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Abstract
Hedonic estimation of depreciation for single family homes

Larry Rosenblum, Randal Kinoshita and Brian Sliker
Bureau of Labor Statistics and Bureau of Economic Analysis

Using a database of 160,000 single family homes sold in the Washington-
Baltimore area, we estimate hedonic models of transaction prices. Surviving houses
depreciate only 0.09% per year. Using methods developed by Hulten and Wykoff to
correct for censoring of discarded homes, estimates of depreciation rates vary within a
wide range. The Hulten-Wykoff method is modified to allow discards to be estimated
along with the hedonic price model and the results are still imprecise. The depreciation
rate is found to be generally less than the current BEA rate of 1.14% while the average
age at discard is close to BEA’s estimate of 80 years. The results suggest that the discard
pattern may peak to the left of the mean rather than the symmetric pattern of the Winfrey
distributions.

The Hulten-Wykoft method is then examined in a Monte Carlo study. The
Hulten-Wykoff method adjusts observed prices for discarded assets, but the average age
of the sample is younger than the cohort age. When depreciation is not constant by age, a
younger sample will misstate depreciation rates. The extent of the bias declines with the
life of the asset and so their method should produce a trivial error in measuring the
depreciation rate for homes. Finally, an estimating form is developed that allows for a
distribution of asset lives rather than a distribution of retirements around a single asset
life.




Hedonic estimation of depreciation for single family homes

Larry Rosenblum, Randal Kinoshita and Brian Sliker
Bureau of Labor Statistics and Bureau of Economic Analysis

In 1996 the Bureau of Economic Analysis (BEA) introduced, as part of its
comprehensive revisions, new measures of economic depreciation based on analysis of
studies as summarized in Fraumeni (1997). In this work, Fraumeni assembled the best
available empirical evidence for the depreciation rate for individual assets. Much of this
evidence for equipment and nonresidential buildings comes from a series of important
papers by Hulten and Wykoff (1981a and 1981b) that measure age-price profiles for
specific assets. For residential housing, Hulten and Wykoft (in Wykoff and Hulten (1 979)
relied on estimates developed by Leigh and Weston (1980). 1

In 1998, the Bureau of Labor Statistics (BLS) applied all of the revised
depreciation rates in conjunction with concave hyperbolic decay to its measures of capital
stock and capital services save one.” For residential structures, BEA lowered the
depreciation rate from 1.28% to 1.14%. Although with a low depreciation rate a
substantial portion of the original value of an investment made in 1900 survives until the
end of the 20" century, the impact of this investment on the total residential structures

capital stock is very small. For example, under BEA’s assumption of geometric decay, a

' wykoff-Hulten cites 4 estimates from these studies. The simple average of these depreciation rates is
1.28%. BEA uses the declining balance method for many assets. For structures the declining balance rate
is 0.91. The combination of a 1.3% depreciation rate and a 0.91 declining balance rate corresponds to a 70
year life. Switching to an 80 year life for residential structures, the declining balance method yields a
1.14% depreciation rate (0.91/80).

2 Gince 1997 BEA has used the empirical evidence on depreciation, together with estimates of vintage
investments, a perpetual inventory model, and an assumption of geometric depreciation, to prepare its
wealth estimates for fixed reproducible capital. In its productivity work, BLS estimates the productive
services of capital, and related to that the deterioration of capital, as distinct from the wealth and
depreciation associated with capital. Hall [1968] described the relationship between deterioration and
depreciation. For vintage aggregation of capital services, BLS assumes that capital deteriorates slowly
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third of the value of all investment in 1900 would still be in service in 1999, yet this
represents only about one-tenth of one percent of the value of total capital stock in 1999,
Under BLS’s assumption of concave hyperbolic decay, the remaining value would be
even higher, but again the investment represents a very small percentage of total capital
stock in 1999. BLS analysts were skeptical of the combination of hyperbolic decay and
the slower BEA depreciation rate and they decided to retain the older depreciation rate.’
However, BLS had no evidence to support this rate.

This paper attempts to provide additional evidence on the deprecation rate of
residential structures by estimating age-price profiles for a large sample of transactions in
the Washington-Baltimore SMSA. We obtained selling price net of seller subsidies from
the database of the Metropolitan Regional Information System (MRIS). The MRIS is the
successor to the multiple listing service used by real estate agents to list homes for sale
and to record sales. In addition to net selling price, the database contains an extensive
collection of descriptive and itemized traits of the houses including their age.

Previewing some of our results, we find that depreciation for single family houses
is not faster than BEA’s rate although our estimates are imprecise. Similarly, the average
age at discard is similar to the 80-year figure used by BEA and BLS. While symmetric
Winfrey distributions are commonly used to overcome a sample censoring problem in
these models, we modify the age-price model to include a Weibull distribution of

discards and find that it may peak to the left of the mean.

when new and more rapidly as it ages. BLS used Hall's relationship to adhere to BEA’s depreciation rates
while maintaining its deterioration profiles,

* BLS evidence on the shape of the age-efticiency function can be found in Trends in Multifactor
Productivity, 1948-81, pp. 41-45.




The plan of the paper is as follows. Next, we lay out the hedonic model for
surviving assets and then apply the Hulten-Wykoff method to housing including some
extensions to allow for discards to be estimated along with the age-price model. In
section 2, we describe the MRIS data and present summary statistics for two sets of data.
A larger sample of houses is used in the age-price profiles for net transaction prices.
Where reasonable tax assessments are available, we estimate the value of the structure
only and present sample means for this smaller sample. In section 3, we estimate age-
price profiles for surviving houses. In section 4, we estimate age-price profiles using
Winfrey distributions of discards and the censoring-corrected methods of Hulten-Wykoff.
In section 5, age-price profiles are estimated allowing discards to be an empirically
estimated Weibull distribution. Because land does not depreciate, the age-price models
are estimated with and without residual value. To further investigate the role of land, the
model is also estimated without the value of land included in the selling price. In section
6 we conduct Monte Carlo experiments to show when the Hulten-Wykoff method of
correcting censoring yields unbiased estimates of depreciation and when it may not. In
section 7, an age-price model is developed that allows for an explicit distribution of asset
lives, with individual assets depreciating along their own age-price paths which also
determine the age at discard. Section 8§ concludes the paper with a discussion of the

results and limitations of the study and points to improvements and future work.

Section 1: A hedonic model with peometric depreciation

There is a huge literature on hedonic estimation of housing prices. Basu and

Thibodeau (1998) succinctly describe the pricing space for single-family homes as




4

depending on seven classes of traits: characteristics of the lot, characteristics of the
improvement (the house), neighborhood amenities, accessibility, proximity externalities,
land-use regulations, and time. The first three and last classes of traits are relatively
obvious, but the next three may require further explanation. Accessibility refers to
distances to work, shopping and schools as well as available modes of transportation.
Proximity externalities include distances to non-conforming land use such as noise from a
major highway or air pollution from a factory. Finally, land use regulation includes
zoning that may affect density of the development or mixed use.

Our concern is primarily on the seventh and last class of variables including the
time period of the study and especially the age of the house. Equation (1) is a stylized

hedonic model for housing:

Price = f(X, Age) + ¢ (D
Price depends on X, which represents the first 6 classes of variables, and on the age of the
house. € is ani.i.d. error term. Frequently, equation (1) is estimated in semi-log or log-
log form to deal with potential problems with heteroscedasticity.

The interpretation of the estimated parameter on age is the decline in price for a
house as it ages holding other traits fixed. Price declines with time because of
depreciation (changes in price due to age holding time constant) and revaluation (change
in price across time holding age constant). The set of characteristics X is amended to
include time to control for price revaluation.

Malpezzi, Ozanne and Thibodeau (1987), surveying the literature, find that
estimated depreciation rates for rental or owner-occupied housing range from 2.2% to as

low as 0.4% per year. The hedonic models generally produced slower depreciation rates,




in the range of 0.4% to 1.2%. Their own study of 59 SMSAs found an average
depreciation rate of 0.6% for rental housing and 0.4-0.9% per year for owner-occupied
housing. It should not be surprising that estimated depreciation rates in models like
equation (1) are small.

Hulten-Wykoff (1981a and 1981b) realized that observed asset prices for a cohort
are censored. Only those still standing have an observable market price. Yet for
measuring depreciation, the entire cohort should be included in the sample. Hulten-
Wykoff sﬁggest that the scrap value of assets was approximately equal to disposal costs
and so the price is zero. However the characteristics of the discarded assets are unknown.
Their solution to the censored sampling problem was to assume the unobserved assets
were otherwise identical to the observed assets and create a weighted-average price for
the combination of observed and unobserved assets. In Hulten-Wykoff’s study of
commercial and industrial buildings, the observed structure prices of a given age and
vintage is multiplied by the proportion of that vintage surviving to that age to obtain an
effective cohort price. The difficulty is then to determine for a vintage the pattern of
discards. Their solution for commercial buildings was to use a Winfrey distribution for
an asset of 80 years. The Winfrey distribution reports the surviving proportion of a
cohort by vintage. They found a much faster depreciation rate when censoring is

accounted for.
Price * probability(still in service) = f(X, Age) + ¢ (2)

Equation (2) is a representation of the Hulten-Wykoff method. They did not

apply this model to residential structures. In the work that follows, we will apply their




method to single family houses, but there are several issues with the Hulten-Wykoff
method in general and in its application to residential structures. First, we don’t know
with much certainty the discard pattern. Since it appears that most of the depreciation
comes from discarded houses rather than depreciation-in-place of surviving houses, the
assumption of a specific Winfrey distribution is equivalent to assuming a depreciation
rate. It would be better if the data could determine the discard pattern. Second, the
Hulten-Wykoff method uses a zero price for discarded assets. While disposal costs may
well equal scrap value for equipment and some structures, the price of'a home is a
combination of land and improvements and land retains its value. So the residual value
of the property when the house is scrapped will be considerably more than zero.
Typically, land comprises about 15-40% of the value of a single family home in our data.
Finally, the estimation is inefficient. If 10% of all 150-year-old homes are still standing,
then an observation on a 150-year-old home represents 1 surviving house and 9 discarded
ones. Accordingly, the appropriate least squares estimator should weight observations by
the square root of the inverse of the proportion of the cohort still remaining.

To address some of these issues, we modify equation (2) to allow the model to
determine the discard pattern. Expressing the survival function as F and noting that it

depends on the age of the home, observe that equation (2) in semi-log form becomes,

Ln (Price * F(age)) = o + BX + 8*Age + ¢ (3)
We assume that the probability a home survives follows a Weibull cumulative density

function of the form:

F=exp( -(Age/m)" Sy
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In this specification, n determines the general shape of the function. For values less than
1, the derivative of (1-F), the discard rate, declines continuously. For values greater than
1. the discard rate rises with age, peaks and declines thereafter. Depending on the value,
the curve can be skewed left or right or can be approximately symmetric. The parameter

m scales the distribution. Equation (3) now becomes:

Ln(Price *(Exp( -(Age/m)") = o + X +3*Age +¢ (5

Rearranging terms, equation (5) becomes

LnPrice = o + BX + §*Age +H(Age/m)" + ¢ (6)

Equation (6) still assumes no residual value for a discarded home. It may be more
reasonable to assume that a property has positive scrap value. This is especially true for
structures because land retains its value even as the structure depreciates. Homes may be
retired early because the value of alternative uses (e.g. commercial use) may have risen to
exceed the current value of the home or the value of the location may have risen so that
the optimal size home for that location and lot size may have changed. In a second
specification, we limit the Weibull c.d.f. to a fraction less than 1. This implies that when
a home of a given vintage is discarded, the unobserved residual value is positive. The
final parameter p is a measure of residual value. As age increases, the adjusted Weibull

distribution approaches p/(1+p) or the ratio of residual to initial value.

LnPrice = o + BX + 8*Age -In((p +( exp(-(Age/m)M)) /(1 + p)) + € (7
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Section 2: The Metropolitan Regional Information System Database

The Metropolitan Regional Information Service (MRIS) is the successor to the
old multiple listing service. It is now a computerized database containing information on
the selling price and seller subsidy, location and characteristics of the structure and land.
The database contains transactions over a rolling 4-year period covering the Washington-
Baltimore area (although some earlier data remain in the database). Geographic coverage
extends to eastern West Virginia, southeastern Pennsylvania (excluding the Philadelphia
area), northern and central Virginia and almost all of Maryland except for the Eastern
Shore and Western panhandle.

