DETECTING LACK OF [DENTIFICATION IN GMM

Jonathan . Wright™

Abstract: In the standard linear instrumental variables regression model, it must be assumed that the
instruments are correlated with the endogenous variables in order to ensure the consistency and asymptotic
pormality of the usuat instrumental variables estimator. Indeed, if the instruments are only slightly correlated
with the endogenous variabies, the conventional Gaussian asymptotic theory may still provide a very poor

T

1 variables estimator. Because of

approximation to the finite sample distribution of the usual Instrument
the crucial role of this identification condition, it is common to test for ins qument relevance by a first-stage
F-test. Identification issues also arise in the generalized method of moments model, of which the linear
instrumental variables modei is a special case. But Iknow of no means of testing for identification in this
model, in the existing literature. This paper proposes a (est of the null of underidentification in the
generalized method of moments model.
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Introduction.

One of tne key assumptions of the standard linear instrumental variables (IV) model

is that the instruments and endogenous variables are correlated. This is the identili-

cation assumption, without which the usual IV estimator is neither consistent nor as- |
ymptotically normal. Tf the correlation between the ingiruments an a the endogenous
variables is nonzero, but slight, ther the conventional Gaussian asymptotic theory
for the TV model can nevertheless provide & very poor approximation to the acuual
sampling distribution of estimators and test statistics. An enormous literature has
cons:dered the exact sampling distribution of the two stage least squares {TSLS) and
limited information maximum likelihood ‘LIML) estimators I mo dels with nonsto-
chastic instruments and Gaussian innovations (see, for example, Richardson (1968},
Sawa (1969}, Phillips (1980, 1983), Nelsor and Svartz (19902, 1990h), Maddala and
Jeong (1992) and Bound, Jaeger and Baker (1095)). These exact disiributions are ar

from the limite obtained from conventional asyrnpsotic theory when the instrument

are weak; TSLS is severely biased in +he divection of tne probability lmit of ordinary

.

least squares and the associated t-statistic iz ornormal and can even be bi-

modal. Recently, alternative asymptotic n estings nave been proposed, which provide

- of estimators and

much better approximations to the actual sampling distribu

.

test statistics in the IV model. Belklker (1994) models the mumber of instruments as

being an increasing function of the sample size. Stalger and Stock (1997) model the




correlation between the instrx . endogenous variables as being local to zero.

Recognizing the identification assumption on which the IV modei rvelies, it is
quite common in the applied literature to test for instrument relevance by a first-

stage F-test {Basmann (1960)). This involves running a regression of tne endogenous

variables on She instruments and testing the nulil hypotiesis of the joint insignificance
of the siope coefficients, by means of an F-tes Te null hypothesis is one of & total
lack of identification. A rejection of this hypothesis by no means implies that issues
of weak mstruments can be ignored (see, for example, Staiger and Stock {1997)). Bus

a failure to reject this nypothesis is & strong indication of identificaticn dificusties.

The first-stage F-test is an important end useful diagnostic in the IV model.

L

The generalized method of moments (GIVM] model (Harsen (1982)) nests the
linear IV model as a special case. It is not surprising that analogous issues arise i
this model. Many researchers nave found thas, in a wide variety of contexts, the con-

ventional Gaussian asymptotic theory provides & poor approximabion to the sampling

distribution of GMM estimators and sest statistics. There are many possible reasons

why this could happen, but they include idenuncetion probiems (the identification

condition here requires a certain matriz to have full column ranls). The identification
condition is crucial in the GMM model, Just as 1t is in the ilnear l\/ special case. Busl

am aware of no test of the identification condition in the GMM model, in the existing

involves an appiicasion of

literatire. This paper proposes such & test. Essentlally, |
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the general approach to testing wne ravk of a matrix proposed by Crag

o
(ote]

consistently estimabie. The proposed test is, in general, asymptotically conservative.
The first-stage F-test in the linear TV model tests the null hypothesis that all
of tne instruments are uncorrelated with all of the endogenous regressors. [n the

presence of multiple endogenous regressors, tne linear IV model may still fail to be

fully identified even if this nuil nypotnesis is false. Choi and Phillips (1992) discuss

-t

situation and call it partial identification. Tt could arise, for example, if only
one nstrument is correlated with the endogenous varianles. The first-stage F-test
will not detect this kind of identification problem; if the model is partially identifiec

then the first-stage F-test will reject with probabiilty one asymptotically {Nelson

and Startz (1990b), Shea (1997)). Cragg and Donald {1993} propose & test of the

null of partial identification in the linear IV model which can detect this kind of
identification probiem’. The test that I propose in the GMM framework reduces to
Cragg and Donald’s test in the linear IV model. If the test that I propose in the

