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Abstract

This paper studies the optimal investment strategy of an investor who can access
not only the bond and the stock markets, but also the derivatives market. We consider
the investment situation where, in addition to the usual diffusive price shocks, the
stock market experiences sudden price jumps and stochastic volatility. The dynamic
portfolio problem involving derivatives is solved in closed-form. Our results show that
derivatives are important in providing access to the risk and return tradeoffs associ-
ated with the volatility and jump risks. Moreover, as a vehicle to the volatility risk,
derivatives are used by non-myopic investors to exploit the time-varying opportunity
set; and as a vehicle to the jump risk, derivatives are used by investors to dis-entangle
their simultaneous exposure to the diffusive and jump risks in the stock market. In
addition, derivatives investing also affects investors’ stock position because of the in-
teraction between the two markets. Finally, calibrating our model to the S&P 500
index and options markets, we find sizable portfolio improvement for taking advantage
of derivatives.
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1 Introduction

“Derivatives trading is now the world’s biggest business, with an estimated daily turnover
of over US$2.5 trillion and an annual growth rate of around 14%.”! Despite increasing
popularity, derivatives largely retain their image as vehicles for either speculation or hedging.
Rarely are derivatives regarded as part of an optimal portfolio decision, and, more often than
not, they are excluded by academic studies on asset allocation.

In a complete market setting [e.g., Black and Scholes (1973) and Cox and Ross (1976)],
such an exclusion can very well be justified by the fact that derivative securities are redun-
dant. When the completeness of the market breaks down — either because of infrequent
trading or by the presence of additional sources of uncertainty — it then becomes subopti-
mal to exclude derivatives. Among others, the spanning role of derivatives has been studied
extensively by Ross (1976), Breeden and Litzenberger (1978), Arditti and John (1980), and
Green and Jarrow (1987) in static settings, and, more recently, by Bakshi and Madan (2000)
in a dynamic setting. In an economy with multiple goods, Breeden (1984) shows that Pareto
optimality can be achieved with continuous trading of finite numbers of futures contracts. In
an information context, Brennan and Cao (1996) analyze the role of derivatives in improving
trading opportunities. In a buy-and-hold environment, Haugh and Lo (2001) use derivatives
to mimic the dynamic trading strategy of the underlying stock. Using historical stock data,
Merton, Scholes, and Gladstein (1978, 1982) investigate the return characteristics of various
option strategies, and more recently, using historical option data, Coval and Shumway (2001)
provide a direct examination of option returns.

While such studies clearly indicate that investors can potentially benefit from the addi-
tional investment opportunities associated with derivatives, they do not provide any guidance
on what the optimal investment strategy should be. Our paper is motivated by this impor-
tant question. Focusing on the two most important empirical risk factors in the stock market
— stochastic volatility and price jumps, we examine the optimal strategy and the value of
derivatives trading in the presence of such additional risk factors.?

Consider the situation that, in addition to diffusive price shocks, the stock market expe-
riences sudden, adverse jumps in prices. While the diffusive price shocks can be controlled
via dynamic trading, the risk of jumps literally takes the control out of investors’ hands.
Because of this, an investor who is otherwise attracted by the risk and return tradeoff asso-
ciated with the diffusive price shock might invest significantly less in the stock market [Liu,
Longstaff, and Pan (2002)]. By including derivatives in his portfolio, however, the investor
is able to dis-entangle the two risk factors. In particular, he is free to choose his desired
exposure to each risk factor according to the associated risk and return tradeoff. The risk
factor that gives rise to stochastic volatility is another such example of derivative securities
acting as a vehicle to the otherwise inaccessible risk factors. Moreover, empirical studies
indicate that such risk factors — the jump and volatility risks — are indeed priced in options
on the aggregate market [Pan (2001)], and there are additional gains from participating in

'From Building the Global Market: A 4000 Year History of Derivatives by Edward J. Swan.

%In a related article, Carr, Jin, and Madan (2001) consider the optimal portfolio problem in a pure-jump
setting by including as many options as the jump states. Ahn, Boudoukh, Richardson, and Whitelaw (1999)
considers the role of options in a portfolio Value-at-Risk setting.



the options market.?

To formally investigate the potential benefit of investing in the derivatives market and the
optimal investment strategy including derivatives, we focus on the dynamic asset allocation
problem [Merton (1971)] of a power-utility investor whose investment opportunity includes
not only the usual riskless bond and risky stock, but also derivatives on the stock. We
specialize in a model with three types of risk factors: the diffusive price shocks, price jumps,
and volatility risks. The risk and return tradeoff associated with each risk factor is controlled
by a pricing kernel, which is also used to price derivative securities in this economy. We
focus on derivatives whose time-t price, Oy = ¢ (S, V;), depends on the risky stock price
S; and its volatility V; through a non-linear function g. Prominent examples of this class
of derivatives include the European-style call and put options, which are among the most
popular derivatives in organized exchanges, and can be priced analytically in our setting via
transform analysis [Heston (1993); Duffie, Pan, and Singleton (2000)]. Although derivatives
with more complicated payoff structure can be adopted, this class of derivatives provides the
cleanest intuition possible.

We solve the dynamic asset allocation problem in closed form. Taking advantage of the
analytic nature of our solutions, we further establish explicit links between the demands for
the risky assets and their economic sources. This is illustrated in two examples, one focuses
on the volatility risk, and the other on the jump risk.

Focusing first on the volatility risk, we find that the optimal portfolio weight on deriva-
tives depends explicitly on the sensitivity of the chosen derivative to the stock volatility.
This is quite intuitive because in this setting the demand for derivatives arises from the need
to access the volatility risk. A derivative with more “volatility exposure per dollar” is more
effective as a vehicle to the volatility risk. Hence a smaller portion of the investor’s wealth
needs to be invested in this particular derivative.

The need to access the volatility risk arises from two economically different sources,
corresponding to the myopic and non-myopic behavior of an investor. Acting myopically,
the investor participates in the derivatives market simply to take advantage of the risk and
return tradeoff provided by the volatility risk. For example, if the volatility risk is not
priced at all, he would find no “myopic” incentive to take on derivative positions. On the
other hand, a negatively priced volatility risk induces his to sell volatility by writing options.
Acting non-myopically, the investor holds derivatives to further exploit the time-varying
nature of his investment opportunity, which, in our setting, is driven exclusively by the
stochastic volatility. As the volatility becomes more persistent, this non-myopic demand
for derivatives becomes more prominent, and it also changes sharply around the investment
horizon close to the half life of the volatility.

