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Abstract

We use a series of experiments with traffic data to examine how illegal behavior is
deterred by various penalty schemes and whether deterrence varies with age, income,
driving record and criminal record.  We find that red light running decreases sharply in
response to an increase in the fine or an increase in the probability of being caught.  The
elasticity of violations with respect to the fine is larger for younger drivers and drivers
with older cars. Drivers convicted of violent offenses or property offenses run more red
lights on average but have the same elasticity as drivers without a criminal record.
Drivers without citizenship status have the smallest elasticity with respect to a fine
increase.
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I. Introduction

The economic model of crime activity suggests that potential offenders respond

to the expected value of punishment (Becker [1968], Stigler [1970], Polinsky and

Shavell [1984]).  Critics of this view have argued that many criminals are irrational,

uninformed or have such high discount rates that increases in expected punishment do

little to create deterrence.  Other researchers (eg Menniger [1968]) have argued that

deterrence will fail because criminals are pre-destined to commit anti-social acts due to

genes or early environment.1

We examine a series of traffic experiments and find that increases in fines or

probability of apprehension increase deterrence for all groups of drivers, including those

convicted of violent crimes and property crimes.  The experiments are attempts by

police agencies to reduce the incidence of people driving through red lights.  The data

allow us to examine how responsive people are to shifts in the magnitude of a fine and

shifts in the probability of getting caught.  Drivers exhibit a large response to both

policy levers.   For example, the introduction of red light cameras in two U.S. cities

reduced the number of violations by about 50%.  The elasticity of violations with

respect to the size of the fine is roughly -0.20.

We find that drivers previously indicted for property or violent crimes break

traffic laws more often.  However, these drivers have as large an elasticity with respect

                                                

1 See Hernnstein and Wilson [1985] for a general discussion of theories of criminal behavior.
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to the fine increase as the general population.  Younger drivers have a larger elasticity

while wealthier drivers have a smaller elasticity2.

Our finding that people are responsive to both the probability of apprehension

and the magnitude of the penalty is consistent with much of the modern deterrence

literature.  For example, Levitt (1998) finds that the elasticity of crime with respect to

the arrest rate is approximately -0.20.  Kessler and Levitt (1999) use sentence

enhancements to show that increases in prison sentences have a large deterrent effect.3

Our results contrast somewhat with Grogger (1991) and Witte (1980) who find that

criminals responded very little to the magnitude of the penalty (prison sentence).  Our

data show that this is not the case with respect to red light running.

The data employed here are from a series of experiments conducted in Virginia,

California, and Israel regarding how people respond to shifts in fines and probabilities

of being caught for running red lights.  The use of data on traffic offenses rather than

data on felonies and larcenies is somewhat unusual in the economics literature, but the

data offer several advantages.4  First, these data are from a fairly unique case in which

there is an exogenous shift in the penalty or the probability.  In two cases we have

treatment groups with shifts and control groups without shifts.  Second, in contrast to

most crime data, there is no reporting problem.  Cameras are used at each intersection to

achieve full monitoring of the number of cars and the number of violations.  Hence, the

number of reported violations is the number of actual violations.  Third, since there are

                                                

2 This finding is predicted by Polinsky and Shavell [1984],  [1991] , and Garoupa [1998].
3 Erhlich [1975] examines the deterrent effect of capital punishment.
4 Becker [1968] considers the case of traffic violations as one of his examples. Other cases of the use of
traffic violations, or even red light running, as examples of crime are Polinsky and Shavell (AER, 1991),
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no prison sentences handed out, there are almost no concerns of untangling deterrence

effects from incapacitation.5  Fourth, we can compare the behavior of criminals and

non-criminals in their response to a fine increase.

The social losses from red light running accidents are quite large and are on the

same order of magnitude as many felonies.  Red light running is a serious problem in

virtually any country with a large number of cars and drivers. In the U.S. in 1998,

roughly 2,000 deaths resulted from drivers running red lights.6  This compares with

about 17,000 murders in 1998 (FBI UCR).  There are at least 260,000 crashes in the

U.S. annually caused by red light running.7  The implied costs of car repair alone are on

the order of $520 million per year.8

The structure of the paper is as follows. Section 2 is a brief description of the

data, while section 3 presents the empirical framework used for the micro data and

section 4 presents results. Conclusions are drawn in section 5.

                                                                                                                                              

Kaplow and Shavell (JPE 1994), and Friedman (JPE 1999). Most economists follow the practice of
Erlich[1975] or Levitt [1998] in examining murders, rapes, robberies, assaults, larceny, or auto theft.
5 Few people lose their driver's licenses as a result of getting caught even multiple times.
6 From analysis of NHTSA administration data.
7 From US Dept. of Transportation.  This number is a lower bound and is based only on accidents which
can be identified for certain as caused by red-light running.
8 This is a back of the envelope calculation based on a median car repair bill of $2000.  Clearly in
addition to the huge social costs, there could be social benefits to red light running if overall there is time
saved for drivers.   We make no effort to estimate these benefits.
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II.  Description of the Data and Experiments

To combat the problem of red light running, police agencies have taken a variety

of steps.  Among the most effective steps has been the installation of "red light

cameras" at intersections.  These are small cameras which fit inside a protective housing

installed on a light pole, tree, or building.  The camera is linked electronically to the

traffic signal and wires buried in the road.  When a car enters the intersection after the

light has turned red, the camera takes a picture of the car's license plate and in some

cases a picture of the driver.  (This depends on the requirements under local laws.)