GMM framework is used to test the null of a compicte laci of identification, tnen it

reduces to the usual first-stage F-test in the lnear 1V moael. In the special case of

T /ance in the lnear IV
model with multiple regressors, likewise motivated by the fact ¢ 1 Rrsquared (or F-statistic)
nat the modael is fully icentified. This measure does not

*Shea (1997, proposed a partial R-squared measure cf i

in the first-stage regression does not imply {
however allow any formal test to be conduciec.




the linear IV model, the proposec *

© iz no longer asymptotically conservative

ection Z discusses

2

The plan for the remainder of tnis paper is as follows.
the GMM model, the consequences of identification problems and approaches for
conducting inference when identification cannot be assumed. Section 3 discusses
the proposed test for detecting underidentification. Section 4 contains Monte-Carlo
evidence on its performance in the context of GMM estimation of the consumption

(1978). Section 5 concludes.

capital asset pricing model (CAPM) of T.ucas )

The GMM Model.

The GMM model specifies that {Yi1:_. ‘s an obhserved time series and 6 is a vx
L di=C £

L

=
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parameter vector with a true value g, in the interior of a compact space O, such tha’

N
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—
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where A(.,.) is a G-cimensional function anc the expectation conditional

on any variable in the information set 25 ime = 2 kx] vector of instruments

in the information set at time 7. It fodovw: Y, B0 = 0, whers ¢(V,,0) =

|

MY, 0) @ Zy, a Gkxi vector. Tt is assumed thet G > 7.

The GIVIM estimator of & is




where

o) = [TV (Y, 6)] and Wr is & symmetric positive definite GhxGlk weighting
matrix which converges almost surely G0 & symmetric nomehochastic O(1) positive
definite matrizz W.

Trom here unbil the stars of subsec 2.1, T adopt all of the following standara

assumptions for the GMM model:

Assumption £

Assumption /

uniformly 12 .

Assumption A3 T-2SL. $(V;, o) —a N0, A}, "

Assumption Ad: The GIKxp mat i B = D-ﬁ——' 1

Assumption AS: E{p(Y:,0)) has a uricrue zero ab ¢ = dg.
\ vl } }

N\ r/_‘

Assumption AG: V(d) = T o(Ys, 0)0 Y, 6) s e continuous | webion of & wiic

converges to B{¢(Y;, )05, 8) Y uniformly = <

Assumptions A2 and A3 are nigh level convergence sssumptions. Assumption Az ls

~ AB iz rules
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the identification assumption and is tl
oub the possibility that & conld be locally, but not globally identified (Hsiao (1983)

Under these sssumnptions, ¥ — ¢ and




VTG — 0) ~— 170, (BT 3) I BWAWB(B'W B)~

The asymptotically efficient estimator is obtain

ed by choosing a weighting matriz sucs

that W = A™*; the variance of this asymptotic distribution is then (BATT By L
In practice, GMM inference requires = specific weighting matriz to be chosen.
One possible choice of the weighting mairs is the identity matriz. This obiective
o 2
function s
S0 — —1/20 s NI =3/2vT Jal
Sos(0) =T / Sim oY, O[T i=19(Y%,0)]
Denote the resuiting estimator by dog

ergming Scg(f). This estimator is =ot

asymptoticaly efficient. A feasible asymupiotically efficient estimator can be obtained
by setting the weighting
(el <

g matrix equal to Vi{ B csi !, yielding the objective function

(5]
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OV VelBos) TS5 4(Y,, 6],

e

rs = arg ming Srg(0).
Another feasible asymptotically efficient estimss

CSUlITienor

car oe obtained by sebting the
welghting matrixz equal to Vp(8)

Denote the resulting estimator, called ti

C_._
[y

tinuous-updating estimator, by @,
VNI S '«
arg ming Soy

"This estimator was proposed by Hansen, Heaton and Yaron (1996)
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truments, which may be used to “est he

If Gk >

restriction that £¢(Y,0p) = 0. This may be done by Hansen’s J-test, the statistic

s

for which is Jpg = S7s(brg) or Jou = Soy (Gcu), depending on whether the tw 0-s5ep

or contiruous-updating estimator is used. Under the null, Jrg and Joy are boin

)

asymptotically y* distributed on Gk — = ¢

v

2.1 Problems with Standard Gaussiar A. For GIM.

The above asymptotic theory often works poorly in practice. Often, in empirically

