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Abstract

We show that a central planner with two selves, or two “pseudo welfare
functions”, are sufficient to deliver the market equilibrium that prevails
among any (finite) number of heterogeneous individual agents acting com-
petitively in an incomplete financial market. Furthermore, we are able to
exhibit a recursive formulation of the two-central planner problem. In
that formulation, every aspect of the economy can be derived one step at
a time, by a process of backward induction as in dynamic programming.

Dynamic asset pricing increasingly considers models with incomplete mar-
kets and heterogeneity in an attempt to improve over the empirical performance
of benchmark complete-market representative-agent models. Numerous authors
have pointed out the difficulties faced when solving these models.1

In this paper, we aim to find a technique for computing an equilibrium in
an incomplete financial market, that is less onerous than the fixed-point tâton-
nement process. The tâtonnement process presents the major drawback that a
stochastic process for securities prices must be postulated ab initio to start the
procedure of obtaining optimal portfolios. The trial-and-error procedure would
wander in a vast space of stochastic processes. It is a hopeless undertaking.
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and Smith (1998) and Marcet and Singleton (1999). Levine and Zame (2001) show that
market incompleteness is unimportant in the absence of aggregate risk. In the present paper
we incorporate aggregate risk.
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Direct calculation of equilibrium makes sense only in special cases in which the
equilibrium has some properties that are known a priori.
Like Cuoco and He (1994), our line of attack of this problem is to use a

representative-agent concept, where the representative agent utility is defined
as a stochastically weighted average of individual utilities. In Cuoco and He, the
way in which the representative agent is defined over time is derived separately
on the basis of individual financial choices, based on the dual approach of He and
Pearson (1991) and Karatzas, Lehoczky, Shreve and Xu (1991). These individual
financial choices involve as many value functions (interpreted as each person’s
financial wealth) as there are individuals in the economy.2

Below, we show that a central planner with two selves, or two “pseudo welfare
functions”, are sufficient to deliver the market equilibrium that prevails among
any (finite) number of heterogeneous individual agents. The first self solves for
individual consumption decisions and individual-specific components of state
prices, taking the economy-wide components of state prices as given. Simulta-
neously, the second self chooses individual consumption rules and equilibrium
state prices (i.e. such that the aggregate resource restriction is satisfied) taking
as given the individual-specific components of the state prices. In an equilibrium
of this game, the two selves agree and the competitive equilibrium is found.
In a complete-market setting, competitive equilibrium with heterogeneous

agents is typically obtained by virtue of the Pareto optimality of the compet-
itive equilibrium. Solving a Planner problem, which is the sum of individual
utilities weighted by Pareto weights, gives the equilibrium allocation so that
one can price assets off the marginal rate of substitution of this constructed
representative agent. This approach dates back to Negishi (1960) and was used
in, for instance, Constantinides (1982) and Dumas (1989). The definition of the
two pseudo welfare functions we propose is, however, not based on a claim that
the competitive equilibrium in an incomplete financial market is constrained
Pareto optimal. Indeed, Magill and Quinzii (1996, Chapter IV) have a simple
counter-example showing that this claim is not true. Nonetheless, our approach
is reminiscent of the work of Grossmann (1977) who shows that the market equi-
librium has some welfare properties from the vantage point of a central planner
who would act as several incompletely coordinated selves.3

Taking our method one step further, we are able to exhibit a recursive for-
mulation of the two-central planner problem. In that formulation, every aspect
of the economy can be derived one step at a time, by a process of backward in-
duction. Dynamic programming is used but, in principle, the dynamic program
involves two value functions which are solved for simultaneously. The only state
variables needed to summarize the distribution of resources across individuals
are the current values of the individual-specific components of the state prices.

2Barbachan (2001) extends Cuoco and He (1994) from the case of two individual agents
to more than two.

3This was done in the context of a multi-good economy, whereas we employ here a multi-
period economy. But it is well-known that analogous problems occur in both settings. In
Grossmann (1977), the planner has as many selves as there are states of nature plus one,
whereas our planner has only two selves.
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Many economists were tempted to believe that no recursive formulation of
an incomplete market equilibrium was possible.4 Cuoco and He, however, write
a system of partial differential equations — one for each individual — which is
applicable to the exchange economy that we consider here. That large system
of PDEs could be solved backward in a recursive fashion. We expect, however,
that our two-planner algorithm is general enough to be applied later to more
complex settings.
From the technical point of view, the recent paper by Harris and Laibson

(2001) is also related to our work in that it shows that some decision problems
plagued by time inconsistency — considered before them as being outside the
reach of recursive techniques — can be formulated recursively provided that the
decision maker is split into several selves which play a Nash game with each
other.
Throughout this paper, we assume that the incomplete-market equilibrium

exists. Hart (1975) has exhibited a well-known counter-example showing that
equilibrium may fail to exist. It involves a situation in which the rank of the
rate-of-return matrix drops in some states of nature. Fortunately, Duffie and
Shafer (1986) have shown that this occurs for a negligible subset of economies.
At any rate, existence is not the topic of our paper. Our paper is useful only

to calculate equilibria after someone has shown that they exist.
Not only do we take it for granted that competitive-market equilibrium ex-

ists but, for most of the paper, and for the entire theoretical part of the paper,
we take as given the variance-covariance matrix of equilibrium rates of return,5

for which we assume that it remains of constant rank N at all times with prob-
ability one. In a numerical illustration, however, we explain the way in which
that matrix could be determined endogenously within an extended procedure,
which would still be recursive. At this point, we cannot be sure that the ex-
tended procedure delivers the equilibrium when the variance-covariance matrix
is endogenous. That issue is left for future research.
The balance of the paper is organized as follows. Section 1 describes the

economy that we study. Section 2 reminds the reader of the dual formula-
tion of the portfolio choice problem in He and Pearson (1991) and Karatzas et
al. (1991), and gives the definition of the corresponding equilibrium. Section
3 presents a “simultaneous-game” formulation of the game played by the two
selves of the central planner and shows that the extent to which the equilibrium
of the game replicates the market equilibrium. Section 4 shows that the equi-

4See Judd, Kubler and Schmedders (2000) for the case of one (risky) asset. Kubler and
Schmedders (2002) analyze the existence of recursive equilibria with minimal sufficient state
spaces and construct a counter-example where the current exogenous state variables along with
the wealth distribution across agents do not constitute sufficient state variables, even though
the fundamentals of the economy are Markovian. Krebs (2001) shows the non-existence of
recursive or Markov equilibria in infinite-horizon incomplete-market exchange economies with-
out aggregate risk for general preferences (and with aggregate risk for homothetic preferences)
when the wealth distribution is taken as a state variable of which decisions and value func-
tions are to be continuous functions. In this paper however, we suggest a different set of state
variables and obtain recursivity, but we do not claim continuity.

5More precisely, we take as given the diffusion matrix of securities prices.
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librium in the Magill-Quinzii example is indeed a solution of the static game
between the planners. Section 5 presents a recursive, or dynamic-game formu-
lation of the same problem. This will be most useful for purposes of numerical
implementation, since dynamic programming can be used. Section 6 presents
an example of an actual numerical implementation that illustrates also how
the variance-covariance of returns could be endogenized. Section 7 contains the
conclusion.

1 The economy

1.1 Information and technical assumptions

The economy that we consider evolves over a finite interval [0, T ] of the real
line. (Ω,F , P ) is a probability space endowed with a filtration F. w (ω, t) is a
K-dimensional Wiener ((Ω,F , P )× [0, T ]→ RK) relative to the given filtration
where the components are independent of each other.
We define a filtration Fw which is the filtration generated by the Wiener w.

Definition 1 L1 space: the set of adapted, measurable processes b such that for
every T :6 Z T

0

kbk dt <∞ with probability one (1)

Definition 2 L2 is the space of adapted, measurable processes b such that for
every T :7 Z T

0

kbk2 dt <∞ with probability one (2)

Assumption: In what follows, all processes for which an Itô stochastic
integral is written are assumed to belong to the space L2. All processes for
which an integral over time is written are assumed to belong to the space L1.

1.2 Individuals and endowments

We consider an exchange economy with one good. There is a large but finite
number I of individuals who trade competitively in the financial market. They
are indexed by i. They are endowed at time 0 with a stock of good Fi (0) (initial
wealth on hand or “financial wealth”) and they receive over time a flow endow-
ment ei (t) following a given Itô stochastic process which takes strictly positive
values. That process belongs to L1+. Their consumption process is denoted ci

and their utility functions are time additive: E
nR T

0
ui (ci (s) , s) ds|Fw0

o
with

u(., .) satisfying the Inada conditions. As a result, the process ci belongs to

6 If a is a scalar, kak is absolute value. If a is N ×1 dimensional, then a is in L1 if and only
if each of its components is in L1.