Given that both the myopic and non-myopic demands for volatility risk are taken care
of by derivatives positions, the “net” demand for stocks should simply depend on how the
price risk is compensated. The non-trivial interaction between the stock and the derivative
security, however, affects the total demand for stocks. For example, by writing a call option,
the investor implicitly sells a fraction — the “delta” of the call option — of the underlying.
Even for a derivative that is delta-neutral, the negative correlation between the volatility

3For example, Coval and Shumway (2001) report that selling “zero-beta” at-the-money straddles on the
S&P 500 index produces average returns of approximately 3% per week.



and price shocks* implies that a short position on the volatility automatically involves long
positions on the underlying stock. To maintain his optimal “net” position on stocks, an in-
vestor would have to unload the stock positions taken unintentionally through the derivatives
position.

To assess the portfolio improvement for participating in the derivatives market, we com-
pare the certainty equivalent wealth of two utility-maximizing investors with and without
access to the derivatives market.> To further quantify the gain from taking advantage of
derivatives, we calibrate the parameters of the stochastic volatility model to those reported
by empirical studies on the S&P 500 index and option markets. Our results show that the
improvement for including derivatives is driven mostly by the risk and return tradeoff associ-
ated with the additional volatility risk. At normal market condition and with a conservative
estimate of the volatility-risk premium, the improvement in certainty equivalent wealth for
an investor with relative risk aversion of three is about 14% per year, which becomes higher
when the market becomes more volatile. To further assess the improvement when transac-
tion costs render continuous trading infeasible in either market, we consider the situation
where the investor rebalances his portfolio over finite time intervals. Comparing buy-and-
hold strategies with and without derivatives, our analysis indicates that there is still gain
for including derivatives. For example, for an investor who rebalances only once a year, the
improvement is roughly 12% per year in certainty equivalent wealth.

One important issue not addressed in our example on the volatility risk is the possibility
of sudden, large price jumps in the stock market. As discussed in Liu, Longstaff, and Pan
(2002), the presence of such jump risks takes away the investor’s ability to continuously trade
his way out of a leveraged position so as to avoid negative wealth. Preparing for the worst
case scenario, investors impose constraints on their stock holdings. In such an environment,
our results show that derivatives are important for two reasons. First, they alleviate the
investor from such self-imposed constraints, allowing them to choose their exposure more
freely. Second, they provide direct access to the risk and return associated with the jump
risk. Both functions require the derivative securities to be able to dis-entangle the jump risk
from the diffusive price risk. A derivative security that is effective in this task is one with high
sensitivity to large price movements, but low sensitivity to infinitesimal price movements.
For example, a deep out-of-the-money put option is such an instrument if large negative price
jumps are the concern, just as a deep out-of-the-money call option is for large positive price
jumps. Finally, the more effective the derivative security is in providing separate exposure
to diffusive and jump risks, the less is needed to be invested in it.

The rest of the paper is organized as follows. Section 2 describes the investment en-
vironment including the risky stock and the derivative securities. Section 3 formalizes the
investment problem and provides the explicit solutions. Section 4 provides an extensive ex-
ample on the role of derivatives in the presence of volatility risk, while Section 5 focuses on
jump risks. Section 6 concludes the paper. Technical details are provided in the appendices.

4This empirical fact is typically referred to as the leverage effect [Black (1976)].

5 Admittedly, this analysis is a partial-equilibrium one, and is relevant only for an investor who takes price
dynamics and the market prices of risks as given. To quantify the welfare improvement of the society as a
whole, a general-equilibrium analysis will be more informative. See, for example, the literature on financial
innovation [Allen and Gale (1994)].



2 The Model

We assume that there are two types of risky assets — the risky stock and its derivatives. In
addition, there is one riskless bond paying a constant rate of interest . The price process S
of the risky stock is assumed as follows

AV = k(0 = V;) dt + oV V, (det—l-\/l—deZt) , (2)

where B and Z are standard Brownian motions, and N is a pure-jump process. All three
random shocks B, Z, and N are assumed to be independent.

In addition to the usual diffusive price shock B, this model incorporates two risk factors
that are important in characterizing the aggregate stock market: stochastic volatility and
price jumps. Specifically, the instantaneous variance process V' is a stochastic process with
long-run mean v > 0, mean-reversion rate x > 0, and volatility coefficient ¢ > 0. This
formulation of stochastic volatility, due to Heston (1993), also allows the diffusive price
shock B to enter the volatility dynamics via the constant coefficient p € (—1, 1), introducing
correlations between the price and volatility shocks, a feature that is important in the data.
The random arrival of jump events is dictated by the pure-jump process N with stochastic
arrival intensity {AV; : ¢ > 0} for constant A > 0. Intuitively, the conditional probability
at time t of another jump before ¢ + At is, for some small At, approximately AV; At. This
formulation, due to Bates (2000), has the intuitive interpretation that jumps are more likely
to occur during volatile markets. Following Cox and Ross (1976), we adopt deterministic
jump amplitudes. That is, conditional on a jump arrival, the stock price jumps by a constant
multiple of p: negative jumps if —1 < p < 0, and positive jumps if g > 0. This formulation,
though simple, is capable of capturing the sudden and high-impact nature of jumps that
cannot be produced by diffusions.

In the presence of the additional risk factors, the market is no longer complete with
respect to the bond and the stock. Consequently, there are infinitely many candidate pricing
kernels for the purpose of derivative pricing. We specialize in the following parametric form
not only for its flexibility in separately pricing all three risk factors in the economy, but also
for its analytical tractability,

NG
dm, = —, <r dt +n/Vi dB; + g\/thZt) n (7 . 1) T (AN, — \Vidt) ,  (3)

where the constant coefficients n and & control the premiums for the diffusive price risk B
and the additional volatility risk Z, respectively, and where A > 0 is a constant coefficient
closely related to the premium for the jump-timing uncertainty.® For example, in the presence
of adverse jump events (u < 0), setting A% > X implies that whenever the stock price jumps
down, the pricing kernel 7 jumps up, resulting in a positive jump-risk premium.” Finally,
to verify that 7 is indeed a valid pricing kernel, which rules out arbitrage opportunities

61t should be noted that A? = 0 if and only if A = 0.
"Alternatively, one can show that A% is in fact the counterpart of A under the risk-neutral measure



involving the risky stock and the riskless bond, one can apply Ito’s lemma and show that
m,exp(—rt) and 7;S; are local martingales.®

