-(25), exhibiting
both first-order risk aversion and narrow framing. At this point, we need to be precise as to
which risks these investors frame narrowly; put differently, which of their risks do the G; in
equation (24) refer to?

We assume that they frame their stock market investments narrowly. In other words, they
get direct utility from fluctuations in the value of their stock market holdings even though
these holdings are only one part of their total wealth; in mathematical terms, G ;41 =
étﬂ — 1. We discuss possible interpretations of this assumption more fully in Section 5.3.
For now, note that given this assumption, utility is

Ve = WG, 1(Visr) + bo B (0(Rysq — 1)) (29)
When we check whether these investors accept or reject simple monetary gambles, we

assume that they frame those narrowly too. In other words, if they take on a simple gamble
Z, their utility is given by

Vi =W Cy, n(Vig1) + b Eo(R 41 — 1) + bo E(v())] (30)

cases. What results there are, though, suggest that the representative agent’s risk aversion is a weighted
average of individuals’ risk aversion. If all agents in our economy display aversion to small risks, then, it
seems plausible that the representative agent will also, thereby ensuring that our results go through even
after accounting for heterogeneity.
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Barberis and Huang (2002) show that the Euler equations corresponding to the prefer-
ences in (29) are given by

2 Cry1\ Cip1y = _
B (1—a) T Ry E(( c, ) )(E(( c, )7)) = 1(31)

E((“5%)7"(Rs41 — Ry)) B loan o B _
(%) ) + bo R} (1—5) ( 5 ) TTE[@(Rsi1 — Ry)) = 0(32)

where « is the fraction of wealth consumed by the investor. Given a risk-free rate Ry, o is
obtained from (31); with a in hand, (32) can then be used to compute the equity premium.

We again fix 4 and by to be 0.98 and 1, respectively. The top panel in Figure 4 shows
the range of values of v and A for which the agent charges an equity premium in excess of
four percent, a very substantial amount. (The risk-free rate in this economy is 2 percent).
The bottom panel shows the values for which, given her equilibrium holdings of stocks, she
acts consistently with observations I-IIT when evaluating gambles G, Gg and G, whether
these gambles are played out immediately or with delay.!”

The figure confirms that preferences with first-order risk aversion and narrow framing do
indeed offer financial economists some attractive features, in that they are able to generate
a very substantial equity premium and at the same time, make sensible predictions about
attitudes to simple monetary gambles. In particular, the bottom panel shows that A needs
to range between 1.1 and 4 to explain attitudes to G, Gs and G. The top panel shows
that A > 2.3 is necessary to produce a sizeable equity premium. Any parameterization with
A between 2.3 and 4 can therefore generate a large equity premium as well as plausible
attitudes to laboratory gambles.

The first-order risk aversion and narrow framing that are helpful in explaining attitudes
to monetary gambles are precisely the features that help generate such large equity premia.
Our investors worry directly about gains and losses in the stock market and because A > 1,
they are more sensitive to losses than to gains. They fear large losses in the stock market and
therefore charge a high equity premium as compensation. Precisely the same mechanism is
suggested in Benartzi and Thaler (1995) and Barberis, Huang and Santos (2001) as a possible
source of the premium.

5.2 The Importance of Small Gambles

One apparent weakness of our approach is that in discrediting a vast array of standard utility
functions, we seem to rely heavily on the fact that people typically reject small gambles, even

10The bottom panel is not the same as the intersection of the two regions in Figure 3 because the agent’s
initial holdings of risky assets are different. In the one case, she is holding a prior risk with two possible
outcomes, in the other, a log-normally distributed risk, equity, with average return given by equations
(31)-(32).
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if they are actuarially favorable. To some people, such gambles might seem “unimportant”;
it is good enough, they might say, to choose preference specifications that can satisfactorily
explain attitudes to large gambles: small gambles can be safely ignored.

In our opinion, this critique is a weak one, for at least two reasons. First, we have stressed
the rejection of small gambles of the $110/100 variety because they are the most difficult for
the standard theories to explain, but similar arguments apply to gambles with larger stakes,
such as (1100, %; —1000, %), which are harder to dismiss as unimportant. This gamble is also
typically rejected, and yet most utility functions have trouble explaining this, for precisely
the reasons laid out in Sections 3 and 4.

