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reduction in liquidity as measured by the bid-ask spread set by a monopoly
market maker. In addition, the non-standard nature of hedging model uncer-
tainty can lead to broader portfolio adjustment e�ects like \ight to quality"
and \contagion."

JEL Classi�cation: G10, G13, G20
Keywords: Liquidity, Value-at-Risk, Knightian Uncertainty, Derivatives,

Market Microstructure

�We thank Burton Holli�eld, David Marshall, and seminar participants at Boston Col-
lege, Cal-Tech, Carnegie Mellon University, the International Monetary Fund, CEF-2000
(Barcelona), and the Econometric Society World Congress (Seattle) for helpful comments.

yGSIA, Carnegie Mellon University.
zGSIA, Carnegie Mellon University and NBER.



1 Introduction

In August 1998 an odd thing happened: the Russian government repudiated

debt. While this event had a large e�ect on the value of Russian bonds, the

event, by itself, is not odd. Long prior to this date, yields on Russian govern-

ment bonds exhibited a signi�cant premium over comparable U.S. Treasury

securities, suggesting that default (or at least rescheduling) was not only pos-

sible but carried non-trivial probability. These bonds were undoubtedly ex

ante risky. The ex post default and the change in the bond's price can be

viewed simply as a realization from the distribution of possible payo�s (i.e.,

\risk happens"). What is truly odd about the Russian-debt default and the

subsequent collapse of the prominent hedge-fund Long Term Capital Man-

agement, was that during the crisis, markets for most emerging-markets debt

exhibited a severe lack of liquidity. Anecdotal evidence suggests that people

were unable to trade emerging market debt at any price following the Russian

crisis. The lack of liquidity was not limited to the Russian debt market. The

\ight-to-quality" made trading in most emerging market bonds, and even

some corporate debt, diÆcult. In addition, several initial public o�erings and

below-investment-grade bond o�erings were canceled.1

The extremely large credit spreads observed over this period had little,

if any, historical precedent. Myron Scholes, a partner in Long-Term Capital

Management (LTCM) at the time of the Russian debt crisis noted the improb-

ability of the events of August 1998. One week after the Russian government

default, the swap credit spread increased 20 basis points (treasury bonds ver-

sus AA rated debt). The increase is ten standard deviations above historic

norms.2 Many economic models can incorporate events like the Russian Crisis

1The Wall Street Journal reported on November 16th, 1998, (page A1) that \LTCM's
partners: : : reported that their markets had dried up. There were no buyers, no sellers.
It was all but impossible to maneuver out of large trading bets." On October 7th, they
reported (page A1) on liquidity in an unrelated corporate bond market: \According to
[Scott's Fertilizer Company's] lead investment bankers at Salomon Smith Barney, there is
no bond market at any price."

2See Scholes (2000). Note that for a normal distribution, the probability of a 10 standard
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as rare events, structural breaks, or changes in the risk premiums. From any

of these perspectives, standard models would typically predict a capital loss

by some, a capital gain by others, and perhaps a change in the market-price

process. However, most models are unable to explain the drop in liquidity that

accompanies the crisis. The puzzle is not the large change in �nancial prices,

it is that people seem to stop trading.

The Russian debt crisis and market collapse is not unique. For example,

Summers (2000) recounts the �ve other major international �nancial crises

that took place during the 1990's involving economies in Mexico, Thailand,

Indonesia, South Korea, and Brazil. Domestically, there have been many

market collapses or crashes including the 1975 municipal bond crisis sparked

by New York City's near default, various stock market crashes (1929, 1987,

1989,...), and the collapse of the high-yield debt market in the early 1990's.

While all of these events have their unique features, they share two common

features. First, crises are \unexpected." Almost by de�nition, a crisis involves

a substantial change in �nancial prices. So the ex ante likelihood of the event

is low. Second, crises are followed by a severe lack of liquidity. Following the

various recent international and domestic crises, liquidity disappeared. People

have diÆculty executing trades for existing �nancial securities and new bond

and equity o�erings are postponed or canceled. In this paper we investigate

the connection between these two features. We investigate whether a market

break or severe reduction in liquidity can result from \model uncertainty." In

particular, we focus on markets such as �nancial derivatives in which traders

must rely on an empirical model for the stochastic cash-ow process of an

underlying security. This is a setting where asset pricing and trading is intrin-

sically model-dependent. By specifying preferences that explicitly incorporate

\model uncertainty" in a simple market-making setting, we show how uncer-

deviation tail event is on the order of 10�24 which is roughly the likelihood of winning the
Powerball lottery three times in a row. It was also rumored at the time, that relative to
some of LTCM's empirical models, spreads of this magnitude represented a 23 standard
deviation event. The likelihood for a normal distribution of such an observation is on the
order of 10�117 (for comparison, the number of atoms in the universe is on the order of
1078).
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tainty and liquidity are related.

To study the uncertainty-liquidity connection, we focus on a �nancial inter-

mediary. The role of an intermediary is to facilitate trade. In well-developed

liquid markets, the role of an intermediary is the straightforward matching

of buyers and sellers (e.g., the specialist at the NYSE). In contrast, in more

specialized �nancial markets like \proprietary products," the intermediary par-

ticipates directly in the transaction. For example, according to Scholes (2000),

LTCM was in the \business of supplying liquidity." This type of intermedia-

tion requires an ability to value and hedge the �nancial contract that is being

provided. Typically, �rms attack this problem in two disjoint approaches.

They use a model like Black and Scholes (1973) to calculate arbitrage bounds

and hedge trades for a �nancial contract. However since the �nancial model

is only an abstraction that is based on limited data, �rms typically \stress

test" their model to account for \model risk." For example, \Value at Risk"

calculates the loss potential over a speci�ed horizon for an arbitrarily speci-

�ed probability. A portfolio resulting from the sale of a �nancial contract and

an o�setting (perhaps dynamic) hedge position might have a 1% likelihood of

losing $50 million over the next two weeks. Exactly how large a tail to mea-

sure and what distributional assumption to make are left to judgment. What

is striking about the amount of attention paid to worst-case scenarios, stress

testing and value-at-risk calculations is that trader attitudes towards uncer-

tainty of the correctness of their model is distinct from the risk of stochastic

prices. That is, their preferences do not adhere to the Savage (1954) axioms

for expected utility rationality.

Savage rationality, in particular the independence or sure-thing axiom, im-

plies that preferences should not depend on the source of the risk. Uncertainty

about the appropriateness of a pricing model, \model uncertainty," is indis-

tinguishable from the risk inherent in the assumed stochastic process. The

Savage independence axiom implies that one can simply collapse the proba-

bility weighting across possible models (\uncertainty") with the probabilities

for payo�s (\risk") to represent behavior with a single probability measure for
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states. However, in experimental settings, decision makers consistently violate

the independence axiom. For example, Ellsberg (1961), demonstrated that

individuals' decisions over lotteries could not be represented by an expected

utility decision rule. People expressed (revealed) a preference to \know the

odds" or an aversion to uncertainty. In the context of �nancial intermedia-

tion, not knowing the realization of an asset payo� (consumption risk) and not

knowing the probability measure for payo�s (model uncertainty) have di�erent

behavioral implications. This distinction between risk and uncertainty, �rst

described by Knight (1921), is axiomatized in Gilboa and Schmeidler (1989).