7 If a is matrix-valued, then kak2 = tr (aa| ) .
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L1+. All individuals have the same information set, viz. the one provided by the
filtration Fw.
The process [ci (t)− ei (t)] is called “net consumption”. We are only inter-

ested in equilibria in which
P

i Fi (0) = 0.

Definition 3 The aggregate resource restriction is:X
i

[ci (t)− ei (t)] = 0, ∀t ∈ [0, T ] , with probability 1 (3)

1.3 Financial assets

There are N + 1 securities one of which is instantaneously riskless. The N -
dimensional Itô process for the “dividends” ι (s) is given. Individuals can choose
to invest in these assets but, this being an exchange economy, the total net
supply of each asset is equal to zero. Calling [αi, θi] the portfolio choice process
of individual i, where αi (t) is the number of units of the riskless asset and
θi (t) is the vector containing the number of units of all the risky assets held by
individual i at time t,

Definition 4 The market clearing condition is:X
i

αi (t) = 0, ∀t ∈ [0, T ] , with probability 1 (4)X
i

θi (t) = 0, ∀t ∈ [0, T ] , with probability 1 (5)

2 The static formulation: equilibrium
We now write down the formulation of an equilibrium in the financial mar-
ket. In order to reach equilibrium, individuals have to choose their portfo-
lios [αi (t) , θi (t)] . In order to choose their portfolio, they have to postulate
a stochastic process for financial market prices. The central planning formula-
tion, which comes later, presents the major advantage that there is no need to
postulate such a stochastic process.

2.1 Financial market prices

The stochastic process for price is assumed to be an Itô process, denoted as
follows:

B (t) = B (0) e
R t
0
r(s)ds;B (0) = 1 (6)

S (t) +

Z t

0

ι (s) ds = S (0) +

Z t

0

ζ (s) ds+

Z t

0

σ (s) dw (s) ;S (0) = 1 (7)
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S (ω, t) is a process in RN+ (N < K). At the individual level, the optimization
problem to be solved is:

sup
ci(s),αi(s),θi(s)

E

(Z T

0

ui (ci (s) , s) ds|Fw0
)

(8)

subject to:

αi (0)B (0) + θi (0)
|
S (0) = Fi (0) (9)

αi (t)B (t) + θi (t)
|
S (t) +

Z t

0

[ci (s)− ei (s)] ds =

αi (0)B (0) + θi (0)
|
S (0) +

Z t

0

[αi (s)B (s) r (s) + θi (s)
|
ζ (s)] ds

+

Z t

0

θi (s)
|
σ (s) dw (s) ;∀t ∈ ]0, T [ with probability 1 (10)

αi (T )B (T ) + θi (T )
| S (T ) = 0 (11)

and subject to (6, 7). As the market is incomplete, the matrix σ has fewer rows
than columns.

Definition 5 A net-consumption plan [ci (t)− ei (t)] is said to be marketable
from Fi (0) if there exist stochastic processes [αi (t) , θi (t)] such that Equations
(9, 10, 11) are satisfied with probability one.

Obviously, the sum of two marketable plans is a marketable plan.

Lemma 6 If
P

i Fi (0) = 0 and the market clearing condition is satisfied, then
the aggregate resource restriction is satisfied.

Lemma 7 If
P

i Fi (0) = 0, the aggregate resource restriction is satisfied and
[ci (t)− ei (t)] is marketable from Fi (0) for all i, then the market clearing con-
dition is satisfied.

2.2 Minimax Individual Consumption Choice

We define an adapted process κ in RK such that:8

σ (t)κ (t) = [ζ (t)− r (t)× S (t)] (13)

We define three scalar Itô processes ξ, ηκi and Z
−1
i where νi is an Itô process

in L2, as yet unspecified:

ξ (0, t) , exp
½
−
Z t

0

r (s) ds− 1
2

Z t

0

kκ (s)k2 ds−
Z t

0

κ (s)| dw (s)

¾
(14)

8There are many processes satisfying that restriction. One such process is:

κ (t) , σ (t)| [σ (t)σ (t)| ]−1 [ζ (t)− r (t)× S (t)] (12)

In that case, κ is in the span of σ| : κ (t) = σ (t)| x (t) where x (t) =

[σ (t)σ (t)| ]−1 [ζ (t)− r (t)× S (t)] . This is the process selected by He and Pearson.
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ηκi (0, t) (15)

, exp

½
−1
2

Z t

0

kνi (s)k2 ds−
Z t

0

κ (s)| νi (s) ds−
Z t

0

νi (s)
| dw (s)

¾
i = 1, ..I

Z−1i (t) , Z−1i (0) ξ (0, t) ηκi (0, t) (16)

Z−1i (0) will be given a meaning very shortly. These processes satisfy the follow-
ing stochastic differential equations:

dξ (t)

ξ (t)
= −r (t) dt− κ (t)| dw (t) ; ξ (0) = 1 (17)

dηκi (t)

ηκi (t)
= −κ (t)| νi (t) dt− νi (t)

| dw (t) ; ηκi (0) = 1 (18)

dZ−1i (t)

Z−1i (t)
= −r (t) dt− [κ (t) + νi (t)]

|
dw (t) (19)

The restriction (13) on κ guarantees that:

E

·
S (t) ξ (0, t) +

Z t

0

ι (s) ξ (0, s) ds|Fw0
¸
= S (0) = 1 (20)

E [B (t) ξ (0, t) |Fw0 ] = B (0) = 1 (21)

Lemma 8 For as long as νi ∈ kerσ (i.e. σνi = 0) and ci (t) − ei (t) is mar-
ketable at all times with probability one, we have:

E

"Z T

0

[ci (s)− ei (s)] ξ (0, s) η
κ
i (0, s) ds|Fw0

#
= Fi (0) (22)

Proof. This can be verified by direct application of Itô’s lemma to (10)
multiplied by (14) and (15).
One might reformulate the optimization problem as one of maximizing:

sup
ci(s)

E

(Z T

0

ui (ci (s) , s) ds|Fw0
)

(23)

subject to (22). However, that leaves the solution indeterminate for as long as
we have not specified νi. A duality reasoning would show that the choice of νi
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must be dictated by:9

inf
νi(s)∈kerσ(s)

sup
ci(s)

E

(Z T

0

ui (ci (s) , s) ds|Fw0
)

(26)

subject to (22). We call Z−1i (0) the Lagrange multiplier of that constraint writ-
ten at time 0. This is the main result of the dual approach of He and Pearson
(1991) (Theorems 1, 2 and 3) and Karatzas et al. (1991), which is the extension
to incomplete markets of the martingale methodology of Cox and Huang (1989),
Karatzas, Lehoczky and Shreve (1987) and Pliska (1986).
The legitimacy of this procedure is established by the following lemma which

shows that the solution of the dual problem is, indeed, the solution of the primal
problem.

Lemma 9 For any given ξ process, if a solution to problem (26) exists and
technical conditions are satisfied, individual i optimizing (26) subject to (22)
chooses net trades [ci (s)− ei (s)] that are marketable from Fi (0).

Proof. See He and Pearson (1991) proof of Theorem 2, pages 292-295,
which is applicable in the absence of an endowment stream. He and Pearson
had selected a process κ in the span of σ| . That restriction is immaterial. If κ
is not in the span, it can always be decomposed: κ = bκ + bν, where bκ is in the
span of σ| and bν is in the kernel of σ. The restriction σν = 0 is equivalent to
the restriction σ (ν − bν) = 0.
The technical conditions just referred to in the Lemma are quite important.

