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1:;cc1fy1ng monetal v policy in u e o
feedback rules. That is, rules whereby
as an increasing function of mﬂm'on W
arcund an intended mﬂahon tar g
the zero bound on nom

chaotic dynamics. The result is obzama: i
weli-calibrated monetary environments,
fiscal policies that have recently been
traps are shown 1o be unligely to pr
flynamico characterized in this paper.
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1 Introduction

Monetary ooﬁcy rules that set
she inflation rate can generate multip:

for example J‘jeanabib, Scamits-Grohé and
or Carlstrom and Fuerst (2001)). Such mm
istence of alower bound on nominal inter
traps, or can be purely local, for axaﬂ“”‘l“le
libria converging to the targeied steady st

the design of simple non-Ricardian moneta
the mui L Dhc1ty of equilibria that aris
{ rates and that converge 10 2

pclicies that eliminate multiplicities tast
example give rise to a contiuum of equiidbria ULM conver gc to
the targeted infatic

~

neighborhood of
monetary policy.

1ce ecln-

In this paper we show, in the contexs of the si “1plust Texible p

lata and in pariicular

omy where money is productive and calibrated to
to standard money demand specifications, that
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TAies fan very evaLl i

give rise to cycﬁc and chaotic trajectories in interest rates anc infiation.
then explore alternative specificaticns of the mcde L poiicies to invest

gate whether multiplicities persist or can be evoided.

2 The economic environment
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2.7 Households
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Consider an eccnomy populated by a largs mumoar of be.y-lived agents

with preferences over streams of consumptior £nd ces ed o the folowing
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Agents have access to two financial assets: fiat money, #4;, and government
bonds, ;. Governiment bonds [, held between pfmods t—1 and i, pay ths
gross nominal interest raf i ‘nni d i. l\'OLe that

nominal rate H; has tc b

b
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of real income y; and pay real lump-sum texes 7. The bud gft constraint of




the representative household is then ziv

where F; denotes the price le
TEATTANEEN 88!

Let ap = (M;+ By) /o =
=L To prevent Ponzi games,
5 of the form

Hm g e > 0 ()
° | [j=o(Zs/7521)
We motivate a demand for money by assu

firms trmracmons as in Calve (1979), Fischer
Specifically, we assume that output is the
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a constant endowment 7.
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fanction (1) subject sc (2)-(4),
lity conditions for interior sol

with eguality and the Fuler squations money:
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' Note that net output here depends on end of the period money b
money and principal plus interest from bonds cen finance end of the
and the purrchase of bonds and money holdings for the next pcrlod.

2Under this formulation cne may view real balances either as directly productive or as
decreasing the transaction costs of exchange and increasing net output. It is also posmible

to replace the endowment output § with a function increasing in 1.,1001 supply, and add
leisure to uhe utility function. The current formulation then would correspond to the case
of an inelastic labor supply.
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for which real balances are a dec; lrate of inter-

esh 7.3 Note that the interes®

is 1—p, which is the reason the
with unitary interest elasticity.

agent, t2e flip side of the no-Ponzl conditien i

fo

s goceification

mulation

on for the

2.2 The monetary/fiscal regime

Following 2 growing recent empirical liter
tify systematic components i

monetary‘ policy, v
ernment conducts monetary policy i term of an :
of the form Ry = p(my—y). We impose three conaiti
First, in the spirit of Taylor {1993) we assume that monetary poiicy is ac-

tive around a target rate of i shat is, the interest elastic

C 9

the feedback rule at 7 is greater than unity, or o/ (v™)n™ / "
we Impose that the feedback i zero bound o
T L. Finally, we assume u‘_w_cu the X

7. For analytical

al

wing specific parameteri

where 1 + R = 7/f > 1. Under thi
By, set by the central bank in period
Carlstrom and Fuerst (2000)) on the forw

3We note that an interior solution may require a lower bound on real balances
/ Mo B \ . [a NN Al NP
so that 1—a <T‘) Yit1 > {. This becemes important below when we consider
pr
\ J
the dynamics of equilibrium trajectories in terins of ', since monetary pelicy is
defined for non-nsgative nominal vates only
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in the following &

This e on states that total government |
by liabilities carried over from the previcus per
total consolidated revenues. Consolidated
have two components, reguiar

that the fiscal regime consisis of sefting cons
as & fraction of total governmens labilitics. ¥
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where w (-) is & non-decrerasing functic
expression we obtain:
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Ifw(:) > 0 for all 7, this expression implies that
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Therefore, the assumed fiscal policy ensures
the household’s intertemporal borrowing oo
der all circumstances. On the other 1“?3.5_,
didate equilibrium path and w (#7) :
transversality conditions because th
ment labilities held by the
policy, with w (#%) < 0, wil

