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Abstract

We ask whether �rms' �nancing constraints are quantitatively important in explaining

stock returns. We show that, for a large class of theoretical models, �rms' �nancing

constraints have a parsimonious representation amenable to empirical analysis.

Quantitative experiments suggest that �nancing constraints can help match the

volatility of stock returns but at the cost of reducing the model's ability to match

stocks' return correlation structure. This latter e�ect makes �nancing constraints

unsuccessful in improving the overall statistical ability of investment returns as a factor

pricing model.
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1 Introduction

Several authors have examined the role of �nancing constraints in determining the optimal

investment behavior of �rms, while many others have incorporated these frictions into

aggregate models to study their implications for typical macroeconomic phenomena.1;2

Unfortunately, in spite of this enormous interest, research on their asset pricing implications

has been, by and large, neglected. This is an important oversight since 
uctuations in asset

prices often play a crucial role in the dynamic behavior of these models. In addition, asset

prices can also provide important additional information above and beyond the restrictions

imposed by the behavior of typical macroeconomic aggregates.

In this paper we ask the question whether �nancial frictions are quantitatively important

in explaining asset market phenomena. To do this we begin by showing that for a large

class of models, �rms' �nancing constraints have a common general representation amenable

to empirical analysis. Although these models can di�er substantially on the foundations

of the �nancial frictions (such as asymmetric information, costly state veri�cation, \lemon

problems" with issuing stocks and so on), they all share a common general structure for the

�rm's optimal investment decision and the returns to physical investment | a restriction

we then use in our empirical analysis.

Our empirical analysis is divided into two parts. First, we examine the implications of

the models with �nancial frictions for the unconditional properties of investment returns

and compare these with the empirical properties of stock market data. Our results here

1Some of the earlier studies on the impact of �nancing constraints on �rm behavior include Fazzari,

Petersen and Hubbard (1988), Hayashi and Inoue (1991), Hoshi, Kashyap and Scharfstein (1991), Blundell,

Bond, Devereaux and Schiantarelli (1994), Kashyap, Lamont and Stein (1994) Gertler and Gilchrist (1994)

and Kaplan and Zingales (1997).
2The aggregate implications of models with �rm based �nancing constraints have been explored by, among

others, Bernanke and Gertler (1989), Bernanke, Gertler and Gilchrist (2000), Cooley and Quadrini (1999,

2000), Den Haan, Ramey, and Watson (1999), Kiyotaki and Moore (1997), and Holmstrom and Tirole (1997).
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indicate that adding �nancial frictions can signi�cantly raise the volatility of investment

based returns to a level comparable to the volatility of stocks, something that would

be di�cult to accomplish with physical adjustment costs alone. However, due to the

countercyclical properties of the pro�ts to investment ratio, �nancing constraints also reduce

the contemporaneous correlation between stock and investment returns.

In the second part of our analysis we investigate whether an investment return factor

pricing model holds, i.e., whether a stochastic discount factor based on the returns to

accumulation of physical capital (generated from the model) prices assets correctly. In

particular, we are interested in examining to what extent the presence of �nancing constraints

improves the ability of such a model to price the cross-section of asset returns. Speci�cally, we

use the Generalized Method of Moments (GMM) to formally test the asset pricing restrictions

of �nancing constraints. By parameterizing the stochastic discount factor in the economy as

a linear function of physical investment returns, the e�ects of �nancing constraints are now

incorporated into the pricing kernel.

Our GMM analysis shows, as in Cochrane (1991, 1996), that investment based models can

account well for asset returns. More importantly however, our results strongly suggest that

the role of �nancing frictions in pricing asset returns is quite negligible. Without exception,

all our model speci�cations deliver economically insigni�cant values for the level of �nancing

frictions.

Examining the e�ects of �nancing constraints we �nd that they produce a signi�cantly

lower market price of risk. These �ndings are also con�rmed by the model's implied

beta representation of excess returns, where the introduction of �nancing costs consistently

increases the pricing errors on the cross-section of expected returns. Our �ndings are also

robust to alternative formulations of our model such as allowing for time variation in the
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degree of �nancing frictions or restricting attention to only the stock returns of small �rms.

Our �ndings cast some doubt on whether 
uctuations in asset prices, induced by the

presence of �nancial frictions, can provide a realistic channel for the propagation mechanism

in macroeconomic models. While these constraints may indeed help generate more interesting

dynamics for the typical macroeconomic aggregates, they seem to strain the model's ability

to match �nancial data.

Our work is most closely related to earlier research by Cochrane (1991, 1996) that �rst

addressed the issue of constructing and testing production based asset pricing models, and

to work by Restoy and Rockinger (1994) who generalize some of results in Cochrane (1991)

to an environment with investment constraints and taxes.

More recently, Lamont, Polk, and Sa�a-Requejo (2000), using an index of �nancing

constraints as a pricing factor in a reduced form model of returns, document that while

�nancing constraints may impact unconditional returns, there is no evidence that they react

to macroeconomic conditions. Thus these authors conclude that the cyclical 
uctuations in

asset returns do not appear to be linked to �nancial frictions.

The remainder of this paper is organized as follows. Section 2 shows that much of the

existing literature on �rms' �nancing constraints can be characterized by specifying a simple

dynamic problem for the �rm. Using this canonical representation, Section 3 derives the

optimal investment policy and obtains expressions for returns to physical investment that

can be used to evaluate the asset pricing implications of the model. The next two sections

use �nancial market data to examine both the performance of the model and the role of

�nancing constraints. In particular, Section 4 studies their implications for unconditional

returns. Formal GMM tests are contained in Section 5. Finally, we o�er some concluding

remarks in Section 6.
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2 A General Representation of Financing Frictions

In this section we show that a majority of the existing literature on �rms' �nancing

constraints can be characterized by a fairly simple canonical problem that �rms face.

Consider the following �rm's value maximization problem:

V0 = max
Dt;Bt+1;Nt

E0

"
1X
t=0

M0;t [Dt
�W (N

t
)N

t
]

#
s:t: D

t
+ I

t
= �

t
+N

t
+B

t+1 � R(B
t
)B

t
(1)

D
t
; N

t
� 0 8t (2)

where M0;t is the stochastic discount factor (of the owners of the �rm) between time 0 and

time t. N
t
denotes issues of new shares, which reduce the value of the �rm to existing

shareholders, by an amount of W (N) per share. The �rm also needs to repay last period

debt B
t
; with (gross) interest rate R(B

t
) and may acquire new debt B

t+1: These resources, in

conjunction with current period pro�ts �
t
; can be allocated to dividends, D

t
; and investment,

I
t
: Note that we allow debt to be negative, in which case the �rm will accumulate liquid

assets.

Regarding the properties of the functions W (�) and R(�) we make the following

assumptions:

W (N
t
) > 1; W 0(N

t
) > 0; 8N

t
> 0 (3)

E
t
[M

t;t+1R(Bt+1)] > 1; R0(B
t+1) > 0; 8B

t+1 > 0 (4)

R(B
t+1) = 1=E

t
[M

t;t+1]; R0(B
t+1) = 0; 8B

t+1 � 0 (5)

where M
t;t+1 = M0;t+1=M0;t. Assumption (3) on the function W (�) captures not only the

direct reduction in value for the existing shareholders, associated with the new issues, but
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also the transaction costs and possible informational premium associated with new equity

issues. Assumption (4) on the risky rate of interest, R(�), re
ects the fact that debt �nancing

has a higher cost than that contained implicitly in retained earnings to the extent that it

always exceeds the riskless rate of interest, R
f;t+1 = 1=E

t
[M

t;t+1]: Finally, assumption (5)

imposes that this riskless rate will be the return earned by liquid assets (negative debt).

Several researchers have provided various theoretical arguments for each of our

aforementioned assumptions. For our empirical analysis, it su�ces to directly assume a

\�nancing hierarchies" structure proposed by Myers (1984). That is, we directly assume

that internal funds are the least costly source of �nancing. Whether debt or new equity is

the most expensive source of funds is essentially irrelevant for our purposes and we hence

make no assumptions regarding their relative costs.

The optimality conditions for the above problem are:

�
t

= 1 + �1t (6)

�
t

= W 0(N
t
)N

t
+W (N

t
) + �2t (7)

�
t

= E
t

�
M

t;t+1�t+1 (R
0(B

t+1)Bt+1 +R(B
t+1))

�
(8)

where �
t
denotes the multiplier on the resource constraint (1) and �1t and �2t are the

(non-negative) multipliers on the inequality constraints on dividends and new shares issues,

respectively.