~
~

relevant sampie sizes, Grg and Oy are biased and have sampling distributions far fr

those precicted by this asymptotic theory, and the associated J-statistics ha
rejection rates. These problems have been cocumented in Monte-Carle studies b
Tauchen (1986}, Kocherlakota (1990} and by tre papers in & 1996 special issue of “he
Journal of Business and Fconomic Staiisiics o GNIM estimation, including Harser,
Heaton and Yaron (1996). Problems with the conventional asymptotic theory in the
GMM model could occur for & number of reasons. It could be that T-V25T 4(V], 4y

fails to converge to normality, or converges only very slowly. Alternatively, it could

be that B(¢(Y;,0)) is zero, or close to zero, even 1or & =£ &y,

The focus of this paper is on problems w't asymptotic theory underlyin

Nt
o

GMM which arise from this latter source: an identification problem. Stock and

Wright (2000} proposed an alternative asymptotic nesting in which F(a(V;,6)) =
S \ J - = NT ‘\ 7 v

—1/% " T N
orr uniformly in 4. They derive an alternative asymptotic theory which nests

~




the completery anidentified model (5(£(V,, 6)) = 0, unifor mly in §) as a speciel case.
This alternative asymptotic theory works much better than the conventional Ca, ussian
asymptotic theory in providing an approximation to the finite sample distributions

of GMM estimators and test statistics in the consumption CAFPN, considered by

)

Tavchen (1986, Kocherlakota {1990) and Hemsen, Heator and Yeron 12996). S

1 cen accouns for mary of the puzzles found in Monte-Cario studies of the CML

metaod. [n the linear IV model, it reduces to the nesting proposed by Staiger and

Ssociz {(1997)
e "
2.2 S-seis

Taoe weak identification problem in GNMM may be effectively circumvented by tne

use of >-sets, as proposed in Stock and Wright (2000). The approach dispenses with
point estimation and instead forms a confidence set for 4 directly from an objective

function, using a nonlinear analog of tne Anderson-Rubin confidence seb (Ander-

son and Rubin (1949), Staiger and Stock (1997))%. If assumption A3 noids, and if

Vr{éo) —, A, then tne continuous-updating objective function evaluased af the true
parameter vector, Soy(Fg), converges o a x? distribution on GK deg grees of rreedom.

No identification assumption (assuraption A4 or AB) is required for this to noid.

The confidence set for @ g formed as the

T

[he ordinary Anderson-Rubin confiden
resated coniidence sets have been

other closey

problems (Zivet and Wang (1998)).

Q
S




test, i.e. the confidence set of zocver

waere 2(a,0) is tre 100a percentile of a ¥? distribution on b degrees of freedon
In & completery unidentified model (F{¢{V;,8)) = 0, uniformly in G} or a locelir =s-

N

ymptotically underidentified model (£{¢(V;,8)) = O(T~Y2), uniformly in ), such =

confidence set will have infinite expected volume. Bub this is “ne correct statement

ification. More forriaily,

of our uncertainty about ¢ In the pres
uncer these circumstances, any conficence set that is valid (i.e. controis coverage)

7). In an identified model, the S-

s

rust nave infinite expected volume (Dufour {199
et 15 asymptotically equivalent to the usuzl confidence ellipse, based on conventional

asymptotic treory.

2.5 Locas Identification, Globai Identificotion and Pariial Ideniification.
Assumption A4, specifying that B is of ranl p, is the local identification assumption

(Hsizo (1983)). It implies that F{¢(V;, 01 has & zero at dg, $hat ‘s unique at least in a

bal identification sssumption. A model

x

neighborhood of fy. Assumption Ab is

ntified.

could be locally identified without beln; In thig case, we woula

expect S-sets to be disjoint, in large sampies. However, nerceforth in this paper, all

references to identification refer exciusive.y to locs
If B is of rank p, then ¢ is compietely identified. If EF is of rank zero, then

¢ is completely unidentified {or completely underidentified’. The case in which B

has a nonzero rank, smaller than p, can be called partial identification (or partial




underidentification). Chol arc Philips (1992) discuss & linear 1V model in whick

il !

somrne endogenous variables are correlated with the 15L1umems while others are not.

I'nis results in partial identification. The parameters associated with the endogenous

variables which are uncorrelated with the instruments are not consistently estimable.