We now proceed to introduce derivative securities to this economy. For simplicity, we
focus on derivatives whose time-¢ price depends on the underlying stock price S; and the
stock volatility V; through OLSZ) = ¢@(S,,V;), where g is the pricing formula for the i-th
derivative security O®. Although derivatives with more complicated payoff structure can
be adopted in our setting, this class of derivatives provides the cleanest intuition possible.
Moreover, prominent examples of this class of derivatives include the FEuropean-style call
and put options, which are among the most popular derivatives in organized exchanges. For
example, if the ¢-th derivative security is a European-style call option with maturity 7, and
strike price K;, then ¢ = ¢(S,,V;; K;, 7;), where the explicit functional form of ¢ can be
derived via transform analysis [Heston (1993); Duffie, Pan, and Singleton (2000)], and is
provided in Appendix A for the completeness of the paper.

Given that the i-th derivative security O is priced by the pricing kernel 7, {m Oii) :
0 <t < 7} must be a martingale. Straightforward applications of the Ito’s lemma then show
that the option price should satisfy the following stochastic differential equation

A0 =+ 09 dt + (g@ S, + a,ogff)) (77 Vidt + \/thBt) +oy/1— p2gl) (5 Vidt + \/thzt)
+ Ag® ( (A= A9) Vi dt + dN, — AV, dt) : (4)

where géi) and gq(f) measure the sensitivity of the i-th derivative price to infinitesimal changes
in the stock price and volatility, respectively, and where Ag® measures the change in deriva-

tive price for each jump in the underlying stock price. Specifically,

(3) _ ag(Z)(S7v) (@) — ag(Z)(Suv)

- a gv an

(Stv‘/;f)
(5)

For the purpose of understanding what each derivative security can offer in terms of providing
exposure to risk factors, these sensitivity measures play a very important role. Specifically,
g, is associated with the diffusive price shock B, g, with the additional volatility risk Z, and
Ag with the jump risk.

Associated with each risk exposure is the risk premium, as controlled by 7, &, and A%,
respectively. Take the underlying stock as an example. Its sensitivity measures are g, = 1,
go =0, and Ag = pS. From (4), we can see that it provides exposures to the diffusive price
shock B and the jump risk N, but none to the additional volatility risk Z. In return for such
exposures, the risk premiums are nV; for the diffusive price shock B, and u (A — A?)V; for
the jump risk. In comparison with the full scale of tradeoffs offered by this economy, this set
of risk and return tradeoffs provided by the underlying stock is rather limited. In particular,
linear positions on the underlying stock are not capable of exploiting the risk and return

(Stv‘/;f)

defined by the pricing kernel 7. When coupled with risk aversion, the arrival of adverse jump events (u < 0)
is perceived to be more frequent. Hence A? > X when p < 0, resulting in a positive jump-risk premium. See
Naik and Lee (1990) for an example how such jump-risk premiums might arise in equilibrium.

8See, for example, Appendix B.2 of Pan (2000).



tradeoff associated with the volatility risk, nor are they capable of exploiting the tradeoff
associated with the jump risk separately from that associated with the diffusive price shock.”

In this sense, introducing non-linear instruments such as derivatives is important for
achieving the optimal risk and return tradeoff. In our setting, two additional non-redundant
derivatives will be sufficient to complete the market, providing the desired exposure to all
three risk factors.

3 The Investment Problem and the Solution

The investor starts with a positive wealth ;. Given the opportunity to invest in the riskless
asset, the risky stock and the derivative securities, he chooses, at each time ¢, 0 <t < T, to
invest a fraction ¢; of his wealth in the stock S;, fractions wt(l) and wt(z) in the two derivative
securities Oﬁl) and Of), respectively. The investment objective is to maximize the expected
utility of his terminal wealth Wp,1°
1—y
max F (WT ) , (6)

@, P, 0<t<T 1-— y

where v > 0 is the relative risk-aversion coefficient of the investor, and where the wealth
process satisfies the self-financing condition

th:rVthHetBVVt(nv;dH\/th) 2w, (gv;dt+\/ﬁdzt)

+6’ﬁWt_u((/\—/\Q)V;dterNt—)\V;dt), (7)

where, for given portfolio weights ¢; and 1), on the stock and the derivatives, the 0’s defined
in (8) are effectively portfolio weights on the risk factors:

(4)

2 (4) 2
§ : i gs S Ju ;
=1 t ¢ i=1

9
o

8
Ag(i) ( )

oy’

2
0y =g+ > U
=1

Specifically, by taking positions ¢; and 1, on the risky assets, the investor effectively invests
67 on the diffusive price shock B, 6% on the additional volatility risk Z, and 8" on the jump
risk N. For example, a portfolio position ¢; on the risky stock provides equal exposures to
both the diffusive and jump risks in stock prices. Similarly, a portfolio position v; on the
derivative security provides exposure to the volatility risk Z via a non-zero g,, exposure to

9Empirically, there is strong evidence indicating that, at the aggregate market level, both the jump and
the volatility risks are indeed priced. Moreover, the market price of jump risks differ qualitatively from that
for diffusive risks. See, for example, Pan (2001), and references therein.

10 Although the model could be extended to allow for intermediate consumption, we use this simpler
specification to focus more directly on the intuition behind the results.



the diffusive price shock B via a non-zero g,, and exposure to the jump risk via a non-zero
Ag.

Except for adding derivative securities in the investor’s opportunity set, the investment
problem in (6) and (7) is the standard Merton (1971) problem. Before solving for this
problem, we should point out that the maturities of the chosen derivatives do not have to
match the investment horizon 7. For example, it might be hard for an investor with a
10-year investment horizon to find an option with a matching maturity. He may choose to
invest in options with much shorter time to expiration, say LEAPS, which typically expires
in one or two years, and switch or roll over to other derivatives in the future. For the purpose
of choosing the optimal portfolio weights at time ¢, what matters is his choice of derivative
securities O; at that time, not his future choice of derivatives. This is true as long as, at
each point in time in the future, there exist non-redundant derivative securities to complete
the market.