It follows immediately from equations (6){(8) that it is never optimal for �rms to pay

positive dividends, when either N
t
or B

t+1 is positive. For example, suppose that both D
t
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and N
t
are positive, (6) and (7) become:

�
t

= 1

�
t

= W 0(N
t
)N

t
+W (N

t
) > 1

where the last equation follows from the fact that W (N
t
) > 1 and W 0(N

t
)N

t
> 0:

Contradiction.

Now suppose that both D
t
and B

t+1 are positive, we obtain from (6) and (8) that:

1 = E
t

�
�
t+1 (Mt;t+1R(Bt+1) +M

t;t+1R
0(B

t+1)Bt+1)
�
> E

t

�
�
t+1Mt;t+1R(Bt+1)

�
(9)

since M
t;t+1R

0(B
t+1)Bt+1>0 when B

t+1 is positive.

Next, observing that:

E
t

�
�
t+1Mt;t+1R(Bt+1)

�
= cov

t

�
�
t+1;Mt;t+1R(Bt+1)

�
+ E

t
[�

t+1]Et
[M

t;t+1R(Bt+1)]

we obtain:

E
t
[�

t+1] =
E
t

�
�
t+1Mt;t+1R(Bt+1)

�
� cov

t

�
�
t+1;Mt;t+1R(Bt+1)

�
E
t
[M

t;t+1R(Bt+1)]

< E
t

�
�
t+1Mt;t+1R(Bt+1)

�
� cov

t

�
�
t+1;Mt;t+1R(Bt+1)

�
< E

t

�
�
t+1Mt;t+1R(Bt+1)

�
(10)

where the �rst inequality follows from the assumption that E
t
[M

t;t+1R(Bt+1)]> 1 and the

second follows from the fact that higher debt increases both R(�) and �
t+1 (the marginal

value of one additional unit of internal funds).

Together inequalities (9) and (10) imply that:

E
t
[�

t+1] < E
t

�
�
t+1Mt;t+1R(Bt+1)

�
< 1
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contradicting the optimality condition (6) which requires that

�
t+1 = 1 + �1t+1 � 1

In summary, the �rm's optimal �nancing-dividend policy can be usefully summarized as:

D
t
> 0 if N

t
= B

t+1 = 0

D
t
= 0 if B

t+1 > 0 or N
t
> 0

(11)

This framework is quite simple, but it e�ectively summarizes most, if not all, of the

existing theoretical literature on the �rms' �nancing constraints. For example, Fazzari,

Hubbard, and Petersen (1988) and Gomes (2001) examine models where �rms issue only

new equity, i.e., B
t
=B

t+1=0. In this case it is easy to see that (11) reduces to:

D
t
= �

t
� I

t
> 0 if N

t
= 0

D
t
= 0 if N

t
= I

t
� �

t
> 0

(12)

and the value of the �rm can be recursively de�ned by the equation

V
t

= max
N�

E
t

"
1X
�=t

M
�
[�

�
� I

�
� (W (N

�
)� 1)N

�
]

#
= max

Nt

�
t
� I

t
� (W (N

t
)� 1)N

t
+ E

t
[M

t;t+1Vt+1]

= �
t
� I

t
� g(I

t
� �

t
) +M

t;t+1Vt+1

where the \�nancing cost" function g(�) satis�es:

g(I
t
� �

t
) = g(N

t
) = (W (N

t
)� 1)N

t
� 0 (13)

g0(N
t
) = W 0 (N

t
)N

t
+ (W (N

t
)� 1) > 0 if N

t
> 0 (14)

Thus �nancing costs are non-negative and strictly increasing in the level of external �nance.

Alternatively, in the work of Bernanke and Gertler (1989) and Cooley and Quadrini
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(1999), where debt �nancing is the only available source of external �nance, dividend policies

satisfy:

D
t
= �

t
� I

t
�R(B

t
)B

t
> 0 if B

t+1 = 0

D
t
= 0 if B

t+1 = [I
t
+R(B

t
)B

t
� �

t
] > 0

(15)

and the value of the �rm is recursively de�ned by the equation:

eV
t

= V
t
+B

t
= �

t
� (R(B

t
)� 1)B

t
� I

t
+ (1�M

t;t+1R(Bt+1))Bt+1 +M
t;t+1

eV
t+1

= e�
t
� I

t
� g(I

t
� e�

t
) +M

t;t+1
eV
t+1

where e�
t
= �

t
� (R(B

t
) � 1)B

t
denotes pro�ts net of interest payments and the function

g(�) now satis�es:

g(I
t
� e�

t
) = g(B

t+1) = (M
t;t+1R(Bt+1)� 1)B

t+1 � 0 (16)

g0(B
t+1) = (M

t;t+1R(Bt+1)� 1) +R0(B
t+1)Mt;t+1Bt+1 > 0 if B

t+1 > 0 (17)

Again the �nancing costs are non-negative and strictly increasing in the level of external

�nance.

The similarities between (13) and (16) are quite obvious as they both imply that the

�nancing costs have the following general representation:

Financing Costs = External Premium� eg (Investment � Pro�ts) (18)

In the �rst case the external premium is captured by the additional costs of issuing new

equity, while in the second case, they are summarized by the default premium:

M
t;t+1R(Bt+1)� 1 > 0
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Depending on the nature of the underlying structural model, this premium may well be

state-dependent. Obvious examples include models with a counter-cyclical default spread

and/or counter-cyclical premium on new issues of equity, W (�): In addition, in both cases

the �nancing costs are increasing in I��. Figure 1 depicts a typical form of the unit cost

of �nancing.3

Modeling �nancing costs through (18) is not only theoretically appropriate, as we just

showed, but also empirically appealing. Figure 2 shows the (HP-�ltered) quarterly series of

investment to pro�t ratios along with the NBER recession dates between June 1951 and July

1999. It is quite evident from the �gure that all recessions are characterized by a sharp drop

in the investment-pro�t ratio. This pattern implies that investment 
uctuations are much

more pronounced than those on aggregate pro�ts. By explicitly linking the relation between

pro�ts and investment to the costs of external �nance, equation (18) delivers a simple, but

powerful, framework to studying the role of �nancial frictions on �rm behavior.

3 Investment Returns with Financing Frictions

3.1 Investment Returns

In this section we derive the asset pricing implications of models with �nancing constraints.

We use the results above to construct the optimal investment policy for a representative �rm

facing �nancing constraints. This, in turn, allows us to obtain expressions for returns to

physical investment which then can be used to evaluate the asset pricing implications of the

model.

We start by adding a little more structure to the �rm's problem. Assume that �rms

3Note that in the �gure we assume that issue of new stocks is more expensive than issue of new debt.

For the purpose of our paper, however, this ranking is immaterial as mentioned before.
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accumulate capital, K
t
, according to the following equation

K
t+1 = (1� �)K

t
+ I

t
(19)

De�ning �(K
t
) as the pro�t function which can be viewed as the outcome of a static

optimization problem where all other inputs (e.g. labor) have been determined. We can

now write the �rm's problem as:

max
fKt+1;Itg

(
1X
t=0

M
t
[�(K

t
)� I

t
� h(I

t
=K

t
)K

t
� g(I

t
;�(K

t
))]

)
(20)

subject to the capital accumulation rule (19). The function h(�) captures the notion that

capital accumulation is subject to physical adjustment costs. We assume that this function

satis�es the following standard assumptions:

h
I
(�) > 0; h

II
(�) > 0; h

K
(�) < 0

As in Cochrane (1991, 1996) adjustment costs are necessary to provide for some time

variation in optimal investment choices and in asset returns in the absence of �nancial

frictions.

We now derive the optimal investment policy for the problem (20), which in turn allows

us to obtain expressions for returns to physical investment that can be used to evaluate the

asset pricing implications of the model. Denote q
t
as the Lagrange multiplier associated with

(19) and let the function �(I
t
; K

t
) capture both �nancing costs and the physical adjustment

cost.