Typically drivers have a grace period so that tickets are only issued if the car enters

some fraction of a second after the light turns red.

The cameras can be completely hidden or they can be well advertised with signs.

They are fixed in direction and one camera can only cover one direction of traffic,

though it can cover multiple lanes in a single direction.

Evidence from around the world shows that public knowledge of the use of

camera enforcement in a given area creates large reductions in the number of violations.

We have data from experiments in Fairfax, Virginia, Oxnard, California, San Francisco,

California, and Israel.9

In Fairfax, VA, the introduction of cameras was coupled with a controlled

experiment to examine the magnitude of the drop in violations.  Prior to any public

                                                

9 The data on violations in each intersection for Fairfax and Oxnard come from traffic safety publications
by Retting et al.[1996] and [1999].  Using additional data from the Oxnard Police and Fairfax City
Planner's office, we have added information on the increase in probability of receiving a ticket and
calculated the implied elasticity of response.  The San Francisco and Israeli data were provided by the
respective police departments.
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announcement of the program, monitoring began at three types of intersections:  1.)

camera intersections in Fairfax, 2.) non-camera intersections within Fairfax, and 3.)

control intersections in nearby cities that do not use camera enforcement.  The non-

camera and control intersections were monitored using video cameras.

After several hundred hours of monitoring the level of violations, the camera

enforcement program in Fairfax was announced with a publicity campaign including

newspaper ads and signs posted at the city limits (but not specific intersections).  This

reflects increased probability of detection.  The fine imposed on red light runners was

been kept constant at $50 during the whole period under consideration. We take the

dependent variable to be the number of violations per hour.  We measure the drop in the

rate of violations as a difference in difference; we take the difference before and after at

the Fairfax camera intersections minus the difference before and after at the control

intersections.

A natural question is whether or not the timing of when the cameras are installed

is truly exogenous.  First of all differencing out the control intersections should remove

any overall trend in violations within Virginia.  Secondly, the timing of the program

was controlled more at the State level than at the local level. The State legislature had to

pass a law legalizing the use of camera enforcement.  Once they did that, Fairfax

initiated its program soon after.

A second experiment similar to the Fairfax experiment was run in Oxnard,

California at about the same time (circa July 1997).  This experiment also involved

camera and non-camera sites within Oxnard and control sites located in nearby cities
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(e.g. Santa Barbara.)  The methodology and the resulting drops in violations are similar

to those found in Fairfax.

The Oxnard experiment has an additional component: In January 1998, the State

of California more than doubled the fine for running a red light.  The fine was raised

from $104 to $271.  As is shown in Figure 1, this caused an immediate and large drop in

the number of violations per day.  The number of violations then stabilized at this new

low level where it remained.  We assume this shift in the fine to be exogenous and we

use it to obtain an estimate of the elasticity of the rate of violations with respect to the

fine.  We believe that this estimate is useful because it includes complete monitoring

and a quasi-exogenous shift in the fine.

The same fine shift occurred in San Francisco (due to the shift in California law)

and we have monthly data for eight intersections, presented in Figure 2.  This enables us

to run a regression with intersection fixed effects to get a second estimate of the

response to a shift in the fine.

The largest data set we have is for Israel. In their effort to reduce traffic deaths,

the Israelis have implemented a nation wide camera program over the past twenty years.

As an additional measure to reduce violations, Israel raised the fine for running a red

light from 400 shekels ($122) to 1000 shekels ($305) in December of 1996. We have 45

months of data, 1:1995-9:1998, across all 73 intersections in the country which have

housings for the cameras.  About half of the intersections, between 34 and 40, had an

active camera in any given month. We use the Israeli data to run regressions with

intersection fixed effects to estimate the drop in violations with respect to the fine

increase.
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In addition to the aggregate data for Israel, we also have two sets of micro data

for Israeli drivers.  First, we have a panel of 21,677 drivers who had a license in 1992.

This is a random sample of 1% of Israeli drivers.   (The police created the sample for

us.)  For each driver we have age, sex, marital status, year migrated to Israel, religion,

and complete criminal and driving records.  The criminal history includes number of

arrests, indictments, and convictions for each of twelve different crimes.  We aggregate

these into property crimes, violent crimes, and white collar crimes.  From the driving

record we use the number and timing of red light violations, the number of speeding

tickets, the number of failure to yield (yield sign) violations, and the number of

convictions for driving under the influence of alcohol.  In cases where the driver has

committed a red light violation, we know the age of the driver's car.

      Our second set of micro data is information on the full set of all red light

tickets issued during 1992-1999 (the "ticket based sample").  This is a set of 221,870

tickets.  For each observation we have same personal background, driving record, and

criminal history as in the 1% sample of drivers.  We also have unique driver ID

numbers so that it is clear when the same driver is getting multiple tickets.  Naturally

there is some overlap between the sample of drivers and the population of tickets.  The

advantage of the former is that we can track the behavior of all drivers including those

who do not receive red light tickets.  The advantage of the latter is that we have a much

larger data set given the entire population of tickets and we have age of car for every

entry.

III.  Empirical Framework
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In the micro data, the number of red light tickets is modeled as a Poisson

process.  In other words, we assume that each driver has some fixed probability of a

ticket during a short time period and that these short periods are independent trials.   A

driver's expected number or tickets during either the before or after period is given by:

(1) Expected number of tickets =exposure * exp( 0ba + *after).

Here "after" is a dummy for whether we are using an observation from before or

after the fine increase.  Exposure is a variable capturing the length of each time period.