The resulting decision rule that captures uncertainty aversion is represented

by Choquet (1955) utility. Given a random variable ! 2 
, an agent chooses

the optimal action, � 2 �, according to

max
�2�

�
min
�2�

E�[u(�; !)]
�
: (1)

Uncertainty is captured by the set of probability measures �. The aversion

to uncertainty manifests itself in the \min" operator that appears after the

action is chosen. Note that if the set � is a singleton, then the decision rule

is the standard Savage rationality of expected utility.3 In this paper, we use

the recursive intertemporal formulation of uncertainty aversion of Epstein and

Wang (1994) and (1995). This speci�cation facilitates dynamic programming

and preserves dynamic consistency.4 The robust control framework of Hansen,

Sargent, and Tallarini (1999) is similar to the Epstein and Wang approach. In a

linear-quadratic model the mean return, for example, is chosen by a malevolent

nature. The result is the same \min" operator as in Choquet utility.

Our goal in the paper is to understand the relationship between model un-

certainty and liquidity. The Choquet representation of uncertainty aversion is

3A closely related approach of Gilboa (1987) and Schmeidler (1989) models subjective
prior beliefs to be non-additive. In a coin toss, uncertainty aversion is captured by P (head)+
P (tail) < 1.

4Time inconsistent examples with uncertainty aversion is a concern since there is no
restriction that conditional events have less uncertainty than unconditional. Seidenfeld and
Wasserman (1993) de�ne and provide examples of this dilation of beliefs.
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well de�ned. However, at any level of generality, \liquidity" is diÆcult to de-

�ne. Analogous to the vacuous distinction between unemployment and leisure

in a perfect labor market, parties choosing not to trade in a frictionless �nan-

cial market is not a lack of liquidity. Liquidity can only be de�ned relative to a

market friction. Models of liquidity must include a market friction like an im-

perfectly competitive market or asymmetric information. Within the context

of some market imperfection, liquidity is commonly measured as a \discount

for immediacy" (e.g. Grossman and Miller (1988)) or the \price impact of a

trade" (e.g. Kyle (1985)). In this paper we wish to study the relationship

between liquidity and uncertainty rather than market microstructure per se.

We, therefore, specify a rather simple market mechanism. We focus on the

bid and ask prices for a proprietary derivative security. The market maker

for this derivative is assumed to be a monopolist in that market. The market

for the underlying security is assumed to be competitive. The market maker's

preferences exhibit uncertainty aversion. We therefore treat the bid-ask spread

and the associated probability that the market maker will make a trade, as a

measure of liquidity in the market for this derivative security.5

Speci�cally, we consider a �nancial intermediary who makes a market for

a propriety derivative security. This market maker chooses bid and ask prices

for the derivative to optimally tradeo� the probability of attracting a seller

or buyer with the current income and future utility implications implied from

a trade in the derivative. When there is ambiguity about the appropriate

probability distribution for the underlying security's cash ows, the market-

maker is uncertain about these dynamic consequences, which we model with

an Epstein-Wang uncertainty-averse utility function. We �nd that uncertainty

increases the bid-ask spread and, hence, reduces liquidity. In addition, \hedge

portfolios" for the market maker can look very di�erent from those implied by

a model without Knightian uncertainty.

In Section 2, we lay out the basic economic environment and describe the

5The setting we adopt here is similar to Ho and Stoll (1981) and related inventory-based
microstructure models.

6



market-makers problem. In Section 3, we explore some simple two-period

examples of the general model and in Section 4 extend these examples to an

in�nite time horizon. Section 5 concludes the paper.

2 The Model

The model we consider is that of a monopolist making a market in a derivative

asset as well as choosing optimal portfolio and consumption. The market-

maker sets a bid and ask price for a derivative whose payo� is X(Pt) � 0.6 The

demand for the derivative is summarized by the arrival of a random willingness-

to-trade ~vt. If ~vt is greater than or equal to the posted ask price, at, then a

\buy order" is received and the market maker must go short one call (denoted

as dt = �1), at a price of at. If the willingness-to-trade ~vt is less than or

equal to the posted bid price, bt, then the market maker must go long one

call (dt = 1), at a price of bt. If ~vt lies between the bid and ask prices,

no trade takes place (dt = 0). We assume the willingness to trade is an

i.i.d process with �(v) = Prob(~v < v). The bid and ask prices determine

the likelihood of trade in the derivative with Prob(dt = �1) = [1� �(at)],

Prob(dt = 0) = [�(at)� �(bt)], and, Prob(dt = 1) = �(bt).

The exogenous random arrival of a trade request is consistent with a num-

ber of deeper microstructure models. Since our focus is on uncertainty and the

bid-ask spread, we will maintain this simple market speci�cation throughout.

After the arrival of the request to trade, the market maker chooses an optimal

consumption and investment in a risky asset. This allows the market maker

the opportunity to dynamically hedge the realized position in the derivative

market.

Trades by the market maker are discrete long, short, or no-trade events,

denoted dt 2 f�1; 0; 1g. The \size" of a trade can be incorporated into the

6In order to maintain the intuitive bid-ask relation, 0 < b < a, we will only consider
derivatives with non-negative payo�s.
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de�nition of the derivative's payo�. For concreteness, our numerical examples

focus on the case of a one-period call option X(Pt) = smax(Pt � x; 0). The

parameter s determines the size or importance of each trade.

Investment Opportunities:

We denote as �t�1 the asset holdings brought into period t, �t the assets

purchased in period t to be carried into t + 1, Pt as the ex -dividend price of

the underlying risky asset, and Æt as the period-t dividend paid by the risky

asset.7 The market for the underlying asset is assumed to be competitive. ct is

period-t consumption expenditures and !t is the income of the market-maker

in period t. The period-t budget constraint is:

�t�1 (Pt + Æt) + !(yt; vt; dt�1; at; bt) = ct + �tPt : (2)

Total income, !(yt; vt; dt�1; at; bt), includes both exogenous income and

derivatives trading income. Exogenous period t income is denoted yt. The

market-making activity a�ects income both through the derivative position,

dt�1, carried into period t and through new trades in the derivative. The trad-

ing income in the current period depends on the choice of ask, at, and bid, bt,

and the realization of the willingness-to-trade, ~vt.