For the existence of a solution to the dual and primal problem and technical
conditions guaranteeing the equivalence between the solution to the dual and
the solution to the primal problem in the absence of intermediate endowments
and consumption, see He and Pearson (1991) and Karatzas et al. (1991). Cuoco
(1997) points out that the value of the optimal investment problem (23) subject
to (22) does not define a convex function relative to νi (because νi appears as an
exponent) so that minimization may not have a solution. He shows that techni-
cal conditions must be strengthened to generalize the result to the case in which
individuals receive an endowment stream. Kramkov and Schachermayer (1999)
provide conditions applicable when state prices are semimartingales. In our ap-
plication, the economy-wide state price process ξ (t) turns out to be continuous
in equilibrium. As we shall see, however, one has to allow for off-equilibrium dis-
continuities in the state price process. A recent paper Hugonnier and Kramkov

9Starting at time t, the same sequence of decisions could have been obtained by solving
the problem:

inf
νi(s)∈kerσ(s)

sup
ci(s)

E

½Z T

t
ui (ci (s) , s) ds|Fwt

¾
(24)

subject to:

E

·Z T

t
[ci (s)− ei (s)] ξ (t, s) η

κ
i (t, s) ds|Fwt

¸
= F (t) , αi (t)B (t) + θi (t)

| S (t) (25)

while the Lagrange multiplier of that constraint would have been equal to 1/Zi (t) .
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(2002) provides technical conditions guaranteeing the validity of the dual ap-
proach for incomplete-market situations with random interim endowments when
state prices are semi-martingales. To our knowledge, the case of intermediate
consumption has not been studied.
All of these technical conditions constrain the choice of utility functions in

some way. The most economically meaningful interpretation of these sufficient
conditions is:

lim sup
x→∞

x ∂
∂xui (x, t)

ui (x, t)
< 1 (27)

which, for the case of isoelastic utility xγ/γ, imposes only that γ < 1 or that
the investor should exhibit some degree of risk aversion.

Remark 10 If we take the Lagrange multiplier at time 0, Z−1i (0), as given,
the time-0 problem (26) can be written equivalently:

inf
νi(s)∈kerσ(s)

sup
ci(s)

E

(Z T

0

ui (ci (s) , s) ds|Fw0
)

−Z−1i (0)E

"Z T

0

[ci (s)− ei (s)] ξ (0, s) η
κ
i (0, s) ds|Fw0

#
(28)

2.3 Market equilibrium

We continue to impose that
P

i Fi (0) = 0.

Definition 11 A competitive market equilibrium is a set of decision processes
{{ci} , {αi} , {θi}} and price processes {B,S} such that, for each individual i,
{ci} , {αi} and {θi} are the optimizing argument of (8) subject to (9) through
(11) and such that the market clearing conditions (4) and (5) hold.

Remark 12 Since the aggregate resource restriction holds, the set of equilib-
rium initial Lagrange multipliers {1/Zi (0)} is not just any element in RI . It is
truly in a submanifold because we must have:X

i

·
∂

∂ci
ui

¸−1 ¡
Z−1i (0) , 0

¢
=
X
i

ei (0) (29)

where
h

∂
∂ci

ui

i−1
(·, t) is the inverse marginal utility function of each individual

with respect to consumption.10

Suppose that a competitive market equilibrium exists in which the initial
Lagrange multipliers are equal to {1/Zi (0)} (satisfying (29)) and the diffusion
matrix of traded asset prices is given by a N ×K dimensional process σ. Then,
we can define:
10 ∂

∂ci
ui (ci (0) , 0) = Z−1i (0) is evidently the first-order condition with respect to consump-

tion at time 0.
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Definition 13 A competitive market “sub-equilibrium” is a set of processes
{{ci} , {νi} , ξ}, in which, for each individual i, {ci} , {νi} are the optimizing
arguments of (28), and which are such that the aggregate resource restriction
holds.

3 The static formulation: central planning
We suppose that a market equilibrium exists and is given, in which the initial
Lagrange multipliers are equal to

©
Z−1i (0)

ª
(satisfying (29)) and the diffusion

matrix of traded asset prices is given by a N ×K dimensional process σ.11

Our goal is now to define a central-planning problem that generates a sub-
equilibrium.
In the market setting, ξ has been implied from the behavior of market prices

(6) and (7). In the central planning setting, however, ξ is just an adapted process
to be determined with stochastic differential equation (17). In both contexts,
νi is an adapted process, to be determined, which is in the kernel of σ and ηκi
is defined by (18).
The central planner that achieves our goal has two selves which operate

jointly in a Nash game with each other. The two selves solve two interdependent
allocation problems with two different objective functions and constraints:
Problem 1:

inf
{νi∈kerσ}

sup
{ci(s)}

(X
i

E

(Z T

0

ui (ci (s) , s) ds|Fw0
)

−
X
i

Z−1i (0)E

"Z T

0

[ci (s)− ei (s)] ξ (0, s) η
κ
i (0, s) ds|Fw0

#)
(30)

Problem 2:

sup
{ci}

(X
i

Zi (0)E

(Z T

0

1

ηκi (0, s)
ui (ci (s) , s) ds|Fw0

)

+ inf
ξ∈R+

"
−E

"Z T

0

X
i

[ci (s)− ei (s)] ξ (0, s) ds|Fw0
##)

(31)

Self 1 makes sure that the budget constraints are satisfied. It takes ξ from
Self 2 as given and makes exactly the same decisions as in the partial-equilibrium
dual approach of He and Pearson and Karatzas et al. Self 2 acts very much like
the central planner in a complete market problem or like an auctioneer; it makes
sure that the aggregate resource restriction is satisfied at all times.12 It takes
11 In this section, therefore, σ is given. In Section 6, we illustrate how σ could be obtained

from the recursive version of the central planning algorithm. This is done numerically only.
We leave for future research the generalization of the theory for the case of endogenous σ.
12Although reminiscent of the ‘auctioneer’ algorithm of Lucas (1994) and Heaton and Lucas

(1996), our auctioneer is different as he directly targets the aggregate resource restriction (by
choosing aggregate state prices), rather than market clearing in financial markets (by searching
for asset holdings), as in their approach.
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the ηκi ’s from Self 1 as given in constructing his objective function. Observe that
the decisions of one player serve to define the objective function of the other.
The two selves could not be reduced to one since they face different objective
functions and discount utility of consumption at different rates, but they agree
on the consumption allocation. Indeed, the FOCs for consumption are the same
in both cases:

∂

∂ci (s)
ui (ci (s) , s) = Z−1i (0) ξ (0, s) ηκi (0, s) (32)

≡ Z−1i (s)

Remark 14 When markets are dynamically complete, i.e. when σ is a square
matrix (N = K) of full rank, the kernel of σ is the singleton 0: there is a unique
equivalent martingale measure. Problems 1 and 2 become respectively:

sup
{ci(s)}

(X
i

E

(Z T

0

ui (ci (s) , s) ds|Fw0
)

−
X
i

Z−1i (0)E

"Z T

0

[ci (s)− ei (s)] ξ (0, s) ds|Fw0
#)

(33)

inf
ξ(0,s)∈R+

sup
{ci(s)}

(X
i

Zi (0)E

(Z T

0

ui (ci (s) , s) ds|Fw0
)

+

"
−E

"Z T

0

X
i

[ci (s)− ei (s)] ξ (0, s) ds|Fw0
##)

(34)

so that central planning can be achieved by a planner with a single self. Indeed
Planner 2 in this case needs no input from Planner 1.

Definition 15 A Nash equilibrium of the above game is a set of decision pro-
cesses {{ci} , {νi}} that are optimal for Planner 1 (in particular, individually
marketable) given the values {ξ} of the decisions of Planner 2 and a set of
decision processes {{ci} , ξ} that are optimal for Planner 2 (in particular, mar-
ketable in the aggregate and satisfying the budget constraint) given the values of
the decisions {νi} of Planner 1.
Theorem 16 Suppose that a competitive market equilibrium exists in which the
set of initial Lagrange multipliers is equal to

©
Z−1i (0)

ª
(satisfying the aggregate

resource restriction (29) at time 0) and the diffusion matrix of traded asset
prices is given by a N ×K dimensional process σ. The Nash equilibrium of the
above game is a market sub-equilibrium.

Proof. First, for any given ξ processes, Planner 1 chooses net trades
[ci (s)− ei (s)] that are marketable.
Indeed, since Problem 1 is nothing but the sum taken over all individuals of the
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individual problems of the form (28), lemma 9 above implies that individual net
trades are marketable.
Second, for any given set of processes {νi (s) ∈ kerσ (s)}, the choice of ξ by
Planner 2 guarantees that the aggregate resource restriction is satisfied with
probability one. Indeed, the planner’s objective function is nothing but a La-
grangian objective function incorporating that constraint.

Remark 17 Given any solution {{ci} , {νi} , ξ} of the above game, equivalently
written as {{ci} , {ηκi } , ξ} , define a process bη :
bηκ (0, t) , exp½−1

2

Z t

0

kbν (s)k2 ds− Z t

0

κ (s)| bν (s) ds− Z t

0

bν (s)| dw (s)¾ ; i = 1, ..., I
(35)

where bν is any adapted process satisfying the kernel constraint: σbν = 0. Then
it can be checked readily that {{ci} , {ηκi bηκ} , ξ/bηκ} is another solution of the
game. To understand this, observe that κ could have been reset at κ+ bν wherebν is an arbitrary element of the kernel of σ. Then the kernel condition would
really be σ (νi − bν) = 0. But this last is equivalent to σνi = 0.