In this case there are 18 quarters for the before period and 14 quarters for the after

period.  The expected number of tickets in a single quarter in the before period is ae .

Expected tickets per quarter in the after period = 0bae + .  We also run specifications that

include right hand side controls for characteristics like male, married, or property

criminal.  And we interact the characteristics with "after" to allow for a differential

response to the fine increase by each group.  These equations have the following form:

(2) Expected number of tickets=

             = exposure* exp[(a+ 0b *after+ 1b *male+ 2b *(male*after))].

Finally, since we observe every driver before and after the fine increase, we also

estimate Poisson with individual fixed effects.  This specification allows each driver to

have her own base probability of a ticket. The main effects of male, property criminal

etc are absorbed into the fixed effects, but we still can identify the coefficient on the
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interaction between each characteristic and "after."  We also run the above regressions

using OLS and OLS with fixed effects, rather than Poisson. (OLS results are in

Appendix 1).

IV.  Results

The Response to a Shift in the Fine: Israeli Micro Data

      We begin with results for the Israeli sample of drivers.  We have a random sample

of drivers and their driving and criminal records for 1992-1999.  A large fine increase

for red light violations was announced near the end June of 1996.  We define a "before

increase" period as being January 1992-June 1996.  The "after" period is July 1996-

December 1999. 10

In Table 1, we see that the mean number of tickets per driver during the before

period was .092.11   5.3% of the sample has been indicted for a property crime by 1992.

4.7% has been indicted for a violent crime and 3.4% for a white collar crime.  89% of

the sample is Jewish while 76% are male and 81% are married.  14.5% are age 17-30 in

1992 and 26% are age 31-40.  4% have migrated to Israel within the past 20 years.

In Table 2, for various groups we show the mean number of tickets before and

after the fine increase.  The groups shown include the whole sample, the property

criminals, women, men, unmarried drivers, Jews, and non-Jews.  For this table only, we

truncate the before period from below so that it is the same length as the after period.

                                                

10 We used other months, e.g. January 1997, as the first month of the “after” period. This did not make a
significant change in the estimated elasticities.
11 The raw decrease in number of tickets per driver is from .092 in the before period to .05 in the after
period.  This decrease does not control for the differing lengths of the two periods.  Table 2 truncates the
earlier period to 14 quarters and there we see that  tickets per driver decreases from .073 to .050.
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The table shows that drivers who have criminal indictments, or who are young,

unmarried, or recently immigrated run more red lights than others. We also calculate an

implied elasticity with respect to the fine increase using the change in tickets per driver

and the fact that the fine increase was 150%.12

Table 2 shows that the elasticity of number of tickets with respect to the fine

increase is -.21 with a standard error of .02.  Property criminals have a slightly larger

point estimate of the elasticity than non-criminals.  However, this difference is not

significant.  Non-jews have an elasticity of -.10 which is significantly smaller than the -

.23 elasticity for the Jews.  People ages 17-30 have an elasticity of -.36 which is much

larger than the -.16 for people older than 30.  This latter difference is highly significant.

Table 3 takes the same sample of drivers and shows Poisson regressions of

number of tickets on driver characteristics and those characteristics interacted with the

dummy for "after" the increase.  In column (1), we see that the coefficient on "after" is -

.381 and is highly significant.    We interpret this loosely as a 38% decrease in the

number of tickets per quarter.13  The justification for this approximation is as follows:

number of tickets = exposure*exp(-5.2 -.381*after).  If we take the natural log of both

sides, then when after=1, ln(tickets) is decreased by -.381.14

In column (2) we add driver characteristics.  Drivers age 17-30 in 1992 receive

73% more tickets relative to the base category of drivers age 51+.  This difference is

                                                

12 To obtain standard errors for the elasticities, for the drivers in each group we run a Poisson regression
of number of tickets on a dummy for "after."  We use the z-statistic on the incidence ratio for "after" as
the z-statistic for the elasticity.  We then back out the standard error for the elasticity.
13 We control for the lengths of the before and after periods by setting exposure equal to 18 quarters and
14 quarters respectively.  Thus our coefficients are interpreted as the effect on number tickets in a given
quarter.
14 The true percentage decrease in number of tickets is  1-e^-.38 =   -31.6%.  We suggest the
approximation to provide an easy interpretation of the Poisson coefficients.
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highly significant with a z-statistic of 13.4.  Persons with speeding tickets, stop sign

tickets, criminal records, and those who have migrated to Israel within the past 20 years

all receive substantially more tickets.  (The immigrant effect could also be partially an

age effect.)  Property criminals receive 22% more tickets relative to non-criminals.  The

main effect of the dummy for Jewish is small and insignificant.

Column (3) adds interactions between driver characteristics and the dummy for

the fine increase.  (In other words, we allow the different groups of drivers to have a

differential response to the fine increase.)    Only two of the interaction terms are

statistically significant.  Young drivers (age 17-30 in 1992) have a significantly larger

response to the fine increase relative to drivers who are 51+.  The coefficient on the

interaction of after*young is -.635 which eliminates much of the base difference

between young and old drivers of .931.  Part of this large negative interaction term

stems from the fact that the young drivers age a bit between the before and after

periods.  In the current draft, we do not control for this aging effect.

The other significant interaction term is that between after and Jew.  Jews have a

bigger response to the fine increase relative to non-Jews.  The total decrease in tickets

for Jews is -.27-.03 or about a 30% drop controlling for age and all other explanatory

variables.  The decrease in tickets for the non-Jews is only 3%.  One interpretation of

this result is that the non-Jews in Israel were less aware of the increase in the fine.  Or

the non-Jews may have less intention to pay traffic tickets they receive, so they have a

lower price elasticity.