A number of a
is best described




2.3 Equilibrium

Combining equations (2) and (11)

all times:
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If we define @i =1 =, ‘then the above equaticn can de writben ag az
L |

KA B . 4

icit difference equation:
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We are now ready to define an ecuilibrivim real alloceiiorn.
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Definition T An equilibrium real allocation is a sequence {1 7L

satisfying Ry > C, (9), (13), (14) and (18), given ag.

ing (16), if we also s*aeciﬁ) that w(-) >
quence {caz}fil that satisfies the transvers

L

it attention to the exist

ence 27 scoue
ﬁuuh Lo

a case we can idm

Sfm"risfving (16) and (9) On x'u,he other
may be ruled out.

2.4  Steady-state equilibria

Consider constant solutions z; = 258
cause zy 1s not predetermined in peri
solutions represent equilibrium lc@l

can be more easi.y constructed first in tar

ing equation (18). The steady state gol
satisfy

By construction one such pair i

Iutlop (7P, RP) ;where 7% solves (15),
= ﬁ( L+ RP). It is straightforward tc

rivm RB* monetary policy is active (o i
equilibrium RP monetary policy is pass
steady state vaiues of « can be obtained b

e correzpond
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r 7% = RP, R, with o < zP.
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If we specify that w {-) > O
are equilibria. Bince x is no’ ¢

minacy because either of the
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However as discussed i Benhabi 11J

rossible to rule cut equilibria tha
such that w (F¥) > 0 and w (&P
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periodic or non-periodic sets.

and Benhaam St
I show below, suck = 1
etbiis that diverge away

2.5 Non-steady state equilibria
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. Then equation

/ s
f l—p~N —
/ [ am N e }
7 T Zi ‘ ‘
/ BRAN S
241 — ' : N2 2 < Q)
T - =
Y . A
/ ol e N
i \Z=(1—a)5” ) - !
/" /
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where we defined 1 (e®) = —J arn now apply the results of Yam
aguti and Matano(1979), (and n in Ushiki, 5., lo,nagut L.,
and H. Matano(1980)), to snow Z7) zives rise to chaotic ey Lt
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Assumption 1 Zet gupi = 7y (0:) = a0 + Af (9) where 15 continuous in
7

J
P Ad i Fopomtin] saniating o — £ (0)) o tane atatiam qen) svAdm Ay
RL. Assum the uﬁw ereniial equaticn § = [ (y) has two sitationary poinis, one

>
=k
.
&
=
o,
Q
s
.
2
K‘\‘
=
S )
S
-
o
)
o
=
=
Cn
<
©
<
.
o




As ;_3 inted out in Yamaguti and I

that after & linear transformation cf
A) F(C) = f(a) =0 for some i >
B)fluy>Cfor0<u<a
C) flu)y<Cfora<u<si
Note that the two steady

qp and ¢* will correspond to the zero
provides the appropriate linear trans?
the assumption used by Yamaguti and i
one above, 1equlr1ng Fa(g) to have ai

to have af leas? two zercs. fequiring ex
assures that x = -0, since otherwise t
that (@) = 0, implying the existence of
fact that our stronger asswmption of
Theoremn 2 below.

THEOREM 1(Yamaguti and Iy Imua“o(l 9) :

erence

constant ¢; such that for any
the sense of Li-Yorke (1975).

fg

THEOREM 2(Yamaguil and
tions anove hold and x = --co. %
8 < ¢ < &g, such that for any
Fnt g — quy1 given by gepq
that 7 maps [0, aa) :

The theorems apply immediately to our fra equaticn (21), since
as discussed above, this equation has twc f
interior solution implied by the dynami
must check that real balances (: %ﬁljx as
(1 Il (M "1\3\@ — 1, remain non-neg
\ be ;)

*The value of ¢ can be computed as described
and H. Matano(1980). For our equation (21), t
We can redefine the origin to com nd i
as u = g— ¢p. Then ¢ wm corre
attained by the rig
words, ¢z will be me upper beund for 4 such
[0, an] into itseif.

U
and side: in othe

1) maps a
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( L’"ENCCJOL 1e8.
as well as

computed ilinrinm trajeﬂf'- ories.