We now proceed to provide solutions to our investment problem with derivatives.!' Fol-
lowing Merton (1971), we define the indirect utility function by

W,
L—7

J(t,w,v)=  max FE (

{#s,s,t<s<T}

m:w,wzv), (©)

which, by the principle of optimal stochastic control, satisfies the following Hamilton-Jacobi-
Bellman (HJB) equation

1
max {Jt + Wedw (n + 00V, + 07 €V; — eNuAQv;) +5WERew i ((07)" + (67)°)

(10)
1
AVIAT + k(0= Vi) Jy + QUQWJVV‘FUVtWtJWV <PQB+ vz _p29tZ) } =0,

where AJ = J(t, Wy(1 + 0p), Vi) — J(t, W, V;) denotes the jump in the indirect utility
function J for given jumps in the stock price, and where J;, Jy/, and Jy, denote the derivatives
of J(t,W,V) with respect to t, W and V respectively, and similar notations for higher
derivatives.

To solve the HJB equation, we notice that it depends explicitly on the portfolio weights
6B, 07, and 0V, which, as defined in (8), are linear transformations of the portfolio weights
¢ and 1) on the risky assets. Taking advantage of this structure, we first solve the optimal
positions on the risk factors B, Z, and N, and then transform them back via the linear
relation (8) to the optimal positions on the risky assets. This transformation is feasible as
long as the chosen derivatives are non-redundant in the following sense.

Definition: At any time t, the derivative securities Oil) and O?) are non-redundant if

Ag® gﬁ”&) g’ (Ag(” B g§2)5t> g5
1 1 2 2 2 1
woi’ o ) o \uo®  o0? )oY

Dy #0 where D;= ( (11)

I Alternative to the stochastic control approach adopted here is the Martingale approach of Cox and
Huang (1989). The results are the same. Details are available upon request.



Effectively, the non-redundancy condition in (11) guarantees market completeness with
respect to the chosen derivative securities, the risky stock, and the riskless bond. Without
access to derivatives, linear positions on the risky stock provide equal exposures to the
diffusive and jump risks, and none to the volatility risk. To complete the market with
respect to the volatility risk, we need to bring in a risky asset that is sensitive to changes
in volatility: g, # 0. To complete the market with respect to the jump risk, we need a
risky asset with different sensitivities to the infinitesimal and large changes in stock prices:
955t/ O # Ag/uO;. Moreover, (11) also ensures that the two chosen derivative securities are
not identical in covering the two risk factors.

Proposition 1  Assume that there are non-redundant derivatives available for trade at any
time t <T. Then, for given wealth Wy and volatility Vi, the solution to the HJB equation is
given by

1—y

Wt_veXP(’Yh(T—t)—l—”yH(T—t) Vi), (12)

J (ta Wta V;f) =

where h(-) and H(-) are time-dependent coefficients that are independent of the state vari-
ables:

2K 2 2 1 -
hit) = ( kzexp ((h + ko) £/2) ) T
0’2 2]{32 + (]{31 + ]{32) (exp (k’Q t) - 1) Y (13)
H (1) = exp (ko t) — 1
N 2]62 + (k’l + ]{32) (exp (k’g t) — ]_)
where
1—v , AN\ A
b= —5 (I +&) +22¢ (,\Q) o\ ae) !
o 1—x — 92 . _ 2 _ 2
bi=n <77p+€\/1 p)a, ky = \/k2— 80
The optimal portfolio weights on the risk factors B, Z, and N are given by
07 =L opH): 47 =210 /T-2H): 6N = (i)lm‘l (14)
t "}/ ’ t ,.)/ ) t ,LL )\Q

)

Transforming the 0*’s to the optimal portfolio weights on the risky assets, ¢; for the stock
and ;) for derivatives, we have

(4)

* *z s S v
t

oW = ! 97(’2) gN g 970 ) [ Ag @ g5, 0;” (15)
D, O? t t m MO 2) Oig) am

- . . . -
Dy I uOi) Oi oy/1— p? OE) V1i=p?)
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Proof: See Appendiz.

To further illustrate our results, we consider two examples in the next two sections, one
on volatility risks and the other on jump risks.

4 Example I: Derivatives and Volatility Risk

This section focuses on the role of derivative securities as a vehicle to stochastic volatility.
For this, we specialize in an economy with volatility risk but no jump risk. Specifically, we
turn off the jump component in (1) and (2) by letting 1 = 0 and A = \¢ = 0.

In such a setting, only one derivative security with non-zero sensitivity to volatility risk is
needed to help complete the market. Denoting this derivative security by O;, we can readily
use the result of Proposition 1 to derive the optimal portfolio weights:
Y L)

Wi=p O

(Y PR S _y) &
¢t_<70\/1—p2+H(T t)> 9’ o

where ¢; and v} denote the optimal positions on the risky stock and the derivative security,
respectively, and where H is as defined in (13) with the simplifying restriction of no jumps.

S/
cbt—,y (16)

4.1 The Demand for Derivatives

The optimal derivatives position ¢* in (17) is inversely proportional to g,/O;, which measures
the volatility exposure for each dollar invested in the derivative security. Intuitively, the
demand for derivatives arises, in this setting, from the need to access the volatility risk. The
more “volatility exposure per dollar” a derivative security provides, the more effective it is
as a vehicle to the volatility risk. Hence a smaller portion of the investor’s wealth needs to
be invested in this derivative security.

The demand for derivatives — or the need for volatility exposures — arises for two eco-
nomically different reasons. First, a myopic investor finds the derivative security attractive
because, as a vehicle to the volatility risk, it could potentially expand his dimension of risk
and return tradeoffs. This myopic demand for derivatives is reflected in the first term of ;.
For example, a negatively priced volatility risk (¢ < 0) makes short positions on volatility
attractive, inducing investors to sell derivatives with positive “volatility exposure per dol-
lar.” Similarly, a positive volatility-risk premium (£ > 0) induces opposite trading strategies.
Moreover, the less risk-averse investor is more aggressive in taking advantage of the risk and
return tradeoff through investing in derivatives.