Wrat is less intuitive,

The remaining parameiers are root-1" corsistently estiman]
but also shown by Chot and Phillips is thet these laster parameters do not have their
usual normal limiting distributions; their Bmiting distributions are affected by the
fact that other parameters are not consistently estimable. Stock and Wright (2000
provide the limiting asymptotic distribution of the estimators in tne GMN. mocel.
in the presence of partial identification. In the standsrd consumption CAPM,
camonical application of the GMM mettod, B s unlikely o nave zero rank, but may

well have rani: smaller than p (see Stock and Wright, and section 4 below). So partial

identification is an important issue in considering iaentification in the GMM model.

Detecting Underidentification.

The focus of this paper is on tests for ceteciing & _aclr of identification. In the
linear IV model, it is common to test for nstrurnent relevance by a first-stage F-test
(Basmann (1960}). This involves running & regression of the endogenous variables

on the instruments and testing the null hypothesis of the joint insignificance of the

slope coefficients, by means of an F-test. The null hypothesis is one of a total lack




of identification. A rejectiorn o7 saesis by no means implies thst issues of

weak instruments can be ignored. But a failure to reject shis hypothesis is a, strong

indication of identification difficulties. However, I know of no anaiogous fest in “he
GMM modei. The paper provides such a test®.
The identification condition whnicn I wish to test is asswmption A4, that the mea-

denotes the rank of ite

ard introduce three more possible assumiptions:

: =, mi/92 A AN = AT —~ - — — dp(V.80)
Assumption BL: TY2[vec(B{6g)) — vec! B)] — 4 N0, where & = F \[J@C(L(—S& —
Bﬂ]}/rm dp(¥e,90) 1y s Gnit sitive-cefnite matrix of full ranl~

' vec(=555=2 — B} is a finite positive-definite matrix of full rank=.
Assumption B2: C(6;) —, C.

Assumption B3: Vi

“The S-set works reﬁ‘a**dkss of s means of
detecting underidentifica istent poins
estimates of the parsmet . ce ntervals for
indivicdual parameters which do not need to b : y e ere availabie and {(c) the
S-set is hard to represent when uhﬂ.

conide

S are mMorg Ul

+The requirement that C be of full rank could be relaxed along the lives proposed by Reoin and
Smith {2000).




Assumptions B1, B2 and B3 ax

convergence ass Ul’lipuloﬂm, as alr
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tions A2 and A3 above. In specific models, more primitive conditions may be availenle
thet in turn imply that these assumptions hold. Assumptions A3, Bl, BZ and B3 ail

Y n

apply only at 8 = §,. Assumption B3 is a special case of asstumption AB.

where Q(r) is the space of all Glxp mesirices of rank r. If 6o were xnowr, L6y, )

would be the statistic for testing the rani of B, proposed by Cragg and Donald {1997

My first theorem is 2 direct consequernce of Theorem 1 of Cr

Theorem 1: Under assumptions Bl znd BZ, a1 , tnen L(8g,7)
converges to & y* random variable on (G —

Clearly 0 is not known and is not consiss estimanle (under tie null hypothesis .

However, under assumptions A3 and B3, S;{a) is a confidence set for ¢ with asymp-

totic caverage 1 — o, My second trecrer folows fom tnis facs, Tneorem 1 and the

Bonterroni inequality

Theorem 2: Under assumptions A3, B1, B2 and B3, & B is |
) E

s f Foa N g \ IR R
L (r) = inlgess (o) L{8,r), then Umy o P{L*{r) < Falc,

L#(r is & feasible statistic whicn yields an asympt otically conservative test; tae lm-

iting propability of incorrectly rejecting tne null is bounded above by 2a. This I tae




test statistic proposed in thiz papes; rejects iff L*(r) exceeds the y? critical

43

value. If p(B) is in fact lower then the hypothesized rank r, I conjecture (fo.ow-

ing Cragg and Donald) that the test will continue to be asymptotically conservaiive.

D\ ta hinher ] cslzad e
If o(B) is higher than the hypothesized vz

]

appropriate to $est the null that p(E) =2 — 1

Lamear 1V Model.

o

1 Emisiing Ideniification Tesis and ©

Consider the simpie inear TV model

fro— B a
ST i e
Ty = J\_[,/ZL —i— Ty
WOErS e 1S a chLch error term . U 18 z :JXL error L(‘LLT’ :-JL == (ZL—L./ ’U‘ﬁj' 18 1ict with meaxn
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oUn Lt

S IR T ’ ’ OURSORIE VICR
ovariance matrin 2 = (partitionsd
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conformably with (), z; is = pxl vector of endogenous variables, z is a kxl vector
- 5

of ‘netruments that is uncorrelated with (,, = > » anc Il is a kxp matrix. The

matrix of full rank. Lastly, assume that Dy, 20, s

are endogenous. The identification condition® is &

oiz of full rank sna
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G=1,0=p4Y=