It is straightforward to show that the �rst-order conditions associated with this problem
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are given by:

q
t
= E

t
[M

t;t+1 (�
0(K

t+1)� �
K
(I

t+1;Kt+1) + q
t+1(1� �))]

q
t
= 1 + �

I
(I

t
; K

t
)

Combining these two equations we can obtain the expression for one-period investment

returns as,

E
t

�
M

t;t+1R
I

t+1

�
= 1 (21)

where

RI

t+1 �

�0(K
t+1)� �

K
(I

t+1;Kt+1) + (1� �) [1 + �
I
(I

t+1;Kt+1)]

1 + �
I
(I

t
; K

t
)

(22)

Given functional forms for the pro�t function �(�) and cost functions h(�) and g(�) this

expression can be used to construct a series of �rms' returns on capital accumulation that

can then be compared with �nancial market returns.

3.2 Functional Forms

We begin by specifying the following pro�t function:4

�(K
t
) = A

t
K

t
(23)

Physical adjustment costs are quadratic and equal to

h(I
t
; K

t
) =

a

2

�
I
t

K
t

�2

K
t
; a > 0 (24)

4This functional form of pro�t function can be obtained as long as the underlying technology exhibits

constant returns to scale.
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Financing costs follow:

g(I
t
; K

t
) =

b

2
max

 
0;

I
t

K
t

+
a

2

�
I
t

K
t

�2

� c
�
t

K
t

!2

K
t
; b > 0; c2 [0; 1] (25)

The speci�cations regarding �(�) and h(�) are fairly standard and require little

explanation. The functional form for the function g(�) is consistent with the properties

established in Section 2. It essentially says that �nancing costs are incurred when investment,

inclusive of adjustment costs, exceeds pro�ts. The imposition of quadratic costs, while not

following from our earlier results necessarily, seems to be a natural �rst-order approximation.

The parameter c is introduced as a scaling factor, necessary for empirical purposes as the

pro�ts and investment data may not be strictly comparable.5 Given the series on investment

and pro�ts, high values of c imply lower �nancing costs. In fact, it is immediate to see that

there exists a threshold level of c at which �nancing costs disappear altogether.

Together (23){(25) imply that total adjustment costs are described by the function:

�(I
t
; K

t
) =

24a
2

�
I
t

K
t

�2

+
b

2

"�
I
t

K
t

�
+
a

2

�
I
t

K
t

�2

� cA
t

#2
1��

It

Kt

�
+
a

2

�
It

Kt

�2
�cAt

�
35K

t
(26)

where 1fxg is an indicator function that takes the value of one when fx >0g and zero

otherwise. (26) captures the idea that the �rm incurs, besides the usual physical adjustment

cost, certain extra \�nancing" cost when its investment is higher than a �xed proportion of

its pro�ts. Naturally, if either b=0 or
�

It

Kt

�
+ a

2

�
It

Kt

�2
> cA

t
the �nancing costs will be zero.

5In particular, the means of pro�ts and investment series may di�er to the point such that the �nancing

constraints, as stated above, never bind. Since our focus is on cyclical 
uctuations we are not interested in

the average ratio of pro�ts to investment, but on its business cycle properties. Appropriate scaling allows us

to do this.
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The relevant derivatives for the investment return equation (22) are given by:

�0(K
t
) = A

t
=

�(K
t
)

K
t

=

�
�(K

t
)

I
t

��
I
t

K
t

�
= �

t
i
t

(27)

�
K
(t) =

�(t)

K
t

� ai2
t
� b
�
i
t
+ ai2

t

� h
i
t
+
a

2
i2
t
� c�

t
i
t

i
1
fit+

a

2
i
2
t
�c�titg

(28)

�
I
(t) = ai

t
+ b (1 + ai

t
)
h
i
t
+
a

2
i2
t
� c�

t
i
t

i
1
fit+

a

2
i
2
t
�c�titg

(29)

It is now clear that investment returns are completely driven by two fundamental factors in

this model: the investment to capital ratio i
t
� (I

t
=K

t
) and the pro�t to investment ratio

�
t
� (�

t
=I

t
).

It is also useful to de�ne the quantities:

�1t= (1� �
t
)�

t
=
a

2

�
I
t

K
t

�2
K

t

I
t

=
a

2
i
t

(30)

and

�2t=�
t
�
t
=

b

2
i
t
[1 + �1t � c�

t
]
2
1f1+�1t�c�tg (31)

to denote the fraction of investment lost to physical adjustment costs and to �nancing costs,

respectively. Thus � is the total fraction of investment spending due to adjustment costs,

and � is the share of the total costs due to �nancing constraints.

4 Quantitative E�ects of Financing Constraints

This section contains the �rst part of our empirical analysis and it is mostly designed to build

intuition for understanding our results of GMM estimation in the next section. In particular,

we compare the investment returns to the CRSP value-weighted portfolio returns de
ated by

the CPI. We begin by providing an overview of the data sources and the construction of the
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series of investment returns from the available macroeconomic aggregates. We then discuss

the implications of alternative parameter choices for the properties of investment returns.

4.1 Data

We require two main types of data: asset returns and macroeconomic aggregates suitable

to construct the series of investment returns. Asset returns mimic closely those used in

Cochrane (1996) and are obtained directly from CRSP. The construction of investment

returns on the other hand requires two macroeconomic aggregates: pro�ts and investment.

Our sample period is restricted between the �rst quarter of 1952 and the last quarter of

1999. This is done to eliminate the earlier (1947{1951) data on investment and pro�ts which

is subject to excessive variations likely due to the chain weighting procedures.

Macroeconomic aggregates are all obtained from National Income and Product Accounts

(NIPA). The investment series corresponds to the gross private domestic investment. Pro�ts

in our model correspond to output minus wages and thus are essentially constructed by

removing labor income from national income. A detailed overview of this construction is

provided in an Appendix. Given this information we can construct investment returns as

follows. First, rewrite equations (19) and (22) to obtain:

RI

t+1 �

�0(�
t+1; it+1)� �

K
(�

t+1; it+1) + (1� �) [1 + �
I
(�

t+1; it+1)]

1 + �
I
(�

t
; i
t
)

(32)

i
t+1 =



t+1it

(1� �) + i
t

(33)

with 

t+1 � I

t+1=It denotes investment growth. Given historical data on pro�ts and

investment we can easily construct empirical measures for investment growth, 
; and the

pro�ts to investment ratio, �. Reliable empirical estimates of the depreciation rate, �,

are also available in the literature. With this information at hand we can then use (33) to
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construct the series on the investment-capital ratio and use this to obtain investment returns

from (32).6 This simple procedure also has the great advantage of avoiding the use of any

data on the capital stock, notoriously unreliable at quarterly frequency.

4.2 Properties of Investment Returns

Before presenting the results of our formal GMM tests, it is useful to discuss some of the

main properties of the series on investment returns in order to build some intuition regarding

the role of �nancial frictions. To do so we conduct a number of experiments and detail the

results in Tables 1{5. These tables report the impact of alternative parameter choices on the

mean, standard deviation, autocorrelation of investment returns, and its cross-correlation

with stock returns. For completeness the same set of unconditional moments for the series

on stock returns is also reported.

We start by examining a simple version of the model with no �nancial frictions, i.e., where

b=0: Table 1 documents our �ndings, assuming a value of �=2:5%; usually the most popular

estimate in the literature. The second column, where a=0, shows the special case where no

physical adjustment costs exist. It is clear that without them the model can not generate

any volatility in investment returns. Moreover this series also shows high average returns,

an extremely high autocorrelation, and a very low correlation with stock returns. This is not

surprising since, without any adjustment costs investment return series (32) simpli�es to

RI

t+1 � �
t+1it+1 + 1� � =

�
t+1

K
t+1

+ 1� � (34)

thus essentially inheriting the properties of the pro�ts series.7

6We also need an initial condition for i0. We do so by assuming that it is equal to its long-run mean

i� = 
 � (1� �).
7Note that our speci�cation, contrary to Cochrane (1996), allows for the time variation of marginal

product of capital. Therefore, investment returns are tied down to the time-varying pro�ts even in the

absence of �nancing constraints. In spite of this less restrictive feature, as discussed below, the model
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Adding adjustment costs dramatically improves the ability of the model in �tting these

moments. They provide a very e�ective way of matching average returns, which is not

surprising since, by de�nition, they raise the costs of accumulating capital. In particular,

when physical adjustment costs constitute about 14% of investment spending we can exactly

match average stock returns.