We have extracted all sold homes that had a net selling price of at least $10,000
that report an age or year built and a zip code, and are sited on at least a thirtieth of an
acre. Excluding co-ops and condominiums, we further limit the sample to single family
homes with at least 1 bedroom and 1 full bath. Houses on more than 10 acres of land are
also excluded. The usable sample contains more than 160,000 observations.

The MRIS contains extensive information on homes. Besides basic information
on the number of bedrooms and bathrooms, more than 20 types of other rooms can be
identified. Additional information on the style of kitchens, dining rooms, and entrance is
also available. Other traits include the interior style, exterior style, roofing materials,
ceiling style, heating and cooling fuels, air conditioning methods, basement type and

garage spaces. Additional buildings on the property are noted as well as decking,

fencing, hot tubs, swimming pools, the style of the home and whether it is attached or




g

detached from other houses. Proximity to woods or water, public transportation and the
general nature of the view from the house are classified.

Land characteristics include acreage, topography, water frontage, wooded
acreage, county, state and 5-digit zip code of the property.

Real estate agents complete a computerized form to enter the information for a
new listing. Some information is required while other information is optional,
Furthermore, some information is calculated by the system based on other information.
While there is no guarantee of accuracy, sellers are required to sign a statement verifying
the accuracy of the information. Perhaps even more important, realtors can be fined for
inaccurate information. Because agents regard their time as valuable, they do not wish to
show a house that their client may not be interested in. As a result, there appears to be
some reporting of inaccuracies by other agents and so there is some self-enforcement by
agents to enter the data correctly and correct errors as soon as they are detected.

The MRIS system came on-line in 1998 and so houses sold before that date did
not use the computerized form with its internal checks for consistency and
reasonableness. Despite the possibility of more errors in the earlier data, we use all data
from January 1994 through May 2000 in our analysis.

Some optional data are available only for a small subsample. A prime example is
interior square footage. Other variables include separate tax assessments for land and
improvements,

Two sets of housing prices were developed for this study. The first is the reported
gross sales price less seller subsidies. This price represents the joint value of the structure

and land. Seller subsidies are payments made by the seller to defray part of the cost of




the purchase. Typically these include financing “points”, taxes, state and county
recording fees and other closing costs. Depending on how financing is arranged, closing
costs can run as high as 8% in Maryland, but less in Virginia, West Virginia and the
District of Columbia.

Since land does not depreciate, determining the depreciation rate for the structure
alone requires an estimate of the land value. Tax assessments are available for a large
subset of the sample. However, tax assessments may not accurately reflect the market
value or even the relative market value of land and structure.

The second price, a structure only price, was defined as the net selling price less
the assessed value of the land. The second set of prices was developed for those
observations with tax assessments that approximate the net selling price. Land value is
calculated as the product of the net sales price and the ratio of land to total assessed
value. The sample is limited to those houses where the ratio of assessed value to net
selling price ranged between 50% and 125%. Furthermore, the assessed value of land
must range between 5 and 66% of the total assessed value. While these are wide ranges
for assessments, 55 percent of total assessments were within 10% of net selling price and
86 percent of observations had land assessed between 15 and 40 percent of net selling
price. In 4 counties, tax assessments were much lower than sales price. In order to
include these observations, separate tax assessments for land and structures were scaled
to match the average county net sales price. All of these restrictions remove about 40%
of the sample.

Table 1 shows selected sample means for the full sample including those

observations without tax assessments. The mean age of houses is 22.9, but varies from




new to 300 years. Chart 1 presents the frequency distribution of sold homes by age.
Several features are noteworthy. First, the number of new homes for sale exceeds
10,000, more than twice the number of any other age group. Not surprisingly, the
number of very nearly new homes for sale declines sharply until age 2 and then increases
until age 10. The number of homes then declines steadily until only a handful of homes
(generally less than 15) of any given vintage over age 110 is for sale. While virtually
invisible in the chart, there are 50 homes exactly 297 years old. Similarly, there are 10 or
more homes for each age 195 to 200. These are probably misreported ages, but they did
not affect the estimated parameters and so they were retained.

While home sales are reported from 4 states and the District of Columbia, the
bottom of table 1 shows that nearly half of reported home sales are from just Fairfax and
Montgomery counties, 2 suburbs of Washington. More than 80% of all sales are
contained within 9 counties and Washington. While these are the most populous
counties, home sales are still disproportionately concentrated.

The average gross selling price was $225,170 and the net selling price was
$222.650. There are 2 very expensive homes (more than $5 million) in the sample and
again their exclusion did not alter the estimates. Most homes had 3 or 4 bedrooms, 2 full
baths and 1 half bath. Lot size averaged 0.42 acres. The dollar value of improvements is
available, but since we don’t know when the improvements were made nor if all agents
reported improvements to the MRIS database, the variable though included in the model
may not be meaningful.

About two-thirds of all houses were detached. Colonial is the predominant

architectural style. Brick and/or siding are the most common materials used. Besides




basic rooms, the most common additional rooms include a family room,
den/library/study, kitchen level laundry room, recreation room, storage room and utility
room. Homes averaged nearly 1 fireplace and 1 garage space. The foyer is the most
common entrance style. Common exterior structures include decks, patios and sheds.
About a third of homes are rear-fenced.

Table 2 presents a shorter list of summary statistics for the 95.000 homes that
could estimate a structure-only price. The mean age of these homes is sli ghtly older at
24.89 years because most new homes are removed. The average age of homes at least 1
year old is 24.82 years in the full sample compared to 25.06 years in the sample of houses
using the structure-only price. Average gross selling price is $224,500 and the
distribution of beds and baths are quite similar to the full sample. Lot sizes are slightly
smaller and homes are more likely to be located in Maryland and less likely to be found
in West Virginia or Pennsylvania than in the full sample. None of these differences

appears significant.

Section 3: Simple OLS Estimates of Surviving Houses

We start by fitting a semi-log version of equation (1), the model that includes only
surviving houses. It is important to note at the outset that geometric depreciation is
imposed in all of the models. It is not that geometric is necessarily the correct description
of depreciation, but our primary emphasis in this paper is to determine if BEA’s best

geomelric average depreciation rate is reasonable or some other rate would be an

improvement. We leave it for future work to employ a more general age-price profile,




Taking advantage of the great detail available in the database, this study creates
dummy variables for the number of bedrooms, bathrooms, contract year and contract
month. A large set of dummy variables is created to represent the presence of each type
of other room including kitchen style, entrance style, construction materials, views,
topography, other buildings, exterior features, heating and cooling systems, roofing
materials, type of road fronting the property, proximity to water and public
transportation, basement type, architectural style and ceiling heights. Geographic
location dummies include state, county and zip code of the property.

Table 3 contains estimates for the full sample with decreasingly specific location
dummies. While the estimated parameters are sensible, a few in the first column are
worth mentioning. The premium for full bathrooms is consistently larger than for
bedrooms. While other variables may be indicative of the size and cost of the house,
bathrooms appears to be capturing some of this effect. Consistent with this theory, other
rooms generally received little premium. Den/library/study, Florida room, lofts, master
bedroom suite with sitting area and solariums added about 3 percent each to the price of a
house. Detached houses sold for about 25% more while mobile homes sold for about
50% less. Guest houses and gazebos added about 10% to the price of the house. Each
fireplace and garage space adds about 7% which seems high, but again may be indicative
of the expense of materials or other unobserved features.

The parameter value for acreage is quite low. The value of land is allowed to
vary by county. Washington D.C., the Northern Virginia counties of Fairfax and
Arlington, and the cities of Alexandria and Falls Church received substantial premiums.

Relatively affluent counties in Maryland, Montgomery, Howard and Anne Arundel




received only small premiums. Zip codes, when present, also have large parameters in
the traditionally exclusive and expensive neighborhoods. Tt appears that the model is
unable to disentangle the value of land from a pure location effect and so we are not
overly concerned with the low estimated land value in some locations.

Turning to estimates of depreciation, the estimated parameters largely contirm the
expectations of the discussion above. Without accounting for censoring, OLS estimates
indicate that depreciation is nearly zero for homes. Accounting only for the state of
residence of the home, a home will appreciate 0.10% per year with age. Using dummy
variables for county, homes depreciate a statistically significant 0.01% per year.
Substituting zip codes, depreciation rates are 0.09% per year. Detailed locations are more
closely correlated with age than county or state variables. The implication of these
estimates is that standing houses either depreciate very little or unobserved valued traits
are correlated with age. The Baltimore-Washington area may be atypical. Malpezzi,
Ozanne and Thibideau find depreciation is not different from zero for Washington DC,
but they do find a significant rate of depreciation for Baltimore. Most depreciation then
comes when a house is discarded.

Table 4 repeats the exercise using only the structure value. In these estimates
houses appreciate regardless of the choice of location variables. Again, finer geographic
detail reduces the parameter on age.

The estimates in Table 4 are nevertheless a bit disturbing. Parameter estimates
are lower and implausibly low for bedrooms and some other variables. Furthermore, we

expected the estimated depreciation would be faster once land, which does not depreciate,

was removed. Two possibilities occur. The estimate of the land value from the tax




assessment data may be too high and too little value remains for structures. The tax
assessments indicate land comprises about 31% of the total assessment, a relatively high
figure. Alternatively, if land value can be separated from structure value, the value of
land in the full sample may not have been entirely captured by acreage and location
variables. Given that once a house is built, separating bundled purchases into constituent
parts may prove difficult. However, the point of a hedonic model is to do just that.
While biased parameters on housing traits other than age are merely troublesome, the
second interpretation should lead to caution in accepting depreciation estimates.

Before accepting the near zero depreciation rate for surviving houses, it is useful
to review the specification and interpretation of the model. Fraumeni (1997) succinetly
describes common sampling limitations of depreciation studies. In addition, there are
several hundred descriptive variables spanning a number of characteristics of the
structure and land. Not all of these are significant or correctly signed. While the model
could have been reduced to only those variables that improve the fit and interpretation,
that list is not strictly the same in every specification. While there are risks in including
extraneous characteristics, every specification we considered indicated a low depreciation
rate for surviving houses.

A few variables deserve comment. A dummy variable for new construction is
included. It can readily be argued that the dummy variable represents a portion of the
depreciation rate. However, the premium is about 10%, much more than the depreciation
rate experienced in a year. Our interpretation is that some buyers prefer new homes to

young homes because they can customize the design, paint to their taste or simply prefer
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new to used much like a car buyer. Regardless, when the new home dummy is dropped
from the model with zip codes, the depreciation rate is a faster but still slow 0.15%.

The MRIS database includes agent assessments of the condition of the home.
Ratings can vary from “shows well™ to “fixer-upper” to “shell”. These variables were not
included because they seem likely to reflect cumulative depreciation. Adding these
variables would have reduced the depreciation rate even closer to zero.

Houses in the MRIS database have changed in style and size over time. Our data
can identify if any of nearly two dozen types of rooms are present in the house, but not
the size of the rooms. The database also indicates styles for master bedrooms, kitchens,
living rooms and dining rooms. Stylistic changes and the presence of certain types of
rooms (e.g. media room, office) may be indicative of vintage. As a result, some of the
premium for young houses may be captured by these variables rather than age.

Finally, we have treated age as a measure of depreciation, but age of the house
may also be a taste or quality variable. While some may prefer new construction, others
may value older homes for their unique style, mature landscape, micro-location (below
the zip code level), and sense of community. For example, two older style of homes,
Tudor and Victorian, command a 12% and 5% premium respectively. Construction
quality may also vary across time. If older homes are better built, they should command
a higher price, ceterus paribus. If age is a valued trait, then this model may not be able to
disentangle the depreciation rate from the premium that some buyers place on older
homes.