[

SN iy 8 Vo SN LS oy TN A\ S T
2 o = 2 MY, 0) = g — Oz and ¢(;,0) = z(ys — Foy). Accordingly,

—— = #zz,, which does not depend on the parameter vector. This reprasents an

extremely usefun simplificaticn, since it in turn means that L{6,r" does not depend

1. There is

ution as

on ¢ zna nas e x” null Emiting

- Fe L ~
L Toeorem 2; 5o do

the test’. Accordingly, in the linear

80 wotld simply nsive the asymptotic s

TV modei, the proposed test is no longe: ically comservative and instead hes

N N
- A S A Lo 1 P e Pt =1 7
O = Vs {vec{ 0 Yapy & O, where O =17 A

multivariate regression of x; on z. So, “Ze proposed test =t

—

the Jorm

Lir, = Tminpegy|vec{T 12/ X} — v

\

8 Teaucs Lo

ep and continuous updating Gl
estimators, regpactiveiy.

In the general GMWM model, the gradient of the momen$ condition aepends on the parameter
tently estimable without complete identification), necessitating the el
gument. The linearity wiard IV

lition does not cepend o 8 and so this difficuty

io

<
>

vector (which is not cor

iie Sta

imationr of the nuisance parameter § by a Bonferroni a:

wdient of tne moment condi

mode. ensures tnat the g
is circurnveniec.




Here, and for the remainder of his =, 1 drop the now-degenerate dependence of

this statistic on §. In this speciic model, there is o closed form expression® for 0(r),
since
L(ry = T minpeq) ir[S (T2 5 X — PYO-WT157X — B

— Tt = A2 =1/2 _ B By AL
= T'minp.gey ir((¢ 1A ! LTS -

wiere A; Is the ith generalized sigenvalue of 1I' 772 il with respect o Lw, arrangec in
increaging oraer (A; < Ay < .4, . This is simply “he test statistic which Cragg and

Doneald {1993} proposed to test the hypo!
model”. As discussed in the introduction, Crage
over tne usuai first-stage F-test that it can cetect partial underidentification, not

Just complete underidentification. If the researcher wishes to test the hypothesis of

complete underidentification in tne linear IV model, then the proposed test statistic,

~ ~

L{0Y, is simply (311 2/ 211 = vee(T1) (5

Y / / \4’“J

® Z'Zvec] m‘ This is just the usual

' : e = 140
first-stage F-test statistic!

C»
D]

“The test stab
solution to an eigenvalue problem),

C

tic in Cragg and Do

Hy GkxGE and pxp matrices, resp

Donaid.

It is

alsc the tegt S‘mtistic

o S s T . o Ltent SCI e R TR TV EREP NN
Wror p > 1, shis ie a multivariate F-statistic (Staiger and Stock (1997,

=




4. Monte-Carlo Results.

One leading application of the GMM meth od is to inference in tne consumpuion

CAPM o

(‘ )
oy
n

s (1978) with intertemporally separable constant relative risk aversiox

(CRRA) preferences. In +his section, I evaluate the size and powe

tegt in this model. The Eu i,

Tnars V. o (T CiviNt 0 (5 AN L — > N e s
where Y; = (fop,—50), 0 = (0,7) I = Rey) is a
asset returrs, Oy is nonstoreable consumption, ig ig 5 Gl wvector of ones, § &
discotnt factor and -y is “ne coefficient of relative risk aversion (Hansen and Singleton
(19823}, Let Dy, Iy and vy s dividend, price and price-dividend ratio ror

L e 1 =y L A )

asse” © ab date f, so that vy = 5°¢ n erement of the Fuer

equation can be rewritten as

Iploitetcine

{ 32‘7!41

./ZL

niation set ab

1@ 310l

Note tnat I

date ). then the price-dividend ratio for and is vl =
) ‘s

+ GMM estimation of this model, ¢, —ig) ® Zp and
s \w‘
E={ BlZ R @ 2] Z)
y C )




Let the vector of instruments cotsiss of an intercept, lagged returns and lagged con-

sumption growti, as is typical iz tils literature. It is hard to imagine & cage in whics
tre matrix B would nave rank zero™*. But, 1% is easy to imagine circumssances ‘n

which it has rank 1, while the identification condition requires it to have ranl: 2. Sup-

v - i1 Ciping o T iom Tt A mgde /7 (SIS RY
pose that G = 1 and (&8 =207 i indepenrdent of . (R, =5
L i - ~L

i
1

ija 7 = ncent of ~ IS = ia = <)
is inde pendent O oy, SO O I3 & fx

% of ranl o, because aii of its rows are

proportionar to the first row =, Altern

suppose tnalb consumption is constant.