Adjustment costs also add to the volatility of investment returns. By making �rms less

willing to adjust the capital stock, they induce larger volatility of underlying returns to

capital accumulation. Nevertheless, it is clear that it is very di�cult for physical adjustment

costs alone to match the large values found in stock returns data: even with an implausibly

large value of � around 100% we can only obtain around half of the amount of volatility

found in the data. Moreover, there exists certain trade-o� between matching the mean and

variance since large values of adjustment costs lead to extremely low average investment

returns.

We are more successful in the dimension of correlations, however. Higher physical

adjustment costs lower the persistence in investment returns and raise its correlation with

stock returns. The persistence numbers actually match those in stock returns rather well,

for reasonable values of � (somewhat less than 10%). The cross correlation is much larger

now; however, it stays around 0.42 and appears to change very little once � is above 5%.

Table 2 explores the role of �nancing constraints in this model. Our point of departure

is column two, reproduced from Table 1, where the physical adjustment costs are set so that

average returns match those of stocks. Let us �rst examine the case where the parameter c

is su�ciently low so that the �nancing constraints always bind. We can accomplish this by

assuming c=0:5:

without physical adjustment costs still has di�culty matching salient features of stock returns.
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The contribution of these �nancing costs improves our results mostly by substantially

adding to the variance of returns, while leaving the remaining moments mostly una�ected.

Comparing with Table 1, we see that raising � for a �xed amount of �nancing costs (by

increasing b and reducing a) leads to pronounced increment in the variance with only

negligible e�ects on average returns. Raising �nancing costs avoids the trade-o� between

matching the �rst and second moments faced when relying on physical adjustment costs

alone. In particular, values of � around 0.40 (with �1=14%) seem to be able to deliver both

the �rst and second moments.

There is some deterioration on both the autocorrelation of the series, which is about 0.10

now, and, to a less extent, the cross-correlation with stock returns, which drops to about

0.40. Interestingly, neither of these two moments appear particularly sensitive to the exact

level of the �nancing costs. In fact, out of the four moments only the variance seems to

depend heavily on the value of �.

The lower cross-correlation between these two series can be explained by the

countercyclical behavior of the pro�t-investment ratio �
t
shown in Figure 2. Recall that

the �nancing constraints bind when (1+ (a=2)i
t
� c�

t
) > 0. For the estimated a's and

the constructed i
t
series in the model, the middle term is almost negligible. Hence, a

countercyclical �
t
implies that the �nancing constraints bind less during recessions. Given

(32), this means that, relative to the model with only physical adjustment costs, �nancing

constraints increase ex-post investment returns in downturns (as they bind less) and reduce

them during expansions. This channel e�ectively reduces the contemporaneous correlation

with stock returns

Table 3 repeats this experiment using a higher value of c=0:75: This value is chosen so

that the �nancing constraints now bind only about 50% of the time. In this case the models'
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performance deteriorates very rapidly. Even relatively low �nancing costs (�=30%) lead to

very large variances and extremely low serial and cross correlations.

Finally, Tables 4 and 5 reproduce the experiments in Tables 1 and 2 using a value of

� of only 1.5%. Lowering the depreciation rate has an important impact of the e�ects of

physical adjustment costs, because it also lowers the average level of the investment-capital

ratio, i, given by (33). For a given level of adjustment costs, returns are now lower and this

means that the tension between matching the �rst and the second moments becomes more

apparent. Since we need an even lower value of � (0.0538) to match the average stock returns,

the implied standard deviation of investment returns falls to around 1% per annum. On the

positive side, however, this value of adjustment costs also matches the serial correlation in

stock returns.

The costs and bene�ts of introducing �nancing costs remain much the same. Raising

�, while keeping � at 10%, dramatically increases the variance of investment returns while

signi�cantly lowering its serial correlation and leaving its mean essentially una�ected.

To summarize, this exercise suggests that: (i) without adjustment costs the model is

not capable of generating realistic moments for investment returns; (ii) adding physical

adjustment costs can match the average stock returns and can also go a long way in

generating realistic values for the serial correlation of investment returns and in raising the

contemporaneous correlation with stocks; and (iii) adding �nancing costs is mostly successful

along the volatility dimension by substantially raising the variance of returns to more realistic

values, albeit at some cost in terms of the model's ability to match some of the other moments.
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5 GMM Tests of Factor Pricing Models

Much of the exercise in the previous section was motivated by the assertion that the return

on aggregate investment should behave in the same way as the return on the aggregate stock

market. In this section we investigate whether an investment return factor pricing model

holds, i.e., whether a stochastic discount factor based on the returns to accumulation of

physical capital (generated from the model) prices assets correctly. In particular, we are

interested in examining to what extent the presence of �nancing constraints improves the

ability of such a model in pricing the cross section of asset returns.

We start by assuming the existence of a (positive) stochastic discount that correctly

prices the observed cross-section of stock market returns (see Harrison and Kreps (1979) and

Hansen and Richard (1987) for a detailed discussion). As in Cochrane (1996) we start by

specializing the stochastic discount factor, M
t;t+1, to be linear in investment returns,

M
t;t+1 =

X
k

l
k
RI

k;t+1 = l0 + l1R
I

t+1= f 0
t+1l (35)

where ft+1 is the vector of pricing factors (e.g. investment returns), and l are the factor

loadings.8 This discount factor is also assumed to satisfy the moment conditions

E
t
[M

t;t+1Rt+1] = pt (36)

where E
t
is the conditional expectation, Rt+1 can be any asset or investment return and pt

is the corresponding price (one for gross returns or zero for excess returns). Following the

factor pricing tradition, we then estimate the loadings of investment returns in the stochastic

8The linear speci�cation can be viewed as an approximation. For example, if preferences are logarithmic

and there is full depreciation, then RI
t+1 = 1

�

ct+1
ct

= 1=Mt;t+1. Thus Mt;t+1 � 1 � (RI
t+1 � 1), that is the

stochastic discount factor is approximately linear in RI . Alternative approaches modeling nonlinear pricing

kernels have been advanced in the literature (e.g., Bansal and Vishwanathan (1993), Brandt and Yaron

(2001), and Chapman (1997)).
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discount factor, l
k
, as free parameters. More importantly, we also estimate the technological

parameter, a and the �nancing cost parameters b, and c.

We consider three sets of moment conditions in implementing (36). We look �rst at

the relatively weak restrictions implied only by the unconditional moments. The second set

focuses on the conditional moments by adding instruments to the returns, while the third

set allows for time variation in the factor loadings. We now provide some more details about

the estimation of each of these.

5.1 Moment Conditions

Unconditional Factor Pricing Models

We use the standard GMM procedure to estimate the parameters l to minimize a weighted

average of the sample moments (36). Letting
P

T

denote the sample mean we can rewrite

the sample moments, denoted g
T
as:

g
T
�

X
T

[MR� p] =
X
T

[(Rf 0) l� p]

where g(�) is a function of the parameter vector ��fa; b; c; lg, and the data i
t
, �

t
and R

t
.

One can then choose � to minimize a weighted sum of squares of the pricing errors across

assets:

J
T
= g0

T
Wg

T
(37)

where f = RI(a; b; c; i; �). Note that a convenient feature of our problem is that given

a,b, and c the criterion function above is linear in l | the factor loading coe�cients.9

9To see this note that a,b, and c determine investment returns, RI . Given RI , however, the rest of the

problem is linear. Assuming that at least one element of
P

T (p) is not equal to zero, and conditional on

RI , the �rst order conditions of (37) yield l̂ = (D0WD)
�1
D0W

P
T (p), where D � @gT =@l =

P
T [Rf

0] =P
T

�
RRI0(a;b; c)

�
.
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Standard �2 tests on over-identifying restrictions follow from this procedure. This also

provides a framework to assess whether certain factors, l, or �nancing constraints (b and c)

are signi�cant for pricing assets.

Conditioning Information

It is straightforward to include the e�ects of conditioning information by scaling the returns

and/or scaling the factors by instruments. The essence of this exercise lies in extracting the

conditional implications of (36), since as Hansen and Richard (1987) note, the conditional

moment implications for a time-varying conditional model may not be captured by a

corresponding set of unconditional moment restrictions.