Faced with this indeterminacy, one could impose the condition that κ be
in the span of σ|or that, for the first individual, ν1 = 0. Either restriction
pins down (or standardizes) κ, which otherwise would be indeterminate, with a
cancelling indeterminacy in each of the νi’s.
In terms of economics, the meaningful kernel condition is one that says only
that differences in ν’s between any two individuals should be in the kernel, not
that each single νi should be in the kernel. This corresponds to the fact that we
want any pair of individuals to agree on the prices of traded securities.
Therefore, if we impose spanning from now onwards, it is a normalization

without loss of generality.

Proposition 18 Since the Nash equilibrium of the game has the property that
the aggregate resource restriction is satisfied at all times, we have, for an ex-
change economy:

X
i

·
∂

∂ci
ui

¸−1 ¡
Z−1i (0) ξ (0, t) ηκi (0, t) , t

¢
=
X
i

ei (t) with probability 1 (36)

Applying Itô’s calculus over time, it follows that the equilibrium choices of the
r, ξ and {νi} processes satisfy:

−
X
i

1

∂2

∂c2i
ui

µh
∂
∂ci

ui

i−1 ¡
Z−1i (t) , t

¢
, t

¶Z−1i (t) [κ (t) + νi (t)]
|
=
X
i

σei (t) with probability 1,

(37)
where σei is the diffusion row vector process of the endowment of individual i,
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as well as:

X
i

∂

∂t

(·
∂

∂ci
ui

¸−1 ¡
Z−1i (t) , t

¢)−X
i

1

∂2

∂c2i
ui

µh
∂
∂ci

ui

i−1 ¡
Z−1i (t) , t

¢
, t

¶Z−1i (t) r (t)

+
1

2

X
i

1·
∂2

∂c2i
ui

µh
∂
∂ci

ui

i−1 ¡
Z−1i (t) , t

¢
, t

¶¸3
× ∂3

∂c3i
ui

Ã·
∂

∂ci
ui

¸−1 ¡
Z−1i (t) , t

¢
, t

!£
Z−1i (t)

¤2
[κ (t) + νi (t)]

| [κ (t) + νi (t)]

=
X
i

µei (t) with probability 1 (38)

where µei is the drift process of the endowment of individual i.

The solution of (37) for κ in the span (κ = σ|x for some x) is:−X
i

1

∂2

∂c2i
ui

µh
∂
∂ci

ui

i−1 ¡
Z−1i (t) , t

¢
, t

¶Z−1i (t)

x (t) =
"X

i

σei (t)σ (t)
|
#
[σ (t)σ (t)| ]

−1

(39)

κ (t)| =
1−Pi
1

∂2

∂c2
i
ui

µh
∂
∂ci

ui
i−1
(Z−1i (t),t),t

¶Z−1i (t)


"X

i

σei (t)σ (t)
|
#
[σ (t)σ (t)| ]

−1
σ (t)

(40)
Residual restrictions on the corresponding equilibrium νs are:

−
X
i

1

∂2

∂c2i
ui

µh
∂
∂ci

ui

i−1 ¡
Z−1i (t) , t

¢
, t

¶Z−1i (t) νi (t)
| = (41)

"X
i

σei (t)

# h
IK − σ (t)| [σ (t)σ (t)| ]

−1
σ (t)

i
.

In Section 5, we provide a recursive formulation of the same central planning
problem. But, first, we look at an illustration of the static method.

4 TheMagill-Quinzii example solved by the static
central plan

In their textbook, Magill and Quinzii (1996, Chapter IV) construct an example
that purports to show that an equilibrium in an incomplete market is not Pareto

13



optimal, not even under the constraint of marketability of consumption plans.
Indeed, we have been careful here not to give our algorithm involving two central
planners any welfare interpretation.
We now use that same example to illustrate the way in which the two central

planners would arrive at the incomplete market equilibrium.
Magill and Quinzii’s example is set in a three-date (indexed by t), two-agent

(indexed by i), two-state (indexed by s) environment. All uncertainty is resolved
at t = 1 and both states have equal probability. The event-tree for the aggregate
state Yt,s is:

t = 0 t = 1 t = 2
Y11 Y21

Y0
Y12 Y22

The endowment processes ei as a function of the aggregate state Yt,s are as
follows for the two agents:

e1 = (e1 (Y0) , e1 (Y11) , e1 (Y12) , e1 (Y21) , e1 (Y22)) = (4, 0, 6, 6, 6)

e2 = (e2 (Y0) , e2 (Y11) , e2 (Y12) , e2 (Y21) , e2 (Y22)) = (9, 8, 0, 8, 8)

If state Y11 occurs, agent 1 temporarily has a zero endowment, and similarly for
agent 2 in state Y12.
Agents have time-separable logarithmic utility, but are heterogeneous in

terms of time preference:

E0

(
2X

t=0

ui (ci (Yt,s) , t)

)
= log (ci (Y0)) + βi

·
1

2
log (ci (Y11)) +

1

2
log (ci (Y12))

¸
+β2i

·
1

2
log (ci (Y22)) +

1

2
log (ci (Y22))

¸
where the discount factors are given by (β1, β2) =

¡
1
2 ,

1
3

¢
.

In each period, there is only one financial asset, a short-lived bond that
permits lending and borrowing. Markets are incomplete, as there is no risky or
state-contingent asset that would allow agents to hedge their endowment risk.
The spanning and kernel restrictions are now written with respect to the

payoff matrix instead of the diffusion matrix. As there is no risky asset, the
spanning condition implies that κ (Yt,s) = 0. Also, the kernel restriction is
vacuous, which means that νi can be chosen freely.
However, we also need to impose that ηi (Yt,s) = exp (−νi (Yt,s)) be a mar-

tingale. This implies νi (Yt,s) = 0 for t = 2. For t = 1, we obtain

1

2
× e−ν(Y11) +

1

2
× e−ν(Y12) = 1

14



It is straightforward to verify that the equilibrium consumption allocation
described by Magill and Quinzii,

c1 = (c1 (Y0) , c1 (Y11) , c1 (Y12) , c1 (Y21) , c1 (Y22)) = (4, 0.8, 4.8, 2, 12)

c2 = (c2 (Y0) , c2 (Y11) , c2 (Y12) , c2 (Y21) , c2 (Y22)) = (9, 7.2, 1.2, 12, 2)

along with the values

r = (r (Y0) , r (Y11) , r (Y12)) = (−38%, 161%, 161%)

ν1 = (ν1 (Y11) , ν1 (Y12) , ν1 (Y21) , ν1 (Y22)) = (−54%, 125%, 0, 0)
ν2 = (ν2 (Y11) , ν2 (Y12) , ν2 (Y21) , ν2 (Y22)) = (125%,−54%, 0, 0)

solves the following planning problems, given values for
©
Z−1i (0)

ª
: (Z1 (0) , Z2 (0)) =

(4, 9) :
Problem 1:

inf
{νi(Yt,s)}

sup
{ci(Yt,s)}

(
2X
i=1

E0

"
2X

t=0

ui (ci (Yt,s) , t)

#

−
2X

i=1

1

Zi (0)
E0

"
2X

t=0

[ci (Yt,s)− ei (Yt,s)] ξ (Yt,s) ηi (Yt,s)

#)
(42)

Problem 2:

inf
ξ(Yt,s)

sup
{ci(Yt,s)}

(
2X

i=1

Zi (0)E0

"
2X

t=0

1

ηi (Yt,s)
ui (ci (Yt,s) , t)

#

+

"
−E0

"
2X

t=0

2X
i=1

[ci (Yt,s)− ei (Yt,s)] ξ (Yt,s)

##)
(43)

5 Recursive formulation
We now show that it is possible to develop a recursive (dynamic-programming)
formulation of the static central-planner problem. This should be useful for
numerical implementations.
For the purpose, adopt a Markovian setting:13

ei(t) = ei(0) +

Z t

0

µei (Y (s) , s)ds+

Z t

0

σei (Y (s) , s)dw(s) (44)

where Y is an Itô process in RK :

Y (t) = Y (0) +

Z t

0

µ (Y (s) , s) ds+

Z t

0

ρ (Y (s) , s) dw (s) (45)

13We assume that the functions µei , σ
e
i , µ and ρ satisfy growth and Lipschitz conditions.
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The aim in the recursive setting is to derive the competitive market equi-
librium one step at a time. We show that this can be done by having the two
Planners play a dynamic game.
It is important in that context to keep two basic ideas in mind. First, even

though the process ξ in equilibrium is a continuous process, since it solves Equa-
tion (36), it should nevertheless generally be conceived of as a jump process,
or an instantaneous control, which accommodates the current values of {ηi} to
satisfy that equation.
Second, the timing of the game needs to be specified carefully (see Figure

1):

• The state variables of the game are {ηi (0, t)}. The two players arrive at
time t with given values {ηi (0, t)} for these state variables.