Then (regardless of the number of assets ¢ or the instruments 7, all the elements

3

of th

@
W

LWz

I

econda column of 5 are equal to zero, ¥ again nas T

consumption is cleariy not literally constant, v nearly @ and this is,

s m~dependent,

Zeoell nave R -+ w finitte momen tor some

w > 0.

Lo simulate data from the consuwmy 7 the approacn of Tauchen

U This is the main reasor \uJ tms paper
has =zero ranig, like ’”3 fir
in the linear IV model
in trne structural equati
overlooked by simply project
general nonlinear GMIM contex
nonzerc rank.

thesis that &

< ‘.:u:dr*b is th-:rt

”I‘ G>1, 1 ally e Tormally identified swen if =22 and =52 are a1




and Hussey (1991} (also used i Teucner (1086), Kocherlakota {1990}, Harsen, Heaton

and VYaron (1996) and Stock and Wright (2000)). This involves it

1) tting 2 10-state

. to consumption and stoci-market dividend | growth calibratea so s 50

Wearlkov chel

approximate the frst-order VAR:

/ N / N
| j
i | [ Zigr
{ by o
.
i ! o
% ' S 1 A
\ J \ /
¥ 7 : L SGR L B e S eyl NEa oz 3
where [; ‘s the stock-market dividend &t date T and (e, Ug) I8 L

mear zero and variance A. Consumption growtn and dividend growtn are the state

ML TTCII

Taking rancom draws of cor

this Markov chaln, numericel quadrasure e &

stocl and = riskfree asset in each period implied by tne consu

o

[)

bie CRRA pret

insertemporally separa

: ¢ : : Tt 13
series of consumption growth and stock returng may 0e simulated
) o

The Monte-Carlo sirnulation in this subsection is based on Sne Fuler equation

in this consumption CAPM for a s cks, G=1) and with instruments

T=100, 500 znd 1000. The sample

1 R, ==Y, 1 consider three samipie s

N

size of 100 is most commoniy used in Monie- o

equal to the available sample size for U.S. annual dats. The .

I Sanp.e S1ZeS ars

also considered so as to include models with less severe identification problems. 'lo




complete the specification, 1 must specity values of §, v, g, ® and A. 1

o combinations of these parameters, as listed in Table 1, and refer o tre res s

models as modeis MI1-M5, respectively.

Models M1 and M2 set & equal to

as to wipe out ail

serizl depencence in tne growth rates of comsumption and di

\<

viderds., Note that i

tlese models, consur still contemporanecusiy

correlated. The true rank of 5 is 1 in tnese models; the models are not fully identifiec
and so toe rejection rate of tne proposed test, used to test tne hypothesis that ol B)
1, represents the size of the test.
Kocheriakota {1990) cnose values of i, & end A by ftting a bivariate VAR/L)

to historical U.S. annual real dividend

and real consumption growth data.

Models M3 and M4 use his values of o, & and A. The true rank of B is 2 in these

7

models; the models are identified and o0 tne rejection rate of the proposed test, used

to test the hypothesis that p(5) = 1, represents tne power of tre test. However, B is
close to being rank-deficient and so weal identification problems may arise. Hansen,

Heason ana Yaron

ne conventioral Gaussiar

-

asymptotic theory works very poorly i smei

mpies i toese models {e.g. the

\_)
AT UL

estimators are biased and have nonnormal sampling distributions). 1% is of interess

to see how the power of the proposed test s related to the quality of the conventional

asymptotic theory.




Model M5 uses values of z, & ana A for which Tauchen (1986 d that the

conventional asymptotic theory works well, even in small samples. My model M5
ie Taucnen’s experiment 1B. The true rank of 5 is 2 in tnis model; ke model is

identified and so tne rejectior rate of the proposed test, used to test the nypothesis

2{ O = 1, represents tne power of toe test.
In models M1, M3 and M5, § = 0.97 and v = 1.3, In models M2 and M4, § =

1.139 and « = 13.7. These latter parameter values were advocated by Kocherlakots

()
)

{1990} as a somtion to the equity premium puzzie.
Tre simuistec rejection rates of L1 are reportad in Tabies 2.6 for models