To test the conditional predictions of (36) we expand the set of returns to include returns

scaled by instruments and then proceed as before; that is, we use the moment conditions:

E [p
t

 z

t
] = E [M

t;t+1 (Rt+1 
 z
t
)]

where z
t
2I

t
, is some instrument and I

t
is the information set at time t.10

A more direct way to extract the potential non-linear restrictions embodied in (36) is to

let the stochastic discount factor be a linear combination of factors with weights that vary

over time. That is, the vector of factor loadings l is a function of instruments z that vary

over time:11

M
t;t+1 = l (z

t
)
0
f
t+1

Therefore, to estimate and test a model in which factors are expected only to price assets

conditionally, we simply expand the set of factors to include factors scaled by instruments.

10As noted in the �nance literature the scaled returns Rt+1zt can be interpreted as returns on managed

portfolios in which the portfolio manager invests more or less according to the signal zt.
11With su�ciently many z's raised to powers, the linearity of l can accommodate nonlinear relationships.
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The stochastic discount factor utilized in estimating (36) is then,

M
t;t+1 = l0 (f

t+1 
 z
t
)

5.2 GMM Results

In order to implement the estimation procedure we require returns other than the CRSP

value-weighted portfolio returns. The other asset returns to be priced by the investment

return factor model include the ten portfolios of NYSE stocks sorted by market value

(CRSP series DECRET1 to DECRET10), the real three-month Treasury-bill return, as well

as the investment return itself. Since the investment return is based on quarterly average

investment, we transform the asset returns to quarterly average returns rather than use

end-of-quarter to end-of-quarter returns.12 In order to focus on risk premium, all moment

conditions, except the level of the risk free rate, utilize excess returns. Excess returns are

de�ned as the premium over the three-month Treasury-bill return. Table 6 reports the

summary statistics of the asset returns used in our GMM implementation.

We construct two instruments: the term premium, de�ned as the yield on long-

term government bonds less that on three-month Treasury bills, and the dividend-price

ratio of the equally weighted NYSE portfolio.13 The dividend-price ratio is based on

CRSP EWRETD and EWRETX, the equally weighted portfolio returns with and without

dividends. The returns are cumulated for a year to avoid the seasonal in dividends; thus,

d=p=(annual EWRETD=annual EWRETX)�1. To avoid overlap with the average return

series, we lag the instruments twice so that an instrument used for the return from the �rst

to second quarter is known by the last day of December. We limit the number of moment

12For details see Cochrane (1996).
13In the �rst-stage estimation, the moments corresponding to scaled returns are treated equally with the

nonscaled returns, so it is convenient that the scale of the two is comparable. Following Cochrane (1996),

we also use 1 + 100[(d=p)� 0:04] in place of the raw dividend-price ratio.
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conditions and scaled factors in three ways: (1) we do not scale the Treasury-bill return by

the instruments since we are more interested in the time-variation of risk premium than that

of risk-free rate. (2) We scale the variable factors by the instruments but we do not include

the instruments themselves as factors. (3) We only use deciles one, two, �ve, and ten in the

conditional estimates (return times instruments).

Table 7 reports the results of our GMM estimation when the depreciation rate is set

to 2:5%.14 Each panel in these tables corresponds to one of the three models tested

(unconditional, conditional, and scaled factor). The message from all the panels is uniform!

The point estimate of b is either zero or the corresponding � is e�ectively zero when b is

slightly di�erent from zero15. This result is also robust to the use of �rst (not reported) or

second stage GMM estimates.16 Table 8 replicates these results for the case where � = 1:5%,

showing that these �ndings are independent of the level of the depreciation rate.

Overall, the model with physical adjustment costs only is, for the most part, not

rejected by the data at standard 5% signi�cance levels.17 Moreover the estimates of physical

adjustment costs (�̂) required to match asset returns are not excessive (in all cases around

20% of investment spending)18. The factor loadings l also show very similar patterns across

the two non-scaled models (a positive intercept and a negative loading on the investment

return). In the scaled model, that has two additional loadings, the conditional loading on

the term-premium is signi�cant while that on dividend yield is only marginally signi�cant.

14Our estimation criterion is quite non-linear in the dimensions of a, b, and c, which leads us to initially

search over the parameter space using a very �ne grid. Therefore, for each of the models, we searched over

a in a set that was constrained to be three standard deviations in both directions of the a's that delivered

E(Rvwret)=E(RI ) in Tables 1 and 4, respectively. In no case do the optimal a's reside on the boundaries.
15Estimates of c are undetermined when b = 0:
16The only case when b is not literally zero is the second stage estimation of the scaled factor model with

conditional estimates. But even in that case the implied in-sample �̂ is less than 0:5%.
17Our p-values are computed based on estimating only parameter a and the loadings l. We do this since

the b's are zero and estimating a pure physical adjustment costs model would deliver such p-values.
18These results resemble those in Cochrane (1996) although our p-values are somewhat higher than his

due to the fact that we allow for time variation in the marginal product of capital.
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The E�ect of Financing Constraints

The interesting question however is why �nancing constraints do not seem to be priced,

or, alternatively, why they do not appear relevant for the construction of the investment

based stochastic discount factor? This is especially surprising given the promising evidence

in section 4 about the e�ects of �nancing constraints on the volatility of investment based

returns. To better understand the e�ects of the �nancing frictions on returns it is useful

to look at two additional pieces of evidence implied by the model: (i) the volatility bounds

for the discount factor (Hansen and Jagannathan (1991)); and, (ii) the results for the beta

representation of asset returns.

Figure 3 plots the Hansen-Jagannathan (1991) bounds for (unconditional) asset returns

against the implied market price of risk for the model with various levels of �nancing costs.

For completeness, we also plot the consumption based pricing kernel using standard CRRA

preferences.19 Clearly adding �nancing costs only moves the model farther away from the

data.20 This happens because �nancing constraints e�ectively lower the market price of

risk �(M)=E(M): Table 9 presents the estimated market price of risk �(M)=E(M) and

the correlation between the pricing kernel and value-weighted returns for all three models.

While this correlation does not, in general, move very much, in all cases without exception,

�nancing constraints signi�cantly decrease the market price of risk and thus deteriorate the

performance of the pricing kernel.

Perhaps more direct evidence on pricing errors is given in Table 10 where we regress

19The correct bounds should also include information on investment returns, but since these depend on

the degree of �nancial costs they are omitted for the sake of clarity. Adding investment returns, however,

would only sharpen the bounds and thus lead to stronger rejections of �nancing constraints.
20The plotted circles represent the pricing kernel estimates from the �rst stage GMM. The second stage

GMM estimates lead to corresponding pricing kernels that are outside the bounds. However, after accounting

for standard errors, the hypothesis that the investment based return with purely adjustment costs is inside

the bound can not be rejected at conventional signi�cance levels. Not surprisingly, this hypothesis is rejected

for the consumption based model.
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excess value weighted returns and the excess decile 1 returns on excess investment returns.

Given the assumed structure of an investment based pricing kernel, we know that a beta

representation of the form R
i
�R

f
=�

i
+�

i
(RI

�R
f
) also exists, with �

i
= 0 (see discussion

in Cochrane (2001) and citations there about linear factor models and beta representations).

Therefore, large values of � are evidence against the model.

Table 10 displays a clear pattern of increasing � as we increase �nancing constraints.

Indeed, while we can not reject that �=0 for the benchmark case of pure physical adjustment

costs, this hypothesis is rejected for most of the other parameter con�guration.

The pricing properties of a factor model hinges on its covariance structure with returns.

The overriding e�ect of increasing �nancing constraints is to increase the variance of the

return on investment while at the same time leave its correlation with asset returns relatively

unchanged. As displayed in Table 10, this e�ect basically leads to lower �'s on all returns

and thus makes it more di�cult for the model with �nancing constraints to price assets.

Speci�cally, it leads to larger average pricing errors (�'s) and in particular requires the

estimated real risk free rate to rise. This phenomena, is con�rmed in the lower estimates for

the market price of risk, displayed in Table 9 and the circles depicting the estimated pricing

kernels in Figure 3. The loadings on the more volatile return on investment, once �nancing

constraints are introduced, are adjusted as to reduce the volatility of the pricing kernel. The

underlying economics is that �nancing constraints add volatility but do not generate the

covariance required for better asset pricing properties.