Despite these qualifications, the depreciation rate for surviving houses appears to

be extremely low. Near zero depreciation is consistent with a substantial portion of a
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cohort surviving into the next millennium. Why then do we find this result? While
maintenance costs may well rise with age, potential buyers are aware of this and should
price houses accordingly. Professional home inspections are nearly universal in this area

and so buyers are aware of important defects. However, maintenance expenses

7]

are
lumpy and may be timed both over the life of the home and at particular events such as
selling a home. Older houses are much more likely to need an updated kitchen or bath.
Young homes simply do not need new roofs or furnaces. If these expenditures “restore™
the value of an older house, the age-price profile will appear relatively flat when older
homes are included.” Finally, seller subsidies can only include those items with a readily
identifiable price. Other terms such as low interest rate seller financing and additional
items such as furniture that may convey with the house may not be included in the seller
subsidy and therefore in the net price. Why these items should be correlated with age is
unclear.

Buyers may reasonably expect that real services from houses would rise over
time. As cities grow, central locations become increasingly valuable. While the structure
may in fact be deteriorating, the value of the land and location are rising. This implies
that even though the house is deteriorating, the service flow is not declining because the
services provided by an increasingly valuable location offset declining services from the
structure. Location is correlated with age in our sample. Adding state, county and zip
codes to the regression accelerated the depreciation rate by 0.2% per year. Older homes

then are located in more valuable locations. Furthermore, BEA’s chained price index for

¥ Limiting the model in column (1) of table 3 to houses age 15 or less, the depreciation rate jumps to
1.16%. For this set of houses, maintenance costs should be limited to relatively minor items and so prices
should reflect the effect of age over a set of homes comparably maintained. Of course, the depreciation




new single family homes rose 5.2% annually between 1973 and 1999 while the PCE
chained priced index rose 3.1% per year. If all homes follow patterns for new
construction and the Baltimore-Washington area is similar to national patterns, the more
rapid inflation for housing is indicative of rising service flows.

Ultimately, this is not sufficient to justify the observed near zero depreciation rate
because homes would eventually decay completely. As part of the growth process for a
city, alternative uses must arise. Homes are torn down both to allow for new homes and
for conversion to commercial uses. In such examples, the opportunity cost of the land
exceeds its value as a residence and the home owner sells at a price somewhere between
its value as a house and its alternative use. If this is a common view for very old homes,
then home buyers may view their home as an investment with service flows for many
years followed by a lump-sum payment on retirement of the house. Depending on the
lump-sum buyout price, the discount rate and the growth rate of real housing services,
housing prices may rise or fall as houses age.

&

Section 4: Censored Prices

Hulten-Wykof¥ criticized the simple OLS estimates for being an unbalanced
sample. For any cohort of assets only those still in service are observable. Hulten-
Wykoff™s solution was to implicitly include the unobservable portion of the cohort. For

assets that have been retired, the current price of the retired asset is zero. Assuming that

retired assets are otherwise identical to the observable assets, they then averaged the price

rate may not be constant over the life of a house and so the faster depreciation rate may instead reflect rapid
initial depreciation,
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of surviving assets with comparable retired assets. The resultant price is the average
price for the cohort.

The key to measuring depreciation in this manner, then, is to determine the
discard pattern. One set can be obtained from modified S-3 Winfrey distributions of
discards. These distributions are symmetric distributions centered about a mean discard
age of one’s choosing. Prior to BEA’s switch to geometric depreciation, Winfrey
distributions were used to allow investment of a given vintage to be discarded over a
number of years. BLS also used this type of distribution for this purpose, but currently
uses a truncated normal distribution.

Table 5 shows estimated age-price (land and structure) models using 80, 120 and
160 year mean lives.” For comparison, BEA now uses a geometric depreciation rate of
1.14% that corresponds to an average life of about 80 years.

The first point to be gleaned from Table 5 is that choosing a service life is
tantamount to choosing a depreciation rate. Using an 80-year mean Winfrey discard
distribution, the depreciation rate is 1.93%. Under 120-year mean discard distribution,
the depreciation rate is 1.15% or about what BEA uses now. For 160-year mean discard
distribution, the depreciation rate is only 0.47%.

Given almost no depreciation-in-place, we would have expected the mean discard
age from the Winfrey distributions to dictate the corresponding estimated depreciation
rate and the resulting estimated average age at discards. (In this section and the next, the
weighted average of age at discard is the product of the estimated proportion of the

cohort discarded (under the geometric or Weibull distribution) and the corresponding

The modified $-3 distributions use lives slightly shorter than stated in the text. For example the 120-
year mean life distribution is centered on 117 years and no depreciation takes place in the first 5 years,
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age.) That is, for an 80-year Winfrey distribution. approximately an 80-year average age
at discard and depreciation rate slightly in excess of 1% would be expected. Similarly,
for 120-year Winfrey distribution, depreciation slower than 1% would seem logical.
However, we find faster depreciation rates and younger lives for a given Winfrey
distribution. Using an 80-year life and a 0.91 declining balance rate, BEA uses the
corresponding 1.14% depreciation rate. Of course, a more flexible depreciation pattern
may produce estimates closer to BEA’s estimate.

Finally, our estimates do not imply a linear relationship between service lives and
depreciation rates. Halving the mean life of the Winfrey distribution from 160 to 80
years produces a depreciation rate about 4 times as fast. Given the assumption of
geometric decay, a linear relationship is not necessarily expected, but this is indicative of
the sensitivity of the depreciation rate to the decay pattern and service life.

There are a number of reasons to find these results unsatisfying. First,
information about the discard patterns for housing is not strong. Much of the ori ginal
work on discards was based on 1942 Bulletin F tax lives and adjustments to the service
lives have been made over time. Second, the discard pattern is symmetric and this may
be a strong assumption. Third, the price of discarded assets in our work so far is assumed
to be zero. This may be a reasonable assumption for equipment, but for residential
structures this assumption can be problematic. The price of single family housing is a
combination of land and structure. Essentially this is a bundled good and separate prices
for each might be inferred or estimated but must be separated to measure the depreciation

of the structure alone. Finally, while Hulten-Wykoff"s method may produce a reasonable

estimate of the average cohort price, the sample is still unrepresentative of the cohort as




described earlier. That is, if only 1 in 10 héuses built in 1920 is still standing, the
average price is a tenth of the surviving house price, but this one observation now
represents 10 houses and should be weighted accordingly in the estimation. Failure to
weight observations appropriately should only lead to inefficient estimates and so it is a
secondary concern. However, if depreciation rates vary by age, an unweighted sample
will emphasize the depreciation rate for young homes and give too little wei ght to the
pattern at the other end of the spectrum.

We can examine two of these issues using the Winfrey distributions. First, if the
Winfrey distribution is a 1‘easmmbk;‘. approximation of the discard pattern, the square root
of the inverse of the surviving fraction of the cohort is the appropriate weight for
observations of a given age. We re-estimate the model limiting the weight to 100 to
avoid placing excess weight on very old houses.® Second, if a portion of the price
includes land that does not depreciate, the model can be re-estimated using a Winfrey
distribution modified to allow a remaining residual value. In this experiment we use a
30% residual value which is very close to the mean ratio of land to total tax assessed
value in our sample.” Finally, the model is re-estimated combining the two effects.

The table below shows estimated depreciation rates and average discard age based
on these various adjustments.® Given almost no depreciation for surviving houses, we
should expect depreciation rates consistent with the mean life of the corresponding
Winfrey distribution. First note that the standard Winfrey model reported above yields
faster depreciation rates and shorter age at discard than the associated Winfrey

distribution. Weighting the sample produces totally implausible results. One might have

§

The results are very similar without this constraint,
Alternatively, we could have used the sample with land removed and re-estimated.
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expected allowing for a residual value would slow the depreciation rate a corresponding
30%. However, the depreciation rate slowed by at least 50% and average age at discard
is much higher than the underlying Winfrey distribution. Weighting the sample and

incorporating a 30% residual value does little to improve the estimates.

80 Year Winfrey 120 Year Winfrey
Depreciation Average Age Depreciation Average Age
rate at Discard rate at Discard
Standard Winfrey 1.93% 52 1.15% 87
Weighted Winfrey 0.41% 189 2.68% 37
Winfrey with 30% residual value 0.86% 114 0.47% 178
Weighted Winfrey with 30% 0.87% 113 0.63% 148
residual value

So what are we to make of these widely different estimates? First, our estimating
form may be too restrictive. Hulten-Wykoff used a Box-Cox form that allows age-price
profiles to fit a variety of patterns. They then determined which geometric pattern best
approximated their estimated profile. We have imposed a geometric form. Even though
they found that geometric was a good approximation, allowing a more flexible model
initially may produce better and more consistent estimates. Second, there is little to guide
us in the choice of an underlying Winfrey distribution. The 80, 120, and 160 year mean
lives may not be the best choices. Third, the true discard distribution may not be
symmetric. Imposing a particular shape may bias the estimates if the error in the adjusted
prices is correlated with age. If the discard distribution is left-humped, then prices of
newer houses adjusted by an incorrect symmetric distribution are too high and the
depreciation rate will be too fast. Finally, if the simple OLS regressions on survivors are
accurate, housing still in service barely depreciates. This is strictly consistent with nearly

infinite-lived assets. While obviously impossible, such a price pattern might be observed

The depreciation rate estimates without land are no more plausible than those found in the table.
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if structures were fully insured against destruction and current buyers expected that
houses would be discarded when an alternative higher-value use presented itself, Under
such a scenario, it is unclear what a discard means let alone at what price to value a

cohort.

Section 5: Estimated depreciation rates with an estimated Weibull discard distribution

If the Winfrey discard distributions produce largely implausible estimates of
depreciation, we can see if estimating a discard function along with the age-price model
improves the estimates. We choose the Weibull distribution to model discards because
this distribution allows for a variety of shapes including skewed, symmetric, peaked and
monotonically declining,

We estimate two price models. Equation (6) describes the first, which ignores
residual values. In the second, assets are permitted to depreciate but asymptotically
approach a residual value that represents some combination of land and structure.
Equation (7) models this approach. These two forms are estimated for both the combined
price of the land and structure (Table 6) and for the structure price only (Table 7).

The estimates in Tables 6 vat;‘y considerably across model, but less so than in the
fixed Winfrey discard estimates. In column (1), the mean age at discard is 62.6 years.
The coefficient on age 1.86% or about the same as the comparable rate using the 80 year
Winfrey discard pattern. Chart 2 shows the resultant discard distribution. It clearly peaks
to the left of the mean life and has a long tail to the right. Such a pattern would be
consistent with a relatively small number of surviving older houses within a cohort, but

enough of considerable age to yield a high average age.




This depreciation rate is for the land and structure combined, but the land would
only depreciate under unusual circumstances, If land comprises 31% of the total value as
our tax data suggest, sample mean depreciation rates can be calculated from a
combination of the derivative of the model and the hazard function for discards.” The
sample mean depreciation rate for the structure is 2.08%.

The direct way to glean the net depreciation rate is to estimate equation (7) and
these results can be found in column (2). The coefficient on age is 1.20%, the sample
mean depreciation rate is 1.25% and the mean age at discard is longer, 80.0 years. Chart
3 also shows a left humped discard function and a more reasonable mode age for

discards. However, the residual value is extremely small. only 3 5% (L0367 (1 +.036)).

Only if demolition and transaction costs were extremely high would this low estimate be
plausible.
While we cannot know a priori the residual value, we can assume a more !
reasonable value and re-estimated. We set p in equation (7) at 0.4. This implies a 29%
residual value or close to the 31% average value in our tax data. The resultant estimate
(column 3) produces a much lower coefficient of 0.54%, a sample mean depreciation rate
0f 0.59% and a mean age at discard is even higher, 92.3 years. Chart 4 shows a much
more symmetric discard pattern that is only slightly left humped. These results are
similar to the 120 year fixed discard pattern that also allows for a 30% residual land

value,

. o . olmg  dlng® L
Depreciation rate is wr} = I /(qR /g =h , where qp/qp is the ratio of residual (land) value to
( A Q(V g

total value and h is the hazard rate fm a Weibull distribution of discards, all evaluated at the sample mean.