• At time t, they play simultaneously a Nash game in which Planner 1
chooses {νi (t)} , Planner 2 chooses ξ (0, t) to satisfy (36) and they both
agree on the choice of {ci (t)} . Note that the choice of ξ (0, t) by Planner
2 only depends on the values of the state variables {ηi (0, t)} , and {ei (t)},
not on the choice of {νi (t)} made by Planner 1. In other words, Planner
2 has a dominant strategy.

• As they move to time t+dt, a realization dw (t) of the Wiener occurs. This
leads to a realization of ηi (t+ dt) . At that time Planner 2 instantaneously
accommodates the aggregate resource constraint by adjusting ξ (0, t+ dt).
That behavior can be anticipated at time t by Planner 1 but he/she should
hold it fixed when choosing his own actions.

The game and equilibrium concept we have just described are not the stan-
dard dynamic (stochastic differential) game and corresponding Markov Perfect
Equilibrium (henceforth MPE), as described, for instance, in Fudenberg and
Tirole (1995), chapter 13. In an MPE, each player takes the decision rule of the
other player as given. That means that, in making his/her current choices, each
player takes into account the impact of his/her action on the other player’s fu-
ture actions via the the impact it has on the future values of the state variables.
Were we to write a dynamic game of that type and examine the MPE, it would
be a different equilibrium from the Nash equilibrium in the one-shot game we
have proposed above.
Here, we are trying to find a dynamic game that replicates the static game

we have described so far. In the static game each player took the entire process of
the other player as given. The given process of the other player was not allowed
to be contingent on this player’s actions. That means that we must make sure
that Planner 1 takes all future values of Planner 2’s decisions as given. The
dynamic game we are looking for is instead closer in spirit to an Open-Loop
Equilibrium, albeit in a stochastic differential setting (so that the strategies must
still be formulated as measurable functions of the relevant state variables). It is
worth pointing out that an OLE is often deemed unattractive since it requires
commitment of the players to their strategies. This is not an issue here, since
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time t time t+dt

{ηi(0,t)}

{ei(0,t)}

Y(t)

Planner 1 chooses {νi(t)}

Planner 2 chooses

ξ(0,t) as per (36)

Both choose {ci(t)}

{ηi(0,t+dt)}

{ei(0,t+dt)}

Y(t+dt)

time t time t+dt

{ηi(0,t)}

{ei(0,t)}

Y(t)

Planner 1 chooses {νi(t)}

Planner 2 chooses

ξ(0,t) as per (36)

Both choose {ci(t)}

{ηi(0,t+dt)}

{ei(0,t+dt)}

Y(t+dt)

Figure 1: The timing of the dynamic game

the game and corresponding equilibrium are in any case artificial. It is a pure
computational device which replicates the static game.It need not resemble what
is done usually to represent human behavior in a setting that would be dynamic
to start with. Characterizing the OLE will require some compensating term to
eliminate from Planner 1’s decision process the anticipated reaction of Planner
2.
In short, we have the following definition:

Definition 19 A dynamic equilibrium of the game described in Section 3 is a
set of admissible, measurable functions

c∗i ({ηi} , {ei} , Y, t)
ν∗i ({ηi} , {ei} , Y, t)

and
ξ∗ ({ηi} , {ei} , Y, t)

such that the decisions {{c∗i } , {ν∗i }} are optimal for Planner 1 given current and
future values {ξ∗} of the decisions of Planner 2 and given the current state
variables {ηi (t)} , {ei (t)} , Y (t) , t and such that the decisions {{c∗i } , ξ∗} are
optimal for Planner 2 given current and future values {ν∗i } of the decisions of
Planner 1 and given the current state variables {ηi (t)} , {ei (t)} , Y (t) , t, where
the processes ({c∗i } , {ν∗i } , r∗, κ∗) are defined by:

c∗i,t = c∗ ({ηi (0, t)} , {ei (t)} , Y (t) , t) (46)

ν∗i,t = ν∗i ({ηi (0, t)} , {ei (t)} , Y (t) , t) (47)
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and:
ξ∗t = ξ∗ ({ηi (0, t)} , {ei (t)} , Y (t) , t) . (48)

Theorem 20 Suppose that a competitive market equilibrium exists in which the
initial Lagrange multipliers are equal to

©
Z−1i (0)

ª
and the diffusion matrix of

traded asset prices is given by a N ×K dimensional process σ. One equilibrium
of the above dynamic game is a market sub-equilibrium relative to

©
Z−1i (0)

ª
and σ.

The task is now to prove this claim and to characterize the dynamic equi-
librium. The remainder of this section is devoted to this. We define the value
function(s) and construct the corresponding Hamilton-Jacobi-Bellman PDE(s).
The first-order conditions are then shown to generate a competitive market
sub-equilibrium.

5.1 Value functions

One could define an intertemporal value function for Planner 2 but, in the
present exchange-economy setting, Planner 2 has no intertemporal decisions
to make. Hence, that is really pointless. As we saw, Planner 2’s decision
ξ (0, t) is dictated by Equation (36). The solution of that equation is denoted
ξ∗
¡©
Z−1i (0) ηi

ª
,
P

i ei, t
¢
. This function does have MY as an argument and is

homogeneous of degree -1 in
©
Z−1i (0) ηi

ª
.

Define the value function of Planner 1:

J
¡©
Z−1i (0) ηi

ª
, {ei} , Y, t

¢
, inf
{νi(s)∈kerσ(s)}

sup
{ci(s)}

X
i

E

(Z T

t

ui (ci (s) , s) ds|Fwt
)

−ξ∗
³©

Z−1i (0) ηi
ª
,
X

i
ei, t

´X
i

Z−1i (0) ηiE

"Z T

t

[ci (s)− ei (s)] ξ
∗ (t, s) ηi (t, s) ds|Fwt

#
(49)

In this definition,
©
Z−1i (0) ηi (0, t)

ª
is an argument because it is a state variable.

Planner 1 plays Nash and takes the value of the decision ξ∗ of Planner
2 as a given. To accommodate that feature of the game, we also define a
“compensated” value function bJ of Planner 1 as follows:bJ ¡©Z−1i (0) ηiξ

ª
, {ei} , Y, t

¢
, inf
{νi(s)∈kerσ(s)}

sup
{ci(s)}

X
i

E

(Z T

t

ui (ci (s) , s) ds|Fwt
)

−ξ
X
i

Z−1i (0) ηiE

"Z T

t

[ci (s)− ei (s)] ξ
∗ (t, s) ηi (t, s) ds|Fwt

#
(50)

Assumption: We assume that J and bJ are C2,2,2,1.
18



Lemma 21 The envelope theorem implies:14

− bJi ¡©Z−1i (0) ηiξ
ª
, {ei} , Y, t

¢
= E

"Z T

t

[ci(s)− ei(s)] ξ
∗ (t, s) ηi (t, s) ds|Fwt

#
(51)

which can also be written:

− bJi ¡©Z−1i (0) ηiξ
ª
, {ei} , Y, t

¢
= E

"Z T

t

[ci(s)− ei(s)] ξ
∗ (t, s) ds|Fwt

#
(52)

so that the partial derivative bJi is equal to (minus) the financial wealth of in-
vestor i. It follows from that observation that the function bJ has the property
that: X

i

bJi ¡©Z−1i (0) ηiξ
ª
, {ei} , Y, t

¢
= 0;∀©Z−1i (0) ηiξ

ª
(53)

When equilibrium prevails the function J follows from the function bJ :
J
¡©
Z−1i (0) ηi

ª
, {ei} , Y, t

¢ ≡ bJ ³nZ−1i (0) ηiξ
∗
³©

Z−1i (0) ηi
ª
,
X

i
ei, t

´o
, {ei} , Y, t

´
(54)

Given the functional forms, the functions J and bJ have the homogeneity prop-
erty that multiplying η by any real number λ and multiplying ξ by λ−1 leaves
the value of the function bJ unchanged, which implies that the function J is ho-
mogeneous of degree 0 in η. The reaction introduced by the function ξ∗ causes
the function J to be homogeneous of degree 0 in {ηi} .