Second, for an investor who acts non-myopically, there is benefit in derivative investments
even when the myopic demand diminishes with a zero volatility risk-premium (£ = 0). This
non-myopic demand for derivatives is reflected in the second term of ;. Without any loss
of generality, let’s consider an option whose volatility exposure is positive (g, > 0). In
our setting, the Sharpe ratio of the option return is driven exclusively by the stochastic

10



volatility. In fact, it is proportional to the volatility. This implies that a higher realized
option return at one instant is associated with a higher Sharpe ratio (better risk-return
tradeoff) for the next-instant option return. In other words, a good outcome is more likely
to be followed by another good outcome. By the same token, a bad outcome in the option
return predicts a sequence of less attractive future risk-return tradeoffs. An investor with
relative risk aversion v > 1 is particularly averse to sequences of negative outcomes because
his utility is unbounded from below. On the other hand, an investor with v < 1 benefits from
sequences of positive outcomes because his utility is unbounded from above. As a result,
they act quite differently in response to this temporal uncertainty. The one with v > 1 takes
a short position on volatility so as to hedge against the temporal uncertainty, while the one
with v < 1 takes a long position on volatility so as to speculate on the temporal uncertainty.
Indeed, it is easy to verify that H (7T —t), which is the driving force of this nonmyopic term,
is strictly positive for investors with v < 1, and strictly negative for investor with v > 1,
and zero for the log-utility investor.'?

4.2 The Demand for Stock

Given that the volatility risk exposure is taken care of by the derivative holding, the “net”
demand for stock should simply be linked to the risk and return tradeoff associated with
the price risk. Focusing on the first term of ¢; in (16), this is indeed true. Specifically, it is
proportional to the attractiveness of the stock and inversely proportional to the investor’s
risk aversion.

The interaction between the derivative security and its underlying stock, however, com-
plicates the optimal demand for stocks. For example, by holding a call option, one effectively
invests a fraction g, — typically referred to as the “delta” of the option — on the underlying
stock. The last term in ¢* is there to correct this “delta” effect. Even for a delta-neutral
derivative security (gs = 0), the negative correlation between the volatility and price shocks,
typically referred to as the leverage effect [Black (1976)], implies that a short position on
the volatility automatically involves long positions on the price shock, and, equivalently, the
underlying stock. The second term in ¢* is there to correct this “correlation” effect.

4.3 Empirical Properties of the Optimal Strategies

To examine the empirical properties of our results, we fix a set of base-case parameters for
our current model, using the results from the existing empirical studies.!® Specifically, for the
one-factor volatility risk, we set its long-run mean at v = (0.13)?, its rate of mean-reversion

120mne way to show this is by taking advantage of the ordinary differential equation (B.4) for H(-) with the
additional constraints of no jumps. Given the initial condition H(0) = 0, it is easy to see that the driving
force for the sign of H is the constant term which has the same sign as 1 — ~.

13The empirical properties of the Heston (1993) model have been extensively examined using either the
time-series data on the S&P 500 index alone [Andersen, Benzoni, and Lund (2001); Eraker, Johannes, and
Polson (2000)], or the joint time-series data on the S&P 500 index and options [Chernov and Ghysels (2000);
Pan (2001)]. Because of different sample periods or/and empirical approaches in these studies, the exact
model estimates may differ from one paper to another. Our chosen model parameters are in the generally
agreed region, with the exception of those reported by Chernov and Ghysels (2000).
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at k = 5, and its volatility coefficient at ¢ = 0.25. The correlation between the price and
volatility risks is set at p = —0.40.

Important for our analysis is how the risk factors are priced. Given the well established
empirical property of the equity risk premium, calibrating the market price of the Brownian
shocks B is straightforward. Specifically, setting n = 4 and coupling it with the base-case
value of ¥ = (0.13)? for the long-run mean of volatility, we have an average equity risk
premium of 6.76% per year.

The properties of the market price of the volatility risk, however, are not as well estab-
lished. In part because that volatility is not a directly tradable asset, there is less consensus
on reasonable values for market prices of volatility risk.'* Empirically, however, there is
strong support that volatility risk is indeed priced. For example, using the joint time-series
data on the S&P 500 index and options, Chernov and Ghysels (2000), Pan (2001), Benzoni
(1998), and Bakshi and Kapadia (2001) report that volatility risks are negatively priced.
That is, short positions on volatility are compensated with a positive premium. Similarly,
Coval and Shumway (2001) report large negative returns generated by positions that are
long on volatility.

Given that the volatility risk at the aggregate level is generally related to the economic
activity [Officer (1973); Schwert (1989)], it is quite plausible that it is priced. At an intuitive
level, the negative volatility risk premium could be supported by the fact that the aggregate
market volatility is typically high during recessions. A short position on volatility, which
loses value when volatility becomes high during recessions, is therefore relatively more risky
than a long position on volatility, requiring an additional risk premium.

Instead of calibrating the volatility-risk premium coefficient £ to the existing empirical
results, however, we will allow this coefficient to vary in our analysis so as to get a better
understanding of how different levels and signs of the volatility risk premium could affect
the optimal investment decision.

Using this set of base-case parameters, particularly the risk-and-return tradeoff implied
by the data, we now proceed to provide some quantitative examples of optimal investments
in the markets of S&P 500 index and options. To make the intuition as clean as possible,
we focus on “delta-neutral” securities. Specifically, we consider the following “delta-neutral”
straddle:

Ot :g(St7‘/15a KuT) = C(Staw; KuT) +p(St7V;a K7T) ) (18)

where ¢ and p are pricing formulas for call and put options with the same strike price K
and time to expiration 7. The explicit formulation of ¢ and p is provided in Appendix A.
For given stock price S;, market volatility V;, and time to expiration 7, the strike price K
is selected so that the call option has a delta of 0.5, and, by put/call parity, the put option
has a delta of —0.5, making the straddle delta neutral.'

141f it is believed that there are bounds on how attractive an investment opportunity should be — be it the
Sharpe ratio of the investment opportunity or the maximum gain-loss ratio — constraints can be imposed
on the pricing kernel, a la Cochrane and Sad-Requejo (2000) or Bernardo and Ledoit (2000), which in turn
have a direct implication on the values for market prices of risk.