 The most interesting result is that the interactions between after and the various

crime dummies are insignificant.  This indicates that drivers with criminal records have
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the same response to the fine increase as the non-criminals.  This holds true for property

criminals, violent criminals and white collar criminals.  This result is consistent with the

base elasticities in Table 2 which are similar for criminals and non-criminals.  So, the

criminals appear to have the same "rational" response to the fine increase as anyone

else.  One might expect that the criminals have less wealth and would therefore be more

deterred by a fine increase.  But this wealth effect could be offset by if the criminals are

somewhat less likely to pay the fine.

Column (4) of Table 3 adds individual fixed effects.  This allows us to estimate

the coefficient on the interaction between after and individual characteristics while

holding each person's probability of a ticket constant.15   In the fixed effects

specification, the interactions of after*Jew and after*young remain significant.  The

interactions between after and the crime dummies remain insignificant.

Tables 4 and 5 switch from the sample of Israeli drivers to the entire sample of

red light tickets between 1992 and 1999.  Table 4 shows the mean of each driver

characteristic (across the tickets) in the before and after periods.  The means in Table 4

confirm the results from the driver sample.  In the before period, 7% of the tickets are

received by drivers indicted for a property crime.  In the after period, 6.3% of tickets are

given to property criminals.  This modest decrease in the share of tickets shows that if

anything, property criminals are slightly more sensitive to the fine increase relative to

non-criminals.

                                                

15 Poisson with fixed effects causes observations with no tickets in either period to drop out of the
regression, so the sample size is reduced to 5,244 drivers.
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The share of tickets issued to young drivers drops from 31% to 21% which

confirms the larger elasticity for young drivers found earlier.16  Jews see a modest

decrease in their share of tickets following the fine increase (from 88% to 84%).  This

implies a fairly large percentage increase in the share of tickets for non-Jews from 12%

to 16%.

The average age of the car used in the violation falls slightly from 6.1 years to

5.9 years from the before to the after period.  We interpret this to mean that drivers with

newer cars are somewhat less responsive to the fine increase.  Another possibility is that

average age of car driven in Israel is falling over time.

We transform the ticket based data to make the unit of observation an individual

driver (instead of an individual ticket).  The resulting data are the set of all drivers who

received at least one red light ticket during the before period.  For this group we model

the number of tickets received during the before and after periods.  The advantage of

this approach (relative to our random sample of all drivers) is that we have a much

larger sample of people, all of whom received at least one ticket.  This allows us to

obtain more precise estimates of the effects of the fine increase.

Table 5 shows a series of Poisson regressions using the above data.  (These

regressions are analogous to those in Table 3 but use the larger, differently selected

sample.)  In column (1), we see that the number of tickets drops by 34% in the after

period.  This coefficient is similar to the decrease of 38% found in column (1) of Table

3.  Column (3) adds personal characteristics interacted with the dummy for "after."  The

coefficients on after* the three crime dummies are all negative and significant.  The

                                                

16 The ticket based sample allows drivers to enter and leave the sample as they age.  So, the finding for
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coefficients range from -.07 for the interaction of after with the property crime dummy

to -.18 for the interaction of after with the white collar crime dummy.  This indicates

that criminals actually have a larger response to the fine increase than everyone else.

The interaction between after and age 17-30 is -.69 with a z-statistic of 43.6.

This confirms that young people have a larger elasticity with respect to the fine

increase.  The interaction between "after" and "car is less than 5 years old" is .12 with a

z-stat of 13.5.  This shows that holding driver characteristics constant, people with

newer cars are less responsive to the fine increase.  The simplest explanation for this

finding is that wealthier people are less sensitive to the fine increase because the fine is

a smaller percentage of their wealth or disposable income.  Column (4) adds driver

specific fixed effects.  The coefficients are virtually unchanged from column (3).

Results Using Aggregate Data

Now we switch to examining aggregate data collected by police agencies in the

US and Israel.  In Table 6 we see how the total number of violations responded to the

installation of cameras in Fairfax, Virginia.  We look at violations per hour rather than

per driver because we have exact information on hours of camera operation and only

annual estimates on traffic flows.  Town estimates show that traffic levels are roughly

similar in the before and after periods, so the transformation to violations per hour

should not matter much for our conclusions.  In row 1, we see that violations per hour

                                                                                                                                              

younger drivers is not an artifact of a fixed sample of drivers getting older.
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fell by 45% in the camera intersections one year after the cameras were introduced.

Violations per hour fell by 29% in non-camera intersections in Fairfax.  This reflects the

fact that the locations of the cameras are not public knowledge.  Both drops are large

and statistically significant.  Virtually no drop is recorded in the control intersection;

nor would we expect one.  The diff in diff (treatment change minus control change)

shows a 50% reduction in the camera intersections and a 34% reduction in the non-

camera.  Both drops are statistically significant.

Using a very rough approximation, we estimate the probability of apprehension

before the program at 1.1% (see Table 2, row 6).  This is the ratio of actual tickets hand

written in 1996 to violations in 1997 in the intersections that were fully monitored pre-

treatment.  During the pre-treatment period, these intersections were monitored with a

camera in 1997 (even though tickets were not being given).  We assume that the number

of violations in 1996 is identical to those recorded in the pre-treatment monitoring in

1997.  This yields the estimate of a 1.1% chance of apprehension.

We then estimate how much the probability of apprehension rose from the

installation of the cameras.  We know that each camera can only cover one approach to

an intersection.  We assume that the presence of a camera raises the probability of

apprehension for that approach to 100% but that drivers do not know which

intersections and approaches are covered by cameras.  The new probability of

apprehension is estimated to be 1.1% + (# of cameras/ # major approaches in the city).