Small Firms E�ects

Most, if not all, studies on �rm �nancing constraints emphasize that they are more likely

to be detected when looking only at the behavior of small �rms. To investigate this

possibility, Table 11 shows the results of our GMM estimation that uses the lower 2 or 3
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NYSE/AMEX/NASDAQ deciles. Since most �rms on NASDAQ are small, adding NASDAQ

stocks should in principle leave more room for �nancing constraints to play some role in

pricing assets. Nevertheless, even when focusing mainly on these �rms, we still can not �nd

any evidence for a signi�cant role of �nancing frictions.

Time Varying Financing Constraints

The time series properties of �nancing constraints, as discussed above, can potentially

in
uence the role they play in pricing assets. Our structure has thus far only considered

constant values for the two coe�cients governing �nancing costs, b and c. Time

varying �nancing constraints can potentially a�ect the aforementioned important correlation

structure. Moreover, from an economic perspective, it is quite likely that the unit costs

associated with raising external funds are much more severe in recessions than in expansions.

A plausible way of capturing this intuition is to allow for a more 
exible speci�cation for the

�nancing costs where now:

b
t
= b0+b1DFt

(38)

where DF
t
denotes default premium as measured by the di�erence of corporate BAA bond

yields and AAA bond yields of corresponding maturity. DF
t
is counter-cyclical and therefore

can reduce the counter-cyclical measure of investment return induced by the counter-cyclical

properties of the pro�ts to investment ratio. However, as Table 12 documents that, even with

this modi�cation, our GMM tests con�rm the negligible role played by �nancing constraints.

The parameter c captures to some extent the degree to which �nancing constraints are

binding given investment and pro�t levels. It may well be the case that c is time varying as

well. We, therefore, also report the results of allowing for time variation in the threshold, c.

26



Speci�cally we parameterize this as:

c
t
=

exp[c0 + c1DFt
]

1 + exp[c0 + c1DFt
]

(39)

thus restricting that its range is between zero and one. Again our results show that the

estimated values for the share of �nancing constraints, �, is essentially zero.

Reduced Form Factors

We construct a pricing kernel M by directly using i
t
and �

t
as two pricing factors. Table 13

report the results from these experiments. It is evident that the role of � is quite limited |

lending support to the fact �nancing constraint is not being priced through the investment

based returns.21 On the other hand, these experiments also show that not forming the

investment based returns, RI , but rather directly using i
t
as a factor, one may reject a

priced factor.

Alternative Channels

There are two potentially important aspects of our empirical implementation that may not

be consistent with typical investment and its associated �nancing process. First, investment

may have an important time to build component. In particular, the �nancing procedures

may precede the actual investment by a quarter or two. The lending o�cer in that case

may use lagged pro�t measures. In that case, our speci�cation su�ers from potential time

aggregation problems. One remedy, albeit not perfect, is to look at annual returns. We

do that as a check on our results, and �nd that they are again unaltered. Second, our

speci�cation leads to what one might consider as a �rm liquidity constraint. That is the

�nancing constraint is with respect to current pro�ts and investments. One can alter the

21Note that the �2 measure of �t in Table 13 is not directly comparable to those in Table 7 as investment

return is not priced and there are two factors directly entering the pricing kernel in Panel B of Table 13.
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structure to make the �nancing constraint resemble a solvency constraint | a constraint

that will depend on present value of expected future pro�ts. This modi�cation is beyond

the scope of the current paper.

6 Conclusion

In this paper we ask the question to what extent �nancing constraints are quantitatively

important for explaining stock returns. We �rst show that for a large class of theoretical

models, the �nancing costs have a common general representation amenable to empirical

analysis. Through some calibration exercises, we �nd that the model with �nancing

constraints is more successful at generating volatile investment returns. In that dimension

�nancing constraints help match the behavior of stock returns. However, when �nancing

constraints are put into a linear factor pricing model, they seem to be invariably rejected as

being important for pricing returns.
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Appendix: Data Description

The measured value of capital income from �xed private capital is taken from the NIPA. There

is some ambiguity about how much of Proprietor's income and some other smaller categories

(speci�cally, the di�erence between Net National Product and National Income) should be treated

as capital income. We de�ne the measure capital income as follows. Let unambiguous capital

income be de�ned as follows:

Unambiguous Capital Income = Rental Income + Corporate Pro�ts + Net Interests

with Rental Income, Corporate Pro�ts, and Net Interest from the NIPA (Table 1.14). We next

allocate the ambiguous components of income according to the share of capital income in measured

GNP, denoted �
p
. Now de�ne nominal capital income as follows:

Nominal Capital Income = Unambiguous Capital Income + �
p
(Proprietors Income

+Net National Product� National Income)

+Consumption of FixedCapital

= � GNP

where Consumption of Fixed Capital is taken from NIPA (Table 1.9). This equation can be solved

for �
p
as

�
p
=

(Unambiguous Capital Income + Consumption of Fixed Capital)

(GNP� Ambiguous Capital Income)

which, multiplied by GNP, gives us the measured value of nominal capital income.

To obtain real capital income, we need to de
ate the nominal capital income. We use the

investment de
ator, de�ned as the ratio of nominal investment and real investment.
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Table 1 : Properties of Investment Returns Without Financing Costs and When

�=2:5%

This table reports the mean, volatility, �rst-order autocorrelation of investment return series as well as

its cross-correlation with stock returns. Investment returns are generated from the model without �nancing

constraint (b=0). In the table, �̂ denotes the average in-sample total adjustment cost (physical and �nancing

costs) as a fraction of investment expenditure. �̂ denotes the average in-sample share of the total adjustment

cost due to �nancing constraint. �(1) is the �rst-order autocorrelation of returns. corr is the cross-correlation

between investment and stock returns. The means and volatilities are in annualized percent.

Rs RI

In-sample Fractions of Costs

�̂ - 0.00 0.05 0.10 0.14 0.20 0.50 1.00
�̂ - - 0.00 0.00 0.00 0.00 0.00 0.00

Moments of Returns

mean 9.08 12.28 10.96 9.84 9.08 8.12 5.00 2.64
std 12.28 0.70 1.16 1.78 2.24 2.84 4.82 6.38
�(1) 0.33 0.96 0.46 0.29 0.24 0.21 0.17 0.17
corr - 0.18 0.40 0.42 0.43 0.43 0.42 0.42

Table 2 : Properties of Investment Returns With Financing Costs and When �=2:5%

and c=0:50

This table reports the mean, volatility, �rst-order autocorrelation of investment return series as well as the

cross-correlation between investment returns and stock returns. Investment returns are generated from the

model with �nancing constraint and parameter c = 0:50. In the table, �̂ denotes the average in-sample

total adjustment cost (physical and �nancing cost) as a fraction of investment expenditure. �̂ denotes the

average in-sample share of the total adjustment cost due to �nancing constraint. �(1) is the �rst-order

autocorrelation of returns. corr is the cross-correlation between investment and stock returns. The means

and volatilities are in annualized percent.

Rs RI

In-sample Fractions of Costs

�̂ - 0.14 0.20 0.25 0.35 0.50 1.00
�̂ - 0.00 0.30 0.44 0.60 0.72 0.86

Moments of Returns

mean 9.08 9.08 8.08 7.76 7.56 7.64 8.16
std 12.28 2.24 8.94 12.64 17.52 21.84 28.14
�(1) 0.33 0.24 0.14 0.14 0.14 0.14 0.14
corr - 0.43 0.40 0.40 0.40 0.41 0.41
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Table 3 : Properties of Investment Returns With Financing Costs and When �=2:5%

and c=0:75

This table reports the mean, volatility, �rst-order autocorrelation of investment return series as well as the

cross-correlation between investment returns and stock returns. Investment returns are generated from the

model with �nancing constraint and parameter c = 0:75. In this table, �̂ denotes the average in-sample

total adjustment cost (physical and �nancing cost) as a fraction of investment expenditure. �̂ denotes the

average in-sample share of the total adjustment cost due to �nancing constraint. �(1) is the �rst-order

autocorrelation of returns. corr is the cross-correlation between investment and stock returns. The means

and volatilities are in annualized in percent.