!(yt; vt; dt�1; at; bt) = yt + dt�1X(Pt) +

8>>><
>>>:

a; if vt � at

0; if bt < vt < at

�b; if vt � bt

(3)

The trading outcome also determines the position in the derivative dt the

market maker will carry forward into the next period. That is dt = �1 if

vt � at, dt = 0 if bt < vt < at, or dt = 1 if vt � bt.

The timing of events implied by this notation is shown in Figure 1.

7The dividend on the risky asset is helpful in constructing the simple numerical example
in Section 4. It is not needed for any of the analytical discussion or the two period example
in Section 3.

8



Figure 1: Model Time-Line
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>:

Wt + at if dt = �1
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8><
>:

�1 if vt > at

0 if bt � vt � at

+1 if vt < bt
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8><
>:

�t(Pt+1 + Æt+1)�X(Pt+1) if dt = �1
�t(Pt+1 + Æt+1) if dt = 0
�t(Pt+1 + Æt+1) +X(Pt+1) if dt = +1

The market maker enters period t with holdings in the underlying security of

�t�1 which pay a dividend of Æt and are liquidated at the price Pt. Holdings

in the derivative of dt�1 have cash-ows realized of X(Pt). Finally, he collects

exogenous income of yt. Given this information, he chooses a bid price, bt,

and an ask price, at. After the bid and ask are set, the exogenous request for

a trade arrives, i.e., ~vt is realized. Knowing the outcome of the trade in the

derivative market, the market maker then chooses date t consumption, ct, and

investment in underlying risky security, �t.

Preferences:

The stochastic process governing the transition of the underlying security

price and exogenous income is assumed to be Markov, with transition density

given by

ProbfP 0; Æ0; y0 j P; Æ; yg = �(P; Æ; y) : (4)

If the market maker has uncertainty or ambiguity about these probabilities, we

will denote as � the set of all distributions for future consumption paths that

they believe are possible. Note that as in Epstein and Wang (1995), we assume

that this set is time invariant. It should be thought of as part of the investor's
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preferences, rather than the physical environment.8 Also following Epstein

and Wang, we assume that preferences are given by the utility function, U

that is the stationary, recursive speci�cation of uncertainty aversion:

U(c0; ~c1; ~c2; : : :) = u(c0) + �min
�2�

E�U(~c1; ~c2; : : :) ; (5)

where 0 < � < 1 is a utility discount factor and u(c) is the single period utility

derived from consumption c. Standard Savage preferences are included in this

speci�cation. If the set � as a singleton, the agent adheres to Savage axioms.

Bellman Equation:

Combining the investment opportunity, the consumption implied by the

budget constraint (2), and the speci�cation of preferences, we can characterize

this problem as a dynamic program. The Bellman equation associated with

this program is given by:

V (�; d; P; Æ; y) = max
a;b

(
[1� �(a)]

�
max
�0

h
u(�(P + Æ) + y + dX(P ) + a� �0P )

+ �min
�2�

E�[V (�
0;�1; P 0; Æ0; y0)]

i�

+ [�(a)� �(b)]
�
max
�0

h
u(�(P + Æ) + y + dX(P )� �0P )

+ �min
�2�

E�[V (�
0; 0; P 0; Æ0; y0)]

i�

+ �(b)
�
max
�0

h
u(�(P + Æ) + y + dX(P )� b� �0P )

+ �min
�2�

E�[V (�
0; 1; P 0; Æ0; y0)]

i�)
:

(6)

V (�; d; P; Æ; y) is the value function. It depends on the �ve state variables:

the position in the asset, the position in the derivative, the realized price for

the asset, the realized dividend, and the realization for the exogenous income.

The portfolio (and hence consumption), are chosen after the realization of ~v,

8Ambiguity is only relevant if the agent's preferences are averse to ambiguity.
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which along with a and b, determines the outgoing position in the derivative.

The outgoing position in the derivative, d0, characterizes the future e�ect from

the derivative trading (i.e., a, b, ~v need not be included in the list of state

variables).

With this formulation of the problem, it is straightforward to extend the

model to include more assets and derivatives, other distributions of trade re-

quests, or other market frictions.

Although closed-form solutions for the optimal policies of this dynamic

program are unavailable, there are many computational algorithms that can

be used to solve numerical versions of this model. When the set � is not a

singleton, the computational burden associated with solving this problem can

be signi�cantly greater than in the standard expected utility model. The ad-

ditional non-linear program necessitated by the uncertainty averse preferences

(minimizing over distributions) increases computation time. The Appendix

outlines some new approaches to this problem that may yield signi�cant com-

putational gains.

3 Two-Period Model

To better understand the connection between uncertainty and liquidity, we

�rst examine a simpler, two-period (t = 0; 1) version of the economy. Here,

the market maker will make a market in a derivative of the single risky asset

at period zero and the derivative will payo� at period one. The single risky

asset, whose prices are P0 and P1, trades in a perfect market. In this section,

the dividend is zero, Æ0 = Æ1 = 0, and exogenous income, y0 and y1 are non-

stochastic.

Since the portfolio is chosen after the realization of trade in the derivative,

we can consider the portfolio choice and the market-making activity separately.

To do this, it is helpful to write the Bellman equation in two parts. Before
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determining, the optimal period zero bid and ask prices, consider the choice of

the optimal consumption and portfolio. This is the inner maximization over

�0 in equation (6). Note that a portfolio choice determines consumption via

the budget constraint. That is, c0 = !0 � �P0 and c1 = !1 + �P1. De�ne the

indirect total utility function U(d; a; b) as follows:

U(d; a; b) = max
�

�
u (!0 � �P0) + �min

�2�
E� [u (!1 + �P1)]

�
(7)

The two-period version of income, equation (3), is

!0 = y0 +

8>>><
>>>:
�b if d = 1

0 if d = 0

a if d = �1

and !1 = y1 + dX(P1) (8)

Since U(d; a; b) is conditional on the realization for the trade in the derivative

market, the ask and bid prices have implications only for period-zero income.

Once the trade occurs, they no longer a�ect the probability of a trade occur-

ring. Therefore, U(d; a; b) does not depend on a or b if d = 0. Similarly, it

does not depend on ask price, a, if a \buy" order occurred and d = 1. Finally,

U does not depend on the bid price b if a \sell" order d = �1 was received.

Therefore, we can summarize equation (7) with three functions. Denote U0

when there is no trade in the derivative (d = 0), Ub when the market maker

has paid b and is long the derivative (d = 1), and Ua for when the market

maker sold the derivative for a and holds a short position (d = �1).

Recall that the demand for the derivative asset is captured by the arrival

of a trader with a valuation ~v with distribution �(v) = Prob(~v < v). The

complete market-maker problem is

max
a;b

�
[1� �(a)]Ua + [�(a)� �(b)]U0 + �(b)Ub

�
(9)

Portfolio Choice with Uncertainty Aversion

The portfolio problem in equation (7) can be studied independently of
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the market making activity. In particular, it is helpful to understand how

Knightian uncertainty a�ects the optimal portfolio for a given income process

!0 and ~!1.