This implies a new probability of apprehension of 3.6% which is 223% increase.
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The elasticity with respect to probability of apprehension is then either -.22 if

you consider the drop in violations for the camera intersections or -.15 if you consider

the drop for the non-camera intersections.

 Table 7 repeats this exercise for the data from the Oxnard, California

experiment.  We switch from violations per hour to violations per car because we have

different data from Oxnard.  In the nine camera intersections, there is a drop of 44% in

violations per car in the camera intersections and 54% in the non-camera intersections

in Oxnard.  The decrease in the control intersections is 5% and is not statistically

significant.  The diff in diff shows decreases of 39% and 49% in the camera and non-

camera intersections respectively.  All drops in camera and non-camera sites are

statistically significant.

In Table 8 we examine how aggregate violations respond to an increase of 150%

in the fine in Israel (from 400 to 1000 shekels) and 161% in California (from $104 to

$271).  Here the cameras function solely as a way to get complete monitoring of various

intersections before and after the fine shift.

The first four columns of Table 8 present regression results using the Israeli

data.  In regression 2 we regress the log of violations per day on the log of the fine,

using the single large shift in the fine to identify the coefficient.  We use intersection

months as the unit of observation and include intersection fixed effects.  We estimate

the elasticity of the violation rate with respect to the fine to be -0.17.   When we

aggregate up to quarterly data as in regression 1, we see that the elasticity of violations

with respect to the fine is -0.21.  In both regressions the elasticity is statistically

significant.
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In regression 3 we included the number of months since the camera was first

installed in the intersection. The coefficient of this variable is intended to capture the

degree to which drivers learn about the locations of the cameras and reduce violations in

those specific intersections. This coefficient is -0.02 and is statistically significant.

In regression 4 we made an attempt to estimate the effect of an exogenous shift

in the probability of an accident. For that purpose we included the number of

intersecting roads (one or two) in each intersection.  A larger number of intersecting

roads creates a larger probability of having an accident while running a red light.  The

coefficient of this variable is negative and significant, which indicates that the violation

rate falls with a higher probability of an accident..

In regression 6 in Table 8, we use the aggregate data in Oxnard to estimate the

response to the fine increase and obtain an elasticity of -0.56. Naturally we worry about

the fact that the shift in the fine came within a year after the cameras went into place.

But as Figure 1 demonstrates, the drop occurs directly after the fine change. In San

Francisco we have individual intersection data by month and so we are able to run a

panel regression with intersection fixed effects.  In the case of San Francisco (regression

5) we estimate elasticity of the violation rate with respect to the fine is -0.26.

Our results from aggregate data can be summarized as follows:  Introduction of

red light cameras that increased the probability of ticketing reduced the number of

violations in both Oxnard and Fairfax to about one half of the pre-camera levels.  Fine

increases in California and Israel lowered the number of violations such that the

elasticity of violations with respect to the fine hike is around –0.20. We have also found
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some indication that exogenous increase in the probability of an accident reduces the

number of violations.

V.  Conclusion

We have used data from several experiments to show that additional deterrence

is created both by increases in fines and by the probability of being caught.  People's

behavior seems quite similar across various cities in the US and in Israel.  Interestingly,

people with criminal records are just as sensitive (or even more sensitive) to changes in

the magnitude of the fine than people without criminal records.  This evidence supports

the view that criminals make rational choices regarding law breaking activities and that

criminals respond to incentives with a finite discount rate.

Young people and people with older cars respond to fine increases more than

older people and people with new cars.  This suggests that a driver's perception of the

fine is relative to one's own wealth and that the optimal fine might be one based (in

part) on the wealth of the perpetrator.  Our results support the point made by Polinsky

and Shavell [1991]17 regarding deterrence, its relationship to wealth and the optimal

level of fines.  The simplest theory of deterrence would suggest that the socially optimal

fine is a maximal one imposed with low probability as in Becker (1968).  But if the

level of the fine must be constant for all drivers and wealth varies greatly, the optimal

fine may substantially less than maximal.18

                                                

17 See also Garoupa [1998].
18 Note that if the fine is larger than the wealth of the poorest people, an increase in the fine coupled with
a decrease in probability of detection would reduce deterrence for those people.
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Overall, the empirical work is quite supportive of the economic model of crime.

The results offer further reason to believe that policy makers have effective tools at their

disposal to combat crime and that changes in deterrence may be able to explain changes

in crime rates.
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Table 1
Means in Israeli Sample of Drivers

Variable Obs Mean Std. Dev. Min Max
after==0

number of red light tickets 21677 0.092 0.324 0 5
property criminal 21677 0.053 0.223 0 1
violent criminal 21677 0.047 0.212 0 1
white collar criminal 21677 0.034 0.182 0 1
dwi indictment 21677 0.004 0.062 0 1
stop sign tickets 21677 0.707 1.064 0 12
jew 21608 0.891 0.311 0 1
male 21625 0.755 0.430 0 1
married 21677 0.812 0.391 0 1
age 17-30 21677 0.145 0.352 0 1
age 31-40 21677 0.263 0.440 0 1
age 41-50 21677 0.279 0.449 0 1
migrated <20 years ago 21677 0.042 0.200 0 1
speeding tickets 21677 1.333 1.804 0 27
age of car 2995 6.168 5.393 0 47
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Table 2
Mean Number of Tickets By Various Groups