"To match the interest elasticity of monsy in th
We £noose £ = —nﬂ, and we use ¢ as our pma“n@c*

o=108s0 uhau =1, the difference ecua
v (21) will have one sLaL/lb steady stat:
reduced towards standard values, th '8 st
nsnaz‘ anc lead to chaotic c\yﬂg s
results of Theorems L 211

& S0 uilibrivm t aj CLOories CI
o, that ig by z; = i’/"—]\/jﬂi:il \40 described by (T 8) rather than its transform
2, av 15 By &y {7 | desciioea oy (1o, Yailiel ain 1T8 SraliSliorin

¢ = In(azs + (1 —a)y?) that is eguasion (21).

We start by calibrating the paramst
nominal rate of 6%, which

and the discount factor [

‘ta’"ge'i" stationary

.01, or annual inflation targel

ate at the active steady state (the
od

r
1. U/L 01 = 1.5842. In our m

inflation 1

[an)

Cayior rule) given b\f A /
, clasticity of

Ioncy deinta

SThe target nominal annual rate of 6% co wespcz.c,-' ol
T-bills over the period 196‘ Q1 to 1098 Og N
I

R
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Figure 1
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.

val
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. W trajectories that start t
“active” steady state, which is |
The simulation in the upper
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equilibrivg

converge to a cycic e

OCussl
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from the active steady s

instead of the “active” sieady

so that p = —9 seems reasonable. Given 1 5.8, or & quar
argued that ¢ is ag high

r so obtain chaotic O\’D

velocity of 1.45, yields & vaius
0.01 but we use 2 lower more

s

for higher velues of a.

T arpund 3.5- 4.5.
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For o = 2.18,the trajectoty is suill cyziic, |

The transition to higher order st
the transition towards a chaotic equil’brium,
theorem. Finally in Figure 4, we set ¢ = 2
chaotic equilibrivim. The existence of
the conf\mons of the Li~Yorke theorer for top
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in Lun cases, for wilich conditions are difficult to ve
i ¢ eq ulhbllum trajectories may exhibit :

i P50 @ converges to a limit in
«(J). This raises the possibility of elimiz
ria by designing the fiscal policy underlyiz

analogy to the casc where iraject
coula be ruled out since they do not :
transversaiity conditions. In general hex
ries arctnd the active SL;GELL_] state ta
steacly state wvalue, and I 1

solvency o
z-iodic tl‘a_]GCGO~~
) 2 and below
to rule out such cyciic or
ocally non-Ricardiar -
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ed in Benhabib, S

chaotic trajectoriss g

policies. Omne possinility,
Grohé anc Uribe (2000)
rate at the active steady state, 1
specify thas for any 7 outsids
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non-Ricardian, for example it rev

corresponds to the Auoneo‘uy 113

w(r) s

cycle or traj

hes “rom positive tc ne
ectery that strays o

rule is opelauvp can then trigger a polic
violates transversality condoitior

equilibrivm.

2.6 Alternative Taylor Rules and Timing Conventions

2.6.7 A Linear Rule

It s important to realize licr:\f@'\fev thay the local nrope
steady state do not depend on ¢ icud
Consider for example the linea:

Tactive”

Yol cp ted.

which, at the active steady stat
non-linear Tay.or rule given by
the nominal rase. For o = 2.75
the active steady state, this linear ru
as in the upper panel of Figure 1: the »

i

IFor o = 2.85 however, the active sieads
trajectories starting in a small neighhorhood

cy‘"ie7 as in the upper palel of Figv

ero at the bifurcasion point 7
Iocal indeterminacy, with convergenc
the cycle surrounding 15, doses not
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2.6.2  Backward Looking Rules

We have also explored alternstive form
rules, and with money enter
ways. lr such cases ancther
stantaneous or temporary equilib
rule, money b%hnces ab i ‘
at time $+1, 80 5l
standarc parame
determinacy consi

ions with forward locking Taylor

function in various nov-separable
rious problem emerges: the
g Taylor
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looking rule given by

which implies that

poet
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e Buler equation (1!
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which is a cifference Lonespmacnce rather ;
I8 |

often iz nod &

equilibritm is not Well—*kﬁncl The
one braach of solutions to the next, cr
standard difficulties associated with

yoTnay JUIT’

2.5.3  Timing Conventions

A similar problem emerges if the produc

rather than end of period balances: z;

a case the money and bond markets ar

equatic 1 becomes:

; assuinpticns end thelr imoact on local ‘
w5t {2001) i
I
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