Second, for financial economists at least, small gambles are important for the simple
reason that stocks themselves are a small gamble. In a moment, we provide evidence for this
claim; suppose for now that it is true, and consider its implications. If stocks are a small
gamble, a researcher who wants to address the equity premium via investor preferences
— in other words, a researcher who wants to generate aversion to stock risk — must find
preferences which do a good job explaining aversion to small gambles. And as we have seen
in this paper, aversion to small gambles is best explained through first-order risk aversion and
narrow framing. We can state this idea in more specific terms. Our results in Sections 3 and
4 have shown that when most preference specifications are calibrated to explain aversion to
small gambles, they make counterfactual predictions about attitudes to gambles like G, the
$20,000,000/10, 000 gamble, and G, the $400/100 gamble. If stocks are themselves a small
gamble, it is likely that when preferences are calibrated to generate aversion to stocks and
hence a large equity premium, they will again make implausible predictions about attitudes
to G, and Gy.

But why are stocks a small gamble? There are a number of ways of seeing this. One is to
look at the asset holdings of the typical investor, and to note that stock market holdings are
indeed a small portion of their wealth. For example, according to the Investment Company
Institute, the average equity owner in the U.S. is 47 years old, makes $62,500 per year, has
$50,000 in equities and another $50,000 in financial assets ezcluding home equity. Even the
roughest estimates of this individual’s human capital wealth or housing wealth suggest that
the risk associated with equity holdings is small relative to total wealth.

The low correlation of consumption growth and stock returns also suggests that stocks
are effectively a small gamble. If stocks were a large part of total wealth, we would normally
expect changes in stock prices to be closely related to changes in consumption. This does
not appear to be the case.

Finally, we can provide some analytical evidence that attitudes towards stock risk have
much in common with attitudes to small gambles like G, the $110/100 bet. Suppose that we
take two preference specifications and calibrate them so that they deliver similar attitudes
to large gambles, but different attitudes to small gambles. Then if stock risk is closer to
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being a small gamble than a large gamble, the two preference specifications should deliver
very different equity premia when applied to the representative agent. In particular, the
preference specification displaying greater aversion to small gambles should give a higher
equity premium.

It is straightforward to confirm this. Consider first the R-FORA preferences in (16)-(17).
It is simple to show that when v and A are set to 1.5 and 2.5 respectively, these preferences
predict the acceptance of the large gamble GG, as well as the acceptance of the small gamble
Gs."' Now consider the preferences in (24)-(25), exhibiting both first-order risk aversion
and narrow framing. When ~, A and by are set to 1.5, 2.5 and 1, respectively, it is simple
to show that the agent accepts the large gamble G, but rejects the small gamble Gg. To
a first approximation, then, these two preferences agree on attitudes to large gambles, but
have very different predictions for small gambles.

We now examine the equity premia generated by these two preference specifications when
they are applied to the representative agent in the simple endowment economy laid out in
(26)-(28). The Euler equations for the preferences in (24)-(25), exhibiting both first-order
risk aversion and narrow framing, have already been set out in (31)-(32). It is simple to check
that for (v, A, by) = (1.5,2.5,1), and for a risk-free rate of 2 percent, the equity premium is
a very considerable 4.53 percent.

Epstein and Zin (1989) show that for the first-order risk averse preferences in (16)-(17),
the Euler equations are

B fo (LSt = o (33)
B[ (L)) (Ran - By)] = o (34

where « is the constant fraction of wealth consumed each period, and where

177_1
6 = T —— r>1
L=y
1—7_1
= a<
-7

When applied to the total wealth portfolio, (34) gives

' P \1/0 Ot+1> 1 Cip B _
B [d) <(1 — a) C, (1 —a C By) 0 (35)

Equation (33) determines v, equation (34) determines the riskfree rate R and (35) determine
the expected stock return, thereby giving the equity premium.

11 To be more precise, they actually predict that Gs is rejected in the very special case where the gamble
is played out immediately, but, as we saw in Section 4, that it is accepted in the more general and realistic
case where it is played out with some delay.
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It is now simple to check that for (v, A\) = (1.5,2.5), the equity premium is 0.52 percent,
almost ten times lower than the 4.53 percent delivered by the other preference specification.
In other words, by keeping attitudes to large gambles constant but changing attitudes to
small gambles, we obtain a substantial shift in the equity premium, suggesting that attitudes
to stocks do indeed have much in common with attitudes to small gambles.

5.3 First Order Risk Aversion and Narrow Framing: Evidence
and Explanations

In this paper, we have tried to argue that preferences with first-order risk aversion and
narrow framing offer financial economists many attractive features. Is there any evidence,
though, that people actually display these features in their decision making? And, if so,
why? We address the former issue first.

As we have argued in this paper, the commonly observed aversion to small gambles,
whether in the form of laboratory gambles like G5 or real-life gambles involving automobile
collision risks, is in itself evidence of first-order risk aversion and narrow framing. But there
is much other evidence for these two phenomena, and in particular, for a kind of first-order
risk aversion known as loss aversion, where people are more sensitive to losses than to gains.