15 Although “delta-neutral” positions can be constructed in numerous ways, we choose the “delta-neutral”
straddle mainly because it is made of call and put options are typically very close to the money. In particular,
we intentionally avoid deep out-of-the-money options in our quantitative examples because they are most
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Figure 1: The optimal portfolio weights.
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The y-axes are the optimal weight ¢* on the

“delta-neutral” straddle (solid line), ¢* on the risky stock (dashed line), and 1 — ¢* — ¢*
on the riskfree bank account (dashed-dot line). The base-case parameters are as described
in Section 2, and the volatility-risk premium coefficient is fixed at & = —6. The base-case
investor is the one with risk aversion v = 3 and investment horizon 7' = 5 years. The riskfree
rate is fixed at r = 5%, and the base-case market volatility is fixed at vV = 15%.
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Fixing riskfree rate at 5%, and picking a delta-neutral straddle with 0.1 year to expiration,
Figure 1 provides optimal portfolio weights under different scenarios. The top-right panel
examines the optimal portfolio allocation with varying volatility-risk premium. Qualitatively,
this result is similar to our analysis in Section 4.1. Quantitatively, however, this result
indicates that the demand for derivatives is driven mainly by the myopic component. In
particular, when the volatility-risk premium is set to zero (£ = 0), the non-myopic demand
for straddles is only 2% of the total wealth for an investor with relative risk aversion v = 3
and investment horizon T' = 5 years. In contrast, as we set £ = —6, which is a conservative
estimate for the volatility-risk premium, the optimal portfolio weight in the delta-neutral
straddle increases to 54% for the same investor.

The quantitative effect of the non-myopic component can be best seen by varying the
investment horizon (bottom left panel), or the volatility persistence (bottom right panel).
Consider an investor with v = 3, who would like to hedge against temporal uncertainty by
taking short positions on volatility. The bottom left panel shows that as we increase his
investment horizon, this intertemporal hedging demand increases. And, quite intuitively,
the change is most noticeable around the region close to the half life of the volatility risk.
Similarly, the bottom right panel shows that as we decrease the volatility persistency by
increasing the mean-reversion rate x, there is less benefit in taking advantage of the in-
tertemporal persistence. Hence a reduction in the intertemporal hedging demand.

As the market becomes more volatile, the cost of straddle (O;) increases, but the volatility
sensitivity (g,) of such straddles decreases. Effectively the delta-neutral straddles provide
less “volatility exposure per dollar” as the market volatility increases. To achieve the optimal
volatility exposure, more needs to be invested in the straddle. Hence the increase in [1)*| with
the market volatility v/V. As the volatility of the volatility increases, the risk and return
tradeoff on the volatility risk becomes less attractive. Hence the decrease in magnitude
of the straddle position with increasing “vol of vol” ¢. Finally, the optimal strategy with
varying risk aversion 7 is as expected: less risk-averse investors are more aggressive in their
investment strategies.

4.4 Portfolio Improvement

Consider an investor with an initial wealth of W, and an investment horizon of T" years. If
he takes advantage of the derivatives market, his optimal expected utility is as provided in
Proposition 1 (with the simplifying restriction of no jumps). For a given market volatility
of Vj, his certainty equivalent wealth W* is'6

W* =W, exp (ﬁ {h (T)+ H (T) Vo}) , (19)
where, again, the time-varying coefficients h and H are as defined in (13) with the simpli-
fying constraint of no jumps. Alternatively, this investor might choose not to participate in

subject to concerns of option liquidity and jump risks, two important issues that are not accommodated
formally in this section.

161t should be noted that the optimal expected utility is independent of the specific derivative contract
chosen by the investor. This is quite intuitive, because, in our setting, the market is complete in the presence
of the derivative security.
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the derivatives market. Let W™ °P be the certainty equivalent wealth of such an investor
who chooses not to invest in options. To quantify the portfolio improvement for including
derivatives, we adopt the following measure'”

W — Inwreer

RW
T

(20)
Effectively, R"Y measures the portfolio improvement in terms of the annualized, continuously
compounded return in certainty equivalent wealth. The following Proposition summarizes
the results.

Proposition 2 For a power-utility investor with risk aversion coefficient v > 0 and in-
vestment horizon T, the improvement for including derivatives is

w_ 7 (h@T)—h"N(T)  H(T)—H"™PT)
RY = 1_7( T + T Vo) ;

(21)

where Vg is the initial market volatility, and h"°P and H " are defined in (C.6). For an
investor with v # 1, the portfolio improvement for including derivatives is strictly positive.
For an investor with log utility, the improvement is strictly positive if & # 0, and zero
otherwise.

Proof: See Appendix C.

Intuitively, there will be improvement for including derivatives if and only if the demand
for derivatives is non-zero. For a myopic investor such as the one with log-utility, the demand
for derivatives arises from the need to exploit the risk and return tradeoff provided by the
volatility risk. When the volatility-risk premium is set to zero ({ = 0), the myopic demand for
derivatives diminishes, so does the benefit for including derivatives. There are, however, still
non-myopic demands for derivatives. Hence the strict portfolio improvement for a nonmyopic
investor.

To provide a quantitative assessment of the portfolio improvement, we again use the base-
case parameters described in Section 4.3. The results are summarized in Figure 2. Focusing
first on the top-right panel, we see that the portfolio improvement is very sensitive to how
the volatility risk is priced. At normal market condition with a conservative estimate!® of
the volatility-risk premium £ = —6, our results show that the portfolio improvement for
including derivatives is about 14.2% per year in certainty equivalent wealth for an investor
with risk aversion 7 = 3. As the investor becomes less risk averse and more aggressive

1"The indirect utility of the “no-option” investor can be derived using the results from Liu (1998). For
the completeness of the paper, is provided in Appendix C.

18For example, Coval and Shumway (2001) report that zero-beta at-the-money straddle positions produce
average losses of approximately 3% per week. This number roughly corresponds to £ = —12. Using volatility-
risk premium to explain the premium implicit in option prices, Pan (2001) reports a total volatility-risk
premium that translates to £ = —23. This level of volatility-risk premium, however, could be over-stated due
to the absence of jump and jump-risk premium in the model. In fact, after introducing jumps and estimating
jump-risk premium simultaneously with volatility-risk premium, Pan (2001) reports a volatility-risk premium
that translates to £ = —10.
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Figure 2: Portfolio improvement for including derivatives. The y-axes are the improvement
measure R" | defined by (20) in terms of returns over certainty equivalent wealth. The base-
case parameters are as described in Section 2, and the volatility-risk premium coefficient is
fixed at £ = —6. The base-case investor is the one with risk aversion v = 3 and investment
horizon T' = 5 years. The riskfree rate is fixed at r = 5%, and the base-case market volatility

is fixed at VvV = 15%.
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in taking advantage of the derivatives market, the improvement for including derivatives
becomes even higher (top left panel).