Table 7 repeats this exercise for the estimate structure price only. Allowing no
residual value (column 1) yields a coefficient on age of 1.18%, a sample mean
depreciation rate of 1.24% and a very imprecisely measured average age at discard of
85.0. Finally, column (2) reports estimates allowing for a residual value for structures.
The coefficient on age falls to 0.51% and the mean discard age is 100.3 years. The
sample mean depreciation rate is 0.67%. Residual value is 21% (0.267/1.267). This
value is much higher than the estimated residual value for the land and structure model.
Charts 5 and 6 show the consistent pattern of left humped discards.

Based on these estimates, a few patterns emerge. While our expectations were
that BEA’s depreciation rate was too slow, our estimates, though not precise, suggest that
the depreciation rate may be even slower than BEAs rate. The sample mean
depreciation rates vary from 0.54% to 2.08 with most near or below BEA’s rate of
1.14%. In fact, it is not so surprising (or it should not have been to us) that if the scrap
value of land under a house is quite high that the depreciation rate would be
correspondingly low,

Second, the discard patterns are consistently peak to the left of the mean discard
age and some patterns are quite pronounced. This is inconsistent with the symmetric
patterns of the modified S-3 Winfrey distributions. Furthermore, it has the effect of
increasing the depreciation rate, ceterus paribus.

Third, our estimates of the depreciation rate vary considerably. So much so, that

we do not yet have enough confidence in our estimates to suggest an alternative to BEA’s

rate of depreciation.
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Fourth, the mean life of houses varies in a fairly wide range from 63 to 100 years.
Even though all but one of the estimated mean discard ages are greater than the 80-year
life currently used by BEA, the average of the 5 estimates is 84.1 years. Despite
estimated discard age comparable to BEA® figure, the depreciation rate is low because the
scrap value is estimated or assumed to be relatively large fraction of the original purchase
price.

The estimates in sections 4 and 5 are weak and largely inconsistent. We have
noted a number of potential causes and we will consider some improvements and
refinements in our concluding section. However, the method of Hulten and Wykoft may
have some limitations and we explore these in the next section. A Monte Carlo
experiment also provides some insight into how to select a sample. After that, we

consider a less restrictive model that may produce more plausible estimates.

Section 6: Monte Carlo Simulation of Housing Prices

Given the weak results of both sections 4 and 3, it may be useful to examine
under what circumstances the Hulten-Wykoff method produces correct measures of
depreciation. To preview our findings. the Hulten-Wykoff method will measure
depreciation correctly when there is no depreciation-in-place. However, when
depreciation occurs through both discards and depreciation-in-place, the Hulten-Wykoff
method overstates depreciation rates because the average of the sample of survivors is
younger than the cohort. The bias declines as the average life of the asset increases.

We start by creating a sample of 2200 “houses” age 0 to 10 according to the

model:
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Price = 10000 -+ 7500 * bedrooms + 3500 * bathrooms.

There is a balanced sample of houses for each combination of bedrooms and
bathrooms and for each cohort. The average new house cost $53.000.'" Total
observations are: 11 years (age 0-10) x 20 bed & bath combinations x 10 observations
per combination = 2200,

Surviving assets also decline in value as they age. The price of used assets
follows straight-line depreciation where Py = Py(1-8/20). Py is the price at age s and Py is
the price model above. (Depreciation-in-place occurs at this artificially slow rate to
distinguish between loss of value from discards.)

Retirements claim a tenth of the original cohort of houses every vear, independent
of wear and tear and independent of other traits. Of the 200 houses originally installed
for each of the 10 cohorts, 20 are “gone™ by the end of the first year although they had
been otherwise identical to those that remain, 20 more are gone by the end of the second
year, etc., until by the end of the ninth year only 20 remain, and none at all by the end of
the tenth year. Moreover, the resale value of the vanished houses drops to zero. Hence,
while the loss of cohort value is a sum—"depreciation-in-place” of houses that remain
standing, plus the zeroing-out of houses that disappear—vanished houses cease to
depreciate in place. Average depreciation per year of $5300 is sufficient to completely
account for the decline in value over the 10 years.

We start with a sample typically available for measuring age-price profiles:
survivors only. The results are:

............ n=1100,...........
Fstimated Standard

" Adding an i.i.d. error term does not change the estimates in any significant way.

&




Coefficient Error
C 16455 205.7
Age 2650 26.8
Bed 6375 30.6
Bath 2975 51.4

In this case the coefficient on age reflects just the loss in value of surviving assets,
the problem Hulten-Wykoff sought to address. Coefficients on beds and baths are both
85 percent of their original values in the 1100-observation data: the percentage matches
the ratio of the mean non-zero price of houses to the mean new price of houses.

Next we estimate the model on the data set that Hulten-Wykoff would ideally
have used: the full cohort of 2200 houses. Data like these are usually unavailable
because discards are not observable. The correct depreciation of $5300 is obtained."!
The price of beds and baths again are the ratio of the mean price of used houses to the

new house price.

............ n=2200............
Estimated Standard
Coefficient Frror
C 30750 1229.8
Age -5300 118.2
Bed 3187.5 2025
Bath 1487.5 174.4

Note that to obtain the correct depreciation, the sample must include houses of
age 10. Limiting the sample to ages in which some survivors are present yields

; .o . e - ‘ . 12
depreciation of $5565. This figure reflects average depreciation over houses age 0 to 9.
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per survivor * 0.5 (the surviving fraction). Depreciation from discards = $5300 * .75 (ratio of average used
price to new price).

" Depreciation of 5565 for nine years results in cumulative depreciation of 50,085. The remaining
depreciation of 2915 equals the average price of a 9 year old asset (survivors and discards).




Since depreciation is not constant by age because the value of discards per year declines
with age, excluding the final year raises the depreciation rate.
The Hulten-Wykoff method limits the sample to survivors and adjusts the used

asset price to include discards. The resulting depreciation rate is too high".

............ n="1100............
Fstimated Standard
Coefficient Error
C 24217 4923
Age ~5989 64.1
Bed 4687.5 733
Bath 2187.5 122.9

The higher estimate is the result of two related factors. First, the sample can not
include any assets of age 10 by construction. Second, the average age of the sample is

much younger (3 years) than the average age of the cohort (5 years) because only

survivors are included. The second effect can be eliminated by weighting observations

by the square root of the inverse of their survival probability, but the first effect remains.

The results of the weighted least squares are:

............ n=1100............
Fstimated Standard
Coefficient Error

C 29718 567.5
Age -5565 60.2
Bed 3506.25 80.7
Bath 1636.25 135.3

Now the depreciation rate is $3565, the same value as the full cohort of houses
age 0 to 9. That is, the Hulten-Wykoftf method. of course, can not weight houses age 10

because all are now discarded. Houses do not march lock step into discards as the

% If surviving assets do not decline in price with age, the Hulten-Wykoff method produces the correct
estimate of depreciation.




example we have set up implies and so the bias 1s exaggerated. For long-lived assets
such as houses, the elimination of the final year is likely to have a trivial effect on the
depreciation rate. We should expect that the Hulten-Wykoff method would produce
almost the correct depreciation rate for houses.

However, the example does point out several considerations when choosing a
sample. First, the average depreciation rate will depend on the average age of the sample.
If the sample is relatively young, loss of value from discards is faster than for the entire
cohort and depreciation is likely to be too rapid. Second, a few houses may live
extremely long lives. Just as a sample of houses age 0-9 yields too fast a depreciation
rate, a sample of houses age 0-11 produces too slow a depreciation rate. In the MRIS
database, houses ranged in age from 0 to 300. If houses do not survive more than say 200
years with rare exception, including these very old houses may produce a depreciation
rate that is too slow. This may be one (but not the only) reason that the weighted least

squares of Section 4 were so implausible.

Section 7: Estimating depreciation with a distribution of lifetimes

Given that the Hulten-Wykotf method should produce almost correct estimates of
depreciation, another cause of the weak estimation results may be an over-simplified
model. In equations (6) and (7), the term 6* Age was intended to capture the cohort's
depreciation, while (Age/m)" or -In[(p + exp(-Age/m)")/(1 + p)] was intended to adjust
for discards (with or without residual values, respectively). But intending may not make
them so: only their product (or in logs, their sum) is unambiguously the average age-price
profile of assets still in play. As long as the two functions are separable, bias in one must

transmit an equal and opposite bias to the other. Absent a survivorship schedule that is
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correct a priori, one way to make the functions less susceptible to misattribution bias is to
make them nonseparable, so that the parameters of one show up in the other. To do this,
interpret the cohort age-price function as an explicit average of the age-price functions of
individual assets with different inherent discard ages. In this way the parameters of the
survivor function appear also in the cohort age-price function, in the frequency weights
that attend the member assets.

Plainly this is not the only source of retirements: unlucky accidents or sudden
opportunities may also remove otherwise identical assets from play. Yet for many types
of assets, and arguably houses, good or bad accidents cannot account for more than a
small share of retirements. The assumption of no accidents is extreme, but less extreme
than its opposite, and it permits the extraction of more information from observed
transactions in used assets. In this section, then, we derive an estimating equation that
allows a distribution of asset lives. So far, we keep the individual assets very simple--
geometric--in order to develop a tractable form. We continue to work with this model
and do not yet have estimates to report.

To begin, suppose the purchase price of an s-year-old asset declines
geometrically:

q(s)=qoe” ", (8)
where gp. the new supply price, is assumed to be the same across all buyers (conditional
on hedonic characteristics), and the minus sign in the exponent means the
decay/depreciation rate & must be a positive number. Note that & differs randomly and
permanently across assets, an unavoidable fact of nature. This alters our view of

depreciation. There is no longer a single depreciation rate for which a few stubborn
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assets refuse to adhere to. Instead, assets have different expected lives when made and
will reveal their lives over time.

The manufacturer and the initial purchaser are both “symmetrically
misinformed™: neither knows the &; inhering in a particular asset, but both know the
distribution of . Each asset reveals its own character in use, in that rental prices start to
differ from one another immediately according to their different 8;’s, although
productivity shocks conceal the discrepancies for a time.

ps)=(r+ &) gpe ™, 9

With Hulten-Wykoft, suppose that buyers and sellers in used-asset markets are
symmetrically informed: by the time a particular asset is put on the block, both the seller
and prospective buyers have formed tight, accurate estimates of §;.

Without the possibility of scrapage or maintenance costs, a geometrically
decaying individual asset would remain in use forever, never quite wearing out entirely.
However, a positive scrap price, gg, induces retirements whenever ¢(s) falls to gx. Prices
of assets that depreciate faster cross the ¢ threshold sooner, so retirement ages are
reciprocally related to depreciation rates. To see this explicitly, replace s in (8) by R, the
retirement age, take logs and rearrange to find:

o = In(go/qr)/R. (10)

It follows that long-lived assets will be over-represented in typical resale data,
particularly at great ages. Econometricians, who don’t observe &, should therefore treat
any observed age-price pair (s, ¢) as a joint statistical outcome, and model depreciation to

take advantage of the joint nature of the data. Standard age-price regressions don’t do

that, but rather begin (and end) with the logarithm of (1), plus an error term for haggling:
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nq(sy=Ingqgy— s+ ¢. (1
—implicitly supposing & is a constant uncorrelated with s. Instead, use (10) to replace &
by In(go/qr)/R, then model the joint distribution of ages and retirements. The expectation

of /n g(s) of surviving assets is:
— . G .
Elnqg(s)=1Inqo+ In(qi/qr) ‘[(x IRYF(RIS)dR, (12)
where f{R]s) is the conditional probability density function: i.e., the probability that an -
year-old asset will be retired at age R. Suppose AR | 5) is smooth and well behaved: AR |
sy>0 for R>s, 0] ff‘(R [ ) dR]/ ot >0 for age r>s, and ‘[’/(R |s)dr=1. To derive AR | s),

divide unconditional f{R)—the probability a new asset will be retired at age R—by

1-F(s), the fraction of assets still surviving at age s:

F(R|$)= w—ﬁ(m = f(R )/ (/(R) dR. (13)
The conditional expectation of /n ¢(s) becomes:
Elng(s)

=[nqp+In(qr/qo) s ff(R)/R-ﬁt =In gy + n{qo/qr) s [?“(R)/R dR/p“(R) dR.  (14)

We show in the appendix that a suitable estimating form for (14) when individual
assets depreciate geometrically is:
Fond ] 2
min(gy /gp)s+s

In g(s) = in gy~ In(qylqp) — e ~ +g (15)
dolin(ge g +din{gy lgp)s+s°

where go/gg 1s the ratio of the new the scrap asset price and dy2n,>0 and dn= dy>0 are

parameters of the model. The corresponding probability density function of the
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depreciation rates can be used to measure average depreciation rates once the parameters

are estimated,

L 2dem
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dy 8)

The cohort average depreciation rate 18 ny/dp.