For concreteness, consider the portfolio choice for three di�erent agents

i 2 f1; 2; Kg. Two Savage individuals are captured with �1 = f�1g and �2 =

f�2g. An individual with an aversion to Knightian uncertainty is represented

by �K = f�1; �2g. Obviously, to make this example interesting, �1 6= �2.

For Savage individuals i = 1; 2, the optimal portfolio is characterized by

the standard �rst order condition.

�u0(w0 � �iP0)P0 + �E�i

h
u0(w1 + �iP1)P1

i
= 0 (10)

Assume that the optimal portfolio has �1 < �2.9 This is the situation

depicted in Figures 2 and 3. These �gures plot total indirect utility (right-

hand-side of (7)) against portfolio holdings, �. The indirect utility is plotted

for each distribution �1 and �2. For exposition, the utility function is quadratic

and the distributions, �i, are summarized by their mean and variance. The

Knight agent's indirect utility, with �K = f�1; �2g, is the lower envelope of

the two Savage agents.

There are three possibilities for how the optimal portfolio of the Knight

individual is characterized. Denote �i as the optimal portfolio of the i =

1; 2; K traders. First, it is possible that the that �K = �1 and the optimal

portfolio satis�es equation (10). This is the case when E�1 [u (!1 + �1P1)]

< E�2 [u (!1 + �1P1)] :
10 This situation is depicted in Figure 2. The second

possibility is that the second distribution guides the portfolio choice and �K =

�2. In both these cases, the aversion to uncertainty makes the Knight agent act

according to the worst case probability distribution. The Knight agent simply

looks like a pessimistic or \worst-case" Savage agent. Note that the de�nition

9For this discussion, we ignore the possibility that �1 = �2.
10This condition implies that E�2

�
u
�
!1 + �2P1

��
> E�1

�
u
�
!1 + �2P1

��
.
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Figure 2: Optimal Portfolio: Quadratic Example 1
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Note: The �gure depicts the indirect utility from each of two distributions (low

mean/low variance versus high mean/high variance) as a function of the investment

in the risky asset �. In this example, the Knightian-uncertainty portfolio choice is

equivalent to assuming the low mean/low variance distribution and Savage expected

utility.

of \worst case" depends in a complicated way on the portfolio position, �,

and on the endowment process. For example, for two distributions that di�er

only in the mean, the \worst case" depends on whether or not � is positive or

negative. Which distribution is considered the \worst case" will also depend

on the correlation between period-one income and the asset payo�. Since,

as we will explore below, market-making activity inuences this correlation,

the distribution that is considered as worst case may depend on the market-

maker's position in the derivative.

The �nal possibility for the Knight agent's optimal portfolio is where �K 6=
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Figure 3: Optimal Portfolio: Quadratic Example 2
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Note: The �gure depicts the indirect utility from each of two distributions (low

mean/low variance versus high mean/high variance) as a function of the investment

in the risky asset �. In this example, the Knightian-uncertainty portfolio choice

di�ers signi�cantly from the Savage expected-utility choice under either distribution.

�1 and �K 6= �2. This situation arises when

E�1 [u (!1 + �1P1)] > E�2 [u (!1 + �1P1)] and

E�2 [u (!1 + �2P1)] > E�1 [u (!1 + �2P1)]
(11)

When equation (11) holds, the optimal Knight portfolio, �K, solves

E�1

h
u
�
w1 + �KP1

�i
= E�2

h
u
�
w1 + �KP1

�i
(12)

and the Knight agent looks like neither of the Savage agents. This case is

illustrated in Figure 3. The optimal portfolio for the Knight individual occurs

at the intersection of the intersection of the indirect utility calculated under

the two distributions. In this case, it is not the case that the Knight agent is
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just pessimistic or focusing on a \worst case" distribution. The two Savage

portfolios bound the optimal Knight portfolio (i.e., �1 < �K < �2)11 and there

exists some (many) other Savage agents and beliefs, say �3, such that �K = �3.

However, since the Knight portfolio is not de�ned by a �rst order condition, it

responds di�erently to changes in the state variables. In particular, consider

a change in initial income, !0. In the situation where the portfolio is given by

the �rst order condition, equation (10),

@�i

@!0
=

1

P0

 
u00P 2

0

u00P 2
0 + �E�i [u00P

2
1 ]

!
(13)

This implies that 0 < @�i

@!0
< 1

P0
. This will be the case for Savage agents. It

is also the case for a Knight trader when he acts as a \worst-case" Savage.

However, in the case where equation (12) determines the optimal portfolio,
@�K

@!0
= 0 since, by inspection, !0 does not enter. The optimal portfolio of

the Knight agent is insensitive to changes in initial wealth. This is true even

for discrete changes in initial income. As long as equation (11) holds at the

new level of income, !0, even large changes in initial income will not alter the

optimal Knight holdings of the risky asset.12

The Market Maker Problem

The market maker problem for the two-period economy is contained in

equation (9). In choosing the bid and ask prices, the tradeo� for the market

maker is straightforward. Choosing a high value for the ask will generate more

revenue should a high-value trader arrive. However, it lowers the probability

of such a trade actually arriving. Likewise, choosing a low value for the bid

11For Savage agents the unique optimal portfolio is de�ned by the solution to equation
(10). This is reected in the \single-peaked" functions in Figures 2 and 3. An implication
is that in the case where the Knight portfolio di�ers from both Savage portfolios, it will lie
in an interval between the two Savage portfolios.

12The one case not considered here is where both equations (10) and (11) hold. In this
situation, the peak for one of the Savage traders in Figure 2 or 3 occurs at the intersection

with the other Savage agent. In this case the derivative @�
K

@!0
will be zero in one direction

and given by (13) in the other direction. Since this event is not likely (measure zero), it is
not explored further.
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will allow the market maker to obtain the future cash ows of the call for a

low price should a low-value trader arrive, but it lowers the probability of such

a trade actually arriving. The �rst order conditions for (9) are

Ub � U0 =
�(b)
�(b)

(�U 0
b)

U0 � Ua =
1��(a)
�(a)

(U 0
a)

(14)

where U 0
b = @Ub=@b, U

0
a = @Ua=@a, and �(v) = @�(v)=@v.13

Market-making activity has implications for income at both date zero and

date one (see equation (8)), so the analysis regarding the optimal portfolio in

the previous section is helpful here. Denote the optimal portfolio from the

solution equation (7) for each of the three agents i 2 f1; 2; Kg, as �i0 in the

situation where there is no trade in the derivative (d = 0), �ib when the market

maker has paid b and is long the derivative (d = 1), and �ia when the market

maker sold the derivative for a and holds a short position (d = �1). Using

this notation, for all three traders i 2 f1; 2; Kg, the derivative U 0
b and U 0

a exist

and are given by

U 0
b = �u

0 (y0 � b� �ibP0)