We can further evaluate the relative importance of the myopic and nonmyopic components
of portfolio improvement by setting & = 0. The portfolio improvement from non-myopic
trading of derivatives is as low as 0.02% per year. This is consistent with our earlier result:
the demand for derivatives is driven mostly by the myopic component. The non-myopic
component of the portfolio improvement is further examined in the bottom panels of Figure 2
as we vary the investment horizon and the persistence of volatility. Quite intuitively, as the
investment horizon T increases, or, as the volatility shock becomes more persistent, the
benefit of the derivative security as a hedge against temporal uncertainty becomes more
pronounced. Hence the increase in portfolio improvement. Finally, from the middle two
panels, we can also see that when the market volatility v/V increases, or when the volatility
of volatility increases, there is more to be gained from investing in the derivatives market.

One natural question that arises from this analysis is how much of the improvement
will remain when transaction cost renders dynamic trading infeasible in either the stock or
the derivatives markets. To have a rough assessment of the portfolio improvement in such
a situation, we consider an investor who, faced with non-zero transaction costs, decides to
rebalance his portfolio over some fixed time intervals T'. We assess his portfolio improvement
by comparing buy-and-hold strategies with and without derivatives. We focus on his myopic
behavior because, as shown in our earlier results, the portfolio improvement for including
derivatives originates mainly from the myopic component.

When T is small, the n-th moment of the asset returns is proportional to the n-th power
of T'. Taylor-expanding the utility function up to the first power of T', one can show that, if
he takes advantage of the derivatives market, his certainty equivalent wealth is

1
1+ — P+ WT.
+ 2 (77 +§ ) 0
On the other hand, if he decides to ignore the derivatives market and invest only in the bond
and stock markets, his certainty equivalent wealth is

1
1+ —n*VT.
2y

This result implies that as long as the volatility risk is systematic, the portfolio improvement
for including derivatives is strictly positive, even when non-zero transaction costs render con-
tinuous rebalancing infeasible. Calibrating this result to the same set of data, the portfolio
improvement R" is 12% per year when rebalanced once a year, 12.7% per year when rebal-
anced twice a year, and 13.1% per year when rebalanced four times a year. Quite intuitively,
as we rebalance more and more frequently, we reach the case of continuous rebalancing.’

5 Example II: Derivatives and Jumps

In contrast to the diffusive risks, which can be controlled via continuous trading, the sudden,
high-impact nature of jump risks takes away the investor’s ability to continuously trade his

19To be more precise, the myopic component of the continuous rebalancing case.
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way out of a leveraged position to avoid negative wealth. As shown in Liu, Longstaff, and
Pan (2002), self-imposed portfolio bounds arise in the presence of jump risks. That is, when
being blindsided by things that they couldn’t control, investors adopt investment strategies
that prepare for the worst-case scenarios.

In this section, we examine the role of derivative securities in alleviating the constraint
imposed by the jump risk. To be more concrete, we specialize in an economy with jump
risk but no volatility risk. Specifically, we turn of the stochastic-volatility component in (1)
and (2) by letting Vo = v and ¢ = 0. That is, V; = © at any time ¢. The resulting model
contains two components: the Brownian price shock with constant volatility /v, and the
pure jump with Poison arrival Ao and deterministic jump size u. In the absence of either risk
factor, derivative securities are redundant since the market can be completed by dynamic
trading of the stock and bond [Black and Scholes (1973) and Cox and Ross (1976)]. Their
simultaneous presence is what makes derivative securities valuable. For example, an investor
might be attracted by the risk and return tradeoff associated with the diffusive price risk. By
taking a position on the risky stock, however, he is exposed to both the diffusive and jump
risks. He can, nevertheless, use derivative securities to dis-entangle the two risk factors. For
this to work, the derivative security must have different sensitivities to infinitesimal price
movements dS and large price movements AS:

gsSt &
Oy pO;

Out-of-the-money put and call options are examples of such derivative security with high
sensitivity to large price movements, but low sensitivity to infinitesimal price movements.

Given the existence of such a derivative security, we can use the result of Proposition 1
to derive the optimal portfolio weight:

¢p == = (22)

*_ Ag g5 (1 A\ 1 n 923

v = (MOt Oy ) 2 (/\Q) v ) (23)

where ¢; and 1); are the optimal portfolio weights on the risky stock and the derivative
security, respectively.

Focusing first on the optimal portfolio weight ¢* on the stock, the first term in (22)
indicates the optimal investment in stocks depends on the investor’s appetite for the diffusive
price shock and the associated risk premium (controlled by 7). In particular, with access
to the derivative security, the optimal stock position ¢* is no longer subject to the portfolio
bounds reported in Liu, Longstaff, and Pan (2002). Anticipating the optimal position *
on the derivative security, the second term in (22) is to correct for the “delta” exposure
introduced by the derivative security.

Focusing next on the optimal portfolio weight ¥* on the derivative security. Evident in
(23) is the role of derivative securities in separating the jump risk from the diffusive price
risk. In particular, the demand for the derivative security is inversely proportional to its
ability to dis-entangle the two. Quite intuitively, the more effective a derivative security is in
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providing the separate exposure, the less is needed to be invested in this derivative security.
Also evident in (23) is the role of derivative securities in providing access to the risk and
return tradeoff associated with the jump risk. Specifically, 1)* is proportional to the disparity
in the risk and return tradeoffs associated with the diffusive and jump risks. That is, if the
jump risk is perceived to be better compensated than the diffusive price shocks, there will
be more demand for derivatives.

6 Conclusion

In this paper, we studied the optimal investment strategy of an investor who can access
not only the bond and the stock markets, but also the derivatives market. Our results
demonstrate the importance of including derivative securities as an integrated part of the
optimal portfolio decision. The analytical nature of our solutions also helps establish direct
links between the demand for derivatives and their economic sources.

As a vehicle to the additional risk factors such as stochastic volatility and price jumps
in the stock market, derivative securities play an important role in expanding the investor’s
dimension of risk and return tradeoffs. In addition, by providing access to the volatility risk,
derivatives are used by non-myopic investors to take advantage of the time-varying nature of
their opportunity set. Similarly, by providing acccess to the jump risk, derivatives are used
by investors to dis-entangle their simultaneous exposure to the diffusive and jump risks in
the stock market. Moreover, because of the non-trivial interaction between the derivatives
market and its underlying stock market, derivatives positions further complicate the optimal
portfolio position in the underlying stock.

Although our analysis focuses on volatility and jump risks, our intuition can be readily
extended to other risk factors that are not accessible through linear positions on stocks. The
risk factor that gives rise to stochastic predictor is such an example. If, in fact, there are
derivatives providing access to such additional risk factors, then demands for the related
derivatives will arise from the need to take advantage of the associated risk and return
tradeoff, as well as the time-varying investment opportunity provided by such risk factors.