(Before Period Truncated to 14 Quarters)
Before Increase After Increase Elasticity

(std error)

All drivers 0.073 0.050 -0.21
(0.02)

No criminal indictment --property 0.071 0.048 -0.22
(0.02)

Criminal indictment-- property 0.119 0.074 -0.25
(0.09)

Criminal indict--violent 0.102 0.078 -0.16
(0.10)

Criminal indict -- white collar 0.095 0.093 -0.01
(0.05)

Female 0.065 0.042 -0.24
(0.04)

Male 0.076 0.052 -0.21
(0.02)

Unmarried 0.093 0.057 -0.26
(0.04)

Married 0.068 0.048 -0.20
(0.02)

Not recent migrant 0.072 0.049 -0.21
(0.03)

Recent migrant (20 yrs) 0.102 0.057 -0.29
(0.04)

Non-jew 0.071 0.060 -0.10
(0.07)

Jew 0.074 0.049 -0.23
(0.02)

Age 31+ 0.065 0.049 -0.16
(0.03)

Age 17-30 0.123 0.056 -0.36
(0.04)

Notes: Before and after periods are each 14 quarters long.  Standard errors are computed by using the z- stat from a
separate Poisson regression of number of tickets on a dummy for "after" for each group of drivers.
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Table 3: Poisson Regressions
1 = baseline
2 = with characteristics
3= with interactions for characteristics
4= with interactions & person fixed effects

(1) (2) (3) (4)

number red lights number red lights number red lights number red lights
after increase -0.381 -0.380 -0.034 -0.059

(10.03)** (9.98)** (0.18) (0.31)

age 17-30 0.729 0.931
(13.38)** (14.11)**

age 31-40 0.202 0.261
(3.89)** (4.00)**

age 41-50 0.203 0.214
(4.07)** (3.36)**

criminal indictment property 0.221 0.289
(3.10)** (3.27)**

criminal indictment violent 0.180 0.159
(2.35)* (1.64)

criminal indictment white collar 0.158 0.060
(1.84) (0.53)

# of dwi -0.260 -0.258
(driving while intoxicated) (0.90) (0.89)

jew 0.082 0.180
(1.38) (2.35)*

male -0.102 -0.129
(2.20)* (2.27)*

married -0.162 -0.146
(3.62)** (2.67)**

migrated <20 yrs ago 0.444 0.532
(5.68)** (5.74)**

no yield violations in 1992 0.241 0.241
(5.15)** (5.14)**

number speeding tickets in 1992 0.091 0.081
(11.84)** (8.20)**

stop sign tickets in 1992 0.185 0.185
(13.68)** (13.69)**

after *married -0.047 0.008
(0.50) (0.09)

after*speeding tix 0.025 0.031
(1.74) (1.88)

after*age 17-30 -0.635 -0.645
(5.39)** (5.44)**

after*age 31-40 -0.160 -0.169
(1.49) (1.56)
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after*age 41-50 -0.027 -0.039
(0.27) (0.37)

after*crime -0.191 -0.151
(1.27) (1.00)

after*jew -0.265 -0.280
(2.16)* (2.25)*

after*male 0.084 0.078
(0.85) (0.76)

after*migrate <20 -0.281 -0.289
(1.63) (1.66)

after*violent 0.052 0.059
(0.33) (0.37)

after*white collar 0.234 0.287
(1.35) (1.66)

after*dwi -0.534
(0.79)

after*stop sign violations -0.022
(0.70)

after*yield sign violations 0.077
(0.78)

Constant -5.276 -5.780 -5.909
(235.65)** (64.49)** (52.91)**

Observations 43354 43210 43210 5244
Number of id 2622

Absolute value of z-statistics in parentheses
* significant at 5% level; ** significant at 1% level
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Table 4
Means in Sample of Tickets

before after
Variable Obs Mean Std. Dev. Min Max Obs Mean

property criminal 143198 0.070 0.256 0 1 78672 0.063
violent criminal 143198 0.060 0.238 0 1 78672 0.054
white collar criminal 143198 0.035 0.185 0 1 78672 0.030
yield sign violations 143198 0.140 0.347 0 1 78672 0.124
car <5 years old 143180 0.484 0.500 0 1 78670 0.495
age of car 143180 6.139 5.448 0 61 78670 5.901
dwi 143198 0.005 0.072 0 1 78672 0.004
jew 142711 0.876 0.329 0 1 78450 0.841
male 143198 0.746 0.436 0 1 78672 0.753
married 143198 0.738 0.440 0 1 78672 0.685
migrated <20 years 143198 0.644 0.479 0 1 78672 0.682
age 17-30 112220 0.305 0.460 0 1 52334 0.213
age 31-40 112220 0.247 0.431 0 1 52334 0.232
age 41-50 112220 0.234 0.423 0 1 52334 0.265
age 51+ 112220 0.214 0.410 0 1 52334 0.290
age 112220 39.875 13.948 16 94 52334 43.369
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Table 5
Sample of All Drivers Who Received a Ticket

Poisson Regressions

1 =basic
2 = with characteristics
3= with additional characteristics on driving record and criminal record
4= interact after w/ characteristics
5= interact after w/ characteristics, add individual fixed effects