Section &: Conclusion, Summary and Much Needed Further Work

Using transaction price and characteristics for 160,000 houses in the Baltimore-
Washington area, we find almost no depreciation (.09% per year). Location is an
important element in the measurement of depreciation. Depreciation rates are estimated
to be almost 0.2% per year faster when switching from state locations to 5-digit zip
codes. Nevertheless, the incredibly small depreciation rate implies that survivors are
either very long lived or purchasers have an expectation that houses will be converted to
a more valuable alternative use because the land and location value rise over time as
cities grow. Alternative interpretations are that age is a valued trait by some purchasers
or that unmeasured valued traits are positively correlated with age.

We estimate the depreciation rate using the Hulten-Wykoff method with 80, 120
and 160-year Winfrey distributions. The choice of a distribution is tantamount to
choosing a depreciation rate considering that surviving houses depreciate very little.
Furthermore, our estimates using the Hulten-Wykoff method are not precise. Since the
evidence on the appropriate discard distribution is scant, we devise a method to estimate

the discard distribution along with the age-price model.




The resultant estimates of depreciation rates for single family housing are not
sufficiently precise for us to recommend a rate different from BEA's current 1.14%. We
have adapted the Hulten-Wykoff method of incorporating discard patterns into the
estimation. Rather than adjust the price of survivors by modified S-3 Winfrey
distributions, we estimate a Weibull discard pattern as part of the model. Since housing
prices include the value of a depreciable structure and non-depreciable land, we further
modify the Weibull distribution to allow a positive scrap value. We estimate depreciation
rates from 0.54 to 2.08 percent although most estimates are near or below BEA’s rate.
Asset lives for single family houses range from 63 to 100 years with most near BEA's
estimate of 80 years.

While the range of estimates is large, several other features are persistent. The
distribution of discards peaks to the left of the mean with a substantial right tail. While
our initial intuition was that the true depreciation rate was faster than BEA’s current rate,
BEA's figure is at the upper range of our estimates. The left humped distribution does
help reconcile BEA's depreciation rate with our intuition that the proportion of older
houses is not very large. Furthermore, BLS may be able to adopt BEA's depreciation rate
provided BLS also employs a skewed discard pattern.

We next conducted a Monte Carlo simulation to investigate how well the Hulten-
Wykoff method estimates a known depreciation rate. The Hulten-Wykoft method can be
average age of the entire cohort differs from the average age of the sample unless
survival is unrelated to age. In our experiment, younger assets depreciate faster, on

average. than older assets and so the Hulten-Wykoff method overstated depreciation.




Weighting observations by the inverse of the survival probability reduces any bias, but
does not eliminate it because the weighted average age of the sample is still younger than
the cohort. For long-lived assets such as houses, the bias should be trivial.

The investigation also reveals that depreciation rates depend on the concept of
depreciation being investigated. Chart 7 compares an age-price profile that declines
slowly with one that declines more rapidly. For calculating the average depreciation over
the lifetime of the cohort, only the asset life is relevant. Even though one asset appears to
depreciate more rapidly, it merely depreciates more rapidly early in its life while the
other asset depreciates more rapidly later in its life. Over the entire life, the average
depreciation rate is the same. For depreciation of a stock of assets at a point in time, both
depreciation-in-place and current period discards should be counted. In this case, the
more rapidly declining profile depreciates, on average, faster. However, this is true only
if surviving assets and current period discards are counted. If the entire cohort including
all discards is counted, again, the lower curve depreciates more rapidly early in its life
while the upper curve depreciates more rapidly later. Over the entire life, the
depreciation rates are equal.

We suggest an alternative view to a distribution of discards around a single asset
life. Specifically, we view asset as having a distribution of lives and derive an estimating
equation using a quite general distribution of geometric depreciation rates and a
conformable distribution of retirements.

Much more work is needed. We have specifically imposed a geometric
depreciation rate to examine BEA's estimate. A better strategy would use a more flexible

cohort age-price form in measuring depreciation. Neighborhood characteristics are
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currently summarized by zip codes, but a more detailed specification of schooling, crime
and commuting distances may better define the location. Nor have we investigated
models on the relatively small sub-sample that includes interior square footage. While
the sample is small, it is still more than 10,000. Finally, a small sample of houses were
sold more than once in the period of study. A fixed effects model may provide sharper
estimates although houses resold in a short period of time may be lemons.

The MRIS database contains rental housing and commercial real estate. These
data need to be investigated as well. It can be difficult to distinguish depreciation
patterns from age-price profiles because most are concave even when the age-efficiency
pattern is not (Sliker 2000). Even though rental housing is sometimes subject to price
control, rental dwellings may provide more direct evidence on the age-efficiency pattern
than age-price profiles. Since it is quite difficult to infer age-efficiency patterns from
age-price patterns, rental housing may help determine the appropriate specification

In sum, we find no evidence that depreciation occurs at a rate faster than BEA’s
1.14% rate for single family housing. While our estimates are imprecise, most of our
estimates implied slower depreciation except when the residual value of land is not
explicitly modeled. The average age at discard is also close to BEA’s figure of 80 years.

We do find that discards are not symmetric. Given the lack of precision in our estimates,

much more work needs to be done.
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Appendix: Geometrically-Decaying Assets with General Statistical Retirement
Patterns

This appendix derives a regression to fit the average age-price function of a
cohort of assets that depreciate along separate paths drawn from an unknown but well-
behaved distribution of Geometric depreciation rates. It is not necessary to assume in
advance a particular distribution of rates—or, as it turns out, of the rates’ reciprocal,
retirement ages—to correct for censoring bias in age-price regressions: available resale
data are sufficient to estimate the parameters of both depreciation and retirements
consistently in one step. It would of course be still better to accommodate a more
flexible depreciation pattern than Geometric while maintaining statistical generality of
the lifespans, but we leave this for the future. The binding constraint here is to find
estimating forms that do not need higher functions than those available in recent-vintage
regression software. As software improves, the constraint will not bind for most
practitioners.

First, a respectful nod toward “the engineers.” Quality-control statisticians
typically assume one-hoss shay efficiency—a device works until it breaks—and an
Exponential, Gamma, or Weibull failure distribution; they also base their estimates on
physical data obtained from well-designed experiments. Economists, by contrast, usually
assume efficiency declines with age and seek to infer the shape of that decline indirectly,
by comparing assets’ resale prices to age; the comparison is hampered by the toll of
retirements of assets that have already worn out. So far, corrections for retirements are
not well-connected to efficiency declines; borrowing a sheet from the engineers’

playbook might make the corrections more rigorous.
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Many economists might think borrowing isn’t necessary. We usually work with
cohorts of assets, not individuals, and if the cohort Geometric model is not exactly right
for summarizing the joint depreciation-in-place and retirements of many individual
assets, it is often “about right,” and it is easy to use. But black-box cohort models hide as
much as they summarize; ambiguities in representing price changes in Geometric cohorts
in terms of age versus time versus vintage are well known. Further, tests of cohort
models in the literature have required a priori retirement distributions to correct for
sample selection problems, but the distributions commonly used are now badly out of
date. Revisiting the compound of individual age-price functions and retirement
frequencies within the cohort would enable econometricians to use available data on
used-asset transactions directly. The price of unpacking the data, however, is greater
mathematical complication: it will turn out to be difficult to model depreciation and the
distribution of retirements jointly using the engineers’ favored failure distributions, but
efforts to do so will point up tractable estimating forms from which the distribution of
retirements can be inferred ex post.

To begin, suppose the purchase price of an s-year-old individual asset declines
Geometrically:

g(s)=qoe ", (A1)
where gy, the new supply price, is assumed to be the same across all buyers (conditional
on hedonic characteristics), and the minus sign in the exponent means the
decay/depreciation rate 3 must be a positive number. Note that & differs randomly and

permanently across assets, an unavoidable fact of nature. The manufacturer and initial

buyer are both “symmetrically misinformed™: neither knows the §; inhering in a particular
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asset, but both know the distribution of §. Each asset reveals its own character in use, in
that rental prices:

p(s) =@ +8)gpe ¥, (A2)
start to differ from one another immediately according to their different 8;’s, 2 Ithough
productivity shocks conceal the discrepancies for a time. With Hulten-Wykoft, suppose
buyers and sellers in used-asset markets are symmetrically informed: by the time a
particular asset is put on the block, both the seller and prospective buyers have formed
tight, accurate estimates of §;.

Without the possibility of scrappage, a Geometric asset would remain in use
forever, never quite wearing out entirely. However, a positive scrap price, ¢z, induces
retirements whenever g(s) falls to gr. Prices of assets that depreciate faster cross the qr
threshold sooner, so retirement ages are reciprocally related to depreciation rates. To see
this explicitly, replace s in (A1) by R, the retirement age, take logs and rearrange

to find:
S =1In(go/qr)/R. (A3)

[t follows that that long-lived assets will be over-represented in typical resale data,
particularly at great ages. Econometricians, who don’t observe 8, should therefore treat
any observed age-price pair (s, ¢) as a joint statistical outcome, and model depreciation to
take advantage of the joint nature of the data. Standard age-price regressions don’t do
that, but rather begin (and end) with the logarithm of (1), plus an error term

for haggling:

ng(s)y=Ingqgy—3ds+e. (A4)




43

—implicitly supposing & is a constant uncorrelated with s. Instead, use (A3) to replace &
by In(go/qr)/R, then model the joint distribution of ages and retirements. The expectation

of /n g(s) of surviving assets is:

EInqg(s)y=1Inqgo—n(qo/qr) f /R)F(R|s)dR, (AS)

where fIR]s) is the conditional probability density function: i.e., the probability that an s-

year-old asset will be retired at age R. Suppose f{R | s) is smooth and well behaved: AR |
5)>0 for R>s, &] f t F(R]s)dR]/ et >0 for age >s, and rf(R |s)dR=1. To derive AR | 5),

divide unconditional f{R)—the probability a new asset will be retired at age R—by

1-F(s), the fraction of assets still surviving at age s:

rri = L= iy ﬁ(R)dR (A6)

The conditional expectation of /n ¢(s) becomes:

Elng(s)y=1Inqgo—In(qo/qr) s f(R}»g—-‘)ﬁ =gy~ In(qy/qr) s ‘E;"(R),-’R dR/ p“(R) dR (A7)

Since /n gp and In(go/qr) are constants or at least hedonic functions, the only problem

now is to express the “moving part™—i.e., 5 ["LR/RR " The table on the next page

examines three attempts, using retirement distributions taken from engineering: the
Exponential, with a modal retirement age of zero, and the Gamma and Weibull, which

extend the Exponential by adding a “‘shape parameter” n>0 to the “scale parameter” m>0. ]

Similarities among the three distributions are instructive. In particular, the nine curves
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shown all start at zero, increase—at decreasing rates—and tend toward one.'* Further,

the math behind each curve involves the Incomplete Gamma function:

e 0 e P e

[{a, x)= [ e 2 g
which is neither available in most econometric packages nor easily approximated. We
found one simple representation only, but it will suggest a way to proceed: for the

Gamma distribution with integer n22, the “moving part” reduces to a rational function in

s T-1,2) =3 e Iy
m Ty m(n-1) Z“”n) / /, / ZUMH)

For example:

=0 s T(Ls/m) s
‘ m (2,57 m) m+s
N o
=3 s T(2,8/m) ms -+ s
) m 3,5/ m) 2m* 4 2ms + 57
3 ¢/ 2 2,3
______ s U(3,s/m 2mes 4+ 2msT + 5"
n=4: LI0sIm - dmiedIms by
m I (4,s/m) Om™ +6m*s +3ms” +5”
; -3 e 2.2 a3
n=5: s T{d,s/m) Em s +6mes® + Ims” + 5
m I(5,s/m) 2dm* 4+ 24m’ s + 12m%s% +dms” + 5%

Note each right-side ratio has only positive coefficients. The numerator lacks a constant,

ratio to 1 as s—o0. Coefficients on middling denominator terms dominate their
counterparts in the numerator, keeping the ratio securely less than 1 for “medium” s

More subtly, the second derivative with respect to s is never positive for s>0.