W1-M35, respectively. 'The rejechion rates represent “re size of the test in Tables 2

and 3 (modeis M1 and M2} and repres

In these tables, I also report:

(2) the 10th, 50th and 90th percertiles of dps, Yrg, boy and oo the two-step and
continuous-updating GMM estimetors of § and

[ 90th percenties of

, which will be close to their tneoretice. values [-1.282. 0 and 1.282} if the

conventional WSYH'lJ QT1C CLGO’"‘/ is wor kLLlT ”*/eu

(¢) the Kolmogorov-Smirnov gtatistics comparing the sampling distributions of the ¢

statistics to the standard normsal distribution and




All tests have a 5% nominal size.

rr\

Tn the simulations without complete identification (models M1 and MZ), the

estimators of § and « can exhibit severe median bias and the sampling distribution

feom the standard normal distribution

oo

of the associated t-statistics can be very fe

]

predicted by conventional asymptotic

Fese problems are much worse with

the parameters § = 1.139, 7 = 13.7 (model M2) than wit:

- v 5 — OO
ng parameters 0 = 0.97,

v = 1.3 {model M1). Indeed, in mode

3

and .. £re both ciose to being

shandard normal in samples of size 100

.
1

g normal as

[y]

500, but toem become

the sample size 1 sign of & of tdentification.  In all

cases. “he actus =ze of the proposed iest is well below

i

-2 nominal 5% level (nob

surprisingly, s tre test is asympt i

T model M3, the predicsions of conventiong. sy

as the sample size increases. In a sarnple of size 100, tne estimatorz eniblh gome
median bias and tne sampling distribution of the associa ated t-statistics is somewhat

nonnormal. Trese problems geb less severs as foe sammp 1= size ‘ncreases. The proposed

sest has very littie power in tae sample ot St the power increases wita the

sample size. In this model, with a saim hle gize of 1000, comventional asymptotic theo

works well and the proposed tess nes 20.6%

|

Tr. model M4, the predictions of cormvertional asymptotic taeory work less weill.

In a sample size of 100, the estimators exhibit considerable median bias and the

21




sampling distribution of the zssociatec s-statistics is far from oe andard normal.

Again the problems get less severe as the sampie size increases. The proposed %

has very litsle power in the sample of size 100. Its power increases with tie sampie

nomoael Mo,

size, but (appropriately) does so more

In moaer vis, 1 find (like Tauck

tnat the conventional asymptotic
tneory works well in all sample siz Correspondingly, the vropossd Sest has & very

Y o Iy -

hign rejection rate ir all sample sizes.

In summary, the proposed test is conservasive under She mull while, in the sim-
ulations where the identification condition is setisfied (modeis M3-M5), the its power

Iy associated with tre quality of the conven = symiptotic theory.
relationship is not 2 perfect ong; no mors tnan it 18 witn tne Orst-stage F-test in the

linear IV model (Staiger and Stock (1997,

Returns on a riskiree asset can also be generated by the algorithm of Taucnen

anc Hussey {1991, T do not run simulations in which both stocks and a riskiree asset
2. Thes g because in such a model, “he matrix B wi
v Snere is g of mstruments {given

sne obther Instruments

that consumption is not

are random numbers. esis of underidentification is no*




well defined when &G = 2. OF ¢

identified.

5. Conclusion.

5 clagnostic for checking

<

In the linear IV model, the first-stags F-test is 2

tihe quality of the instruments. In the exdsting e, there Is 1o analog of this

tese iz the GMM model. This paper naz proposad a te

~

complete underidentification in the generzl G

n
‘L\ )

seful diagnostic for identification difficulties in +nis model.

References.

Anderson, T.W. {1

: Estimating Linear Restric

tne Multivariate Normal Distribution, Annals

351

Anderson, T.W. znd H. Rubiz (1948} et

e AT T
O 250 Crastic

‘i
[q]
Nt
3
ﬁ

=

[aV]

ﬁ

IS

(L

[

[

o~

P

P

[RV

93]

[o4]

i}

@)

oy

[t

J—
al)

jy

]

[

%)

o

PN (TS S N B ARSI U £
merican Statistical Associaiion, 55,

pp.650-659.

very wealkly




Bekker, P.A. (1994): Alternative Approsimations o the Distr'butions of Tnstriumen
Variable Estimators, Fconomeirica, 62, Pp.6E7-681.

Bound, J., T A. Jaeger and R. Baker ( (1995): Problems with Tnstrumental Variasles
Estimation when the Correlation Between the nstrurments and the Endosenons T

plenatory Variable is Weak, Jouwrnc! of ihe Staisiica; Associaiion, 90

pp.443-450.