U 0
a = u0 (y0 + a� �iaP0)

(15)

For Savage preferences, equation (15) is simply a statement of the envelope

condition. For the Knight market-maker, the envelope condition holds when

the optimal portfolio is given by (10); that is when �Ka = �1a or �Ka = �2a
(similarly for the �Kb ). In the case where �Ka is determined by (12), implying,

�Ka 6= �1a and �Ka 6= �2a,
@�Ka
@a

= 0. This is the exact same calculation as @�Ka
@!0

since, conditioning on d = �1, a only a�ects current period income. Using

13To calculate the second order conditions, note that there are no cross products. That
is the �st line of equation (14) is independent of a. The second order condition for b is

�0(b) (Ub � U0)� 2�(b)u0 +�(b)u00

There is an analogous equation for the ask, a. This condition does not hold for all distribu-
tions. However, for a uniform distribution, used in the examples below, �0(b) = 0 and the
second order condition is satis�ed.
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(15), we can write the optimal bid and ask price as solving:

Ub � U0 =
�(b)
�(b)

u0 (y0 � b� �ibP0)

U0 � Ua =
1��(a)
�(a)

u0 (y0 + a� �iaP0)
(16)

From equation (16) and the preceding discussion, we can make a few general

comments about spreads and the role of Knightian uncertainty. First, for

both Savage and Knight market makers there is a preference to be long the

derivative rather than short. That is, given optimal bids and portfolio choices,

Ub > U0 > Ua. This follows by noting the right-hand-side of equation (16)

is strictly positive. This result is perhaps not surprising given that we are

considering derivatives with risky, non-negative payo�s and risk averse market

makers. Second, note that the right-hand-side of equation (16) is not directly

a�ected by the min operator in preferences. Any non-di�erentiability induced

by the min operator does not directly a�ect bid-ask spreads.14 Knightian

uncertainty does e�ect bid-ask spreads through two channels. First, channel

is via the di�erences Ub � U0 and U0 � Ua. If Knightian uncertainty increases

these di�erences, the bid-ask spread will be larger. The second channel is via

the optimal portfolio. The previous section discussed how the portfolio of the

Knight may look either like a \worst case" Savage trader or look like neither of

the Savage market-makers. These two situations, as discussed in the numerical

example below, produce di�erent reactions in the portfolio from a long or short

position in the derivative. In particular, the \hedge ratio" need not have the

usual properties. In order to explore these features and properties, we next

turn to a numerical example.

The Market Maker Problem - Two Period Numerical Example

To explore the e�ects of uncertainty on the bid-ask spread, we examine

14This is similar to a feature of Epstein and Wang (1994) and (1995). In the representative
agent, endowment economy model these two papers present, the indeterminacy in equilib-
rium created by the min operator in uncertainty averse preferences is only important for
economies without aggregate risk. In economies with aggregate risk and uncertainty only
about aggregate endowment, the representative agent's Knightian utility is di�erentiable
and prices are unique. See Epstein (2001).
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some numerical examples of the two period economy. Preferences, u, in this

example are quadratic and exogenous income, y0 and y1, is constant. The

example considers a market-maker for a call option X(Pt) = smax(0; P1 �

1:5) with s = 1 unless otherwise speci�ed. The demand for the derivative

is summarized by the arrival of a random willingness-to-trade ~v where ~v is

distributed uniformly on the interval [0:5; 1:5]. The current price, P0 = 0:9.

The distribution(s) of the underlying asset's period one payo�, P1; is assumed

to be binomial with equally likely values of

~P1 =

8<
: �m + �m

�m � �m
(17)

which implies a mean of �m and a variance of �2m. There are two possible

distributions or models, �m for m 2 f1; 2g, for the underlying asset. Two

Savage are captured by �1 = f�1g and �2 = f�2g. The Knight market-

maker with uncertainty aversion, is represented by �K = f�1; �2g. Model

m = 1 has a mean and standard deviation variance of 0:9. Model 2 has a

mean and standard deviation that we range from 0:7 to 1:8. For the di�erent

economies we consider, as the distribution in Model 2 moves further away from

the distribution in Model 1, uncertainty increases.

Figure 4 depicts the e�ect on the bid and ask prices as uncertainty in-

creases. The market maker with an aversion to Knightian uncertainty main-

tains a constant bid price, whereas a Savage market maker will allow the bid

price to rise to reect the higher value in the derivative. The a�ect that

this has on the bid-ask spread is depicted in Figure 5, and the a�ect on the

probability of a trade is depicted in Figure 5. As depicted in these �gures,

it is possible for model uncertainty to completely eliminate the willingness of

a market maker who is uncertainty averse to provide liquidity, while a mar-

ket maker who is not averse to this uncertainty but is merely a pessimistic

expected utility maximizer will continue to provide liquidity.

From equation (16), spreads in this model are related to the change in

utility from taking a long or short position in the derivative security. Therefore,
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Figure 4: Bid and Ask as Uncertainty Increases
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Note: The expected-utility market maker is willing to raise his bid price as volatility

increases, whereas the market maker with an aversion to Knightian uncertainty does

not.
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Figure 5: Bid-Ask Spread as Uncertainty Increases
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Figure 6: Probability of a Trade as Uncertainty Increases
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Figure 7: Total Indirect Utility as size of derivative payo�, s, Varies Continu-
ously
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For �xed parameters, the size of the position in the derivative, d � s, is varied.

The payo� in the derivative is X(P1) = smax(P1 � 1:5; 0) and trades are discrete

d 2 f�1; 0; 1g. The total indirect utility shown is at the optimal portfolio.

bid-ask spreads are closely related to the concavity of the utility function at

the optimal portfolio. Figure 7 plots the optimal total indirect utility as a

function of the position in the derivative, d and size of derivative payo� s.

Recall, X(P1) = smax(P1 � 1:5; 0). This plot lets us consider arbitrarily

small long and short positions in the derivative. The plot shows the Savage

expected utility preferences under the two possible distributions. The lower

line represents the Knightian preferences. Since the Knightian preferences

are more concave, they produce larger bid-ask spreads. This feature should

also lead to larger spreads in other market speci�cations beyond the simple

monopolist structure we consider here.

Figure 7 also highlights the necessity of a market friction in generating
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bid-ask spreads. Uncertainty aversion itself cannot be the source of a bid-ask

spread. In a perfectly competitive situation where bid-ask spreads are set in a

Bertrand competition, the spread will equal the change in utility from taking

a long or short position in the derivative security. If trades in the derivative

security are arbitrarily small (represented by arbitrarily small payo�s, i.e.,

s ! 0 from the left and right), a model with Savage expected-utility market

makers will result in zero spreads since indirect utility is twice di�erential. For

Knightian uncertain market makers in the same setting, this is true almost

everywhere. Only at two points in Figure 7 is the Knightian market maker's

indirect utility kinked. These kink points occur at the point where both (10)

and (11) hold and the two Savage expected utilities intersect at an optimum.