Rs RI

In-sample Fractions of Costs

�̂ - 0.14 0.20 0.25 0.35 0.50 1.00
�̂ - 0.00 0.30 0.44 0.60 0.72 0.86

Moments of Returns

mean 9.08 9.08 43.60 75.88 138.88 230.56 527.64
std 12.28 2.24 100.78 163.32 286.84 473.04 1100.68
�(1) 0.33 0.24 0.02 0.01 0.00 -0.02 -0.04
corr - 0.43 0.15 0.14 0.13 0.12 0.11

Table 4 : Properties of Investment Returns With �=1:5%

This table reports the mean, volatility, �rst-order autocorrelation of investment return series as well as the

cross-correlation between investment returns and stock returns. Investment returns are generated from the

model without �nancing constraint (b=0). In the table, �̂ denotes the average in-sample total adjustment

cost (physical and �nancing cost) as a fraction of investment expenditure. �̂ denotes the average in-sample

share of the total adjustment cost due to �nancing constraint. �(1) is the �rst-order autocorrelation of

returns. corr is the cross-correlation between investment and stock returns. The means and volatilities are

in annualized percent.

Rs RI

In-sample Fractions of Costs

�̂ - 0.00 0.03 0.05 0.10 0.25 0.50 1.00
�̂ - - 0.00 0.00 0.00 0.00 0.00 0.00

Moments of Returns

mean 9.08 10.12 9.60 9.08 8.36 6.64 4.92 3.24
std 12.28 0.44 0.68 1.08 1.68 3.22 4.78 6.36
�(1) 0.95 0.53 0.31 0.22 0.18 0.17 0.17 0.17
corr - 0.17 0.38 0.42 0.42 0.42 0.42 0.42
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Table 5 : Properties of Investment Returns With �=1:5%

This table reports the mean, volatility, �rst-order autocorrelation of investment return series as well as the

cross-correlation between investment returns and stock returns. Investment returns are generated from the

model with �nancing constraint and parameter c = 0:50. In the table, �̂ denotes the average in-sample

total adjustment cost (physical and �nancing cost) as a fraction of investment expenditure. �̂ denotes the

average in-sample share of the total adjustment cost due to �nancing constraint. �(1) is the �rst-order

autocorrelation of returns. corr is the cross-correlation between investment and stock returns. The means

and volatilities are in annualized percent.

Rs RI

In-sample Fractions of Costs

�̂ - 0.05 0.10 0.25 0.50 0.75 1.00
�̂ - 0.00 0.46 0.78 0.89 0.93 0.95

Moments of Returns

mean 9.08 9.08 8.24 8.20 9.12 9.96 10.60
std 12.28 1.08 8.50 20.10 28.08 32.36 35.26
�(1) 0.33 0.31 0.13 0.13 0.13 0.12 0.11
corr - 0.43 0.42 0.40 0.40 0.40 0.39

Table 6 : Summary Statistics of the Assets Returns in GMM

This table reports the means, volatilities, Sharpe ratios, and �rst-order autocorrelations of excess returns of

deciles 1{10, excess value-weighted market return (vwret), and real t-bill rate (rtb)). These are the returns

data used in our GMM estimation and tests. Means and volatilities are in annualized percent.

Decile Returns vwret rtb

1 2 3 4 5 6 7 8 9 10

mean 12.57 10.05 9.55 9.83 8.86 9.01 8.21 8.60 7.71 6.92 7.42 1.87
std 19.73 17.60 16.86 16.21 15.60 15.29 14.57 13.82 12.93 11.45 11.97 1.33

Sharpe 0.64 0.57 0.57 0.61 0.57 0.59 0.56 0.62 0.60 0.60 0.62 {
�(1) 0.27 0.29 0.30 0.31 0.30 0.28 0.32 0.28 0.28 0.36 0.33 0.68
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Table 7 : GMM Estimates and Tests of Investment Return Factor Model (�=2:5%)

This table reports results of GMM estimates and tests of investment return factor pricing model. Panel A

reports the parameter estimates, t-statistics, �2, and p-value for JT test, as well as moments of investment

returns generated using estimated parameters under unconditional model. Panel B reports the same set of

results for conditional model and Panel C is from the scaled factor model. In the unconditional estimates,

Re is the 10 CRSP size decile portfolio and one investment excess return and rf is the real Treasury-bill

return (12 moment conditions). The conditional estimates, in nonscaled and scaled model, use the decile 1,

2, 5, 10, and investment excess returns, scaled by instruments, and the real Treasury-bill return (16 moment

conditions). Instruments are the constant, term premium (tp), and equally weighted dividend-price ratio

(dp). The p-value is the probability of obtaining a �2 value as high or higher.

parameter estimates JT test fractions moments

a b c l0 l1 l2 l3 �2 p-value �̂ �̂ E[RI ] �[RI ] �[RI ] corr

Panel A: Unconditional Model

params 13.88 0.00 { 39.56 -37.89 { { 16.29 0.06 0.25 0.00 7.43 3.27 0.19 0.42
t-stats 6.70 3.32 -3.25

Panel B: Conditional Model

params 9.92 0.00 { 101.80 -98.70 { { 21.04 0.07 0.18 0.00 8.45 2.63 0.22 0.43
t-stats 8.64 5.50 -5.45

Panel C: Scaled Factor Model

params 13.40 0.00 { 59.57 -57.55 -0.03 0.14 16.48 0.12 0.24 0.00 7.54 3.20 0.20 0.42
t-stats 8.28 3.15 -3.12 -4.27 1.41
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Table 8 : GMM Estimates and Tests of Investment Return Factor Model (�=1:5%)

This table reports results of GMM estimates and tests of investment return factor pricing model. Panel A

reports the parameter estimates, t-statistics, �2, and p-value for JT test, as well as moments of investment

returns generated using estimated parameters under unconditional model. Panel B reports the same set of

results for conditional model and Panel C is from the scaled factor model. In the unconditional estimates,

Re is the 10 CRSP size decile portfolio and one investment excess return and rf is the real Treasury-bill

return (12 moment conditions). The conditional estimates, in nonscaled and scaled model, use the decile 1,

2, 5, 10, and investment excess returns, scaled by instruments, and the real Treasury-bill return (16 moment

conditions). Instruments are the constant, term premium (tp), and equally weighted dividend-price ratio

(dp). The p-value is the probability of obtaining a �2 value as high or higher.

parameter estimates JT test fractions moments

a b c l0 l1 l2 l3 �2 p-value �̂ �̂ E[RI ] �[RI ] �[RI ] corr

Panel A: Unconditional Model

params 16.96 0.00 { 42.29 -40.62 { { 16.71 0.05 0.22 0.00 6.91 2.96 0.18 0.42
t-stats 5.74 3.12 -3.06

Panel B: Conditional Model

params 12.36 0.00 { 110.34 -107.32 { { 23.99 0.03 0.16 0.00 7.56 2.38 0.19 0.42
t-stats 8.24 5.31 -5.28

Panel C: Scaled Factor Model

params 16.28 0.00 { 64.12 -62.11 -0.03 0.13 15.45 0.16 0.21 0.00 7.00 2.88 0.18 0.42
t-stats 7.63 3.13 -3.10 -4.40 1.35
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Table 9 : Properties of Pricing Kernels

This table reports properties of pricing kernel, including mean (E[M ]), volatility (�[M ]), market price of risk

(�[M ]=E[M ]), the contemporaneous correlation between pricing kernel and real market return (�(M;Rs)),

along with the fraction of �nancing costs in total adjustment cost �. The physical cost parameters a's used

in generating investment returns are those corresponding ones reported in Table 7. Panel A reports the

properties of the pricing kernels obtained using unconditional estimates. Panel B reports those of the pricing

kernels from conditional estimates and Panel C reports the results for the scaled factor model. The assets

returns used in the unconditional estimates are the 10 CRSP size decile portfolio, one investment excess

return, and the real Treasury-bill return. The assets returns used in the conditional estimates, in both

nonscaled and scaled model, are the decile 1, 2, 5, 10 and investment excess returns, scaled by instruments,

plus the real Treasury-bill return. Instruments are the constant, term premium, and equally weighted

dividend-price ratio. Finally, the market Sharpe ratio in the dataset we use is 0.60.

c = 0.50 c = 0.75

b � �[M ]=E[M ] �(M;RS) � �[M ]=E[M ] �(M;RS)

Panel A: Unconditional Model

0 0.00 0.64 -0.42 0.00 0.64 -0.42
5 0.08 0.35 -0.41 0.01 0.43 -0.39
10 0.15 0.23 -0.41 0.02 0.32 -0.37
20 0.25 0.13 -0.41 0.03 0.21 -0.35
50 0.46 0.04 -0.41 0.07 0.09 -0.32