Cnoi, I ana P.C.B. Phillips (1992): Asvmptotic and Finite Sample tiom The-
’ \ / J J-

s and Tests in Partizlv Identified Structural Bquations, Journa!

of Economeirics, op. 113-150.

G

Cragg, end S.G. Donald {1993 T Identifiability anc Specification in Ir-

dxﬂ:hl

J.G.

strumental Variabie Models, Feonom ry, 9, Pp.222-240.
anid . Donald {1997): g tre Ranl of & Matrix, Jowrncl of

Flomen poriptrice TE ame D99 OE(N
Leonometrice, 76, pp.223-250.

Durour, J.ML 71997 Some Impossibility Theorems in E

to Structural and Dynamic Models, Feonomeirica, GE.

Hansen, L.P. {1982): Large Sample Frope ol T Mome
BEstimators, Feonomeirice, 50, pp.1029-1054.

Hansen, L.P., J. Heaton and A. Yaron (1996 le Properties of Some Al-

A a (-Lr e
. \Dtuﬁ/ i)

[CSNNNIA

ternative GMM Fstimators,

280.

D
s




Hansen, L.P. and K. Singleton (882 Generalized 1115 rumental Variable Estima

of Norlinear Rational Expectations Models, FBeonomeirica, 50, pp.1260-1286.

Hsiao, C. (1983): “Identification”, in Handbook of Feonometrics

i
ot
O

+

D
7y
N

CAch et N, A 2T Aemn s g e . T 15 YO .
Kocherlakota, N. (1990}: On Tests of Represent Asset Pricing WModels,
Journal of Moneiary Hconomics, 26, pp.285-304

Maddala, G.5. and J. Jeong (1992): On tae Exact Small Sample Distribution of the

Instrumental Variable Estimator, Feonomeirica, 60, pp.181-183.

Nelson, C.R. and R. Startz (1990a): S er Results on the Exact Small Sample

Properties of the Instrumental Variables Estimator, Feonomeirice, 58, pp.967-975.
Nelson, C.R. and R. Startz (1990b}: The Distribusion of “ne Instrumental Variable

Estimator ana

52 S-ratio When the tis & Poor One, Jouwrnai of Business,

Phillips, P.C.B. {1980): The Fxact

Sample Density of Instrumental Veri-

ables Estimators in an Bquation with v--2 Exdogenous Variables, Economeirica, 48,

C/J
Ch
}__‘
C/J
-
o

[EjeR

Phillips, P.C.B. (1983): “Exact Small Szxnple Theory i tas Simultaneous Equations
Model”, in Handooos of Economeirics, Vol. 1, eds. 7. Grilcres and M.D. Intriligator,
J ) i = 7

North-Holland, Amsterdam.

Richardson, I.H. {1968): The Exact Distribution of a Structural Coefficient Bstima-

I
2!




, pp.1214-1226.

;

tor, Journal of the American

Fooin, J.M. and R.J. Smith (2000): Tests of * Rerk, Fconomeiric Theory, 16, pp.15%-

Sawa, T. (1960%: The Exact Sampling Distribution of Ordinary Least Squeres and

/J o Goitmmn A cenrinion
Americar, Staiisiico, ASS0CIGTI0T,

Two Stage Least Squares Estimators,

Shea, J. (1997): Instrument Relevanc Vultivariate Linear Modeis: A Simple [Mea-

- ey oni AT . i nfn"" ym QTR
sure, Review of Liconomics ana » Statistics, 79, pp.o4d-50Z.

Wesz.:

Staiger, D. and J.H. Stock (1997} Tresrumensar Variables

Irstruments, Economeirica, 65, pp.ooT- 586.

Stock, J.H. and J.H. Wrignt L2 000 GMM w 1 Weals Identification, Fconomeirica,
3 a3 5 ]

68, pp.000-00C

-7 Ciereralized Metnod of Moments 28t-

Tauchen, G. (1986): Statistical FPrope

/

mators of Structural Parameters Obsained from Financial Warket Date,

Taucher, G. and R. Hussey (19

imate Solusions to Nonlinear !

Zivot, B. and J. Wang (1998 1 Inferercs on 3

Variables Regression with Weak Instruments, Feconomes

n

4




Table 1: Parameter Values in the Models
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Table 2: Simulation results in model M1.
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able 3: Simulation results in mod
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Table 4: Simulation results in Model V3.
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Table 5: Simulation results in Model W4.
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Table §: Simulation results in Model M5.
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