These two kinks are measure zero, so spreads even with Knightian uncertain

market makers will be almost everywhere zero if markets are frictionless.15

For example, to apply our model to the market collapse related to the 1998

Russian bond default discussed in the introduction, it important that both

a market maker like LTCM is uncertainty averse as well as has some degree

of market power. Given the important interaction between market frictions

and Knightian uncertainty, we leave the question of an optimal market design

given uncertainty to future research.

Hedging Derivatives Positions

An important facet of market making in derivatives is the ability to hedge

the position in the underlying markets. The popularity of models like Black

and Scholes (1973) is in their ability to provide an o�setting trade that hedges

a position in the derivative. The ability to hedge positions is essential for a

�nancial intermediary like LTCM to leverage their capital into large positions.

In our two-period example, we can also look at the e�ect of model uncertainty

on the trades used to hedge a position in the derivative. In our setting, the

market is not complete, so market-makers cannot o�set the full position in the

derivative. However, we can look at how the optimal portfolio responds to a

15This is in contrast to comments in both Epstein and Wang (1995) and Dow and Werlang
(1992). Knightain uncertainty, alone, is insuÆcient to generate bid-ask spreads.
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Figure 8: Hedging a Short Call Position: \Natural"
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chance in the position in the derivative. For example, consider the optimal

portfolio in the case where there is no derivative position relative to a short

position in the derivative. De�ne the \hedge portfolio" induced by this short

position in the call as �ib��i0.
16 Figure 8 depicts this hedge portfolio for a short

call position in a log-utility version of the two-period model. (The switch

to logarithmic utility adds some asymmetry to the utility function relative

to the quadratic case.) In this example, the short call position is hedged

by buying more of the underlying asset. This is a natural hedging strategy

and is consistent with the behavior of any Savage market maker. However,

with a slightly di�erent con�guration of uncertainty, Figure 9 depicts a very

strange situation. The short position in the call option is hedged by reducing

investment in the underlying asset. The optimal portfolio, in response to a

16We are using the same notation as in the previous section: for traders i 2 f1; 2;Kg, �i0
is the optimal portfolio in the situation where there is no trade in the derivative (d = 0),
�i
b
when the market maker has paid b and is long the derivative (d = 1), and �ia when the

market maker sold the derivative for a and holds a short position (d = �1).
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Figure 9: Hedging a Short Call Position: \Unnatural"
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short position in the call option, has shifted left. The reason for this odd

behavior is that, in this case, when d = 0, the optimal portfolio was not given

the solution to the �rst condition as in equation (10). In this case, the optimal

portfolio of the Knight trader does not resemble either of the Savage traders.

Since the optimal portfolio is given by (12), it does not respond in a natural

way to the derivative position. When the optimal portfolio is given by (12),

the optimal hedge portfolio is not constrained to be positive or less than one

as it would be for Savage market makers.

4 In�nite-Horizon Model

Building on our understanding of the two-period example, we now return to the

in�nite-horizon model summarized in equation (6). We focus on a relatively

simple portfolio problem so that we can highlight the role of market making in
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the derivative. Assume that the underlying security price follows a two-state

Markov process with Pt 2 f0:75; 1:25g with transition probabilities speci�ed

below. To ensure that the portfolio problem is well speci�ed, it is necessary to

assume the asset also carries a stochastic dividend. Without some additional

cash-ow, the optimal portfolio is an arbitrarily large short sale position in the

case Pt = 1:25. Therefore, we assume the underlying asset pays a dividend

that also follows a two state Markov process, Æt 2 f0; 0:4g. As in the previous

section, we will consider two Savage market makers with beliefs, �1 = f�1g and

�2 = f�2g, and a Knight market maker with uncertainty represented by �K =

f�1; �2g. For both possible models, �1 and �2, the states are i.i.d.. The two

price and two dividend states produces a four state Markov process of (Pt; Æt)

2 f(0:75; 0); (0:75; 0:4); (1:25; 0); (1:25; 0:4)g with transition probabilities,

�1 =

2
6666664

0:1875 0:5625 0:025 0:1875

0:1875 0:5625 0:025 0:1875

0:1875 0:5625 0:025 0:1875

0:1875 0:5625 0:025 0:1875

3
7777775

�2 =

2
6666664

0:1250 0:1250 0:3750 0:3750

0:1250 0:1250 0:3750 0:3750

0:1250 0:1250 0:3750 0:3750

0:1250 0:1250 0:3750 0:3750

3
7777775
:

(18)

Distribution �1 is more pessimistic than distribution �2. Other parameters

used in the example are: utility is log, exogenous income is constant at yt =

12:750, and � = 0:8

Portfolio Choice with Uncertainty Aversion Example

The optimal portfolio in the case where there is no market-making activity,

is shown in Figure 10 In each state, the Knight portfolio policy lies between

the two Savage portfolio policies. This feature was discussed in the two period

example. Unlike the Savage portfolio, the Knight portfolio policy has a region

that is at. In this region, the optimal portfolio, �Kt , is independent of the
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Figure 10: Portfolio Policy for Two Savage Traders and a Knight Trader
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The optimal portfolio, �i, as a function of the previous asset holdings, is shown.

Each sub-plot is a di�erent value of the price-dividend state. The portfolio policy is

shown for a Savage trader with beliefs �1 = f�1g, a Savage trader with �2 = fpi2g,

and an uncertainty averse Knight trader with beliefs �K = f�1; pi2g. �1 and �2

are de�ned in equation (18).
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asset holdings at the start of the period, �Kt�1. This occurs in the situation

where the optimal portfolio for the Knight agent does not solve a �rst-order

condition. Instead, the optimal portfolio is given by the in�nite-horizon analog

of equation (12). In this case, the optimal portfolio is not sensitive to initial

wealth or, more precisely, the portfolio holdings brought into the period.

In the absence of market-making, Knightian uncertainty does not dramat-

ically alter the portfolio behavior of a trader. While the optimal policy di�ers

in the case of a Knight trader, it does not, by itself, have a dramatic e�ect on

the time-series behavior of the portfolio holdings. To see this consider, Figure

11. The time-series behavior of the optimal Knight portfolio is constrained

by the fact that it is bounded by the Savage-optimal portfolios state-by-state.

Knight portfolio is never dramatically di�erent than the Knight.

Market Maker Example - Policies

We use the same example to consider the in�nite-horizon version of the

market-maker problem. The derivative asset is a call option based on the

ex -dividend price; that is X(Pt) = smax(Pt � x). We set the strike price at

x = 1:0 and the derivative size at s = 1:0. The demand for the derivative

is summarized by the arrival of a random willingness-to-trade ~v, where ~v is

distributed uniformly on the interval [0:1; 0:2]. Again, we consider the behavior

of the two Savage market makers and an uncertainty averse, Knight, market

maker.