By focusing on the investment opportunity provided by derivative securities, this paper
also raised an important question that has yet to be fully examined: What are the reason-
able values for the market price of such additional risk factors? While empirically there is
strong support indicating that these risk factors are indeed priced in the aggregate market,
our theoretical understanding of this subject is still limited. In particular, while it is easy
to include such risk factors in the pricing kernel (as we did in this paper), it remains an
open question as to why they are in the pricing kernel,?® and what types of restrictions are
associated with their presence.?!’ The importance of these questions naturally arises as we
start to treat derivatives as an integrated part of the optimal portfolio decision.

20For example, in the setting of Campbell and Cochrane (1999), the time-varying risk aversion of an
investor gives rise to stochastic volatility, which in turn finds its position in the pricing kernel.

21See, for example, Cochrane and Sad-Requejo (2000) and Bernardo and Ledoit (2000) for constraints on
the pricing kernel via some intuitive criteria, and their impact on the market prices of the risk factors that
affect derivatives pricing.
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Appendices

A Option-Pricing Formulas

Option pricing for the stochastic-volatility model adopted in this paper is well established
by Heston (1993). Using the notation established in Section 2, and letting x* = k —
o (pn + 1 - pé”) and v* = kU/K* be the risk-neutral mean reversion rate and long-run
mean, respectively, the time-t prices of European-style call and put options with time 7 to
expiration and striking at K are

Cy=c(S,Vy; K,7) 5 Po=p(Sy,Vi; K, 1), (A.1)
where S; is the spot price and V; is the market volatility at time ¢, and where
c(S,V; K,1)=SP1—e ""TK Py,
and, by put/call parity, the put pricing formula is
p(S,V, K,1)=e¢""TK (1—=P3) =S (1-"P).

Very much like the case of Black and Scholes (1973), P; measures the probability of the
call option expiring in the money, while Py is the adjusted probability of the same event.
Specifically,

731 — 1 — l /Oo d_u Im (eA(liu)JrB(liu)V eiu(anlnSJrrT))

2 0w U

Ry (A2)
732 — - _ _/ _U Im 6A(—iu)—i—B(—iu)V eiu(an—lnS-‘rrT)

2 m)y w

where Im(-) denotes the imaginary component of a complex number, and where, for any
yeC,

___ a(l—exp(=qt))
2 — (¢ +b) (1 — exp(—q?))
K*v* q+b

Aly) = -~ ((q+b)7’—l—21n ll—Q—q (1—6_(17—)})

(A.3)

where b = opy — *, a = y(1 — y) — 29 (exp(y)(1 + p) — 1 — yu) and ¢ = Vb2 + ao>.
Connecting to the notation O; = g(S;, V;) adopted in Section 2, we can see that for a call
option, g is simply ¢, while for a straddle, g(S;, Vi) = ¢ (S, Vi; K,7) +p(Si, Vi; K, 7).

B A Proof of Proposition 1

The proof is a standard application of the stochastic control method. Suppose that the
indirect utility function J exists, and is of the conjectured form in (12), then the first order
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condition of the HJB Equation (10) implies that the optimal portfolio weights ¢* and ¢* are
indeed as given by (16) and (17), respectively.

Substituting (12), (16), and (17) into the HJB equation (10), one can show that the
conjectured form (12) for the indirect utility function J indeed satisfies the HJB equation
(10) if the following ordinary differential equations are satisfied

dh(t) 1—v

7 :lil_)H(t)—f-TT,

dH(t) _ (_K N 1—77 (np Le/1o p2) g) H(t) + %H(t)2 + 12;27 (" +€) (B4

dt
A\ Y
— —(1-——= -1
(&) (%)
Using the solutions provided in (13) for H and h, it is a straightforward calculation to verify
that this is indeed true. 1

+ A9

C Appendix to Section 4

A “no-option” investor solves the same investment problem as that in (6) and (7) with the
additional constraint that 3; = 0. This problem is solved extensively in Liu (1998). For
completeness of the paper, the following summarizes the results useful for our analysis of
portfolio improvement in Section 4.4.
At any time ¢, the indirect utility of a “no-option” investor with a T-year investment
horizon is
1=y

W,
T (W Vi) = T exp (H P (T = 1) 4y N (T =) Vi) (C5)

where h"°P(-) and H"°P(.) are time-dependent coefficients that are independent of the
state variables:

oon () — 2K ( 2ky exp ((k1 + k2) t/2) ) 1—x .
A=) Tt ke -1) T
o (1) — exp(kat) — 1 1-— 7772
2ky + (k1 + ko) (exp(kat) — 1) ~2
where
b=k 2 ;Vnap; kg = \/k% - 1;—2777202 (P> + (1 —=p?)7). (C.7)

The certainty equivalent wealth of such a “no-option” investor with initial wealth W, then
becomes

WD _ Y1y exp (—1 - [h 008 (T) - 1708 (T) vo} ) - (C8)

The proof of Proposition 2 followings immediately from this result and that of Proposi-
tion 1.
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Proof of Proposition 2: It is straightforward to verify that the portfolio improvement R"
is indeed of the form (21). To show that the improvement is strictly positive for investors
with v # 1, let DH(t) = H(t) — H" °P(t), and one can show that

D () = 137 ep(-u(0) [ exp(-uls) (ﬁ—\/l—anHm-Op(s)) ds.

Y

where
y(t) = /tT ln n 1_77 (n0+&V/T= 7o) + "; (H(s) n Hno-op(s))} ds

is finite for any ¢ < T'. Consequently, DH(T')/(1 — ) is strictly positive. Moreover, it is
straightforward to show that

Dh(t)  h(t) — h™P(t) . “DH(s)
L=~ L=~ o 1—7

ds. (C.9)

As a result, Dh(T")/(1 — ~) is also strictly positive, making W* > WP for any v # 1.
For the log-utility case, the intertemporal hedging demand is zero. That is, H(t) = 0
and H"°P(t) = 0 for any ¢. One can show that

I
71—% 1—x 2K

no-op 1-— —Kt H(t 1-— —kKt
) 1 esp(ont) 5 H) L= esp(-nt)

2 | g2
o1l —xy 2K (77 +€)

Moreover, (C.9) also holds for the case of v = 1, making W* > W?">° when ¢ # 0, and
W*=WnrP when £ =0. |
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