M We would go a step further and surmise that for any reasonable continuous distribution describing
nonnegative R, the following hold:

s o ) [ . g

[/"(R)/R dR | F(RY/RdR 5| [;(R) RdR o / R) R dﬂ
lmf s = 1= 05 lim | § e — =1 s e >0, and =18 ‘
0 [rrydr 7 [rwdr “l [7(R)dR &’s R |
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Unfortunately rational forms do not hold for non-integer n, and in any case it is
inconvenient to fit a model by iterating over the number of terms in addition to the
parameter values. An alternative that does not lock in the assumption of a Gamma
distribution would start from a rational function with a fixed number of terms, allow the
terms’ values to vary vis-a-vis each other subject to some reasonable constraints, then
infer the retirement distribution ex post. Suppose, then, a “Gamma-inspired” estimating

form:
Inq(s)y=1Inqp—-n(qo/qr)

( S 5 L § ! //( <, [ s T § !
DA N Y S
kf:] n(qy/ qz) In(go/qn) // |\ TUindgy 1 qR) n(qo/qx))

=0

where T, the number of numerator terms, is set by the researcher, ¢ is the zero-mean

difference between /n ¢(s) and its expectation, and

(1 7 NP7 ™ ’(71 ‘ NI N
\
i

{ : { N |
n; d S R S I e————
- LI’WJ@"M) 2 ’L ) )‘ |

_J
L /”(f/o/‘lk

|
i /
{ /

\/)7((]\ (]R)/ //-‘

\ ln(rh qr
although just what f(R) is, precisely, is left unstated for the moment. For “good
behavior™—i.e., to make the moving part “look like” the nine previous plots—restrict all
the n;’s and d;’s to be positive, and impose n;<d; when i=. '3 Fit (A8) fit by nonlinear

least squares. To interpret the fitted coefficients, start with the relation between the

statistical moving part and the rational function:

¥ We have neglected second-order conditions, which increase and become more complicated with 7 e.g.,
dynyz dy for T=2, but dyn = dons, dan 2 dy, and 3n—d 2 dyny for 7=3, Moreover, the connection between the
moving part’s good behavior and the shape of the implicit retirement distribution is not yet clear.
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7-1
f SR g an(s In(go 1 q0)) +(s/ng0 1q))
= T’:l . (A9)
J?(R)dR Zd.i (5 In(q, ’/’(/R))j +(5‘[’7(flo /(IR))T
=0
Rearrange, canceling an s:
{ e 0D (1 [ ,\ T] s s o
L [ ig‘z (IR)(chjl}'z((]o/(]R)]““’A“’ +s7 ] rf(R)dR LZ”J"(%/flk)hl“‘” + 5']'1»
A= _ A=l J

Use Leibniz’ Rule to differentiate both sides with respect to s:

Wi0 o royig ot | FLR S |
L d;in(gy 1gp) s+t |+ [(%%I'R d In(q, / 5T T
. Z;’ (Go 7qr) L ’ ZII‘ e/ qr) s J
g s NI .
::»/(\)LZN ]’7((/0/(]}?)1 i Q- l ] .;.L [‘/*(R)(]RJLZ(I*])ﬂlbl((]o /(]R)Imrﬁlw,z +(’T“"1)waz ,
] h SN q=2
wel
then substitute for [ SR i from (A9):
r-l i
. \ niln(go /q) s s T \
L(‘)" Z“I In(go /qp)" s 457 [* (_Q..f(fR)dR cL [ Jd gy Lq) s T T T X
J Z(/ gy fqp) s 4 k/ ! J
0
= ) e Vs . )
- mf(s)L ndn(g, /"{]R)7"'s’"1 Y L+ Ff’(‘R)dR izu - mdnig, /(/R)"”s“j (T =D .
=1 J“ Ao / i=2 }
and rearrange again to express »-f(s)/’ [}‘(‘R)(JR as a rational function in
(A10)
= v (& s r)
-1 1'(3/1111]%”&;)7) (T (/ ) 2.4 (/”(1' Fqed ) "‘L( gl JLH ) :‘L ”'(/”w s ) (1 9 ) ’[(\2‘ id (r 7 1“)/ (/ {a, /g 7) E
2 J= i A=) J

{11 \ \ 3\

{ X s ; ‘. 1

ZL d/(m TGs 11 ) +( lq /q i : (1’0 7kZ(d = )(In(q /r;A ) J
f=0 A

5

Since 2 r}l‘(le)dle =~ f(s), think of C}“(R)dR as “H(s)” and -f(s) as dH/ds, so the left side

E / N i i —
of (A10) is i{[{{ /H . Integrate: the left with respect to H, the right with respect to s. The
as v/

;o \
eft-side integral 1s simply /n(H) 1:1”( Cf‘(R)dRJx m(1-F(s)). The right-side integral looks
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daunting, but a rational function integral can a/ways be solved in terms of rational

functions, natural logarithms and arctangents. Given the results of integration:
In(1-F(s)) = [right-side integral (s)] + C,

the retirement distribution follows almost immediately. Set s=0 to solve the constant of

integration:

C = —[right-side integral (0)],
then exponentiate both sides, replace s by R, and solve for the cumulative distribution

function:

F(R) =1 - e(right-side integral (R)}-[right-side integral (0)]
Take the derivative for the probability density function:
](R) - wa[right—side 'i'ntegral (R)]/(?R . e[right-side integral (R)]-[right-side integral (O)l. (AI 1)
The probability density function of § is a direct transformation'® of the probability
density function of R: substitute /n(q¢/gr)/d into (A11) at each occurrence of R, then
10/q (ALl

multiply the whole thing by 171(q0/qR)/52.

At this point some examples will both make the method outlined here more

familiar and build up a small kit of functional forms for later use “‘off the shelf.” For the

simplest case, 7=1, the regression equation is:

Inqg(s)=1Inqp~In(qo/qr) - (A12)

doln(qy/gp) + 3

' By Theorem V.11 of Mood, Graybill, and Boes, Introduction to the Theory of Statistics, 3" Fdition
(McGraw-Hill, 1974), p. 200: if X is a continuous random variable with a positive probability density
function fx) over some region, and if y=g(x) is a one-to-one transformation of X onto Y with d g\ Wiy
continuous and nonzero wherever Y is defined, then the probability density function for Y is:

Ag'on)

1) =|dg o)dy

wherever Y is defined. In the present application, R is X, §is Y, and g"‘(S) 18 In(qo/qr)/S.

o
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Rearrange the moving part:

=]
al

(@ohatay /42)+9) | ::flsldfe - [j“(R)dR,
differentiate by s:

O] (doln(qg fqp)+ 5‘) -F{ REACD) d ) =—f(s),
S [ R

substitute for [ ------ LdR

;

B LE” (doln(ge /) + 5)+ ( j FRR Ndoin(ay /qp)+s)=—F(s),

/
rearrange again:

~f)  sldoln(ge/qp)) 1 1

Ji“(R)dR - doln(qy /qp)+s h doln(qo /qp)+s  doln(ga/qg)’

and integrate to find:

In(1-F(s)) = In[dp In(qo/qr)+ 5] — s/[dp In(qo/qr)] + C.
Set C = —In[dy In(go/qr)] so that F(0) = 0, then exponentiate, replace s by R, and rearrange
for the cumulative distribution function:

R

FR) = 1- (1 N _MRj dulnia ) (A13)
doInlqy/qg),

The probability density function of retirements follows as:

R
R dyIn(gy 1 ,) :
JR) = e R, (A14)
dy” [ln(qo /qR)]

while the probability density function of depreciation rates is:

/ L
18y =1/ ((102 5%“»51. (A15)

1
1

[\ )
Positive dy guarantees good behavior. The #" uncentered moment of the retirement
distribution is [do In(go/qr)])'[(1+1)!], so the cohort-mean retirement age is 2dy In(qo/qr)

retirements are right-skewed. The cohort-mean depreciation rate is 1/dp; there are no

N
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higher moments. The modal depreciation rate is 1/(3dp). Sample plots retirement-age

and depreciation-rate densities follow for dy ={20, 30, 40} and g¢/qr= 10/3:

retirement ages: f(R) O depreciation rates: f(O)
0.018; ~ Y
0.0125, N 10 A\
N i\
\)‘Qx‘ / 10 \
g 20-
0,005, / g
o008 o
Vool b ST
20 0.02 .04 .06 0.08 0.1

To treat the spread and skew of the distributions more flexibly, turn to the 7=2 case. The
regression equation is:

0 Il er e/ ¢ ol i )
ng(s)=1In qo— In(qo/qr) ”‘mwf) 4 R)‘\f > -~ t g, (A16)
dolin(qy /qp))” +dyin(qy /1 qp)s+s°

which is expression (15) in the main body of the text. Rearrange the moving part and

differentiate by s:

O] (doln(qo TqR)* +dyin(qy /qp)s + 32)+( [y ‘/i(RR)" dlﬂ(dﬂn(qo Lqp)+2s)=—f()min(qy /qp)+ s)+ [‘}\(R)d’l‘) .
N o5 A B
nee (TSR
Replace Tw’R and rearrange again:
. - 4o .
A dy = dy(d) —m) . dinCy ) +2s ~ !
; . o ; 2 . , 20y "
Jq}‘(R)dR (dy =n)don(2) +(dy =n)s] g, (ln(gi)) wdn(®)s w57 (di- )il
integrate:
m(1-F(s)) = f{_&‘mfl_fi]l_(_‘ﬁ;_ff_l_z Inlin(42y ’(1{ Y+ (dy = n))s ||+ Ind, [,,(EL))E T T TR PR S——
Sl 1 p ‘
(dy=m)" s x Te " (dy~n)in

set s=0 to find C, and finally solve for the cumulative distribution function of retirement

ages:




dy i,

7 e Lo ) A 5
F(R) =1- Ll - ﬁ‘_m_f’_}»;‘_”j[kR\(”’l"”}) d-n 14+ dlhl(‘(]o / (]R)R +7R
doln(qo/qx) dol[In(go /g )1

Rit(qo/4x)
j ) (A1)

Differentiate for the probability density function:
(A18)

dy 2y -

» ) . v ~ 1) Riteyfgs)
f(R) - R dis d! =My R}(ril»n;)' ddjny (d\n] _ d(}) 4 2711 R + R \1 l e (np=dyy
do*lintge /g2 01\ doli(go ! qz) In(go/ar) \Inao/qr)) |

The probability density function of the depreciation rates—expression (16) in the text—

follows as;

dy 2dy-ny
RO S . S r 5 1
N 1 d, -n 1 V(d-n ¥ ] ] ) n 1Y I P ‘
O) = ol T 1 |- ddin, —d )+2_I +(_) '(:’(”1 dNs i A19
f( ) ({553 { "lo 5} ik( 1 —dg, 5 5 { ( )

The shapes of f(R) and f(8) are quite flexible for various values of do, d,, and ; and
domains of R and 8. Inspection of /(R) reveals three critical pieces for establishing global

coetficient restrictions: for R non-negative, /(R) is real if (n- _dem B s pos1twe] ,
L doln(qy /7 qr) J

positive if [, gy, 2R [ RV s the same, and bounded if lim
In(gy 'qr) \In(go7gz)) | R0

|
)

.
L VR In(gy /¢ . " , .
prl ~—-,—~Uﬁﬂ)—} = 0. To meet the first condition, make dy-n; and dy have the same sign.