Figures 12 and 13 summarize the bid and ask policy for the Savage market

maker with beliefs �1 and �2 respectively. The �gure shows the probability

of a trade occurring, 1 � [�(at) � �(bt)], as a function of the state variables.

For the Savage market-maker with beliefs �1, the bid and ask prices for the

derivative are close to constant. The bid and ask prices are set such that the

probability of trade is close to 0.5. For the Savage market-maker with the

more optimistic beliefs of �2 (see equation (18)), the probability for trade is

slightly higher in the case where the underlying price is low (Pt = 0:75). Note,

28



Figure 11: Optimal Portfolio Time Series
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For a simulation of the economy, the optimal realized portfolio, �it, is shown for three

traders: a Savage market maker with beliefs �1, a Savage with beliefs �2, and a

Knight market maker with uncertainty averse beliefs represented by �K = f�1; pi2g.

One period of the simulation consists of drawing a price Pt and a dividend Æt The

top panel is simulated under �1 and the bottom panel is simulated under �2 (see

equation (18) for parameters).

29



Figure 12: Probability of Trade - Savage �1
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The �gure shows the probability of a trade occurring given the bid and ask policy

that solves equation (6) for the Savage market-maker with beliefs �1 . The proba-

bility of a trade is calculated as 1� [�(at)��(bt)]. The probability of as a function

of the state variables: previous position in the derivative, dt�1 previous position in

the portfolio, �t�1,current asset price, Pt, and current asset dividend, Æt.
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Figure 13: Probability of Trade - Savage �2
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The �gure shows the probability of a trade occurring given the bid and ask policy

that solves equation (6) for the Savage market-maker with beliefs �2 . The proba-

bility of a trade is calculated as 1� [�(at)��(bt)]. The probability of as a function

of the state variables: previous position in the derivative, dt�1 previous position in

the portfolio, �t�1,current asset price, Pt, and current asset dividend, Æt.
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for both Savage market makers, the optimal bid-ask policy is not that sensitive

to the position in the underlying security, �t�1.

Figure 14 summarizes the bid and ask policy for the uncertainty averse

Knight market-maker. Notice that the bid-ask behavior, reected in the prob-

ability of trade, is much more sensitive to the incoming asset position, �t�1. It

is also the case that the probability of trade can fall quite low (to 0.3). The

low probability of trade for the Knight market-maker coincides with the case

where the optimal portfolio is not sensitive to initial wealth since it is not

characterized by a �rst-order-condition. Figure 15 shows the portfolio policy.

Recall that the optimal asset position is chosen after the realization of the

trade in the derivative and so depends on both previous, dt�1, and current,

dt, position in the derivative. (The asset policy function for the two Savage

traders is similar to that shown in Figure 10, so it is not repeated.) The

regions where the probability for derivative trade is low occur, for example,

when Pt = 1:25, Æt = 0, dt�1 = 1, and �t � 2 (see lower-left panel of Figure

14). This situation corresponds to the lower three panels of Figure 15 where

dt�1 = 1. In particular, the lower two lines. Note that the lack of liquidity is

occurring at a point where the portfolio policy function is at.

Market Maker Example - Time Series

To better understand the implications of these policy functions, it is helpful

to simulate realizations for the economy. A simulation consists of drawing a

price Pt, dividend Æt, and willingness to trade, ~vt and applying the optimal

policies for ask and bid prices and the portfolio. The result are for a simulation

of 10,000 periods of the economy. Since there are two possible probability

measures describing the evolution of price and dividend, the results show the

simulation conducted under both distributions �1 and �2.

Figure 16 shows a realized path of bid and ask prices for the three market-

makers. Fifty periods are shown. The two Savage traders di�er in their beliefs

about the likelihood of next period's price and dividend. The more optimistic

market maker, �1, tends to have a higher bid and ask price for the derivative.
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Figure 14: Probability of Trade - Knight
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The �gure shows the probability of a trade occurring given the bid and ask policy

that solves equation (6) for the Knight market maker with uncertainty aversion

represented by �K = f�1; �2g. The probability of a trade is calculated as 1 �

[�(at) � �(bt)]. The probability of as a function of the state variables: previous

position in the derivative, dt�1 previous position in the portfolio, �t�1,current asset

price, Pt, and current asset dividend, Æt.
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Figure 15: Optimal Portfolio - Knight �2
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The �gure shows the optimal portfolio that solves equation (6) for the Knight mar-

ket maker with uncertainty aversion represented by �K = f�1; �2g. The optimal

portfolio is a function of the state variables: current, dt, and previous, dt�1 position

in the derivative, previous position in the portfolio, �t�1,current asset price, Pt, and

current asset dividend, Æt.
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Figure 16: Simulated Bid and Ask Prices
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For a simulation of the economy, the optimal realized ask and bid prices are shown

for three market-makers: a Savage market maker with beliefs �1, a Savage with

beliefs �2, and a Knight market maker with uncertainty averse beliefs represented

by �K = f�1; pi2g. One period of the simulation consists of drawing a price Pt,

dividend Æt, and willingness to trade, ~vt. Of the 10,000 periods simulated, 50 periods

are shown. The top panel is simulated under �1 and the bottom panel is simulated

under �2 (see equation (18) for parameters.
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Interestingly, it is not the case that the Knight market-maker simply adopts

the \worst case" bid and ask. In other words, the derivative is not valued as a

stand-alone investment according to the \worst case" distribution. Were this

to be the case, the Knight market-maker would adopt the optimistic Savage's

ask and the pessimistic Savage's bid.17 However, as was discussed in the two-

period portfolio choice case, uncertainty aversion manifests in behavior that is

more complicated than simply \worst case."

Relative to the Savage market-makers, the uncertainty aversion of the

Knight market-maker produces a less liquid market for the derivative in that

the probability of trade is lower. Figure 17 shows the steady-state distribution

for the likelihood of trade in any given period (based on a simulation). For all

three traders, the median likelihood of trade is close to 0.5. The more opti-

mistic Savage, �2, has periods of higher liquidity. The Knight market-maker,

has slightly lower median trade likelihood. Figure 18 shows the frequency of

the position in the derivative. For all three market makers there is a higher

frequency of short positions than long. This is speci�c to the parameterization

of the example. As expected, the more pessimistic Savage market-maker, �2,

is less likely to take a long position in the derivative.