Panel B: Conditional Model

0 0.00 1.26 -0.43 0.00 1.26 -0.43
5 0.08 1.91 -0.42 0.00 0.95 -0.38
10 0.15 1.63 -0.41 0.01 0.72 -0.34
20 0.26 0.32 -0.41 0.02 0.61 -0.30
50 0.46 0.07 -0.41 0.04 0.39 -0.26

Panel C: Scaled Factor Model

0 0.00 1.10 -0.43 0.00 1.10 -0.43
5 0.08 0.68 -0.37 0.01 0.71 -0.43
10 0.15 0.73 -0.27 0.01 0.76 -0.35
20 0.25 0.73 -0.23 0.03 0.79 -0.29
50 0.46 0.72 -0.19 0.07 0.74 -0.24
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Table 10 : Jensen's �

This table reports intercepts (�) and slopes (�) of the following regression:

Ri �Rf = �+ �(RI
�Rf )

where Ri is either value-weighted market stock return or Decile 1 return. The physical cost parameters (a)

used in generating investment returns are those corresponding ones reported in Table 7. The pricing error

or Jensen's � is in percent.

value-weighted return decile 1 return

c b � t-stat � t-stat � t-stat � t-stat

Panel A: Unconditional Model

0.50 0 0.18 0.34 1.17 4.88 0.36 0.41 1.90 4.82
5 0.72 1.60 0.82 5.38 1.26 1.69 1.31 5.22
10 0.99 2.30 0.64 5.56 1.70 2.39 1.02 5.37
20 1.24 2.98 0.47 5.72 2.09 3.05 0.75 5.51
50 1.45 3.58 0.31 5.91 2.43 3.62 0.49 5.69

0.75 0 0.18 0.34 1.17 4.88 0.36 0.41 1.90 4.82
5 0.65 1.38 0.82 4.90 1.14 1.46 1.33 4.78
10 0.93 2.07 0.62 4.81 1.60 2.15 0.99 4.66
20 1.20 2.79 0.41 4.66 2.05 2.86 0.65 4.48
50 1.44 3.41 0.22 4.49 2.42 3.47 0.34 4.28

Panel B: Conditional Model

0.50 0 -0.32 -0.51 1.29 4.45 -0.49 -0.47 2.12 4.42
5 0.34 0.69 0.93 5.18 0.65 0.79 1.50 5.05
10 0.71 1.58 0.72 5.43 1.25 1.68 1.15 5.26
20 1.06 2.50 0.52 5.64 1.82 2.59 0.83 5.44
50 1.37 3.35 0.33 5.86 2.30 3.41 0.52 5.64

0.75 0 -0.32 -0.51 1.29 4.45 -0.49 -0.47 2.12 4.42
5 0.28 0.50 0.93 4.31 0.49 0.55 1.52 4.29
10 0.68 1.35 0.68 4.08 1.15 1.39 1.12 4.06
20 1.08 2.34 0.43 3.75 1.81 2.38 0.71 3.74
50 1.43 3.27 0.20 3.34 2.39 3.31 0.33 3.34

Panel C: Scaled Factor Model

0.50 0 0.13 0.24 1.18 4.84 0.27 0.30 1.93 4.78
5 0.68 1.50 0.83 5.36 1.20 1.59 1.33 5.21
10 0.96 2.23 0.65 5.55 1.65 2.32 1.03 5.36
20 1.22 2.96 0.47 5.71 2.07 3.00 0.75 5.50
50 1.44 3.55 0.31 5.90 2.42 3.60 0.49 5.68

0.75 0 0.13 0.24 1.18 4.84 0.27 0.30 1.93 4.78
5 0.62 1.28 0.83 4.83 1.08 1.36 1.35 4.74
10 0.91 2.00 0.62 4.72 1.55 2.07 1.00 4.61
20 1.19 2.74 0.41 4.54 2.02 2.81 0.66 4.41
50 1.44 3.40 0.21 4.34 2.42 3.45 0.34 4.20
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Table 11 : GMM Estimates and Tests Using Small Decile Returns

This table reports results of GMM estimates and tests of investment return factor pricing model using small

decile returns from NYSE/AMEX/NASDAQ. Panel A reports the parameter estimates, t-statistics, �2, and

p-value for JT test, as well as moments of investment returns generated using estimated parameters under

unconditional model. Panel B reports the same set of results for conditional model and Panel C is from the

scaled factor model. In the unconditional estimates, Re is the excess returns of CRSP size decile 1, 2, and

3 portfolios and one investment excess return and rf is the real Treasury-bill return (5 moment conditions).

The conditional estimates, in nonscaled and scaled model, use the decile 1 and 2 and investment excess

returns, scaled by instruments, and the real Treasury-bill return (10 moment conditions). Instruments

are the constant, term premium (tp), and equally weighted dividend-price ratio (dp). The p-value is the

probability of obtaining a �2 value as high or higher.

parameter estimates JT test fractions moments

a b c l0 l1 l2 l3 �2 p-value �̂ �̂ E[RI ] �[RI ] �[RI ] corr

Panel A: Unconditional Model

params 13.06 0.00 { 58.60 -56.61 { { 3.49 0.32 0.23 0.00 7.62 3.14 0.20 0.42
t-stats 4.67 -4.61

Panel B: Conditional Model

params 10.06 0.00 { 122.13 -118.58 { { 8.16 0.42 0.18 0.00 8.41 2.65 0.21 0.43
t-stats 6.78 -6.76

Panel C: Scaled Factor Model

params 11.55 0.00 { 75.25 -72.85 -0.03 0.22 8.05 0.23 0.21 0.00 8.00 2.91 0.21 0.43
t-stats 4.44 -4.40 -3.65 1.84
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Table 13 : Investment-Capital and Pro�t-Investment Ratios As Pricing Factors

This table reports GMM estimation and testing using ad hoc pricing factors. Panel A uses investment-capital

ratio (i) as the single pricing factor and Panel B uses both investment-capital ratio (it) and pro�t-investment

ratio (�) as two pricing factors. We scale the factor(s) using term (term premium) and dp (dividend-price

ratio). For the one-factor model, the pricing kernel is:

M = 10 + l1f1 + l2f1 � term+ l3f1 � dp

and for the two-factor model, the pricing kernel is thus:

M = 10 + l1f1 + l2f2 + l3f1 � term+ l4f1 � dp+ l5f2 � term+ l6f2 � dp

The assets returns used in the scaled factor model are the decile 1, 2, 5, 10 scaled by instruments, plus the

real Treasury-bill return.

Panel A: f1= it: Scaled Factor Model

l0 l1 l2 l3

loadings -1519 38549 107 3057
t-stats -5.71 5.61 5.17 3.63
�2 176.32

p-value 0.00

Panel B: f1= i and f2=�: Scaled Factor Model

l0 l1 l2 l3 l4 l5 l6

loadings 1.12 -37.10 1.08 -1.72 -21.71 0.01 0.29
t-stats 0.08 -0.22 0.17 -0.39 -0.53 0.07 0.29
�2 21.12

p-value 0.00
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Figure 1: Hierarchical Structure of Financing
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Figure 2 : Investment-Pro�t Ratio Over Business Cycle

This �gure presents the HP-�ltered quarterly Investment-Pro�t ratios (the solid line) and NBER recession

dates (the dotted line) over the period: June 1951 to June 1999.
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Figure 3 : Hansen-Jagannathan Bound

This �gure presents the Hansen-Jagannathan Bound implied by the assets returns used in the unconditional

model, i.e., the 10 CRSP size decile portfolios and the real Treasury-bill return. The circles are the maximal

market price of risk generated using investment returns as the single pricing factor. Investment returns are

generated using physical cost parameter a reported in Panel A of Table 7 and b parameter being 0, 1, 3, 5,

and 10 with c=0:50. The solid circle corresponds to the optimal parameter combination with b=0. The

triangles corresponds to the standard deviation-mean combinations of consumption based stochastic discount

factor �(Ct=Ct+1)

 where � is set to be 0.9920 (quarterly) and Ct is aggregate consumption expenditure on

nondurables and services in terms of 1992 dollars (GCNQF and GCSQF 1959:Q1{1999:Q4 from DRI) and


 is, frow right to left corresponding to the triangles, 1, 3, 5, 10, 20, and 30.
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