For example, there is what Thaler (1980) calls the endowment effect, which is loss aversion
in the absence of uncertainty. Kahneman, Knetsch and Thaler (1990) conducted a series of
experiments in which subjects were either given some object such as a coffee mug and then
asked if they would be willing to sell it, or not given the mug and offered a chance to buy
one. They found that mug owners demanded more than twice as much to sell their mugs as
non-owners were willing to pay to acquire one.

Other evidence of loss aversion in combination with narrow framing comes from Thaler,
Kahneman, Tversky and Schwarz (1990) and Benartzi and Thaler (1999). Both these papers
ask subjects how they would allocate between a risk-free asset and a risky asset over a long
time horizon, thirty years, say. The key manipulation is that some subjects are given the
distribution of asset returns over short horizons — monthly returns, say — while others are
given long-term return distributions — the distribution of 30-year returns, say. In principle,
the two groups of subjects should make similar allocation decisions, since they have the same
decision problem: those subjects given shorter-term return distributions should simply use
them to infer the more directly relevant longer-term distributions. In fact, these subjects
allocate substantially less to the risky asset, suggesting that they persist in using the “nar-
row” frame of short-term returns to make a long-term allocation decision. Since losses occur
more frequently over short horizons, their loss aversion leads them to allocate less to risky
assets.!?

12Gneezy and Potters (1997) obtain very similar results, while a follow-up study by Gneezy, Kapteyn and
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Narrow framing is a very general phenomenon, and need not occur in combination with
loss aversion. Shortly after publishing their work on prospect theory, Tversky and Kahne-
man (1981) introduced the idea of decision framing and demonstrated narrow framing with
examples such as the following:

Imagine that you face the following pair of concurrent decisions. First examine both deci-
stons, then indicate the options you prefer:

Choice (I) Choose between:

A. a sure gain of $240

B. 25% chance to gain $1000 and 75% chance to gain nothing
Choice (II) Choose between:

C. a sure loss of $750

D. 75% chance to lose $1000 and 25% chance to lose nothing

A large majority of subjects choose A and D; however, this choice is dominated by B
and C. This suggests that subjects are framing their decision narrowly, treating each choice
separately as if it had no connection to the other; indeed in situations where subjects are
asked to choose only between A and B, or only between C and D, they typically choose A
and D, respectively. Conversely, if they are asked to choose between options E and F, where
E = A+D and F=B+C, then every subject chooses F. Subjects do not knowingly choose a
dominated alternative, but when the dominance is not transparent, they make choices one
at a time.

Now that we have presented a few examples of narrow framing, we can ask why it is that
people might have this feature embedded in their preferences, particularly when in some
cases, as in the example above, it can lead to violations of invariance and dominance. Our
best answer to this question is that narrow framing is a simplifying strategy for dealing with
a very complex world. Suppose that someone is presented with clear information about a
gamble whose outcome will be resolved at some point in the future and is wondering whether
or not to accept it. Even if she knows that the right thing to do is to integrate the gamble
with other gambles she is already facing, and then to check whether the resulting overall
risk is preferable to the overall risk she previously faced, it may be difficult to do this from a
computational standpoint. The individual may not be sure about the probability distribution
of the outcomes for her other gambles, nor about the correlation between the gamble under
consideration and previously accepted risks. As a result, she may adopt the general rule of
deciding each gamble she faces in isolation, as if it is the only risk she faces in the world — in

Potters (2002) finds that manipulating the type of information provided can affect prices in an experimental
asset market.
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other words, she may use narrow framing. Computational difficulties would certainly seem
to underlie the use of narrow framing in Tversky and Kahneman’s (1981) example above.

In Section 5.1., we explained the equity premium by saying that agents get utility from
the outcome of their stock market investments even if those investments are only one part
of their overall wealth; in other words, they frame the stock market narrowly. Does it seem
plausible that narrow framing might indeed apply in the case of the stock market?

The bounded rationality view of narrow framing suggests that it might. When people
think about how much to invest in the stock market, they typically spend substantial time
thinking about the distribution of outcomes for the stock market gamble itself. However,
integrating this risk with other risks they face, such as labor income risk, house price risk,
and proprietary business risk, is much more difficult. Few people have a good quantitative
sense of the size of the other risks, nor of the correlation between them and stock market risk.
Given these complications and uncertainties, it is possible that people frame stock market
risk narrowly to some extent, ignoring the other risks they face.