(1) (2) (3) (4)
number red lights number red lights number red lights number red lights

after increase -0.339 -0.508 -0.010 -0.019
(76.36)** (95.83)** (0.37) (0.74)

age 17-30 -0.015 0.202
(2.14)* (23.02)**

age 31-40 -0.005 0.116
(0.71) (13.04)**

age 41-50 -0.009 0.048
(1.31) (5.32)**

car < 5 years old 0.012
(2.41)*

criminal indictment
property

0.029 0.050

(3.00)** (4.33)**
criminal indictment
violent

0.029 0.061

(2.85)** (4.91)**
criminal indictment
white collar

-0.001 0.055

(0.12) (3.68)**
dwi 0.014 0.072

(0.42) (1.87)
jew -0.011 0.071

(1.42) (7.53)**
male 0.013 -0.030

(1.94) (3.76)**
married -0.022 0.026

(3.64)** (3.61)**
migrated <20 yrs ago 0.050 0.142

(4.70)** (11.50)**
number of no yield
tickets in 1992

0.014 0.039

(2.13)* (4.73)**
number of stop sign
tickets in 1992

0.018 0.028

(9.00)** (11.59)**
number speeding
tickets in 1992

0.011 -0.001

(9.12)** (0.41)
after*age 17-30 -0.688 -0.691

(43.62)** (43.48)**
after*age 31-40 -0.350 -0.351

(22.92)** (22.91)**
after*age 41-50 -0.153 -0.153
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(10.33)** (10.28)**
after*car < 5 years 0.121 0.163

(13.50)** (14.82)**
after*crime -0.065 -0.064

(3.11)** (3.04)**
after*dwi -0.195 -0.197

(2.66)** (2.67)**
after*jew -0.268 -0.279

(16.48)** (16.94)**
after*male 0.148 0.154

(10.14)** (10.47)**
after*married -0.159 -0.161

(12.28)** (12.32)**
after*migrate <20 -0.340 -0.355

(13.94)** (14.47)**
after*no yield
violations

-0.078 -0.080

(5.37)** (5.47)**
after*speeding tix in
92

0.030 0.029

(12.22)** (11.63)**
after*stop sign
tickets

-0.031 -0.032

(7.37)** (7.47)**
after*violent -0.097 -0.100

(4.36)** (4.46)**
after*white collar -0.176 -0.177

(6.53)** (6.50)**
Constant -3.221 -3.184 -3.363

(1213.58)** (258.44)** (227.11)**
Observations 395116 290870 290870 290870
Number of id 145435
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Table 6
Reduction in Violations, Implied Elasticities

From Fairfax, VA Experiment

Mean (Violations Per Hour) Across
Intersections

Before 1 year
After

Percentage
Change

Camera 0.59 0.33 -45%
(0.13) (0.09) (9%)

N 5.00 5.00 5.00

Non-camera 1.96 1.35 -29%
(0.58) (0.29) (6%)

N 2.00 2.00 2.00

Control 0.36 0.37 5%
(0.05) (0.02) (9%)

N 2.00 2.00 2.00

Difference in Difference
Camera minus Control -50%

(16%)
Non-camera minus control -34%

(11%)

Probability of Apprenhension
tickets per violation 0.011 0.036 223%

(0.005)

Elasticity of Violations per hour wrt  ∆ Prob
Camera minus Control -0.22
Non-camera minus control -0.15

Notes:
Data provided by City of Fairfax Dept. of Public Works and Police Dept; Insurance for Highway Safety.  See Retting et. al. 1998.
Standard errors shown in parentheses.  Violations per hour are averages across intersections.
Standard error shown is std(across intersections) / (n^.5)
Standard error for diff in diff is calculated as the standard error for a difference in means.
Probability of apprehension before = [annual number of tickets written (hand enforcement) at the 5 intersections used as "camera"
intersections] / [annual number of violations -- estimated from "before" data collected during experiment]
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Table 7
Reduction in Violations, Implied Elasticities

From Oxnard, CA Experiment

Mean (Violations Per 10,000 Cars) Across
Intersections

Before 4 months
After

Percentage
Change

Camera 14.35 8.38 -44%
(1.72) (1.37) (5%)

N 9.00 9.00 9.00

Non-camera 16.40 7.40 -54%
(6.13) (3.22) (8%)

N 3.00 3.00 3.00

Control 7.00 6.70 -5%
(0.20) (1.20) (14%)

N 2.00 2.00 2.00

Difference in Difference
Camera minus Control -39%

(13%)
Non-camera minus control -49%

(19%)

Probability of Apprehension
tickets per violation 200%

Elasticity of Violations per hour wrt  ∆ Prob
Camera minus Control -0.20
Non-camera minus control -0.25

Notes:
Data are from Oxnard Police Dept and Retting et. al. 1999.
Standard errors shown in parentheses.  Violations per car are averages across intersection.
Standard error shown is std(across intersections) * 1/ (n)^.5
Standard error for diff in diff is calculated as the standard error for a difference in means.
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Table 8
Regression of Violations Per Day On Indicators For Shift in Fine

Includes Intersection Fixed Effects

Log(viol./day)
quarterly

 Israel

Log(viol./day)
monthly

Israel

Log(viol./day)
monthly

 Israel

Log(viol./day)
monthly

 Israel

Log(viol./car)
monthly

San Fran

Log(viol./day)
monthly
Oxnard

log(fine) -0.21
(-2.66)

-0.17
(-2.82)

-0.17
(-2.70)

-0.16
(-1.70)

-0.26
(-1.62)

-0.56
(-1.95)

time trend -0.05
(-5.43)

-0.01
(-6.22)

0.01
(0.92)