For the Knight market-maker, there is a small frequency of very low liq-

uidity realizations. Figure 19 shows a sample path for the time-series of the

probability of trade. With the Knight market-maker, the market experiences

short, infrequent dips in liquidity where the probability of trade drops dra-

matically. As discussed previously, this drop in liquidity coincides with the

case where the optimal portfolio is not described by a �rst-order condition. In

these cases, the portfolio choice of the Knight and the bid-ask behavior are

distinct from behavior under either of the Savage traders. In these times of

crisis, the Knightian behavior is not representable by a \worst case" Savage

trader

17If one is considering a long position in a call option, the worst case distribution has a
low mean and low variance for the underlying asset. If one is going short a call, the worst
case is a high mean and high variance.
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Figure 17: Frequency for Probability of Trade in the Derivative
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The �gure is a histogram of the probability of trade based on 10,000 simulation

periods. The probability of a trade is calculated as 1� [�(at)��(bt)] and depends

on the optimal ask and bid prices chosen by the three types of market makers. The

three market makers are a Savage market maker with beliefs �1, a Savage with

beliefs �2, and a Knight market maker with uncertainty averse beliefs represented

by �K = f�1; pi2g. One period of the simulation consists of drawing a price Pt

and a dividend Æt The top panel is simulated under �1 and the bottom panel is

simulated under �2 (see equation (18) for parameters.)
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Figure 18: Frequency for Probability of Trade in the Derivative
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The �gure is a histogram of the position in the derivative, dt based on 10,000

simulation periods. The position in the derivative is the outcome of the optimal

bid and ask prices the realization of the willingness to trade ~vt. The frequency is

shown for a Savage market maker with beliefs �1, a Savage with beliefs �2, and a

Knight market maker with uncertainty averse beliefs represented by �K = f�1; pi2g.

One period of the simulation consists of drawing a price Pt and a dividend Æt The

top panel is simulated under �1 and the bottom panel is simulated under �2 (see

equation (18) for parameters.)
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Figure 19: Simulated Probability of Trade in the Derivative
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The �gure is a realized path for the probability of trade. Of 10,000 simulation peri-

ods, a representative 50 periods are shown. The probability of a trade is calculated

as 1� [�(at)��(bt)] and depends on the optimal ask and bid prices chosen by the

three types of market makers. The three market makers are a Savage market maker

with beliefs �1, a Savage with beliefs �2, and a Knight market maker with uncer-

tainty averse beliefs represented by �K = f�1; pi2g. One period of the simulation

consists of drawing a price Pt and a dividend Æt The top panel is simulated under

�1 and the bottom panel is simulated under �2 (see equation (18) for parameters.)
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In the simulation without any market-making activity shown in Figure 11,

the realized path for the optimal portfolio of the Knight trader is bounded

by the portfolio position of the two Savage traders. This is not surprising,

given this relationship holds state-by-state (see Figure 10). In this setting,

the realized path of the state variables Pt and Æt is common across trader

types. However, in the case where the trader is also a market maker, the

optimal portfolio is not just a function of the exogenous state variables Pt

and Æt. It also depends on the position in the derivative, dt. Since the bid

and ask policies of the di�erent market makers di�er, the realized path in the

derivative need not be common across all market-maker types. It is therefore

not necessarily the case that the realized portfolio of the Knight market maker

be bounded by the Savage portfolio. However, in the simulation, it is the

case that �1t � �Kt � �2t . This is seen in Figure 20. In this entire simulation,

as in the portion shown in the �gure, the portfolio of the Knight market-

maker is bounded by the two Savage portfolios. For completeness, we also

show the frequency of portfolio holdings in Figure 21 Not surprisingly, the

pessimistic Savage market-maker, �1, typically has lower asset holdings and is

more frequently short. The more optimistic market-maker, �2, is more often

long. The distribution for the Knight market-maker lies in between.

5 Conclusions

In a simple model of liquidity provision by a monopoly market maker, we have

found that an aversion to Knightian uncertainty reduces liquidity. Future work

will explore this connection further by extending the set of traded securities

which will allow us to study spill-over e�ects like the \ight to quality" and

\contagion" that these preliminary results suggest. We will also explore in

more detail the empirical predictions of this model for �nancial market crises.

40



Figure 20: Simulated Portfolio Holdings
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The �gure is a realized path for the optimal portfolio. Of 10,000 simulation periods,

a representative 50 periods are shown. The portfolio path is shown for three market

makers are a Savage market maker with beliefs �1, a Savage with beliefs �2, and a

Knight market maker with uncertainty averse beliefs represented by �K = f�1; pi2g.

One period of the simulation consists of drawing a price Pt and a dividend Æt The

top panel is simulated under �1 and the bottom panel is simulated under �2 (see

equation (18) for parameters.)
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Figure 21: Frequency for Portfolio Holdings
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The �gure is a histogram of the portfolio in the underlying asset, �t based on 10,000

simulation periods. The frequency is shown for a Savage market maker with beliefs

�1, a Savage with beliefs �2, and a Knight market maker with uncertainty averse

beliefs represented by �K = f�1; pi2g. One period of the simulation consists of

drawing a price Pt and a dividend Æt The top panel is simulated under �1 and the

bottom panel is simulated under �2 (see equation (18) for parameters.)
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Appendix

In this appendix, we outline some new computational algorithms for solving

portfolio-choice problems with aversion to Knightian uncertainty. We detail

the algorithms for the standard stochastic growth model. the extension to the

portfolio-choice problem in equation (6) is straightforward. Using standard

notation, the model solves a Bellman equation:

v(k; z) = max
k02A(k; z)

fu (zf(k) + (1� Æ)k � k0)

+ � min
�(k;z)2M

Z
v(k0; z0) d�(k; z)

)
:

Our approach follow the following steps:

1. Discretize both k and z

� k as �nely as possible

� z using quadrature

2. De�ne M using moment restrictions

� ) linear in probabilities

3. Solve using linear programming

� both optimizations are linear programs

� use Trick and Zin (1995) constraint-generation algorithms

� greatly reduce the number of value function evaluations

The discretized Bellman equation for this problem is given by:

vij = max
a2Aij

(
uija + � min

�j�2�j

nzX
l=1

�jlval

)

45



1. Given probabilities =)

min
v

X
ij

vij

subject to

vij � uija + �
nzX
l=1

�jlval

for all i, j, and a 2 Aij.

2. Given value function ordinates =)

min
�j�

nzX
l=1

�jlval

subject to �j� 2 �j.

A complete algorithm to jointly solve these two optimizations simultaneously

is as follows:

1. Find all of the extreme points of �

2. Solve expected utility problem for each of these probabilities

3. Solve LP in �'s for each of these value function solutions

4. Find the solutions that agree

The problems associated with this approach are:

� Huge number of extreme points in �

� Full enumeration may be infeasible

We propose a heuristic algorithm based on these ideas as follows:

1. Guess value functions
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� starting value tricks

2. Solve LP in �'s for these value function costs

3. Given these �'s solve expected utility Bellman equation by LP

4. Use these updated value function ordinates as costs and resolve the LP

in �'s

5. Iterate to convergence
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