All this is not to say that people never take a broader view. If the stakes are very large,
and the relation between various contingencies are obvious then a broader frame may be
adopted. An example might be when an employee reaches retirement and is considering
what to do with the proceeds of a defined contribution pension plan. In such circumstances,
other sources of income and wealth are more likely to be considered in making a choice
than, say, when the asset allocation decision was last revisited while the employee was still
working.

6 Conclusion

Many different preference specifications have been proposed as a way of addressing the equity
premium. How should we pick between them? We suggest one possible metric, namely these
utility functions’ ability to explain other evidence on attitudes to risk. We consider some
simple observations about attitudes to monetary gambles with just two outcomes and show
that the vast majority of utility functions used in asset pricing have difficulty explaining
these observations. However, utility functions with two features — first-order risk aversion
and narrow framing — can easily explain them. We argue that by this metric at least, such
utility functions may be very attractive to financial economists: they can generate substantial
equity premia and at the same time, make sensible predictions about attitudes to monetary
gambles.
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7 Appendix

Proof of Proposition 1. (We prove part (b) here. The argument for part (a) is very similar).
With expected utility, and under the assumption that the outcome of a gamble does not affect
I; and is independent of all other economic uncertainty, the individual’s preference to the
gamble is evaluated through FE,[J(W;+¥; Iy, C_;)], where not taking the gamble corresponds
to © = 0. The argument in Rabin (2000), which applies to one-period utility functions
defined over wealth, can therefore be applied to J(Wy; I;, C';), giving the result.

Proof of Proposition 2. Epstein and Zin (1989) propose that an individual with recursive
utility preferences evaluates an immediate gamble by inserting an infinitesimal time step
At at time t and applying the recursive utility calculation over this time step. Under the
assumption that the outcome of a gamble does not affect I; and is independent of all other
economic uncertainty, the individual’s preference to the gamble is evaluated through

WO, u(JW; +5; 1)) = W(0,h [E(h- JW; +7;1,))])

where not taking the gamble corresponds to ¥ = 0. In this case, immediate gambles again are
ranked by expected utility over wealth, with utility function given by h-.J(-). The argument in
Rabin (2000), which applies to one-period utility functions defined over wealth, can therefore
be applied to h - J(-).

Proof of Proposition 3. For a small change in the period ¢ 4+ 1 value function Afftﬂ =
AV (Wii1, I1y1), the certainty equivalent changes by

B Ti)ATi) + (A~ DE( (T ) AT 1 (Vi < 1)
An= W)+ (= 1) Pr(Vin < ) olllanl)

where ||z|| = E(|z|) and lim,_,o(o(z)/x) = 0 by definition, and u(-) can be a general smooth

and increasing function as in Gul (1991) or can be taken to be u(z) = z'™ for the special
case considered in this paper.

Assume for now that the agent does not optimally adjust his optimally chosen consump-
tion and portfolio strategy if he decides to take the gamble. Then we have

AV = VW(Wt-I—la Ii1)v + o([[2]]).
which implies

_ B (Vi) Vi (Wiga, 1i11)0) + (A = DB/ (Vig) Vie (Wegr, L) 01 (Vi < ) ~
A= W)+ () Pe(Vees < 1) et

Given our assumption that v is independent of other economic uncertainties, we have

E(u' (Vi) Vir Wigt, L)) + (A = DE (Vi) Vig (W1, L) 1(Vigr < )
w'(p)(1+ (A= 1) Pr(Vigy < p))

Ap = E(0) +o([[o]])-
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So to first order, the certainty equivalence value of YN/HI depends only on E(?), not on its
standard deviation.

Finally, the aggregator function W (-,-) will not generate any first-order dependence on
the standard deviation of the gamble v. In addition, assuming that the agent will adjust his
consumption and portfolio choice optimally while taking into account the additional gamble,
should he choose to take it on, will only introduce terms of second order of v.
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Table 1: Parameter values for a simple consumption-based model.

Parameter

Jgc 1.84%
oc 3.79%
Jp 1.5%
op 12.0%
w 0.15
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Figure 1. The + signs show the range of values of v and ¢ for which a recursive utility
function with Chew (1983) certainty equivalent rejects the gamble (110, 3 1. _100, %)
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Figure 3. The shaded area in the top panel shows the range of parameter values
for which a recursive utility function with both first-order risk aversion and narrow
framing rejects certain immediate gambles and accepts others. The bottom panel
repeats the same analysis for delayed gambles.
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Equity premia and Risk Attitudes with Narrow Framing
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Figure 4. The top panel shows the range of parameter values for which a recursive
utility function with both first-order risk aversion and narrow framing produces an
equity premium in excess of four percent. The bottom panel shows the range of
parameter values for which the same preferences reject certain laboratory gambles
and accept others.
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