To meet the second condition, impose either n1>0 and dy < dyn (to keep the parabola’s
roots, if real, sufficiently negative) or #,<0 and dy < dyn)—n” (to prevent repeated real

roots in the first place). To meet the third condition, constrain n,<d,. To meet all three,

impose 0< m< d) and 0 < dy < d\ny. The same joint restrictions force the first derivative
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. In(qo/qg)s+s* " . o

of - le ”(qf) q’*)q,” — to be always positive and the second derivative to be
dolin(gy ' qp)]” +dyin(qe /qp)s +5°
always nonpositive. The resulting f(R) curves all start at zero, increase to one or two

modes, peter out for very long lifespans, and integrate properly to 1. The curves may be

although the right tail never looks quite as small as the left. Starting from the “zero
moment” of 1 and the mean of

e o= (dy-m)

) » R d, Y oty (= ‘ k .
2(dy =) In(Ly et [ do ) ) T domndien)  dy , higher-order uncentered
’ qr (dy=n)” {ddy~nyy* (dy—n))”

moments follow recursively:

w, = ln(%)’{-l {ln(q—*)>rd0u}.w3 +[{(r~Ddy —rn 0, }

qr

The cohort-mean depreciation rate is n,/dp, again without higher moments.

Two special restrictions deserve comment. First, if dy=d\n, and n, =% d,, then

the moving part:

Vydin(qe/qp)s + 57

Ldllin(go 1 g +diin(ge/ q)s +s° )
is consistent with one of the integer-n Gamma distributions that inspired the rational

estimating forms:

~2R
. ’ 2F ,dT"(l/z_;;) 2 " 4
FR)=1-1 ]‘Eg — :—767 .......... ) Ry=a42" 0 LR - I E——
< dl [71(([0; (]R), ({{[]n((]o /(IR)]‘ di» & e %

with cohort-mean depreciation rate 1/d;, “‘scale parameter” ¥ d) [n(go/qr),and “shape

parameter” n=3. Second, in the unconstrained form, if d, is large and imprecisely

Vg e

. , ) - N\ L L ,
L L s an integer, then |y, . dy-m ® ‘may be negative, but this is very unlikely.
(e ~n) dy~ny (10171((10 /QR) ‘




estimated and d; is near zero (sothis probably violates n,<d; and possibly do<diny),

normalize the moving part by do[In(qo /qp)]":

2
L N

doln(qy/qz) (1(,[111(&0 lq))
d, §?

+ - + :
doln(ge/qr)  dylin(gy / qx)]

3

5

[f the composite parameters d,/dy and 1/dy are not statistically different from zero, then
the hypothesis of a single Geometric rate across all members (8 = n,/dy) cannot be
rejected. Variations in retirement ages would depend solely on variations in gx.

For 7=3, the regression equation is:

m (g, / (]R)]Es +nyIn{ygy / qR)s2 +5° Y
dolIn{qy / qp 0+ d\[In(g,/qy s+ dyn(qy /g, )52+’

In q(s) = In qo— In(qo/qr)

The same steps as in the 7=1 and 72 cases give the cumulative distribution function of

retirement ages:

F(R) =

) : ) dym - tidym )24 -y

B0 [ d () R+ dyln( )R + RY ) 1 (dy =m)InCOR 4 (dy = )R Ay
+ A1+

(n3-ds)

I-e

— e’

dolin()T’ dylin(1))*

expy -

(dy =)+ (dy = )20 (dy = ny) =dy ] =my(dy =)} R yado(dy=ny)=(d, = n))? }i}
5

—- aretan - - -
[,,(‘;si) 2y +(d) —n)R/In(gy/ q5)
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and the probability density function of depreciation rates:
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While it is possible to construct distribution functions for 73, in practice the algebraic
forms the functions take—i.e., when natural logs appear versus arctangents—will depend
on the fitted values of the d;’s and n;’s. Moreover, 7=2 is probably flexible enough, as it
even allows double-humped retirement distributions.

To sum up, this appendix offers a way to estimate the whole distribution of
Geometric depreciation rates inherent in a cohort .of assets from available resale price
data, without prior knowledge of the pattern of retirements. The next steps are to
generalize the depreciation function without sacrificing the generality of the implied

retirement function and to test the stability of the estimated parameters.




Table 1. Selected Summary Statistics from the MRIS Database

Variable

Net Price

Gross Price

Seller Subidy

Age

1 Bedroom Exactly
2 Bedroom Exactly
3 Bedrooms Exactly
4 Bedrooms Exactly
5+ Bedrooms

1 Full Bath Exactly
2 Full Baths Exactly
3 Full Baths Exactly
4 Full Baths Exactly
5+ Full Baths

1 Half Bath Exactly
2 Half Baths Exactly
3 Half Baths Exactly
4+ Half Baths

New house Dummy
Acreage

Ln($ value of Improvements)
1996 Year Dummy
1997 Year Dummy
1998 Year Dummy
1999 Year Dummy
2000 Year Dummy
2 Master BR

2nd Stry Fam Ovrlk
2nd Stry Fam Rm
Attic-Finished
Attic-Unfinished
Den/Stdy/Lib

Enc! Glass Prch
Family Room
Florida/Sun Rm
Game/Exer Rm
Great Room
In-Law/auPair/Ste
Laundry-BR Lvl
Laundry-Kit Lvl

Loft

Maids Rm/Quart
Main Lvi BR

MBR w/Sit Rm

Mud Room

Other

Photo Lab/Darkroom
Professional Off

Mean
222650.7
225170.3

2519.6
22.908

0.001

0.042

0.453

0.392

0.112

0.157

0.574

0.228

0.033

0.009

0.772

0.117

0.002

0.000

0.077

0.424

3,769

0.119

0.196

0.254

0.301

0.053

0.020

0.007

0.013

0.016

0.110

0.230

0.023

0.475

0.044

0.043

0.020

0.047

0.068

0.202

0.023

0.013

0.086

0.074

0.047

0.011

0.002

0.013

Standard
Error
169423.9
1694291
33988
23.574
0.027
0.201
0.498
0.488
0.315
0.364
0.495
0.419
0.178
0.093
0.419
0.321
0.045
0.016
0.267
0.902
10.119
0.324
0.397
0.435
0.459
0.224
0.139
0.086
0.111
0.125
0.313
0.421
0.150
0.499
0.206
0.202
0.140
0.212
0.251
0.402
0.149
0.112
0.281
0.261
0.212
0.105
0.045
0.113

Minimum  Maximum
10000 14361193
10000 14370018

0 200000
0 300
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
Q 1
0 1
0.032002 10

-9.21034 1910473
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Recreation Room
Solarium

Storage Room
Utility Room
Workshop
Attach/Row House
Back-to-Back
Detached House
Double Wide
Duplex

Dwelling w/Rental
Mobile
Barn/Stable
Cabana/Pool Hse
Carriage House
Gazebo
Greenhouse
Guest House
Office/Studio
Shed

Tenant House
Balcony

Deck

Fenced - Fully
Fenced - Partially
Fenced - Rear
Hot Tub

Other

Patio

Pool (Above Ground)
Pool (In-Ground)
Porch-front
Porch-rear
Porch-screened
Porch-wraparound
Private Beach
Private Pier
Private Road
Roof Deck
Secure Storage
Side Porch
Sidewalks

Spoert Court
Number of fire places
Number of garage spaces
Number of floors
A-Frame

Art Deco

Beaux Arts
Bileve!

Bungalow

Cape Cod

0.341
0.006
0.202
0.320
0.091
0.048
0.000
0.664
0.000
0.004
0.000
0.000
0.005
0.002
0.001
0.006
0.002
0.001
0.004
0.165
0.000
0.024
0.484
0.085
0.115
0.323
0.022
0.045
0.288
0.007
0.028
0.156
0.017
0.0682
0.010
0.001
0.003
0.007
0.004
0.001
0.001
0.268
0.000
0.955
0.949
2.745
0.001
0.000
0.000
0.004
0.006
0.036

0.474
0.074
0.401
0.467
0.288
0.214
0.014
0.472
0.013
0.066
0.012
0.014
0.071
0.045
0.031
0.076
0.042
0.039
0.060
0.371
0.020
0.154
0.500
0.284
0.319
0.468
0.148
0.208
0.453
0.084
0.164
0.363
0.129
0.241
0.099
0.032
0.056
0.085
0.065
0.028
0.024
0.443
0.010
0.802
0.977
1.268
0.026
0.009
0.015
0.061
0.075
0.185
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Chalet

Colonial
Contemporary
Cottage

Farm House
Federal
International
Log Home
Other

Provincial
Raised Rambler
Raised Rancher
Rambler
Rancher
Spanish

Split Foyer

Split Level
Tudor

Victorian

Center Hall
Foyer

Hall

Living Room
Lower Level
Other

Side

Split Foyer

Two Story Foyer

Alum/Steel Siding

Brick

Brick and Siding
Brick Front
Cedar Siding
Composition
Concrete/Block
Frame

Metal
Mod/Manuf
Other

Shake

Shingle

Stone

Stucco

Vinyi Siding
Wood

District of Columbia

Maryland
West Virginia
Pennsylvania
Virginia

Anne Arundel County

Arlington County

0.001
0.629
0.057
0.002
0.004
0.008
0.000
0.001
0.048
0.001
0.002
0.001
0.072
0.020
0.000
0.034
0.052
0.004
0.015
0.100
0.646
0.050
0.143
0.014
0.005
0.006
0.012
0.051
0.195
0.268
0.342
0.076
0.020
0.008
0.007
0.018
0.000
0.000
0.012
0.006
0.022
0.028
0.020
0176
0.063
0.038
0.361
0.012
0.007
0.581
0.031
0.027

0.028
0.483
0.232
0.045
0.060
0.089
0.018
0.024
0.214
0.026
0.049
0.035
0.259
0.138
0.018
0.182
0.221
0.065
0.123
0.300
0.478
0.218
0.350
0118
0.073
0.078
0.107
0.221
0.396
0.443
0.474
0.265
0.139
0.086
0.082
0.138
0.019
0.016
0.110
0.079
0.146
0.165
0.139
0.380
0.243
0.192
0.480
0.108
0.084
0.493
0173
0.162
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Baltimore City
Baitimore County
Fairfax County

Howard County
Montgomery County
Prince Georges County
Prince William County

0.077
0.024
0.308
0.046
0.144
0.039
0.080

0.266
0.183
0.481
0.210
0.351
0.194
0.272
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Table 2. Selected Summary Statistics from the MRIS Database

Variable

Net Price excluding land
Land value

Gross Price

Sell Subsidy

Age

Land assessment in $
Total assessment in $
1 Bedroom Exactly

2 Bedroom Exactly

3 Bedrooms Exactly
4 Bedrooms Exactly
5+ Bedrooms

1 Full Bath Exactly

2 Full Baths Exactly

3 Full Baths Exactly

4 Full Baths Exactly
5+ Full Baths

1 Half Bath Exactly

2 Half Baths Exactly
3 Half Baths Exactly
4+ Half Baths

New Home Dummy
Acreage

Ln($ value of Improvements)
District of Columbia
Maryland

West Virginia
Pennsylvania

Virginia

Mean
1495591
72209.4
224476.5
2708.0
24.887
64320.0
198532.9
0.000
0.039
0.469
0.374
0.118
0.165
0.568
0.226
0.033
0.009
0.806
0.134
0.002
0.000
0.007
0.355
11.668
0.046
0.468
0.004
0.000
0.482

Standard
Error
108523.2
56888.4
156739.3
3257.3
23.119
45292.5
127309.1
0.021
0.193
0.489
0.484
0.323
0.372
0.495
0.418
0.178
0.092
0.395
0.341
0.047
0.016
0.084
0.766
0.508
0.210
0.499
0.085
0.005
0.500

Minimum
557143
2833.33

13000
0

0
2000
7000

COoOOoD OO0 OoOC0C OO CcoOO

0.032002
-9.21034

[N e R ol e

Maximum
3165616
2214306
3750000

200000
300
1221000
3370520

—

19.10473
1
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Table 3. Estimated Parameters of the Single Family House Price Model with Different Location
Dummy Variables, Land & Structure Value