5.2 Conditions of optimality

We need to incorporate a constraint that the individual-specific diffusion νi is in
the kernel: σνi = 0.We assign Lagrange multiplier Z

−1
i (0) ξ∗

¡©
Z−1i (0) ηi

ª
, {ei} , Y, t

¢
ηi (0, t) θ

|
i

to that last constraint. We look for the equilibrium for which κ is in the span
of σ| .15

The Hamilton-Jacobi-Bellmann PDE for J is:

0 = sup
{θi(t)}

inf
{νi(t)}

¯̄̄̄
ξ∗i

sup
{ci(t)}

X
i

£
ui (ci, t)− Z−1i (0) ξ∗ ({ηi} , {ei} , Y, t) ηi (0, t) (ci − ei (t))

¤
+D{νi}J ¡©Z−1i (0) ηi

ª
, {ei} , Y, t

¢−X
i

Z−1i (0) ξ∗
¡©
Z−1i (0) ηi

ª
, {ei} , Y, t

¢
ηi (0, t) θ

|
i σνi

(55)

14 bJi ³nZ−1i (0) ηiξ
o
, {ei} , Y, t

´
denotes the derivative of bJ with respect to its ith argument

among the first group of arguments.
15We impose that requirement later.

19



where the operator D{νi} is defined as:16

D{νi}J , ∂J

∂t
+
X
i

∂J

∂ei
µei +

µ
∂J

∂Y

¶|
µ

+
1

2

X
i

X
j

Jijν
|
i νjZ

−1
i (0) ηiZ

−1
j (0) ηj

+
1

2

X
i

X
j

∂2J

∂ei∂ej
(σei )

¡
σej
¢|
+
1

2
tr

µ
∂2J

∂Y ∂Y
ρρ|

¶
+ tr

ÃX
i

∂2J

∂ei∂Y
σeiρ

|

!

−
X
i

X
j

∂Ji
∂ej

ν|i Z
−1
i (0) ηi

¡
σej
¢| − tr

ÃX
i

∂Ji
∂Y

ν|i Z
−1
i (0) ηiρ

|

!
(56)

Given that we plan to introduce a compensation when Planner 1 chooses νi,
we use the equivalence (54) to rewrite the derivatives of J in terms of the
compensated function bJ :17

Ji = bJi × ξ∗ +

ÃX
k

bJkZ−1k (0) ηk

!
× ξ∗i (57)

Jij = bJij × (ξ∗)2 + "X
k

bJikZ−1k (0) ηk

#
× ξ∗j × ξ∗

+ bJi × ξ∗j +

ÃX
k

bJkjZ−1k (0) ηk

!
× ξ∗ × ξ∗i

+

ÃX
k

X
k0

bJkk0Z−1k (0) ηkZ
−1
k0 (0) ηk0

!
× ξ∗i × ξ∗j

+ bJj × ξ∗i +

ÃX
k

bJkZ−1k (0) ηk

!
× ξ∗ij (58)

∂Ji
∂ej

=
∂ bJi
∂ej

× ξ∗ +

"ÃX
k

bJikZ−1k (0) ηk

!
× ξ∗ + bJi +ÃX

k

X
k0

bJkk0Z−1k (0) ηkZ
−1
k0 (0) ηk0

!
× ξ∗i

#

×∂ξ∗

∂ej
+

ÃX
k

∂ bJk
∂ej

Z−1k (0) ηk

!
× ξ∗i +

ÃX
k

bJkZ−1k (0) ηk

!
× ∂ξ∗i

∂ej
(59)

16Ji
³n

Z−1i (0) ηi

o
, {ei} , Y, t

´
denotes the derivative of J with respect to its ith argument

among the first group of arguments.
17 ξ∗i

³n
Z−1i (0) ηi

o
, {ei} , t

´
denotes the derivative of ξ∗ with respect to its ith argument

among the first group of arguments.
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∂Ji
∂Y

=
∂ bJi
∂Y

× ξ∗ +

ÃX
k

∂ bJk
∂Y

Z−1k (0) ηk

!
× ξ∗i (60)

Given the simple behavior of Planner 2, there is also no problem in this
exchange economy in calculating the derivatives of the function ξ∗. From (36),
we have:

ξ∗j = −

1

∂2

∂c2
j
uj

µh
∂
∂cj

uj
i−1
(Z−1j (0)ξ∗ηj ,t),t

¶ ξ∗
P

i
1

∂2

∂c2
i

ui

µh
∂
∂ci

ui
i−1
(Z−1i (0)ξ∗ηi,t),t

¶Z−1i (0) ηi
(61)

∂ξ∗

∂ej
=

1P
i

1

∂2

∂c2
i
ui

µh
∂
∂ci

ui
i−1
(Z−1i (0)ξ∗ηi,t),t

¶Z−1i (0) ηi
(62)

In Equation (55), we wrote inf{νi(t)}
¯̄
ξ∗i
to signify that it is not literally the

right-hand side of (55) that should be minimized. If it were, Planner 1 would be
taking into account the impact of his/her choice of {νi (t)} on the future choices
of ξ∗ via its impact on the future values of state variables {ηi} . To prevent that,
the first-order condition with respect to νi (t) involves the compensated value
function bJ defined above, keeping ∂ξ∗

∂Z−1i
= 0.

The four first-order conditions associated with the game are:

• Joint condition
∂

∂ci
ui(ci, t) = Z−1i (0) ξ∗

¡©
Z−1i (0) ηi

ª
, {ei} , t

¢
ηi (0, t) (63)

• Planner 2’s condition: X
i

[ci − ei (t)] = 0 (64)

• Planner 1’s conditions:X
j

" bJij + "X
k

bJikZ−1k (0) ηk +
bJi
ξ∗

#
× ξ∗j

ξ∗

#
ν|jZ

−1
j (0) ξ∗ηj (65)

−
X
j

"
∂ bJi
∂ej

+

ÃX
k

bJikZ−1k (0) ηk +
bJi
ξ∗

!
∂ξ∗

∂ej

#
σej −

X
k

Ã
∂ bJi
∂Yk

ρk

!
= θ|i σ; 1×K × I

(66)

σνi = 0; N × 1× I (67)

The first condition is the usual condition of optimality of consumption.
The interpretation (51) of the derivative bJi as (minus) the financial wealth of

individual i shows that the last two first-order conditions are, by construction,
identical to He and Pearson’s conditions (20, 21) but generalized to incorporate
cross-derivatives across individuals. This shows that the θ|i s are interpretable
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as portfolios. Equation (53) above indicates that
P

i θ
|
i = 0; financial markets

clears.
The last three conditions are linear and can be organized into a large parti-

tioned system which can be solved for all the θ|i s, and νis:

θ|i = −
X

j

"
∂ bJi
∂ej

+

ÃX
k

bJikZ−1k (0) ηk +
bJi
ξ∗

!
∂ξ∗

∂ej

#
σej +

X
k

Ã
∂ bJi
∂Yk

ρk

!σ| (σσ|)−1
(68)

X
j

" bJij + "X
k

bJikZ−1k (0) ηk +
bJi
ξ∗

#
× ξ∗j

ξ∗

#
ν|jZ

−1
j (0) ξ∗ηj (69)

=

X
j

"
∂ bJi
∂ej

+

ÃX
k

bJikZ−1k (0) ηk +
bJi
ξ∗

!
∂ξ∗

∂ej

#
σej +

X
k

Ã
∂ bJi
∂Yk

ρk

!nIK − σ| (σσ|)−1 σ
o

The matrix
h bJij + hPk

bJikZ−1k (0) ηk +
bJi
ξ∗

i
× ξ∗j

ξ∗

i
is singular because

P
i
bJi ≡

0. There remains an indeterminacy in the values of the νis (although the port-
folios are well determined). While we have chosen to look for the νs such that
the corresponding κ is in the span of σ| and while we have used that prop-
erty (when writing Equation (55)), we have not yet imposed that requirement.
That task is accomplished by appending Equations (41) to the above system.