-0.01
(-4.08)

-0.01
(-1.53)

-0.04
(-2.26)

months since camera first
installed in intersection

-0.02
(-3.21)

number intersecting roads -0.35
(-2.09)

constant 2.65
(5.85)

2.36
(6.63)

2.17
(6.03)

2.91
(4.62)

1.65
(2.22)

5.06
(3.54)

R-squared .12 .08 .14 .13 .05 .56

N
(time periods*intersections)

589 1,519 1,519 675 124 21

Notes:
T-statistics in parentheses.
Regressions 1-4 are OLS with intersection fixed effects on Israeli data.
Fine shifts in 1/12/96 from 400 shekels to 1,000 shekels.
Number of intersections is 73 in regressions 1-3, 32 in regression 4 (rural intersections only) and 8 in regression 5.
Regression 5 is OLS with intersection fixed effects on San Francisco, CA data.
Regression 6 is OLS on aggregate Oxnard, CA data.
Fine shifts in CA from $104 to $271 on 1/1/98.



33

Appendix Table 1: OLS Regressions with Israeli Drivers Sample
1 = baseline
2 = with characteristics
3= with additional characteristics on driving record and criminal record
4= interact after w/ characteristics
5= interact after w/ characteristics, add individual fixed effects

(1) (2) (3) (4) (5)

number red lights number red lights number red lights number red lights number red lights
after increase -0.043 -0.043 -0.043 -0.001 -0.001

(15.86)** (15.92)** (15.96)** (0.11) (0.11)

age 17-30 0.049 0.057 0.100
(11.27)** (12.99)** (16.07)**

age 31-40 0.008 0.013 0.022
(2.13)* (3.60)** (4.21)**

age 41-50 0.011 0.013 0.016
(2.99)** (3.55)** (3.27)**

criminal indictment property 0.030 0.021 0.034
(4.81)** (3.35)** (3.83)**

jew 0.004 0.006 0.018
(1.00) (1.44) (2.75)**

male -0.004 -0.010 -0.014
(1.33) (2.88)** (2.92)**

married -0.014 -0.013 -0.015
(3.93)** (3.56)** (3.04)**

migrated <20 yrs ago 0.037 0.037 0.060
(5.38)** (5.33)** (6.17)**

number speeding tickets in
1992

0.013 0.010 0.010

(17.36)** (12.40)** (9.26)**
criminal indictment violent 0.014 0.015

(2.06)* (1.62)

criminal indictment white
collar

0.019 0.010

(2.53)* (0.96)

dwi -0.026 -0.016
(1.16) (0.53)

noyield 0.020 0.023
(5.11)** (4.18)**

stoptix 0.018 0.024
(13.49)** (12.68)**

Adwi -0.018 -0.018
(0.42) (0.43)

Amarr 0.005 0.005
(0.74) (0.76)

Aspeed -0.001 -0.001
(0.67) (0.69)
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Astop -0.012 -0.012
(4.41)** (4.55)**

Ayield -0.006 -0.006
(0.80) (0.82)

after*age 17-30 -0.085 -0.085
(9.72)** (10.02)**

after*age 31-40 -0.017 -0.017
(2.35)* (2.43)*

after*age 41-50 -0.008 -0.008
(1.08) (1.11)

after*crime -0.026 -0.026
(2.06)* (2.12)*

after*jew -0.022 -0.022
(2.45)* (2.52)*

after*male 0.008 0.008
(1.24) (1.28)

after*migrate <20 -0.047 -0.047
(3.40)** (3.50)**

after*violent -0.003 -0.003
(0.22) (0.23)

after*white collar 0.018 0.018
(1.18) (1.22)

Constant 0.092 0.070 0.056 0.035 0.092
(47.87)** (10.48)** (8.32)** (3.76)** (49.84)**

Observations 43354 43216 43216 43216 43216
R-squared 0.01 0.02 0.02 0.03 0.54
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Appendix Table 2
Israeli Driver's Sample W/o Trucation of Before Period

Mean Number of Tickets By Various Groups
Before Increase After Increase

All drivers 0.092 0.050
No criminal indictment --property 0.089 0.048
Criminal indictment-- property 0.138 0.074
Criminal indict--violent 0.123 0.078
Criminal indict -- white collar 0.115 0.093
Female 0.084 0.042
Male 0.095 0.052
Unmarried 0.115 0.057
Married 0.087 0.048
Not recent migrant 0.09 0.049
Recent migrant (20 yrs) 0.144 0.057
Non-jew 0.088 0.060
Jew 0.093 0.049
Age 17-30 0.159 0.056

Notes: Before period is 18 quarters long and after period is 14 quarters long
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Number of Red Light Tickets Per Quarter: Israeli Drivers Sample

Number of Red Light Tickets Per Quarter: Israeli Tickets Sample
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Red Light Tickets Per Driver Per Year: Israeli Drivers Sample
Bold line: Jews, Thin Line: All Others

Red Light Tickets Per Driver Per Year: Israeli Drivers Sample
Bold line Drivers 17-30, Thin Line: All Others
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Figure 1
Violations Per Day in Oxnard, CA

Notes: Violations per day = (total violation all intersections / hours of observation all intersections) * 24
Data are from Oxnard Police Dept. and Martin Marietta.  Fine increased from $104 to $271 on Jan 1, 1998.
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Figure 2
Violations Per Car in San Francisco, CA

Notes: Violations per car =

Data are from San Francisco department of parking and traffic. Fine increased from $104 to $271 on Jan 1, 1998.
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