Variable Estimate Std. Error Estimate  Std. Error Estimate  Std. Error
Depreciation rate * 100% -0.09 0.003 -0.01 0.004 0.10 0.004
Ln($value of improvments) -0.00054 0.00006 -0.00038 0.000075 0.0007 0.0008
2 Bedroom Exactly 0.085 0.017 0.062 0.020 0.093 0.024
3 Bedrooms Exactly 0.145 0.017 0.100 0.020 0.107 0.023
4 Bedrooms Exactly 0.197 0.017 0.148 0.020 0.160 0.024
5+ Bedrooms 0.226 0.017 0.185 0.020 0.190 0.024
2 Full Baths Exactly 0.153 0.002 0.188 0.002 0.208 0.002
3 Full Baths Exactly 0.257 0.002 0.328 0.002 0.365 0.003
4 Full Baths Exactly 0.381 0.004 0.503 0.004 0.539 0.005
5+ Full Baths 0.528 0.006 0.668 0.007 0.671 0.008
1 Half Bath Exactly 0.086 0.002 0.096 0.002 0.084 0.003
2 Half Baths Exactly 0.143 0.003 0.172 0.002 0.183 0.003
3 Half Baths Exactly 0.178 0.010 0.198 0.012 0.176 0.014
4+ Half Baths 0.105 0.028 0.085 0.034 0.092 0.039
acreage 0.038 0.001 0.031 0.001 -.004 0.001
New construction dummy 0.159 0.003 0.180 0.003 0.193 0.003
Contract Year Dummies
1996 -0.007 0.002 -0.011 0.002 -0.016 0.003
1897 -0.013 0.003 -0.017 0.003 -0.046 0.004
1998 0.019 0.003 0.014 0.003 -0.021 0.004
1999 0.075 0.003 0.067 0.003 0.022 0.004
2000 0.133 0.004 0.117 0.004 0.065 0.005
State Dummies NO NO YES
County Dummies NO YES NO
Zip code dummies YES NO NO
Contract Month Dummies YES YES YES
Other buildings dummies YES YES YES
Other rooms by type dummies YES YES YES
Heating & cooling dummies YES YES YES
lot description dummies YES YES YES
acreage * county dummies YES YES YES
view dummies YES YES YES
water proximity dummies YES YES YES
house style dummies YES YES YES
construction materials dummies YES YES YES
N 163310 163310 163310
DF 162341 162846 162900

R-squared 0.8805 0.8392 0.7830




Table 4 Estimated Parameters of the Single Family House Price Model with Different Location
Dummy Variables, Structure Value Only

Variable Estimate Std. Error Estimate Std. Error Estimate  Std. Error
Depreciation rate * 100% 0.01 0.003 0.05 0.003 0.10 0.003
Ln($value of improvments) 0.655 0.005 0.731 0.002 0.778 0.002
2 Bedroom Exactly 0.006 0.019 -0.020 0.020 -0.034 0.022
3 Bedrooms Exactly 0.048 0.019 0.012 0.020 -0.013 0.022
4 Bedrooms Exactly 0.076 0.019 0.033 0.020 0.003 0.022
| 5+ Bedrooms 0.095 0.019 0.048 0.020 0.015 0.022
; 2 Full Baths Exactly 0.087 0.002 0.0683 0.002 0.057 0.002
‘ 3 Full Baths Exactly 0.109 0.002 0.107 0.002 0.100 0.002
| 4 Full Baths Exactly 0.159 0.003 0.153 0.003 0.142 0.004
5+ Full Baths 0.227 0.005 0.215 0.006 0.195 0.006
1 Half Bath Exactly 0.034 0.002 0.030 0.002 0.014 0.002
2 Half Baths Exactly 0.056 0.002 0.052 0.002 0.035 0.003 -
3 Half Baths Exactly 0.082 0.009 0.070 0.009 0.041 0.010
4+ Half Baths 0.041 0.025 0.015 0.026 -0.012 0.028
acreage
New construction dummy 0.078 0.004 0.077 0.005 0.072 0.005
Contract Year Dummies
1996 0.019 0.019 0.025 0.020 0.016 0.021
1997 0.027 0.019 0.037 0.019 0.034 0.021
1998 0.054 0.019 0.064 0.019 0.057 0.021
1999 0.110 0.019 0.119 0.019 0.103 0.021
2000 0.166 0.019 0.172 0.020 0.151 0.021
State Dummies NO NO YES
County Dummies NO YES NO
Zip code dummies YES NOC NO
Contract Month Dummies YES YES YES
Other buildings dummies YES YES YES
Other rooms by type dummies YES YES YES
Heating & cooling dummies YES YES YES
lot description dummies YES YES YES
acreage * county dummies NO NO NO
view dummies YES YES YES
water proximity dummies YES YES YES
house style dummies YES YES YES
construction materials dummies YES YES YES
N 96300 96300 96300
DF 95528 95986 95534

R-squared 0.9481 0.9397 0.9318




Table 5. Estimated Parameters for Age-Price Model using Hulten-Wykoff Adjustment, Land &
Structure Value

80 year mean discard 120 year mean discard 160 year mean discard
Estimate Std. Error Estimate Std. Error Estimate Std. Error

Variable Mm {2) (3)
Depreciation rate * 100% -1.93 0.006 =115 0.005 -0.47 0.004
Ln($value of improvments) 0.000083 0.00008 -0.000014 0.00008 -0.000366 0.00007
2 Bedroom Exactly 0.135 0.023 0.117 0.02 0.115 0.018
3 Bedrooms Exactly 0.209 0.022 0.183 0.02 0.174 0.018
4 Bedrooms Exactly 0.268 0.023 0.24 0.02 0.228 0.018
5+ Bedrooms 0.304 0.022 0.28 0.02 0.261 0.018
2 Full Baths Exactly 0.069 0.002 0.096 0.002 0.133 0.002
3 Full Baths Exactly 0.128 0.003 0.174 0.003 0.228 0.003
4 Full Baths Exactly 0.219 0.005 0.277 0.004 0.344 0.004
5+ Full Baths 0.353 0.008 0.426 0.007 0.498 0.006
1 Half Bath Exactly 0.032 0.002 0.051 0.002 0.075 0.002
2 Half Baths Exactly 0.075 0.003 0.101 0.003 0.13 0.003
3 Half Baths Exactly 0.122 0.013 0.158 0.012 0.174 0.011
4+ Half Baths 0 0.037 0.091 0.034 0.126 0.029
acreage 0.036 0.001 0.038 0.001 0.037 0.001
New construction dummy 0.003 0.003 0.083 0.003 0.125 0.003
Contract Year Dummies
1996 0.009 0.002 0.001 0.003 -0.004 0.002
1997 0.015 0.003 0.004 0.003 -0.007 0.003
1998 0.059 0.003 0.046 0.003 0.027 0.003
1999 0.127 0.004 0.111 0.003 0.085 0.003
2000 0.195 0.004 0.178 0.004 0.146 0.004
State Dummies NO NO NO
County Dummies NO NO NO
Zip code dummies YES YES YES
Contract Month Dummies YES YES YES
Other buildings dummies YES YES YES
Other rooms by type dummies YES YES YES
Heating & cooling dummies YES YES YES
jot description dummies YES YES YES
acreage * county dummies YES YES YES
view dummies YES YES YES
water proximity dummies YES YES YES
house style dummies YES YES YES
construction materials dummies YES YES YES
N 162829 163308 163308
DF 161862 162240 162340
R-squared 0.8635 0.8584 0.8811

Average Discard Age 51.81 86.69 177.8




Table 6. Single Family House and Land Pricing Model With Weibull Distribution of Discards

Variable

Depreciation rate * 100%
M

n

Scrap value

Ln($value of improvements)
2 Bedroom Exactly
3 Bedrooms Exactly
4 Bedrooms Exactly
5+ Bedrooms
2 Full Baths Exactly
3 Full Baths Exactly
4 Full Baths Exactly
5+ Full Baths
1 Half Bath Exactly
2 Half Baths Exactly
3 Half Baths Exactly
4+ Half Baths
acreage
New construction dummy
Contract Year Dummies
1996
1997
1998
1999
2000
State Dummies
County Dummies
Zip code dummies
Contract Month Dummies
Other buildings dummies
Other rooms by type
dummies
Heating & cooling dummies
lot description dummies
acreage * county dummies
view dummies
water proximity dummies
house style dummies
construction materials
dummies

N
DF
R-squared

Average Discard Age

No scrap value
Estimate Std. Error
(1)

-1.86 0.089
67.79 2.97
1.354 0.017
-0.000194  0.00006
0.092 0.017
0.156 0.017
0.215 0.017
0.249 0.017
0.132 0.002
0.221 0.002
0.333 0.004
0.476 0.006
0.075 0.002
0.128 0.003
0.168 0.010
0.085 0.029
0.038 0.001
0.077 0.003
-0.001 0.002
-0.003 0.003
0.033 0.003
0.093 0.003
0.157 0.004
NO
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
163310
162339
0.9598
62.63

Scrap Value
Estimate

(2)

-1.20

88.26

1.542

0.036

-0.000285
0.091
0.154
0.212
0.244
0.134
0.226

0.34
0.484
0.076

0.13
0.168
0.092
0.038
0.098

-0.003
-0.004
0.031
0.09
0.153
NO
NO
YES
YES
YES
YES

YES
YES
YES
YES
YES
YES
YES

163310
162338
0.9898

80.02

Std. Error

0.073

3.21
0.045
0.008

0.000062
0.017
0.017
0.017
0.017
0.002
0.002
0.004
0.006
0.002
0.002

0.01
0.028
0.00096
0.003

0.002
0.003
0.003
0.003
0.003

Scrap Value
Estimate

(3)

-0.54
102.98
2.952

0.4

-0.0004
0.089
0.152
0.207
0.238
0.139
0.234
0.351
0.496
0.078
0.132
0.169
0.095
0.038
0.125

-0.004
-0.007
0.027
0.085
0.146
NO
NO
YES
YES
YES
YES

YES
YES
YES
YES
YES
YES
YES

163310
162339
0.9998

92.39

Std. Error

0.095
0.52
0.039
fixed
constant
0.00061
0.017
0.016
0.016
0.017
0.002
0.002
0.004
0.006
0.002
0.002
0.01
0.027
0.00096
0.002

0.002
0.002
0.003
0.003
0.003
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Table 7. Single Family House (Structure Only) Pricing Model With Weibull Distribution of Discards

No scrap value

Scrap Value

Estimate Std. Error Estimate Std. Error
Variable N (2)
Depreciation rate * 100% -1.18 0.008 -0.51 0.055
m 90.63 38.75 111.93 1,34
n 1.13 0.062 1.71 0.09
Scrap value 0.267 0.049
Ln($value of improvments) 0.639 0.002 0.642 0.002
2 Bedroom Exactly 0.006 0.02 0.003 0.019
3 Bedrooms Exactly 0.052 0.02 0.049 0.019
4 Bedrooms Exactly 0.084 0.02 0.08 0.019
5+ Bedrooms 0.1086 0.02 0.101 0.019
2 Full Baths Exactly 0.062 0.002 0.062 0.002
3 Full Baths Exactly 0.1 0.002 0.101 0.002
4 Full Baths Exactly 0.147 0.003 0.15 0.003
5+ Full Baths 0.216 0.006 0.218 0.005
1 Half Bath Exactly 0.033 0.002 0.033 0.002
2 Half Baths Exactly 0.054 0.002 0.054 0.002
3 Haif Baths Exactly 0.083 0.008 0.083 0.008
4+ Half Baths 0.036 0.025 0.04 0.025
acreage
New construction dummy 0.044 0.005 0.056 0.005
Contract Year Dummies
1996 0.021 0.02 0.02 0.019
1997 0.033 0.019 0.031 0.019
1998 0.061 0.02 0.059 0.019
1999 0.119 0.02 0.116 0.019
2000 0.178 0.02 0175 0.019
State Dummies NO NO
County Dummies NO NO
Zip code dummies YES YES
Contract Month Dummies YES YES
Other buildings dummies YES YES
Other rooms by type dummies YES YES
Heating & cooling dummies YES YES
lot description dummies YES YES
acreage * county dummies NO NO
view dummies YES YES
water proximity dummies YES YES
house style dummies YES YES
construction materials dummies YES YES
N 86301 96301
DF 95523 85522
R-squared 0.9999 0.9999
Average Discard Age 84.99 100.26
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Chart 2. Distribution of discards of land and
structure with no residual value
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