Delete one row in each of the matrices
h bJij + hPk

bJikZ−1k (0) ηk +
bJi
ξ∗

i
× ξ∗j

ξ∗

i
and

hP
j

h
∂ bJi
∂ej

+
³P

k
bJikZ−1k (0) ηk +

bJi
ξ∗

´
∂ξ∗
∂ej

i
σej +

P
k

³
∂ bJi
∂Yk

ρk

´i
and replace

them by the left-hand side and right-hand side of (41). The solution for ν is:

£
ν|jZ

−1
j (0) ξ∗ηj

¤
=


h bJij + hPk

bJikZ−1k (0) ηk +
bJi
ξ∗

i
× ξ∗j

ξ∗

i− 1

∂2

∂c2
j

uj

µh
∂
∂cj

uj
i−1
(Z−1j (t),t),t

¶



−1

×
" hP

j

h
∂ bJi
∂ej

+
³P

k
bJikZ−1k (0) ηk +

bJi
ξ∗

´
∂ξ∗
∂ej

i
σej +

P
k

³
∂ bJi
∂Yk

ρk

´i
[
P

i σ
e
i (t)]

#n
IK − σ| (σσ|)−1(

6 Numerical implementation
We choose to illustrate our method on the example of the limited-participation
equilibrium of Basak and Cuoco (1998). In this section, we adopt their notation.
Even though we do not know yet how to handle the general case of limited
participation — in which each investor is assigned a list of securities to which
he/she has access, — we can handle the specific case situation analyzed by Basak
and Cuoco, in which there is only one Wiener shock in the economy, one risky
asset and one instantaneously riskless asset and just two (or two categories of)
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finite-lives agents. Agent 1 has access to both securities, whereas Agent 2 has
access to the riskless security only. Basak and Cuoco calculate analytically the
equilibrium for the case in which Agent 2 has logarithmic utility and receives
no endowment. We show here how this can be generalized numerically to any
power utility function.
In this setup, the risky security is effectively redundant since a group of

identical agents (those of Category 1) are the only ones having access to it. No
trading of it actually takes place at any time. In Basak and Cuoco, the security
is nonetheless “held”, but only because agents of Category 1 are endowed with
it. The cash-flow process for the risky security, which we prefer to view as the
process for the flow endowment of agents of Category 1 is:

δ (t) = δ (0) +

Z t

0

µδ (s) ds+

Z t

0

σδ (s) dw (s) (71)

The remainder of the agents’ endowments is unconventional in the sense
that they are not defined by exogenous cash flows. Instead, agents of the two
categories share the total zero net supply of the riskless security, which yields
an endogenous rate of interest. Agents of Category 1 are endowed with a short
position in β shares of the bond and agents of Category 2 are endowed with a
long position in the same β shares of the bond (β > 0). Agents of Category 1
are the only ones receiving a flow endowment, of the kind we consider in this
article. On an average, Category 1 agents consume less than their endowment
because they start out with a short position of the bond. This allows Category
2 agents to consume something out of Category 1’s flow endowment δ.
Since the riskless security is tradable by all, the initial endowment of bonds

only serves to specify the initial distribution of financial wealth. This is not
important for our procedure since we are only interested in generating sube-
quilibria, i.e., equilibria with given initial Lagrange multipliers, as opposed to
equilibria with given initial wealth distribution.18

Concerning the diffusion matrix of security prices, we need to distinguish
between securities to which both classes of investors have access and securities
which are available to Category 1 agents exclusively. It is easiest to view this
market as an incomplete market in which the only traded security is the instan-
taneously riskless one, the risky security being absent. In our approach, that
pins down the diffusion matrix of traded securities: σ = 0. Note that here σ
does not contain the volatility of the risky security. The risky security is re-
dundant. Its volatility σ1 can be determined separately from the determination
of the equilibrium. We first determine the equilibrium by the central-planning
approach and then show how to find σ1 endogenously in our recursive numerical
procedure. If we maintain that κ should be in the span of σ| , it follows that
κ = 0, (as in the example of Magill and Quinzii).19 Furthermore, there is no
kernel restriction on the choice of ν1 and ν2.
18As Basak and Cuoco point out, the initial distribution of wealth, in their set up, also

determines whether an equilibrium exists (β must be positive, but not so large that agents of
Category 1 could never repay their initial short position in the bond).
19Here the notation differs from that of Basak and Cuoco. They call κ the price of risk in
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6.1 Central planner solution

Planner 2’s problem is easily solved. Assuming isoelastic utility functions (e−ρt c
γi−1
γi

),

it chooses ξ∗
¡
Z−11 (0) η1, Z

−1
2 (0) η2, δ, t

¢
that solves:20X

i=1,2

£
eρtZ−1i (0) ξηi

¤ 1
γi−1 = δ (t) (73)

Let us now focus on Planner 1 who chooses ν1 and ν2. Under the present
circumstances, the PDE for the value function J

¡
Z−11 (0) η1, Z

−1
2 (0) η2, δ, t

¢
is:

0 =
X
i=1,2

·µ
1

γi
− 1
¶
e

ρt
γi−1

£
Z−1i (0) ξ∗

¡
Z−11 (0) η1, Z

−1
2 (0) η2, δ, t

¢
ηi
¤ γi
γi−1 − e−ρt

γi

¸
+Z−11 (0) ξ∗

¡
Z−11 (0) η1, Z

−1
2 (0) η2, δ, t

¢
η1δ +

∂J

∂t
(74)

+
∂J

∂δ
µδ +

1

2

∂2J

∂δ2
σ2δ2 +

1

2

X
i=1,2

X
j=1,2

JijνiZ
−1
i (0) ηiνjZ

−1
j (0) ηj −

X
j=1,2

∂Ji
∂δ

νiZ
−1
i (0) ηiσδ

the first-order conditions are:

X
j

" bJij + "X
k

bJikZ−1k (0) ηk +
bJi
ξ∗

#
× ξ∗j

ξ∗

#
νjZ

−1
j (0) ξ∗ηj =

"
∂ bJi
∂δ

+

ÃX
k

bJikZ−1k (0) ηk +
bJi
ξ∗

!
∂ξ∗

∂δ

#
σδ; i = 1,

(75)

the market for the risky security. Our analog is denoted ν1. Indeed, the risky security is priced
by agents of Category 1 only. The common component ξ of state prices does not price the
risky security. The riskless security is the only one the two categories of agents have to agree
on.
20

e−ρtcγi−1i = Z−1i (0) ξηi (72)
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while the restriction (41) reads:21

−
X
i=1,2

νi
£
eρtZ−1i (0) ξ∗ηi

¤ 1
γi−1

(γi − 1)
= σδ. (81)

Given the fact that bJ1 + bJ2 ≡ 0, it is possible to write bJ as a function of
the difference in the Z−1s. Furthermore, for purposes of numerical implementa-
tion, it is somewhat more convenient to work in terms of an undiscounted value
function and undiscounted arguments. Let us, therefore, introduce a functionH:
e−ρtH

¡¡
Z−11 (0) η1 − Z−12 (0) η2

¢
eρtξ, δ, t

¢
, bJ ¡Z−11 (0) η1ξ, Z

−1
2 (0) η2ξ, δ, t

¢
.22

LetH 0 denote the derivative of the function H with respect to its first argument.

21 In the special case of Basak and Cuoco in which investor 2 (receiving no endowment) is
a log investor (γ2 = 0), we can anticipate part of the solution of the problem. From (51) and
the first-order conditions for consumption of a log investor, it follows that:

bJ2 ³Z−11 (0) η1ξ, Z
−1
2 (0) η2ξ

∗, δ, t
´
= − 1

Z−12 (0) η2e
ρtξ

1

ρ

h
e−ρ(T−t) − 1

i
(76)

so that: bJ21 +
 X
k=1,2

bJ2kZ−1k (0) ηk +
bJ2
ξ∗

 × ξ∗1
ξ∗

Z−11 (0) ξ∗η1 =

" bJ22Z−12 (0) η2 +
bJ2
ξ∗

#
× ξ∗1

ξ∗
Z−11 (0) ξ∗η1

(77)

= 0 (78) ∂ bJ2
∂δ

+

 X
k=1,2

bJikZ−1k (0) ηk +
bJ2
ξ∗

 × ∂ξ∗

∂δ

 = ∂ bJ2
∂δ

+

Ã bJ22Z−12 (0) η2 +
bJ2
ξ∗

!
× ∂ξ∗

∂δ
= 0

(79)
Substituting into (70) gives: ν2 = 0. As a result of the restriction (81):

ν1 = σ (1− γ1)
δ

c1
. (80)

22The stochastic differential equation for
³
Z−11 (0) η1 − Z−12 (0) η2

´
eρtξ∗ is:

d
h³
Z−11 (0) η1 − Z−12 (0) η2

´
eρtξ∗

i
=
n
ρ
³
Z−11 (0) η1 − Z−12 (0) η2

´
eρtξ∗

+
1

2

³
Z−11 (0) η1 − Z−12 (0) η2

´
eρt

·
∂ξ∗

∂δ
µδ + ξ∗11Z

−1
1 (0) η1ν

2
1

+2ξ∗12Z
−1
1 (0) η1ν1ξ

∗
2Z
−1
2 (0) η2ν2 + ξ∗22

³
ξ∗2Z

−1
2 (0) η2ν2

´
+
∂2ξ∗

∂δ2
(σδ)2 − 2∂ξ

∗
1

∂δ
σδZ−11 (0) η1ν1 − 2

∂ξ∗2
∂δ

σδZ−12 (0) η2ν2

¸
−
³
Z−11 (0) η1ν1 − Z−12 (0) η2ν2

´
eρt

µ
−ξ∗1Z−11 (0) η1ν1 − ξ∗2Z

−1
2 (0) η2ν2 +

∂ξ∗

∂δ
σδ

¶¾
dt

+
h
−
³
Z−11 (0) η1ν1 − Z−12 (0) η2ν2

´
eρtξ∗

+
³
Z−11 (0) η1 − Z−12 (0) η2

´
eρt

µ
−ξ∗1Z−11 (0) η1ν1 − ξ∗2Z

−1
2 (0) η2ν2 +

∂ξ∗

∂δ
σδ

¶¸
dw (82)
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Then the PDE is:

0 =
X
i=1,2

·µ
1

γi
− 1
¶£

eρtZ−1i (0) ξ∗ηi
¤ γi
γi−1 − 1

γi

¸

+Z−11 (0) eρtξ∗η1δ − ρH +
∂H

∂t
+

∂H

∂δ
µδ +

1

2

∂2H

∂δ2
σ2δ2

+H 0 ×
½
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¡
Z−11 (0) η1 − Z−12 (0) η2

¢
eρtξ∗ +

1

2
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Z−11 (0) η1 − Z−12 (0) η2

¢ ·
eρt

∂ξ∗

∂δ
µδ + eρtξ∗11

¡
Z−11 (0) η1ν1

¢2
+2eρtξ∗12Z

−1
1 (0) η1ν1Z

−1
2 (0) η2ν2 + eρtξ∗22
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Z−12 (0) η2ν2

¢2
+eρt

∂2ξ∗

∂δ2
(σδ)2 − 2eρt ∂ξ

∗
1

∂δ
σδZ−11 (0) η1ν1 − 2eρt

∂ξ∗2
∂δ

σδZ−12 (0) η2ν2

¸
− ¡Z−11 (0) η1ν1 − Z−12 (0) η2ν2

¢µ−eρtξ∗1Z−11 (0) η1ν1 − eρtξ∗2Z
−1
2 (0) η2ν2 + eρt

∂ξ∗

∂δ
σδ

¶¾
+
1

2
H 00 × £− ¡Z−11 (0) η1ν1 − Z−12 (0) η2ν2

¢
eρtξ∗

+
¡
Z−11 (0) η1 − Z−12 (0) η2

¢µ−eρtξ∗1Z−11 (0) η1ν1 − eρtξ∗2Z
−1
2 (0) η2ν2 + eρt

∂ξ∗

∂δ
σδ

¶¸2
+
∂H 0

∂δ

£− ¡Z−11 (0) η1ν1 − Z−12 (0) η2ν2
¢
eρtξ∗

+
¡
Z−11 (0) η1 − Z−12 (0) η2

¢µ−eρtξ∗1Z−11 (0) η1ν1 − eρtξ∗2Z
−1
2 (0) η2ν2 + eρt

∂ξ∗

∂δ
σδ

¶¸
σδ

(83)

while the system of equations for ν is:

©
H 00 +

£
H 00 × ¡Z−11 (0) η1

−Z−12 (0) η2
¢
+ H0

eρtξ∗

i
× ξ∗1

ξ∗

o
×Z−11 (0) eρtξ∗η1

©−H 00 +
£
H 00 × ¡Z−11 (0) η1

−Z−12 (0) η2
¢
+ H0

eρtξ∗

i
× ξ∗2

ξ∗

o
×Z−12 (0) eρtξ∗η2

[eρtZ−11 (0)ξ∗η1]
1

γ1−1

(1−γ1)
[eρtZ−12 (0)ξ∗η2]

1
γ2−1

(1−γ2)


·
ν1
ν2

¸

=

 ∂H0
∂δ +

h
H 00 × ¡Z−11 (0) η1 − Z−12 (0) η2

¢
+ H0

eρtξ∗

i
eρt ∂ξ

∗
∂δ

1

σδ (84)

TO BE COMPLETED

6.2 Endogenizing the diffusion matrix of all securities

Once a solution has been obtained for ξ∗ ({ηi} , {ei} , Y, t) and ν∗i ({ηi} , {ei} , Y, t) ,
the entire process ξ is known.
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Define the price of a risky security paying a cash flow stream ι by:23

S (t) =
1

ξ (0, t)
E

"Z T

t

ι (s) ξ (0, s) ds|Fwt
#

(85)

If the cash flow stream is specified as ι (Y, t) , then by the Feynmann-Kac for-
mula, the process S can be obtained as a function S ({ηi} , {ei} , Y, t) satisfying
the partial differential equation:

0 = ξ∗ ({ηi} , {ei} , Y, t) ι (Y, t)+D{νi} {ξ∗ ({ηi} , {ei} , Y, t)× S ({ηi} , {ei} , Y, t)}
(86)

where the operator D{νi} is defined by (56). This partial differential equation
involves neither κ nor r explicitly but the application of the operator D{νi} to
ξ∗ ({ηi} , {ei} , Y, t) generates them indirectly, as we have seen in Equations (38)
and following.
When this equation is solved, Itô’s lemma provides the diffusion matrix of

all traded securities.
It is important to realize that the PDE (86) can be solved recursively along-

side the PDE (55) for the function J. In general, the diffusion matrix of traded
securities is needed to impose the kernel condition on ν. We just showed how
that matrix can be made available at each time step, as needed.
Our numerical illustration is special in that the volatility of the risky security

is not needed to write the kernel condition and the PDE for the value function
J. However, the general case could also be handled recursively by pricing numer-
ically and recursively the risky security, which is defined by Basak and Cuoco
as the security that gives title to the endowment stream δ.

7 Conclusion
We present a methodology for solving the competitive equilibria of economies
with dynamically incomplete markets and heterogeneous agents. The nature of
the algorithmic device we propose, a central planner with two selves, provides
new insights regarding the fundamental difference between economies with and
without complete financial markets. The first central Planner essentially solves
for individual consumptions, portfolios and investor-specific components of state
prices in the sense of He and Pearson, given economy-wide state prices. In
other words, he solves a partial equilibrium problem. Simultaneously, the sec-
ond Planner chooses equilibrium state prices to satisfy the aggregate resource
restriction, given the individual-specific choices of Planner 1. Planner 2 acts
like an (intertemporal) auctioneer. It is crucial that Planner 2 internalizes the
investor-specific components of the state prices of Planner 1 in his choices. This
makes the two Planners agree on consumption and generates equilibrium.
Our analysis is reminiscent of the work of Grossman (1977) who studied

equilibria in multi-good economies with incomplete markets. He analyzed the
23Here the definition of one share of the security is based on the dividend flow whereas in

(7), we had imposed S (0) = 1. This is just a different normalization.
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welfare properties of these equilibria by introducing the notion of a central
planner with incomplete coordination. Instead of exploring welfare properties,
we pursue a similar construction in order to solve for the competitive equilibrium
in a multi-period economy.
In a Markovian setting, we establish a recursive formulation of the two-

central planner problem. The equilibrium can, therefore, be constructed one
time step at a time, using standard dynamic programming techniques.
We believe our methodology has numerous interesting applications in dy-

namic asset pricing and the analysis of risk-sharing, beyond the confines of the
standard complete market paradigm. We plan to pursue these applications in
future research. In future work we also aim to extend our methodology to han-
dle the general case of limited participation, where asset markets are incomplete
in different ways for different individuals.
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Appendix: the derivatives of ξ∗ in the numerical example

eρtξ∗j = −
¡
γj − 1

¢−1 h
eρtZ−jj (0) ξηj

i− γj−2
γj−1 eρtξ∗P

i=1,2 (γi − 1)−1
£
eρtZ−1i (0) ξηi

¤− γi−2
γi−1 Z−1i (0) ηi

(87)

eρt
∂ξ∗

∂δ
=

1P
i=1,2 (γi − 1)−1

£
eρtZ−1i (0) ξηi

¤− γi−2
γi−1 Z−1i (0) ηi

(88)

eρtξ∗jk = −
1P

i=1,2 (γi − 1)−1
£
eρtZ−1i (0) ξηi

¤− γi−2
γi−1 Z−1i (0) ηi
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¢
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£
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¸
(89)
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eρt
∂ξ∗k
∂δ

= − 1·P
i=1,2 (γi − 1)−1

£
eρtZ−1i (0) ξηi

¤− γi−2
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(γi − 1)2

£
eρtZ−1i (0) ξηi
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¸
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γi−1 Z−1i (0) ηi
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(γi − 1)2

£
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×
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